scrub.c 119.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

63
struct scrub_sector {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90 91
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
92
	int			next_free;
93
	struct work_struct	work;
A
Arne Jansen 已提交
94 95
};

96
struct scrub_block {
97
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
98
	int			sector_count;
99
	atomic_t		outstanding_sectors;
100
	refcount_t		refs; /* free mem on transition to zero */
101
	struct scrub_ctx	*sctx;
102
	struct scrub_parity	*sparity;
103 104 105 106
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
107
		unsigned int	generation_error:1; /* also sets header_error */
108 109 110 111

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
112
	};
113
	struct work_struct	work;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

128
	u32			stripe_len;
129

130
	refcount_t		refs;
131

132
	struct list_head	sectors_list;
133 134

	/* Work of parity check and repair */
135
	struct work_struct	work;
136 137

	/* Mark the parity blocks which have data */
138
	unsigned long		dbitmap;
139 140 141 142 143

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
144
	unsigned long		ebitmap;
145 146
};

147
struct scrub_ctx {
148
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
149
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
150 151
	int			first_free;
	int			curr;
152 153
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
154 155 156 157
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
158
	int			readonly;
159
	int			sectors_per_bio;
160

161 162 163 164
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

165
	int			is_dev_replace;
166
	u64			write_pointer;
167 168 169 170

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
171
	bool                    flush_all_writes;
172

A
Arne Jansen 已提交
173 174 175 176 177
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
178 179 180 181 182 183 184 185

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
186
	refcount_t              refs;
A
Arne Jansen 已提交
187 188
};

189 190 191 192
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
193
	u64			physical;
194 195 196 197
	u64			logical;
	struct btrfs_device	*dev;
};

198 199 200 201 202 203 204
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

205
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
206
				     struct scrub_block *sblocks_for_recheck);
207
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
208 209
				struct scrub_block *sblock,
				int retry_failed_mirror);
210
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
211
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212
					     struct scrub_block *sblock_good);
213
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
214
					    struct scrub_block *sblock_good,
215
					    int sector_num, int force_write);
216
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
217 218
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
219 220 221 222
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
223 224
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
225 226
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
227 228 229 230
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
231
static void scrub_bio_end_io(struct bio *bio);
232
static void scrub_bio_end_io_worker(struct work_struct *work);
233
static void scrub_block_complete(struct scrub_block *sblock);
234 235 236 237 238
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num);
239 240
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
241
static void scrub_wr_submit(struct scrub_ctx *sctx);
242
static void scrub_wr_bio_end_io(struct bio *bio);
243
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
244
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
245

246
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
247
{
248 249
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
250
}
S
Stefan Behrens 已提交
251

252 253
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
254
	refcount_inc(&sctx->refs);
255 256 257 258 259 260 261
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
262
	scrub_put_ctx(sctx);
263 264
}

265
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
266 267 268 269 270 271 272 273 274
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

275
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
276 277 278
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
279
}
280

281 282
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
283 284 285 286 287 288 289 290
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

291 292 293 294 295 296
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

316
	lockdep_assert_held(&locks_root->lock);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

332 333 334
	/*
	 * Insert new lock.
	 */
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

360
	lockdep_assert_held(&locks_root->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
380
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
381 382 383 384 385 386 387 388 389 390 391 392 393
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
394 395
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
413
	struct btrfs_block_group *bg_cache;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
460
	struct btrfs_block_group *bg_cache;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

514
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
515
{
516
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
517
		struct btrfs_ordered_sum *sum;
518
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
519 520 521 522 523 524
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

525
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
526 527 528
{
	int i;

529
	if (!sctx)
A
Arne Jansen 已提交
530 531
		return;

532
	/* this can happen when scrub is cancelled */
533 534
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
535

536 537 538
		for (i = 0; i < sbio->sector_count; i++) {
			WARN_ON(!sbio->sectors[i]->page);
			scrub_block_put(sbio->sectors[i]->sblock);
539 540 541 542
		}
		bio_put(sbio->bio);
	}

543
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
544
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
545 546 547 548 549 550

		if (!sbio)
			break;
		kfree(sbio);
	}

551
	kfree(sctx->wr_curr_bio);
552 553
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
554 555
}

556 557
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
558
	if (refcount_dec_and_test(&sctx->refs))
559 560 561
		scrub_free_ctx(sctx);
}

562 563
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
564
{
565
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
566 567
	int		i;

568
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
569
	if (!sctx)
A
Arne Jansen 已提交
570
		goto nomem;
571
	refcount_set(&sctx->refs, 1);
572
	sctx->is_dev_replace = is_dev_replace;
573
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
574
	sctx->curr = -1;
575
	sctx->fs_info = fs_info;
576
	INIT_LIST_HEAD(&sctx->csum_list);
577
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
578 579
		struct scrub_bio *sbio;

580
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
581 582
		if (!sbio)
			goto nomem;
583
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
584 585

		sbio->index = i;
586
		sbio->sctx = sctx;
587
		sbio->sector_count = 0;
588
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
589

590
		if (i != SCRUB_BIOS_PER_SCTX - 1)
591
			sctx->bios[i]->next_free = i + 1;
592
		else
593 594 595
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
596 597
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
598 599 600 601 602
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
603
	sctx->throttle_deadline = 0;
604

605 606 607
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
608
	if (is_dev_replace) {
609 610
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
611
		sctx->flush_all_writes = false;
612
	}
613

614
	return sctx;
A
Arne Jansen 已提交
615 616

nomem:
617
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
618 619 620
	return ERR_PTR(-ENOMEM);
}

621 622
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
623 624 625 626
{
	u32 nlink;
	int ret;
	int i;
627
	unsigned nofs_flag;
628 629
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
630
	struct scrub_warning *swarn = warn_ctx;
631
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
632 633
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
634
	struct btrfs_key key;
635

D
David Sterba 已提交
636
	local_root = btrfs_get_fs_root(fs_info, root, true);
637 638 639 640 641
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

642 643 644
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
645 646 647 648 649
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
650
	if (ret) {
651
		btrfs_put_root(local_root);
652 653 654 655 656 657 658 659 660 661
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

662 663 664 665 666 667
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
668
	ipath = init_ipath(4096, local_root, swarn->path);
669
	memalloc_nofs_restore(nofs_flag);
670
	if (IS_ERR(ipath)) {
671
		btrfs_put_root(local_root);
672 673 674 675
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
676 677 678 679 680 681 682 683 684 685
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
686
		btrfs_warn_in_rcu(fs_info,
687
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
688 689
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
690
				  swarn->physical,
J
Jeff Mahoney 已提交
691
				  root, inum, offset,
692
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
693
				  (char *)(unsigned long)ipath->fspath->val[i]);
694

695
	btrfs_put_root(local_root);
696 697 698 699
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
700
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
701
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
702 703
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
704
			  swarn->physical,
J
Jeff Mahoney 已提交
705
			  root, inum, offset, ret);
706 707 708 709 710

	free_ipath(ipath);
	return 0;
}

711
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
712
{
713 714
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
715 716 717 718 719
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
720 721 722
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
723
	u64 ref_root;
724
	u32 item_size;
725
	u8 ref_level = 0;
726
	int ret;
727

728 729
	WARN_ON(sblock->sector_count < 1);
	dev = sblock->sectors[0]->dev;
730
	fs_info = sblock->sctx->fs_info;
731

732 733 734 735 736 737 738
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
			errstr, rcu_str_deref(dev->name),
			sblock->sectors[0]->physical);
		return;
	}
739
	path = btrfs_alloc_path();
740 741
	if (!path)
		return;
742

743 744
	swarn.physical = sblock->sectors[0]->physical;
	swarn.logical = sblock->sectors[0]->logical;
745
	swarn.errstr = errstr;
746
	swarn.dev = NULL;
747

748 749
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
750 751 752
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
753
	extent_item_pos = swarn.logical - found_key.objectid;
754 755 756 757
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
758
	item_size = btrfs_item_size(eb, path->slots[0]);
759

