scrub.c 121.1 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66
struct scrub_recover {
67
	refcount_t		refs;
68 69 70 71
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	refcount_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

143
	u64			stripe_len;
144

145
	refcount_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164
struct scrub_ctx {
165
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
166
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
167 168
	int			first_free;
	int			curr;
169 170
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
171 172 173 174 175
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
176
	int			readonly;
177
	int			pages_per_rd_bio;
178 179

	int			is_dev_replace;
180 181 182 183 184 185

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t                flush_all_writes;
	struct btrfs_device     *wr_tgtdev;
186

A
Arne Jansen 已提交
187 188 189 190 191
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
192 193 194 195 196 197 198 199

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
200
	refcount_t              refs;
A
Arne Jansen 已提交
201 202
};

203
struct scrub_fixup_nodatasum {
204
	struct scrub_ctx	*sctx;
205
	struct btrfs_device	*dev;
206 207 208 209 210 211
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

212 213 214 215 216 217 218
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

219 220 221 222 223 224
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
225
	struct list_head	inodes;
226 227 228
	struct btrfs_work	work;
};

229 230 231 232 233 234 235 236 237
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

238 239 240 241 242 243 244
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

245 246 247 248
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
249
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
250
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
251
				     struct scrub_block *sblocks_for_recheck);
252
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
253 254
				struct scrub_block *sblock,
				int retry_failed_mirror);
255
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
256
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
257
					     struct scrub_block *sblock_good);
258 259 260
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
261 262 263
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
264 265 266 267 268
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
269 270
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
271 272
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
273 274
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
275
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
276
		       u64 physical, struct btrfs_device *dev, u64 flags,
277 278
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
279
static void scrub_bio_end_io(struct bio *bio);
280 281
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
282 283 284 285 286 287 288 289
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
290
static void scrub_wr_bio_end_io(struct bio *bio);
291 292 293 294
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
295
				      struct scrub_copy_nocow_ctx *ctx);
296 297 298
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
299
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
300
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
302 303


304 305
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
306
	refcount_inc(&sctx->refs);
307 308 309 310 311 312 313
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
314
	scrub_put_ctx(sctx);
315 316
}

317
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 319 320 321 322 323 324 325 326
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

327
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
328 329 330
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
331
}
332

333 334
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
335 336 337 338 339 340 341 342
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

343 344 345 346 347 348
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

565 566 567 568 569 570
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
571
	struct btrfs_fs_info *fs_info = sctx->fs_info;
572

573
	refcount_inc(&sctx->refs);
574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
587 588 589 590 591 592 593 594 595 596

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

597 598 599 600 601 602
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
603
	struct btrfs_fs_info *fs_info = sctx->fs_info;
604 605 606 607 608 609 610 611 612 613 614 615

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
616
	scrub_put_ctx(sctx);
617 618
}

619
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
620
{
621
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
622
		struct btrfs_ordered_sum *sum;
623
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
624 625 626 627 628 629
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

630
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
631 632 633
{
	int i;

634
	if (!sctx)
A
Arne Jansen 已提交
635 636
		return;

637
	/* this can happen when scrub is cancelled */
638 639
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
640 641

		for (i = 0; i < sbio->page_count; i++) {
642
			WARN_ON(!sbio->pagev[i]->page);
643 644 645 646 647
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

648
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
649
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
650 651 652 653 654 655

		if (!sbio)
			break;
		kfree(sbio);
	}

656
	kfree(sctx->wr_curr_bio);
657 658
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
659 660
}

661 662
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
663
	if (refcount_dec_and_test(&sctx->refs))
664 665 666
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
667
static noinline_for_stack
668
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
669
{
670
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
671
	int		i;
672
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
673

674
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
675
	if (!sctx)
A
Arne Jansen 已提交
676
		goto nomem;
677
	refcount_set(&sctx->refs, 1);
678
	sctx->is_dev_replace = is_dev_replace;
679
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
680
	sctx->curr = -1;
681
	sctx->fs_info = dev->fs_info;
682
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
683 684
		struct scrub_bio *sbio;