760
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
761
		do {
762 763 764
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
765
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
766
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
767
				errstr, swarn.logical,
768
				rcu_str_deref(dev->name),
D
David Sterba 已提交
769
				swarn.physical,
770 771 772 773
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
774
		btrfs_release_path(path);
775
	} else {
776
		btrfs_release_path(path);
777
		swarn.path = path;
778
		swarn.dev = dev;
779 780
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
781
					scrub_print_warning_inode, &swarn, false);
782 783 784 785 786 787
	}

out:
	btrfs_free_path(path);
}

788 789
static inline void scrub_get_recover(struct scrub_recover *recover)
{
790
	refcount_inc(&recover->refs);
791 792
}

793 794
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
795
{
796
	if (refcount_dec_and_test(&recover->refs)) {
797
		btrfs_bio_counter_dec(fs_info);
798
		btrfs_put_bioc(recover->bioc);
799 800 801 802
		kfree(recover);
	}
}

A
Arne Jansen 已提交
803
/*
804
 * scrub_handle_errored_block gets called when either verification of the
805 806
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
807 808 809
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
810
 */
811
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
812
{
813
	struct scrub_ctx *sctx = sblock_to_check->sctx;
814
	struct btrfs_device *dev = sblock_to_check->sectors[0]->dev;
815 816 817 818 819 820 821 822 823
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
824
	int sector_num;
825
	int success;
826
	bool full_stripe_locked;
827
	unsigned int nofs_flag;
828
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
829 830
				      DEFAULT_RATELIMIT_BURST);

831
	BUG_ON(sblock_to_check->sector_count < 1);
832
	fs_info = sctx->fs_info;
833
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
834
		/*
835
		 * If we find an error in a super block, we just report it.
836 837 838
		 * They will get written with the next transaction commit
		 * anyway
		 */
839
		scrub_print_warning("super block error", sblock_to_check);
840 841 842
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
843
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
844 845
		return 0;
	}
846 847 848 849
	logical = sblock_to_check->sectors[0]->logical;
	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->sectors[0]->flags &
850
			BTRFS_EXTENT_FLAG_DATA);
851
	have_csum = sblock_to_check->sectors[0]->have_csum;
852

853 854
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
855

856 857 858 859 860 861
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
862
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
863 864 865
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
866 867 868 869 870 871 872 873 874
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
875
		memalloc_nofs_restore(nofs_flag);
876 877 878 879 880 881 882 883 884
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

885 886 887 888
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
889
	 * sector by sector this time in order to know which sectors
890 891 892 893
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
894 895 896 897 898 899 900 901 902 903
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
904 905 906
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
907
	 * Only if this is not possible, the sectors are picked from
908 909 910 911 912 913
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

914
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
915
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
916
	if (!sblocks_for_recheck) {
917 918 919 920 921
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
922
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
923
		goto out;
A
Arne Jansen 已提交
924 925
	}

926
	/* Setup the context, map the logical blocks and alloc the sectors */
927
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
928
	if (ret) {
929 930 931 932
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
933
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
934 935 936 937
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
938

939
	/* build and submit the bios for the failed mirror, check checksums */
940
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
941

942 943 944
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
945
		 * The error disappeared after reading sector by sector, or
946 947 948 949 950 951
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
952 953
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
954
		sblock_to_check->data_corrected = 1;
955
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
956

957 958
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
959
		goto out;
A
Arne Jansen 已提交
960 961
	}

962
	if (!sblock_bad->no_io_error_seen) {
963 964 965
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
966
		if (__ratelimit(&rs))
967
			scrub_print_warning("i/o error", sblock_to_check);
968
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
969
	} else if (sblock_bad->checksum_error) {
970 971 972
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
973
		if (__ratelimit(&rs))
974
			scrub_print_warning("checksum error", sblock_to_check);
975
		btrfs_dev_stat_inc_and_print(dev,
976
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
977
	} else if (sblock_bad->header_error) {
978 979 980
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
981
		if (__ratelimit(&rs))
982 983
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
984
		if (sblock_bad->generation_error)
985
			btrfs_dev_stat_inc_and_print(dev,
986 987
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
988
			btrfs_dev_stat_inc_and_print(dev,
989
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
990
	}
A
Arne Jansen 已提交
991

992 993 994 995
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
996

997 998
	/*
	 * now build and submit the bios for the other mirrors, check
999 1000
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1001 1002 1003 1004 1005
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1006
	 * checksum is present, only those sectors are rewritten that had
1007
	 * an I/O error in the block to be repaired, since it cannot be
1008 1009
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1010 1011
	 * overwritten by a bad one).
	 */
1012
	for (mirror_index = 0; ;mirror_index++) {
1013
		struct scrub_block *sblock_other;
1014

1015 1016
		if (mirror_index == failed_mirror_index)
			continue;
1017 1018

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1019
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1020 1021
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1022
			if (!sblocks_for_recheck[mirror_index].sector_count)
1023 1024 1025 1026
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
1027
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1028
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1029 1030 1031

			if (mirror_index >= max_allowed)
				break;
1032
			if (!sblocks_for_recheck[1].sector_count)
1033 1034 1035 1036
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
1037
			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1038
		}
1039 1040

		/* build and submit the bios, check checksums */
1041
		scrub_recheck_block(fs_info, sblock_other, 0);
1042 1043

		if (!sblock_other->header_error &&
1044 1045
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1046 1047
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1048
				goto corrected_error;
1049 1050
			} else {
				ret = scrub_repair_block_from_good_copy(
1051 1052 1053
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1054
			}
1055 1056
		}
	}
A
Arne Jansen 已提交
1057

1058 1059
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1060 1061 1062

	/*
	 * In case of I/O errors in the area that is supposed to be
1063 1064
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1065 1066 1067 1068 1069
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1070
	 * all possible combinations of sectors from the different mirrors
1071
	 * until the checksum verification succeeds. For example, when
1072
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1073
	 * of mirror #2 is readable but the final checksum test fails,
1074
	 * then the 2nd sector of mirror #3 could be tried, whether now
1075
	 * the final checksum succeeds. But this would be a rare
1076 1077 1078 1079
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1080
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1081
	 * mirror could be repaired by taking 512 byte of a different
1082
	 * mirror, even if other 512 byte sectors in the same sectorsize
1083
	 * area are unreadable.
A
Arne Jansen 已提交
1084
	 */
1085
	success = 1;
1086 1087
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1088
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1089
		struct scrub_block *sblock_other = NULL;
1090

1091 1092
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1093
			continue;
1094

1095
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1096 1097 1098 1099 1100 1101 1102 1103
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1104 1105
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1106 1107
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1108
			     sblocks_for_recheck[mirror_index].sector_count > 0;
1109 1110
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
1111
				    sectors[sector_num]->io_error) {
1112 1113 1114
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1115 1116
				}
			}
1117 1118
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1119
		}
A
Arne Jansen 已提交
1120

1121 1122
		if (sctx->is_dev_replace) {
			/*
1123 1124 1125 1126
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1127 1128 1129 1130
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1131 1132
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1133
				atomic64_inc(
1134
					&fs_info->dev_replace.num_write_errors);
1135 1136 1137
				success = 0;
			}
		} else if (sblock_other) {
1138 1139 1140
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1141
			if (0 == ret)
1142
				sector_bad->io_error = 0;
1143 1144
			else
				success = 0;
1145
		}
A
Arne Jansen 已提交
1146 1147
	}

1148
	if (success && !sctx->is_dev_replace) {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1159
			scrub_recheck_block(fs_info, sblock_bad, 1);
1160
			if (!sblock_bad->header_error &&
1161 1162 1163 1164 1165 1166 1167
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1168 1169
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1170
			sblock_to_check->data_corrected = 1;
1171
			spin_unlock(&sctx->stat_lock);
1172 1173
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1174
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1175
		}
1176 1177
	} else {
did_not_correct_error:
1178 1179 1180
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1181 1182
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1183
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1184
	}
A
Arne Jansen 已提交
1185

1186 1187 1188 1189 1190 1191
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1192
			struct scrub_recover *recover;
1193
			int i;
1194

1195 1196 1197
			for (i = 0; i < sblock->sector_count; i++) {
				sblock->sectors[i]->sblock = NULL;
				recover = sblock->sectors[i]->recover;
1198
				if (recover) {
1199
					scrub_put_recover(fs_info, recover);
1200
					sblock->sectors[i]->recover = NULL;
1201
				}
1202
				scrub_sector_put(sblock->sectors[i]);
1203
			}
1204 1205 1206
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1207

1208
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1209
	memalloc_nofs_restore(nofs_flag);
1210 1211
	if (ret < 0)
		return ret;
1212 1213
	return 0;
}
A
Arne Jansen 已提交
1214

1215
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1216
{
1217
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1218
		return 2;
1219
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1220 1221
		return 3;
	else
1222
		return (int)bioc->num_stripes;
1223 1224
}

Z
Zhao Lei 已提交
1225 1226
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1227 1228 1229 1230 1231 1232
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1233
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1234 1235 1236 1237 1238 1239 1240
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
1241
			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1254
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1255 1256
				     struct scrub_block *sblocks_for_recheck)
{
1257
	struct scrub_ctx *sctx = original_sblock->sctx;
1258
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1259 1260 1261 1262 1263
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = original_sblock->sectors[0]->logical;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1264
	struct scrub_recover *recover;
1265
	struct btrfs_io_context *bioc;
1266 1267 1268 1269
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1270
	int sector_index = 0;
1271
	int mirror_index;
1272
	int nmirrors;
1273 1274 1275
	int ret;

	/*
1276 1277
	 * Note: the two members refs and outstanding_sectors are not used (and
	 * not set) in the blocks that are used for the recheck procedure.
1278 1279 1280
	 */

	while (length > 0) {
1281
		sublen = min_t(u64, length, fs_info->sectorsize);
1282
		mapped_length = sublen;
1283
		bioc = NULL;
A
Arne Jansen 已提交
1284

1285
		/*
1286 1287
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1288
		 */
1289
		btrfs_bio_counter_inc_blocked(fs_info);
1290
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1291 1292 1293
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1294
			btrfs_bio_counter_dec(fs_info);
1295 1296
			return -EIO;
		}
A
Arne Jansen 已提交
1297

1298 1299
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1300
			btrfs_put_bioc(bioc);
1301
			btrfs_bio_counter_dec(fs_info);
1302 1303 1304
			return -ENOMEM;
		}

1305
		refcount_set(&recover->refs, 1);
1306
		recover->bioc = bioc;
1307 1308
		recover->map_length = mapped_length;

1309
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1310

1311
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1312

1313
		for (mirror_index = 0; mirror_index < nmirrors;
1314 1315
		     mirror_index++) {
			struct scrub_block *sblock;
1316
			struct scrub_sector *sector;
1317 1318

			sblock = sblocks_for_recheck + mirror_index;
1319
			sblock->sctx = sctx;
1320

1321 1322
			sector = kzalloc(sizeof(*sector), GFP_NOFS);
			if (!sector) {
1323
leave_nomem:
1324 1325 1326
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1327
				scrub_put_recover(fs_info, recover);
1328 1329
				return -ENOMEM;
			}
1330 1331 1332 1333 1334 1335 1336
			scrub_sector_get(sector);
			sblock->sectors[sector_index] = sector;
			sector->sblock = sblock;
			sector->flags = flags;
			sector->generation = generation;
			sector->logical = logical;
			sector->have_csum = have_csum;
1337
			if (have_csum)
1338
				memcpy(sector->csum,
1339
				       original_sblock->sectors[0]->csum,
1340
				       sctx->fs_info->csum_size);
1341

Z
Zhao Lei 已提交
1342
			scrub_stripe_index_and_offset(logical,
1343 1344 1345 1346
						      bioc->map_type,
						      bioc->raid_map,
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1347 1348 1349
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1350
			sector->physical = bioc->stripes[stripe_index].physical +
1351
					 stripe_offset;
1352
			sector->dev = bioc->stripes[stripe_index].dev;
1353

1354
			BUG_ON(sector_index >= original_sblock->sector_count);
1355
			sector->physical_for_dev_replace =
1356
				original_sblock->sectors[sector_index]->
1357
				physical_for_dev_replace;
1358 1359
			/* For missing devices, dev->bdev is NULL */
			sector->mirror_num = mirror_index + 1;
1360
			sblock->sector_count++;
1361 1362
			sector->page = alloc_page(GFP_NOFS);
			if (!sector->page)
1363
				goto leave_nomem;
1364 1365

			scrub_get_recover(recover);
1366
			sector->recover = recover;
1367
		}
1368
		scrub_put_recover(fs_info, recover);
1369 1370
		length -= sublen;
		logical += sublen;
1371
		sector_index++;
1372 1373 1374
	}

	return 0;
I
Ilya Dryomov 已提交
1375 1376
}

1377
static void scrub_bio_wait_endio(struct bio *bio)
1378
{
1379
	complete(bio->bi_private);
1380 1381 1382 1383
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1384
					struct scrub_sector *sector)
1385
{
1386
	DECLARE_COMPLETION_ONSTACK(done);
1387

1388
	bio->bi_iter.bi_sector = sector->logical >> 9;
1389 1390
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1391 1392
	raid56_parity_recover(bio, sector->recover->bioc,
			      sector->sblock->sectors[0]->mirror_num, false);
1393

1394 1395
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1396 1397
}

L
Liu Bo 已提交
1398 1399 1400
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1401
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1402
	struct bio *bio;
1403
	int i;
L
Liu Bo 已提交
1404

1405 1406 1407
	/* All sectors in sblock belong to the same stripe on the same device. */
	ASSERT(first_sector->dev);
	if (!first_sector->dev->bdev)
L
Liu Bo 已提交
1408 1409
		goto out;

1410
	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1411

1412
	for (i = 0; i < sblock->sector_count; i++) {
1413
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1414

1415 1416
		WARN_ON(!sector->page);
		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1417 1418
	}

1419
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1430 1431
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1432 1433 1434 1435

	sblock->no_io_error_seen = 0;
}

1436
/*
1437 1438 1439 1440 1441
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1442
 */
1443
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1444 1445
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1446
{
1447
	int i;
I
Ilya Dryomov 已提交
1448

1449
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1450

L
Liu Bo 已提交
1451
	/* short cut for raid56 */
1452
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1453 1454
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1455
	for (i = 0; i < sblock->sector_count; i++) {
1456
		struct scrub_sector *sector = sblock->sectors[i];
1457 1458
		struct bio bio;
		struct bio_vec bvec;
1459

1460 1461
		if (sector->dev->bdev == NULL) {
			sector->io_error = 1;
1462 1463 1464 1465
			sblock->no_io_error_seen = 0;
			continue;
		}

1466
		WARN_ON(!sector->page);
1467 1468 1469
		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
		bio.bi_iter.bi_sector = sector->physical >> 9;
1470

1471 1472
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1473
			sector->io_error = 1;
L
Liu Bo 已提交
1474
			sblock->no_io_error_seen = 0;
1475
		}
1476

1477
		bio_uninit(&bio);
1478
	}
I
Ilya Dryomov 已提交
1479

1480
	if (sblock->no_io_error_seen)
1481
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1482 1483
}

1484
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1485
{
1486
	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
M
Miao Xie 已提交
1487 1488
	int ret;

1489
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1490 1491 1492
	return !ret;
}

1493
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1494
{
1495 1496 1497
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1498

1499
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1500 1501 1502
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1503 1504
}

1505
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1506
					     struct scrub_block *sblock_good)
1507
{
1508
	int i;
1509
	int ret = 0;
I
Ilya Dryomov 已提交
1510

1511
	for (i = 0; i < sblock_bad->sector_count; i++) {
1512
		int ret_sub;
I
Ilya Dryomov 已提交
1513