685
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
686 687
		if (!sbio)
			goto nomem;
688
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
689 690

		sbio->index = i;
691
		sbio->sctx = sctx;
692
		sbio->page_count = 0;
693 694
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
695

696
		if (i != SCRUB_BIOS_PER_SCTX - 1)
697
			sctx->bios[i]->next_free = i + 1;
698
		else
699 700 701
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
702 703
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
704 705 706 707 708 709 710
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
711

712 713 714
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
715 716
	if (is_dev_replace) {
		WARN_ON(!dev->bdev);
717 718 719
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
		sctx->wr_tgtdev = dev;
		atomic_set(&sctx->flush_all_writes, 0);
720
	}
721

722
	return sctx;
A
Arne Jansen 已提交
723 724

nomem:
725
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
726 727 728
	return ERR_PTR(-ENOMEM);
}

729 730
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
731 732 733 734 735 736 737
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
738
	struct scrub_warning *swarn = warn_ctx;
739
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
740 741 742
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
743
	struct btrfs_key key;
744 745 746 747 748 749 750 751 752 753

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

754 755 756
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
757 758 759 760 761
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
762 763 764 765 766 767 768 769 770 771 772 773 774
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
775 776 777 778 779
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
780 781 782 783 784 785 786 787 788 789
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
790 791 792 793 794 795 796 797
		btrfs_warn_in_rcu(fs_info,
				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
				  (unsigned long long)swarn->sector,
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
798 799 800 801 802

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
803 804 805 806 807 808
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
			  (unsigned long long)swarn->sector,
			  root, inum, offset, ret);
809 810 811 812 813

	free_ipath(ipath);
	return 0;
}

814
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
815
{
816 817
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
818 819 820 821 822
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
823 824 825
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
826
	u64 ref_root;
827
	u32 item_size;
828
	u8 ref_level = 0;
829
	int ret;
830

831
	WARN_ON(sblock->page_count < 1);
832
	dev = sblock->pagev[0]->dev;
833
	fs_info = sblock->sctx->fs_info;
834

835
	path = btrfs_alloc_path();
836 837
	if (!path)
		return;
838

839 840
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
841
	swarn.errstr = errstr;
842
	swarn.dev = NULL;
843

844 845
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
846 847 848
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
849
	extent_item_pos = swarn.logical - found_key.objectid;
850 851 852 853 854 855
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

856
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
857
		do {
858 859 860
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
861
			btrfs_warn_in_rcu(fs_info,
J
Jeff Mahoney 已提交
862 863
				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical,
864
				rcu_str_deref(dev->name),
865 866 867 868 869
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
870
		btrfs_release_path(path);
871
	} else {
872
		btrfs_release_path(path);
873
		swarn.path = path;
874
		swarn.dev = dev;
875 876
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
877 878 879 880 881 882 883
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

884
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
885
{
886
	struct page *page = NULL;
887
	unsigned long index;
888
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
889
	int ret;
890
	int corrected = 0;
891
	struct btrfs_key key;
892
	struct inode *inode = NULL;
893
	struct btrfs_fs_info *fs_info;
894 895
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
896
	int srcu_index;
897 898 899 900

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
901 902 903 904 905 906 907

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
908
		return PTR_ERR(local_root);
909
	}
910 911 912 913

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
914 915
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
916 917 918
	if (IS_ERR(inode))
		return PTR_ERR(inode);