1514 1515
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1516 1517
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1518
	}
1519 1520 1521 1522

	return ret;
}

1523 1524 1525
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1526
{
1527 1528
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1529
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1530
	const u32 sectorsize = fs_info->sectorsize;
1531

1532 1533
	BUG_ON(sector_bad->page == NULL);
	BUG_ON(sector_good->page == NULL);
1534
	if (force_write || sblock_bad->header_error ||
1535
	    sblock_bad->checksum_error || sector_bad->io_error) {
1536 1537
		struct bio bio;
		struct bio_vec bvec;
1538 1539
		int ret;

1540
		if (!sector_bad->dev->bdev) {
1541
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1542
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1543 1544 1545
			return -EIO;
		}

1546 1547 1548
		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
1549

1550 1551 1552
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1553

1554
		if (ret) {
1555
			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1556
				BTRFS_DEV_STAT_WRITE_ERRS);
1557
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1558 1559
			return -EIO;
		}
A
Arne Jansen 已提交
1560 1561
	}

1562 1563 1564
	return 0;
}

1565 1566
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1567
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1568
	int i;
1569

1570 1571 1572 1573 1574 1575 1576
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1577
	for (i = 0; i < sblock->sector_count; i++) {
1578 1579
		int ret;

1580
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1581
		if (ret)
1582
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583 1584 1585
	}
}

1586
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1587
{
1588
	struct scrub_sector *sector = sblock->sectors[sector_num];
1589

1590 1591 1592
	BUG_ON(sector->page == NULL);
	if (sector->io_error)
		clear_page(page_address(sector->page));
1593

1594
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1605 1606 1607
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1619 1620
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1621 1622 1623
{
	struct scrub_bio *sbio;
	int ret;
1624
	const u32 sectorsize = sctx->fs_info->sectorsize;
1625

1626
	mutex_lock(&sctx->wr_lock);
1627
again:
1628 1629
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1630
					      GFP_KERNEL);
1631 1632
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1633 1634
			return -ENOMEM;
		}
1635
		sctx->wr_curr_bio->sctx = sctx;
1636
		sctx->wr_curr_bio->sector_count = 0;
1637
	}
1638
	sbio = sctx->wr_curr_bio;
1639
	if (sbio->sector_count == 0) {
1640
		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1641 1642 1643 1644 1645
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1646 1647
		sbio->physical = sector->physical_for_dev_replace;
		sbio->logical = sector->logical;
1648
		sbio->dev = sctx->wr_tgtdev;
1649 1650 1651
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1652
		}
1653 1654 1655
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1656
		sbio->status = 0;
1657
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1658
		   sector->physical_for_dev_replace ||
1659
		   sbio->logical + sbio->sector_count * sectorsize !=
1660
		   sector->logical) {
1661 1662 1663 1664
		scrub_wr_submit(sctx);
		goto again;
	}

1665
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1666
	if (ret != sectorsize) {
1667
		if (sbio->sector_count < 1) {
1668 1669
			bio_put(sbio->bio);
			sbio->bio = NULL;
1670
			mutex_unlock(&sctx->wr_lock);
1671 1672 1673 1674 1675 1676
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1677
	sbio->sectors[sbio->sector_count] = sector;
1678
	scrub_sector_get(sector);
1679 1680
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1681
		scrub_wr_submit(sctx);
1682
	mutex_unlock(&sctx->wr_lock);
1683 1684 1685 1686 1687 1688 1689 1690

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1691
	if (!sctx->wr_curr_bio)
1692 1693
		return;

1694 1695
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1696 1697 1698 1699 1700
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1701 1702
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1703 1704

	if (btrfs_is_zoned(sctx->fs_info))
1705
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1706
			sctx->fs_info->sectorsize;
1707 1708
}

1709
static void scrub_wr_bio_end_io(struct bio *bio)
1710 1711
{
	struct scrub_bio *sbio = bio->bi_private;
1712
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1713

1714
	sbio->status = bio->bi_status;
1715 1716
	sbio->bio = bio;

1717 1718
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1719 1720
}

1721
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1722 1723 1724 1725 1726
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1727
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1728
	if (sbio->status) {
1729
		struct btrfs_dev_replace *dev_replace =
1730
			&sbio->sctx->fs_info->dev_replace;
1731

1732 1733
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1734

1735
			sector->io_error = 1;
1736
			atomic64_inc(&dev_replace->num_write_errors);
1737 1738 1739
		}
	}

1740 1741
	for (i = 0; i < sbio->sector_count; i++)
		scrub_sector_put(sbio->sectors[i]);
1742 1743 1744 1745 1746 1747 1748

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1749 1750 1751 1752
{
	u64 flags;
	int ret;

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1765 1766
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1767 1768 1769 1770 1771 1772
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1773
		ret = scrub_checksum_super(sblock);
1774 1775 1776 1777
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1778 1779

	return ret;
A
Arne Jansen 已提交
1780 1781
}

1782
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1783
{
1784
	struct scrub_ctx *sctx = sblock->sctx;
1785 1786
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1787
	u8 csum[BTRFS_CSUM_SIZE];
1788
	struct scrub_sector *sector;
1789
	char *kaddr;
A
Arne Jansen 已提交
1790

1791
	BUG_ON(sblock->sector_count < 1);
1792 1793
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
1794 1795
		return 0;

1796
	kaddr = page_address(sector->page);
1797

1798 1799
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1800

1801
	/*
1802
	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1803 1804 1805
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1806

1807
	if (memcmp(csum, sector->csum, fs_info->csum_size))
1808
		sblock->checksum_error = 1;
1809
	return sblock->checksum_error;
A
Arne Jansen 已提交
1810 1811
}

1812
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1813
{
1814
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1815
	struct btrfs_header *h;
1816
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1817
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1818 1819
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1820 1821 1822 1823 1824 1825 1826
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1827
	int i;
1828
	struct scrub_sector *sector;
1829
	char *kaddr;
1830

1831
	BUG_ON(sblock->sector_count < 1);
1832

1833
	/* Each member in sectors is just one sector */
1834
	ASSERT(sblock->sector_count == num_sectors);
1835

1836 1837
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1838
	h = (struct btrfs_header *)kaddr;
1839
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1840 1841 1842 1843 1844 1845

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1846
	if (sector->logical != btrfs_stack_header_bytenr(h))
1847
		sblock->header_error = 1;
A
Arne Jansen 已提交
1848

1849
	if (sector->generation != btrfs_stack_header_generation(h)) {
1850 1851 1852
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1853

1854
	if (!scrub_check_fsid(h->fsid, sector))
1855
		sblock->header_error = 1;
A
Arne Jansen 已提交
1856 1857 1858

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1859
		sblock->header_error = 1;
A
Arne Jansen 已提交
1860

1861 1862 1863
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1864
			    sectorsize - BTRFS_CSUM_SIZE);
1865

1866
	for (i = 1; i < num_sectors; i++) {
1867
		kaddr = page_address(sblock->sectors[i]->page);
1868
		crypto_shash_update(shash, kaddr, sectorsize);
1869 1870
	}

1871
	crypto_shash_final(shash, calculated_csum);
1872
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1873
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1874

1875
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1876 1877
}

1878
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1879 1880
{
	struct btrfs_super_block *s;
1881
	struct scrub_ctx *sctx = sblock->sctx;
1882 1883
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1884
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1885
	struct scrub_sector *sector;
1886
	char *kaddr;
1887 1888
	int fail_gen = 0;
	int fail_cor = 0;
1889

1890
	BUG_ON(sblock->sector_count < 1);
1891 1892
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1893
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1894

1895
	if (sector->logical != btrfs_super_bytenr(s))
1896
		++fail_cor;
A
Arne Jansen 已提交
1897

1898
	if (sector->generation != btrfs_super_generation(s))
1899
		++fail_gen;
A
Arne Jansen 已提交
1900

1901
	if (!scrub_check_fsid(s->fsid, sector))
1902
		++fail_cor;
A
Arne Jansen 已提交
1903

1904 1905 1906 1907
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1908

1909
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1910
		++fail_cor;
A
Arne Jansen 已提交
1911