919
	index = offset >> PAGE_SHIFT;
920 921

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
948
		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
949
					fixup->logical, page,
950
					offset - page_offset(page),
951 952 953 954 955 956 957 958 959 960
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
961
					EXTENT_DAMAGED);
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
979
						EXTENT_DAMAGED);
980 981 982 983 984
	}

out:
	if (page)
		put_page(page);
985 986

	iput(inode);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
1004
	struct btrfs_fs_info *fs_info;
1005 1006
	int ret;
	struct scrub_fixup_nodatasum *fixup;
1007
	struct scrub_ctx *sctx;
1008 1009 1010 1011 1012
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1013
	sctx = fixup->sctx;
1014
	fs_info = fixup->root->fs_info;
1015 1016 1017

	path = btrfs_alloc_path();
	if (!path) {
1018 1019 1020
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
1040 1041
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
					  scrub_fixup_readpage, fixup);
1042 1043 1044 1045 1046 1047
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

1048 1049 1050
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
1051 1052 1053

out:
	if (trans && !IS_ERR(trans))
1054
		btrfs_end_transaction(trans);
1055
	if (uncorrectable) {
1056 1057 1058
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
1059
		btrfs_dev_replace_stats_inc(
1060 1061
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
1062
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1063
			fixup->logical, rcu_str_deref(fixup->dev->name));
1064 1065 1066 1067 1068
	}

	btrfs_free_path(path);
	kfree(fixup);

1069
	scrub_pending_trans_workers_dec(sctx);
1070 1071
}

1072 1073
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1074
	refcount_inc(&recover->refs);
1075 1076
}

1077 1078
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1079
{
1080
	if (refcount_dec_and_test(&recover->refs)) {
1081
		btrfs_bio_counter_dec(fs_info);
1082
		btrfs_put_bbio(recover->bbio);
1083 1084 1085 1086
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1087
/*
1088 1089 1090 1091 1092 1093
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1094
 */
1095
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1096
{
1097
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1098
	struct btrfs_device *dev;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
1111
	bool full_stripe_locked;
1112
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 1114 1115
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
1116
	fs_info = sctx->fs_info;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
1128
	length = sblock_to_check->page_count * PAGE_SIZE;
1129 1130 1131 1132
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
1133
			BTRFS_EXTENT_FLAG_DATA);
1134 1135
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1155 1156 1157 1158 1159
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

1189 1190
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1191
	if (!sblocks_for_recheck) {
1192 1193 1194 1195 1196
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1197
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1198
		goto out;
A
Arne Jansen 已提交
1199 1200
	}

1201
	/* setup the context, map the logical blocks and alloc the pages */
1202
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1203
	if (ret) {
1204 1205 1206 1207
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1208
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1209 1210 1211 1212
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1213

1214
	/* build and submit the bios for the failed mirror, check checksums */
1215
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1227 1228
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1229
		sblock_to_check->data_corrected = 1;
1230
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1231

1232 1233
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1234
		goto out;
A
Arne Jansen 已提交
1235 1236
	}

1237
	if (!sblock_bad->no_io_error_seen) {
1238 1239 1240
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1241 1242
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1243
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1244
	} else if (sblock_bad->checksum_error) {
1245 1246 1247
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1248 1249
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1250
		btrfs_dev_stat_inc_and_print(dev,
1251
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1252
	} else if (sblock_bad->header_error) {
1253 1254 1255
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1256 1257 1258
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1259
		if (sblock_bad->generation_error)
1260
			btrfs_dev_stat_inc_and_print(dev,
1261 1262
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1263
			btrfs_dev_stat_inc_and_print(dev,
1264
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1265
	}
A
Arne Jansen 已提交
1266

1267 1268 1269 1270
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1271

1272 1273
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1274

1275 1276
		WARN_ON(sctx->is_dev_replace);

1277 1278
nodatasum_case:

1279 1280
		/*
		 * !is_metadata and !have_csum, this means that the data
1281
		 * might not be COWed, that it might be modified
1282 1283 1284 1285 1286 1287 1288
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1289
		fixup_nodatasum->sctx = sctx;
1290
		fixup_nodatasum->dev = dev;
1291 1292 1293
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1294
		scrub_pending_trans_workers_inc(sctx);
1295 1296
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1297 1298
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1299
		goto out;
A
Arne Jansen 已提交
1300 1301
	}

1302 1303
	/*
	 * now build and submit the bios for the other mirrors, check
1304 1305
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1321
		struct scrub_block *sblock_other;
1322

1323 1324 1325 1326 1327
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1328
		scrub_recheck_block(fs_info, sblock_other, 0);
1329 1330

		if (!sblock_other->header_error &&
1331 1332
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1333 1334
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1335
				goto corrected_error;
1336 1337
			} else {
				ret = scrub_repair_block_from_good_copy(
1338 1339 1340
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1341
			}
1342 1343
		}
	}
A
Arne Jansen 已提交
1344

1345 1346
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1347 1348 1349

	/*
	 * In case of I/O errors in the area that is supposed to be
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1362
	 * the final checksum succeeds. But this would be a rare
1363 1364 1365 1366 1367 1368 1369 1370
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1371
	 */
1372
	success = 1;
1373 1374
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1375
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1376
		struct scrub_block *sblock_other = NULL;
1377

1378 1379
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1380
			continue;
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1393 1394
				}
			}
1395 1396
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1397
		}
A
Arne Jansen 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1413
					&fs_info->dev_replace.num_write_errors);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1424
		}
A
Arne Jansen 已提交
1425 1426
	}

1427
	if (success && !sctx->is_dev_replace) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1438
			scrub_recheck_block(fs_info, sblock_bad, 1);
1439
			if (!sblock_bad->header_error &&
1440 1441 1442 1443 1444 1445 1446
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1447 1448
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1449
			sblock_to_check->data_corrected = 1;
1450
			spin_unlock(&sctx->stat_lock);
1451 1452
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1453
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1454
		}
1455 1456
	} else {
did_not_correct_error:
1457 1458 1459
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1460 1461
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1462
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1463
	}
A
Arne Jansen 已提交
1464

1465 1466 1467 1468 1469 1470
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1471
			struct scrub_recover *recover;
1472 1473
			int page_index;

1474 1475 1476
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1477 1478
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1479
					scrub_put_recover(fs_info, recover);
1480 1481 1482
					sblock->pagev[page_index]->recover =
									NULL;
				}
1483 1484
				scrub_page_put(sblock->pagev[page_index]);
			}
1485 1486 1487
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1488

1489 1490 1491
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1492 1493
	return 0;
}
A
Arne Jansen 已提交
1494

1495
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1496
{
Z
Zhao Lei 已提交
1497 1498 1499 1500 1501
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1502 1503 1504
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1505 1506
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1507 1508 1509 1510 1511 1512 1513
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1514
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1535
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1536 1537
				     struct scrub_block *sblocks_for_recheck)
{
1538
	struct scrub_ctx *sctx = original_sblock->sctx;
1539
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1540 1541
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1542 1543 1544
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1545 1546 1547 1548 1549 1550
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1551
	int page_index = 0;
1552
	int mirror_index;
1553
	int nmirrors;
1554 1555 1556
	int ret;

	/*
1557
	 * note: the two members refs and outstanding_pages
1558 1559 1560 1561 1562
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1563 1564 1565
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1566

1567 1568 1569 1570
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1571
		btrfs_bio_counter_inc_blocked(fs_info);
1572
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1573
				logical, &mapped_length, &bbio);
1574
		if (ret || !bbio || mapped_length < sublen) {
1575
			btrfs_put_bbio(bbio);
1576
			btrfs_bio_counter_dec(fs_info);
1577 1578
			return -EIO;
		}
A
Arne Jansen 已提交
1579

1580 1581
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1582
			btrfs_put_bbio(bbio);
1583
			btrfs_bio_counter_dec(fs_info);
1584 1585 1586
			return -ENOMEM;
		}

1587
		refcount_set(&recover->refs, 1);
1588 1589 1590
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1591
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1592