1912
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1913 1914
}

1915 1916
static void scrub_block_get(struct scrub_block *sblock)
{
1917
	refcount_inc(&sblock->refs);
1918 1919 1920 1921
}

static void scrub_block_put(struct scrub_block *sblock)
{
1922
	if (refcount_dec_and_test(&sblock->refs)) {
1923 1924
		int i;

1925 1926 1927
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1928
		for (i = 0; i < sblock->sector_count; i++)
1929
			scrub_sector_put(sblock->sectors[i]);
1930 1931 1932 1933
		kfree(sblock);
	}
}

1934
static void scrub_sector_get(struct scrub_sector *sector)
1935
{
1936
	atomic_inc(&sector->refs);
1937 1938
}

1939
static void scrub_sector_put(struct scrub_sector *sector)
1940
{
1941 1942 1943 1944
	if (atomic_dec_and_test(&sector->refs)) {
		if (sector->page)
			__free_page(sector->page);
		kfree(sector);
1945 1946 1947
	}
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2007
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2008 2009 2010
{
	struct scrub_bio *sbio;

2011
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2012
		return;
A
Arne Jansen 已提交
2013

2014 2015
	scrub_throttle(sctx);

2016 2017
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2018
	scrub_pending_bio_inc(sctx);
2019 2020
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2021 2022
}

2023 2024
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2025
{
2026
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2027
	struct scrub_bio *sbio;
2028
	const u32 sectorsize = sctx->fs_info->sectorsize;
2029
	int ret;
A
Arne Jansen 已提交
2030 2031 2032 2033 2034

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2035 2036 2037 2038 2039 2040
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2041
			sctx->bios[sctx->curr]->sector_count = 0;
2042
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2043
		} else {
2044 2045
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2046 2047
		}
	}
2048
	sbio = sctx->bios[sctx->curr];
2049
	if (sbio->sector_count == 0) {
2050 2051 2052
		sbio->physical = sector->physical;
		sbio->logical = sector->logical;
		sbio->dev = sector->dev;
2053 2054 2055
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2056
		}
2057 2058 2059
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2060
		sbio->status = 0;
2061
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2062
		   sector->physical ||
2063
		   sbio->logical + sbio->sector_count * sectorsize !=
2064 2065
		   sector->logical ||
		   sbio->dev != sector->dev) {
2066
		scrub_submit(sctx);
A
Arne Jansen 已提交
2067 2068
		goto again;
	}
2069

2070
	sbio->sectors[sbio->sector_count] = sector;
2071
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2072
	if (ret != sectorsize) {
2073
		if (sbio->sector_count < 1) {
2074 2075 2076 2077
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2078
		scrub_submit(sctx);
2079 2080 2081
		goto again;
	}

2082
	scrub_block_get(sblock); /* one for the page added to the bio */
2083
	atomic_inc(&sblock->outstanding_sectors);
2084 2085
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2086
		scrub_submit(sctx);
2087 2088 2089 2090

	return 0;
}

2091
static void scrub_missing_raid56_end_io(struct bio *bio)
2092 2093
{
	struct scrub_block *sblock = bio->bi_private;
2094
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2095

2096
	if (bio->bi_status)
2097 2098
		sblock->no_io_error_seen = 0;

2099 2100
	bio_put(bio);

2101
	queue_work(fs_info->scrub_workers, &sblock->work);
2102 2103
}

2104
static void scrub_missing_raid56_worker(struct work_struct *work)
2105 2106 2107
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2108
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2109 2110 2111
	u64 logical;
	struct btrfs_device *dev;

2112 2113
	logical = sblock->sectors[0]->logical;
	dev = sblock->sectors[0]->dev;
2114

2115
	if (sblock->no_io_error_seen)
2116
		scrub_recheck_block_checksum(sblock);
2117 2118 2119 2120 2121

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2122
		btrfs_err_rl_in_rcu(fs_info,
2123
			"IO error rebuilding logical %llu for dev %s",
2124 2125 2126 2127 2128
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2129
		btrfs_err_rl_in_rcu(fs_info,
2130
			"failed to rebuild valid logical %llu for dev %s",
2131 2132 2133 2134 2135
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2136
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2137
		mutex_lock(&sctx->wr_lock);
2138
		scrub_wr_submit(sctx);
2139
		mutex_unlock(&sctx->wr_lock);
2140 2141
	}

2142
	scrub_block_put(sblock);
2143 2144 2145 2146 2147 2148
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2149
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2150 2151
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = sblock->sectors[0]->logical;
2152
	struct btrfs_io_context *bioc = NULL;
2153 2154 2155 2156 2157
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2158
	btrfs_bio_counter_inc_blocked(fs_info);
2159
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2160 2161 2162
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2163 2164

	if (WARN_ON(!sctx->is_dev_replace ||
2165
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2166 2167 2168 2169
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2170
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2171
		 */
2172
		goto bioc_out;
2173 2174
	}

2175
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2176 2177 2178 2179
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2180
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2181 2182 2183
	if (!rbio)
		goto rbio_out;

2184
	for (i = 0; i < sblock->sector_count; i++) {
2185
		struct scrub_sector *sector = sblock->sectors[i];
2186

2187 2188 2189 2190 2191
		/*
		 * For now, our scrub is still one page per sector, so pgoff
		 * is always 0.
		 */
		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
2192 2193
	}

2194
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2195 2196 2197 2198 2199 2200 2201
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2202
bioc_out:
2203
	btrfs_bio_counter_dec(fs_info);
2204
	btrfs_put_bioc(bioc);
2205 2206 2207 2208 2209
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2210
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2211
		       u64 physical, struct btrfs_device *dev, u64 flags,
2212
		       u64 gen, int mirror_num, u8 *csum,
2213
		       u64 physical_for_dev_replace)
2214 2215
{
	struct scrub_block *sblock;
2216
	const u32 sectorsize = sctx->fs_info->sectorsize;
2217 2218
	int index;

2219
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2220
	if (!sblock) {
2221 2222 2223
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2224
		return -ENOMEM;
A
Arne Jansen 已提交
2225
	}
2226

2227 2228
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2229
	refcount_set(&sblock->refs, 1);
2230
	sblock->sctx = sctx;
2231 2232 2233
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2234
		struct scrub_sector *sector;
2235 2236 2237 2238 2239 2240
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2241

2242 2243
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2244
leave_nomem:
2245 2246 2247
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2248
			scrub_block_put(sblock);
2249 2250
			return -ENOMEM;
		}
2251
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->physical_for_dev_replace = physical_for_dev_replace;
		sector->mirror_num = mirror_num;
2262
		if (csum) {
2263 2264
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2265
		} else {
2266
			sector->have_csum = 0;
2267
		}
2268
		sblock->sector_count++;
2269 2270
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2271
			goto leave_nomem;
2272 2273 2274
		len -= l;
		logical += l;
		physical += l;
2275
		physical_for_dev_replace += l;
2276 2277
	}

2278
	WARN_ON(sblock->sector_count == 0);
2279
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2280 2281 2282 2283 2284 2285
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2286
		for (index = 0; index < sblock->sector_count; index++) {
2287
			struct scrub_sector *sector = sblock->sectors[index];
2288
			int ret;
2289

2290
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2291 2292 2293 2294
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2295
		}
A
Arne Jansen 已提交
2296

2297
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2298 2299
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2300

2301 2302
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2303 2304 2305
	return 0;
}

2306
static void scrub_bio_end_io(struct bio *bio)
2307 2308
{
	struct scrub_bio *sbio = bio->bi_private;
2309
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2310

2311
	sbio->status = bio->bi_status;
2312 2313
	sbio->bio = bio;

2314
	queue_work(fs_info->scrub_workers, &sbio->work);
2315 2316
}

2317
static void scrub_bio_end_io_worker(struct work_struct *work)
2318 2319
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2320
	struct scrub_ctx *sctx = sbio->sctx;
2321 2322
	int i;

2323
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2324
	if (sbio->status) {
2325 2326
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2327

2328 2329
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2330 2331 2332
		}
	}

2333
	/* Now complete the scrub_block items that have all pages completed */
2334 2335
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2336
		struct scrub_block *sblock = sector->sblock;
2337

2338
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2339 2340 2341 2342 2343 2344
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2345 2346 2347 2348
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2349

2350
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2351
		mutex_lock(&sctx->wr_lock);
2352
		scrub_wr_submit(sctx);
2353
		mutex_unlock(&sctx->wr_lock);
2354 2355
	}

2356
	scrub_pending_bio_dec(sctx);
2357 2358
}

2359 2360
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2361
				       u64 start, u32 len)
2362
{
2363
	u64 offset;
2364
	u32 nsectors;
2365
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2366 2367 2368 2369 2370 2371 2372

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2373
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2374
	offset = offset >> sectorsize_bits;
2375
	nsectors = len >> sectorsize_bits;
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2387
						   u64 start, u32 len)
2388
{
2389
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2390 2391 2392
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2393
						  u64 start, u32 len)
2394
{
2395
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2396 2397
}

2398 2399
static void scrub_block_complete(struct scrub_block *sblock)
{
2400 2401
	int corrupted = 0;

2402
	if (!sblock->no_io_error_seen) {
2403
		corrupted = 1;
2404
		scrub_handle_errored_block(sblock);
2405 2406 2407 2408 2409 2410
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2411 2412
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2413 2414
			scrub_write_block_to_dev_replace(sblock);
	}
2415 2416

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2417 2418
		u64 start = sblock->sectors[0]->logical;
		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2419
			  sblock->sctx->fs_info->sectorsize;
2420

2421
		ASSERT(end - start <= U32_MAX);
2422 2423 2424
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2425 2426
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2439
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2440 2441 2442 2443 2444
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2445
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2446
{
2447
	bool found = false;
A
Arne Jansen 已提交
2448

2449
	while (!list_empty(&sctx->csum_list)) {
2450 2451 2452 2453
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2454
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2455
				       struct btrfs_ordered_sum, list);
2456
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2457 2458 2459
		if (sum->bytenr > logical)
			break;

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2470

2471 2472 2473 2474
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2475

2476 2477 2478 2479 2480 2481 2482
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2483
	}
2484 2485
	if (!found)
		return 0;
2486
	return 1;
A
Arne Jansen 已提交
2487 2488 2489
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2490
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2491
			u64 logical, u32 len,
2492
			u64 physical, struct btrfs_device *dev, u64 flags,
2493
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2494
{
2495 2496 2497
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2498 2499
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2500 2501 2502
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2503 2504 2505 2506
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2507 2508 2509 2510
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2511
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2512 2513 2514 2515
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2516 2517 2518 2519
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2520
	} else {
2521
		blocksize = sctx->fs_info->sectorsize;
2522
		WARN_ON(1);
2523
	}
A
Arne Jansen 已提交
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	/*
	 * For dev-replace case, we can have @dev being a missing device.
	 * Regular scrub will avoid its execution on missing device at all,
	 * as that would trigger tons of read error.
	 *
	 * Reading from missing device will cause read error counts to
	 * increase unnecessarily.
	 * So here we change the read source to a good mirror.
	 */
	if (sctx->is_dev_replace && !dev->bdev)
		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
				     &src_dev, &src_mirror);
A
Arne Jansen 已提交
2537
	while (len) {
2538
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2539 2540 2541 2542
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2543
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2544
			if (have_csum == 0)
2545
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2546
		}
2547 2548 2549
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2550 2551 2552 2553 2554
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2555
		src_physical += l;
A
Arne Jansen 已提交
2556 2557 2558 2559
	}
	return 0;
}

2560
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2561
				  u64 logical, u32 len,
2562 2563 2564 2565 2566
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2567
	const u32 sectorsize = sctx->fs_info->sectorsize;
2568 2569
	int index;

2570 2571
	ASSERT(IS_ALIGNED(len, sectorsize));

2572
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2573 2574 2575 2576 2577 2578 2579 2580 2581
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2582
	refcount_set(&sblock->refs, 1);
2583 2584 2585 2586 2587 2588
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2589
		struct scrub_sector *sector;
2590

2591 2592
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2593 2594 2595 2596 2597 2598 2599
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2600
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2601
		/* For scrub block */
2602 2603
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
2604
		/* For scrub parity */
2605 2606 2607 2608 2609 2610 2611 2612 2613
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->mirror_num = mirror_num;
2614
		if (csum) {
2615 2616
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2617
		} else {
2618
			sector->have_csum = 0;
2619
		}
2620
		sblock->sector_count++;
2621 2622
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2623
			goto leave_nomem;
2624 2625 2626 2627 2628 2629


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2630 2631
	}

2632 2633
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2634
		struct scrub_sector *sector = sblock->sectors[index];
2635 2636
		int ret;

2637
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2638 2639 2640 2641 2642 2643
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2644
	/* Last one frees, either here or in bio completion for last sector */
2645 2646 2647 2648 2649
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2650
				   u64 logical, u32 len,
2651 2652 2653 2654 2655 2656 2657 2658
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2659
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2660 2661 2662 2663
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2664
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2665
		blocksize = sparity->stripe_len;
2666
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2667
		blocksize = sparity->stripe_len;
2668
	} else {
2669
		blocksize = sctx->fs_info->sectorsize;
2670 2671 2672 2673
		WARN_ON(1);
	}

	while (len) {
2674
		u32 l = min(len, blocksize);
2675 2676 2677 2678
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2679
			have_csum = scrub_find_csum(sctx, logical, csum);
2680 2681 2682
			if (have_csum == 0)
				goto skip;
		}
2683
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2684 2685 2686 2687
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2688
skip:
2689 2690 2691 2692 2693 2694 2695
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2696 2697 2698 2699 2700 2701 2702 2703
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2704 2705
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2706 2707 2708 2709 2710
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2711 2712
	u32 stripe_index;
	u32 rot;
2713
	const int data_stripes = nr_data_stripes(map);
2714

2715
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2716 2717 2718
	if (stripe_start)
		*stripe_start = last_offset;

2719
	*offset = last_offset;
2720
	for (i = 0; i < data_stripes; i++) {
2721 2722
		*offset = last_offset + i * map->stripe_len;

2723
		stripe_nr = div64_u64(*offset, map->stripe_len);
2724
		stripe_nr = div_u64(stripe_nr, data_stripes);
2725 2726

		/* Work out the disk rotation on this stripe-set */
2727
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2728 2729
		/* calculate which stripe this data locates */
		rot += i;
2730
		stripe_index = rot % map->num_stripes;
2731 2732 2733 2734 2735 2736 2737 2738 2739
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2740 2741 2742
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2743
	struct scrub_sector *curr, *next;
2744 2745
	int nbits;

2746
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2747 2748 2749 2750 2751 2752 2753
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2754
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2755
		list_del_init(&curr->list);
2756
		scrub_sector_put(curr);
2757 2758 2759 2760 2761
	}

	kfree(sparity);
}

2762
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2763 2764 2765 2766 2767 2768 2769 2770 2771
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2772
static void scrub_parity_bio_endio(struct bio *bio)
2773
{
Y
Yu Zhe 已提交
2774
	struct scrub_parity *sparity = bio->bi_private;
2775
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2776

2777
	if (bio->bi_status)
2778 2779
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
2780 2781

	bio_put(bio);
2782

2783 2784
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2785 2786 2787 2788 2789
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2790
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2791 2792
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2793
	struct btrfs_io_context *bioc = NULL;
2794 2795 2796
	u64 length;
	int ret;

2797 2798
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
2799 2800
		goto out;

2801
	length = sparity->logic_end - sparity->logic_start;
2802 2803

	btrfs_bio_counter_inc_blocked(fs_info);
2804
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2805 2806 2807
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2808

2809
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2810 2811 2812 2813
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2814
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2815
					      sparity->scrub_dev,
2816
					      &sparity->dbitmap,
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2827
bioc_out:
2828
	btrfs_bio_counter_dec(fs_info);
2829
	btrfs_put_bioc(bioc);
2830
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2841
	refcount_inc(&sparity->refs);
2842 2843 2844 2845
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2846
	if (!refcount_dec_and_test(&sparity->refs))
2847 2848 2849 2850 2851
		return;

	scrub_parity_check_and_repair(sparity);
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

2978 2979 2980 2981 2982 2983 2984 2985 2986
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
2997
	u64 cur_logical = logical;
2998 2999 3000 3001 3002 3003 3004
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3005
	while (cur_logical < logical + map->stripe_len) {
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3016 3017 3018 3019 3020
		ret = find_first_extent_item(extent_root, path, cur_logical,
					     logical + map->stripe_len - cur_logical);
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3021 3022
			break;
		}
3023
		if (ret < 0)
3024
			break;
3025 3026
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3027

3028
		/* Metadata should not cross stripe boundaries */
3029
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3030 3031
		    does_range_cross_boundary(extent_start, extent_size,
					      logical, map->stripe_len)) {
3032
			btrfs_err(fs_info,
3033 3034
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3035 3036 3037
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3038 3039
			cur_logical += extent_size;
			continue;
3040 3041
		}

3042 3043
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3044

3045 3046 3047 3048 3049
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
				  logical + map->stripe_len) - cur_logical;
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

		ret = btrfs_lookup_csums_range(csum_root, extent_start,
					       extent_start + extent_size - 1,
					       &sctx->csum_list, 1);
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3091
		cur_logical += extent_size;
3092 3093 3094 3095 3096
	}
	btrfs_release_path(path);
	return ret;
}

3097 3098 3099 3100 3101 3102
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3103
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3104
	struct btrfs_path *path;
3105
	u64 cur_logical;
3106 3107 3108 3109
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3120
	ASSERT(map->stripe_len <= U32_MAX);
3121
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3122 3123
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3124 3125 3126 3127
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3128
		btrfs_free_path(path);
3129 3130 3131
		return -ENOMEM;
	}

3132
	ASSERT(map->stripe_len <= U32_MAX);
3133 3134 3135 3136 3137 3138
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3139
	refcount_set(&sparity->refs, 1);
3140
	INIT_LIST_HEAD(&sparity->sectors_list);
3141 3142

	ret = 0;
3143 3144 3145 3146
	for (cur_logical = logic_start; cur_logical < logic_end;
	     cur_logical += map->stripe_len) {
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3147 3148
		if (ret < 0)
			break;
3149
	}
3150

3151 3152
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3153
	mutex_lock(&sctx->wr_lock);
3154
	scrub_wr_submit(sctx);
3155
	mutex_unlock(&sctx->wr_lock);
3156

3157
	btrfs_free_path(path);
3158 3159 3160
	return ret < 0 ? ret : 0;
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
		if (bg->removed) {
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
					cur_logical + scrub_len - 1,
					&sctx->csum_list, 1);
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3313 3314 3315 3316
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return map->num_stripes / map->sub_stripes * map->stripe_len;
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
					  cur_logical, map->stripe_len, device,
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += map->stripe_len;
	}
	return ret;
}

3401
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3402
					   struct btrfs_block_group *bg,
3403
					   struct extent_map *em,
3404
					   struct btrfs_device *scrub_dev,
3405
					   int stripe_index)
A
Arne Jansen 已提交
3406
{
3407
	struct btrfs_path *path;
3408
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3409
	struct btrfs_root *root;
3410
	struct btrfs_root *csum_root;
3411
	struct blk_plug plug;
3412
	struct map_lookup *map = em->map_lookup;
3413
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3414
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3415
	int ret;
3416
	u64 physical = map->stripes[stripe_index].physical;
3417 3418
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3419
	u64 logical;
L
Liu Bo 已提交
3420
	u64 logic_end;
3421
	/* The logical increment after finishing one stripe */
3422
	u64 increment;
3423
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3424
	u64 offset;
3425 3426
	u64 stripe_logical;
	u64 stripe_end;
3427
	int stop_loop = 0;
D
David Woodhouse 已提交
3428

A
Arne Jansen 已提交
3429 3430 3431 3432
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3433 3434 3435 3436 3437
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3438 3439
	path->search_commit_root = 1;
	path->skip_locking = 1;
3440
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3441

3442
	wait_event(sctx->list_wait,
3443
		   atomic_read(&sctx->bios_in_flight) == 0);
3444
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3445

3446 3447
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3448

A
Arne Jansen 已提交
3449 3450 3451 3452
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3453
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3454

3455 3456 3457 3458 3459 3460 3461 3462
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3484
		offset = 0;
3485 3486
		goto out;
	}
3487 3488 3489
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3490
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3491 3492 3493 3494 3495
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3496
	ret = 0;
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = map->stripe_len * nr_data_stripes(map);

3507 3508 3509 3510
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3511
	while (physical < physical_end) {
3512 3513
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3524
			goto next;
3525 3526
		}

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
					  logical, map->stripe_len,
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3538 3539 3540 3541 3542
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += map->stripe_len;
3543
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3544
		if (stop_loop)
3545 3546
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3547 3548
		else
			sctx->stat.last_physical = physical;
3549
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3550 3551
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3552
	}
3553
out:
A
Arne Jansen 已提交
3554
	/* push queued extents */
3555
	scrub_submit(sctx);
3556
	mutex_lock(&sctx->wr_lock);
3557
	scrub_wr_submit(sctx);
3558
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3559

3560
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3561
	btrfs_free_path(path);
3562 3563 3564 3565

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3566 3567 3568 3569
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3570 3571 3572 3573
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3574 3575 3576
	return ret < 0 ? ret : 0;
}

3577
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3578
					  struct btrfs_block_group *bg,
3579
					  struct btrfs_device *scrub_dev,
3580
					  u64 dev_offset,
3581
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3582
{
3583
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3584
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3585 3586 3587
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3588
	int ret = 0;
A
Arne Jansen 已提交
3589

3590
	read_lock(&map_tree->lock);
3591
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3592
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3593

3594 3595 3596 3597 3598
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3599 3600
		spin_lock(&bg->lock);
		if (!bg->removed)
3601
			ret = -EINVAL;
3602
		spin_unlock(&bg->lock);
3603 3604 3605

		return ret;
	}
3606
	if (em->start != bg->start)
A
Arne Jansen 已提交
3607
		goto out;
3608
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3609 3610
		goto out;

3611
	map = em->map_lookup;
A
Arne Jansen 已提交
3612
	for (i = 0; i < map->num_stripes; ++i) {
3613
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3614
		    map->stripes[i].physical == dev_offset) {
3615
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3645
static noinline_for_stack
3646
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3647
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3648 3649 3650
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3651 3652
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3653
	u64 chunk_offset;
3654
	int ret = 0;
3655
	int ro_set;
A
Arne Jansen 已提交
3656 3657 3658 3659
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3660
	struct btrfs_block_group *cache;
3661
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3662 3663 3664 3665 3666

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3667
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3668 3669 3670
	path->search_commit_root = 1;
	path->skip_locking = 1;

3671
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3672 3673 3674 3675
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3676 3677
		u64 dev_extent_len;

A
Arne Jansen 已提交
3678 3679
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3680 3681 3682 3683 3684
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3685 3686 3687 3688
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3689
					break;
3690 3691 3692
				}
			} else {
				ret = 0;
3693 3694
			}
		}
A
Arne Jansen 已提交
3695 3696 3697 3698 3699 3700

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3701
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3702 3703
			break;

3704
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3714
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3715

3716
		if (found_key.offset + dev_extent_len <= start)
3717
			goto skip;
A
Arne Jansen 已提交
3718 3719 3720 3721 3722 3723 3724 3725

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3726 3727 3728 3729 3730 3731

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3757 3758 3759 3760
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3761 3762
				btrfs_put_block_group(cache);
				goto skip;
3763 3764 3765 3766
			}
			spin_unlock(&cache->lock);
		}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3781
		btrfs_freeze_block_group(cache);
3782 3783
		spin_unlock(&cache->lock);

3784 3785 3786 3787 3788 3789 3790 3791 3792
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3823
		 */
3824
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3835 3836
		if (ret == 0) {
			ro_set = 1;
3837
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3838 3839 3840
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3841
			 * It is not a problem for scrub, because
3842 3843 3844 3845
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3846 3847 3848 3849 3850 3851 3852
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3853
		} else {
J
Jeff Mahoney 已提交
3854
			btrfs_warn(fs_info,
3855
				   "failed setting block group ro: %d", ret);
3856
			btrfs_unfreeze_block_group(cache);
3857
			btrfs_put_block_group(cache);
3858
			scrub_pause_off(fs_info);
3859 3860 3861
			break;
		}

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3874
		down_write(&dev_replace->rwsem);
3875
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3876 3877
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3878 3879
		up_write(&dev_replace->rwsem);

3880 3881
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3893
		sctx->flush_all_writes = true;
3894
		scrub_submit(sctx);
3895
		mutex_lock(&sctx->wr_lock);
3896
		scrub_wr_submit(sctx);
3897
		mutex_unlock(&sctx->wr_lock);
3898 3899 3900

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3901 3902

		scrub_pause_on(fs_info);
3903 3904 3905 3906 3907 3908

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3909 3910
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3911
		sctx->flush_all_writes = false;
3912

3913
		scrub_pause_off(fs_info);
3914

3915 3916 3917 3918 3919
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3920
		down_write(&dev_replace->rwsem);
3921 3922
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3923
		up_write(&dev_replace->rwsem);
3924

3925
		if (ro_set)
3926
			btrfs_dec_block_group_ro(cache);
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3937
		    cache->used == 0) {
3938
			spin_unlock(&cache->lock);
3939 3940 3941 3942 3943
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3944 3945 3946
		} else {
			spin_unlock(&cache->lock);
		}
3947
skip_unfreeze:
3948
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3949 3950 3951
		btrfs_put_block_group(cache);
		if (ret)
			break;
3952
		if (sctx->is_dev_replace &&
3953
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3954 3955 3956 3957 3958 3959 3960
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3961
skip:
3962
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
3963
		btrfs_release_path(path);
A
Arne Jansen 已提交
3964 3965 3966
	}

	btrfs_free_path(path);
3967

3968
	return ret;
A
Arne Jansen 已提交
3969 3970
}

3971 3972
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3973 3974 3975 3976 3977
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3978
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3979

J
Josef Bacik 已提交
3980
	if (BTRFS_FS_ERROR(fs_info))
3981
		return -EROFS;
3982

3983
	/* Seed devices of a new filesystem has their own generation. */
3984
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3985 3986
		gen = scrub_dev->generation;
	else
3987
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3988 3989 3990

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3991 3992
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3993
			break;
3994 3995
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3996

3997 3998 3999
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4000 4001 4002
		if (ret)
			return ret;
	}
4003
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4004 4005 4006 4007

	return 0;
}

4008 4009 4010 4011
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4012 4013 4014 4015 4016
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4017 4018 4019 4020 4021 4022

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4023 4024 4025 4026 4027 4028
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4029 4030 4031
	}
}

A
Arne Jansen 已提交
4032 4033 4034
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4035 4036
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4037
{
4038 4039 4040
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4041
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4042
	int max_active = fs_info->thread_pool_size;
4043
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4044

4045 4046
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4047

4048 4049
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4050 4051
	if (!scrub_workers)
		goto fail_scrub_workers;
4052

4053
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4054 4055
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4056

4057
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4069
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4070 4071
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4072
	}
4073 4074 4075
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4076

4077
	ret = 0;
4078
	destroy_workqueue(scrub_parity);
4079
fail_scrub_parity_workers:
4080
	destroy_workqueue(scrub_wr_comp);
4081
fail_scrub_wr_completion_workers:
4082
	destroy_workqueue(scrub_workers);
4083
fail_scrub_workers:
4084
	return ret;
A
Arne Jansen 已提交
4085 4086
}

4087 4088
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4089
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4090
{
4091
	struct btrfs_dev_lookup_args args = { .devid = devid };
4092
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4093 4094
	int ret;
	struct btrfs_device *dev;
4095
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4096

4097
	if (btrfs_fs_closing(fs_info))
4098
		return -EAGAIN;
A
Arne Jansen 已提交
4099

4100
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4101 4102 4103 4104 4105
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4106 4107
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4108 4109
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4110 4111 4112
		return -EINVAL;
	}

4113
	if (fs_info->nodesize >
4114 4115
	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
4116
		/*
4117
		 * Would exhaust the array bounds of sectorv member in
4118 4119
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4120
		btrfs_err(fs_info,
4121 4122 4123
"scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
4124 4125 4126
		return -EINVAL;
	}

4127 4128 4129 4130
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4131

4132 4133 4134 4135
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4136
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4137
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4138 4139
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4140
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141
		ret = -ENODEV;
4142
		goto out;
A
Arne Jansen 已提交
4143 4144
	}

4145 4146
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4147
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4148 4149 4150
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4151
		ret = -EROFS;
4152
		goto out;
4153 4154
	}

4155
	mutex_lock(&fs_info->scrub_lock);
4156
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4157
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4158
		mutex_unlock(&fs_info->scrub_lock);
4159
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4160
		ret = -EIO;
4161
		goto out;
A
Arne Jansen 已提交
4162 4163
	}

4164
	down_read(&fs_info->dev_replace.rwsem);
4165
	if (dev->scrub_ctx ||
4166 4167
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4168
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4169
		mutex_unlock(&fs_info->scrub_lock);
4170
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4171
		ret = -EINPROGRESS;
4172
		goto out;
A
Arne Jansen 已提交
4173
	}
4174
	up_read(&fs_info->dev_replace.rwsem);
4175

4176
	sctx->readonly = readonly;
4177
	dev->scrub_ctx = sctx;
4178
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4179

4180 4181 4182 4183
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4184
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4185 4186 4187
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4188 4189 4190
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4191
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4192 4193 4194 4195 4196 4197
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4198
	if (!is_dev_replace) {
4199
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4200 4201 4202 4203
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4204
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4205
		ret = scrub_supers(sctx, dev);
4206
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4207
	}
A
Arne Jansen 已提交
4208 4209

	if (!ret)
4210
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4211
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4212

4213
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4214 4215 4216
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4217
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4218

A
Arne Jansen 已提交
4219
	if (progress)
4220
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4221

4222 4223 4224 4225
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4226
	mutex_lock(&fs_info->scrub_lock);
4227
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4228 4229
	mutex_unlock(&fs_info->scrub_lock);

4230
	scrub_workers_put(fs_info);
4231
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4232

4233
	return ret;
4234 4235
out:
	scrub_workers_put(fs_info);
4236 4237 4238
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4239 4240 4241
	return ret;
}

4242
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4257
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4258 4259 4260 4261 4262
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4263
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4284
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4285
{
4286
	struct btrfs_fs_info *fs_info = dev->fs_info;
4287
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4288 4289

	mutex_lock(&fs_info->scrub_lock);
4290
	sctx = dev->scrub_ctx;
4291
	if (!sctx) {
A
Arne Jansen 已提交
4292 4293 4294
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4295
	atomic_inc(&sctx->cancel_req);
4296
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4297 4298
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4299
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4300 4301 4302 4303 4304 4305
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4306

4307
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4308 4309
			 struct btrfs_scrub_progress *progress)
{
4310
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4311
	struct btrfs_device *dev;
4312
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4313

4314
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4315
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4316
	if (dev)
4317
		sctx = dev->scrub_ctx;
4318 4319
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4320
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4321

4322
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4323
}
4324

4325 4326 4327 4328 4329
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num)
4330 4331
{
	u64 mapped_length;
4332
	struct btrfs_io_context *bioc = NULL;
4333 4334 4335
	int ret;

	mapped_length = extent_len;
4336
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4337 4338 4339 4340
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4341 4342 4343
		return;
	}

4344 4345 4346 4347
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4348
}