1593
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1594

1595
		for (mirror_index = 0; mirror_index < nmirrors;
1596 1597 1598 1599 1600
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1601
			sblock->sctx = sctx;
1602

1603 1604 1605
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1606 1607 1608
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1609
				scrub_put_recover(fs_info, recover);
1610 1611
				return -ENOMEM;
			}
1612 1613
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1614 1615 1616
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1617
			page->logical = logical;
1618 1619 1620 1621 1622
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1623

Z
Zhao Lei 已提交
1624 1625 1626
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1627
						      mapped_length,
1628 1629
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1630 1631 1632 1633 1634 1635 1636
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1637 1638 1639 1640
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1641 1642
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1643
			sblock->page_count++;
1644 1645 1646
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1647 1648 1649

			scrub_get_recover(recover);
			page->recover = recover;
1650
		}
1651
		scrub_put_recover(fs_info, recover);
1652 1653 1654 1655 1656 1657
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1658 1659
}

1660 1661 1662 1663 1664
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1665
static void scrub_bio_wait_endio(struct bio *bio)
1666 1667 1668
{
	struct scrub_bio_ret *ret = bio->bi_private;

1669
	ret->error = bio->bi_error;
1670 1671 1672 1673 1674
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1675
	return page->recover &&
1676
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1692
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1693
				    page->recover->map_length,
1694
				    page->mirror_num, 0);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1705 1706 1707 1708 1709 1710 1711
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1712
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1713 1714
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1715
{
1716
	int page_num;
I
Ilya Dryomov 已提交
1717

1718
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1719

1720 1721
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1722
		struct scrub_page *page = sblock->pagev[page_num];
1723

1724
		if (page->dev->bdev == NULL) {
1725 1726 1727 1728 1729
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1730
		WARN_ON(!page->page);
1731
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1732 1733 1734 1735 1736
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1737
		bio->bi_bdev = page->dev->bdev;
1738

1739
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1740
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1741 1742
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
				page->io_error = 1;
1743
				sblock->no_io_error_seen = 0;
1744
			}
1745 1746
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1747
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1748

1749 1750
			if (btrfsic_submit_bio_wait(bio)) {
				page->io_error = 1;
1751
				sblock->no_io_error_seen = 0;
1752
			}
1753
		}
1754

1755 1756
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1757

1758
	if (sblock->no_io_error_seen)
1759
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1760 1761
}

M
Miao Xie 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1772
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1773
{
1774 1775 1776
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1777

1778 1779 1780 1781
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1782 1783
}

1784
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1785
					     struct scrub_block *sblock_good)
1786 1787 1788
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1789

1790 1791
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1792

1793 1794
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1795
							   page_num, 1);
1796 1797
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1798
	}
1799 1800 1801 1802 1803 1804 1805 1806

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1807 1808
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1809
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1810

1811 1812
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1813 1814 1815 1816 1817
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1818
		if (!page_bad->dev->bdev) {
1819
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1820
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1821 1822 1823
			return -EIO;
		}

1824
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1825 1826
		if (!bio)
			return -EIO;
1827
		bio->bi_bdev = page_bad->dev->bdev;
1828
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1829
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1830 1831 1832 1833 1834

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1835
		}
1836

1837
		if (btrfsic_submit_bio_wait(bio)) {
1838 1839
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1840
			btrfs_dev_replace_stats_inc(
1841
				&fs_info->dev_replace.num_write_errors);
1842 1843 1844
			bio_put(bio);
			return -EIO;
		}
1845
		bio_put(bio);
A
Arne Jansen 已提交
1846 1847
	}

1848 1849 1850
	return 0;
}

1851 1852
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1853
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1854 1855
	int page_num;

1856 1857 1858 1859 1860 1861 1862
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1863 1864 1865 1866 1867 1868
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1869
				&fs_info->dev_replace.num_write_errors);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1882
		clear_page(mapped_buffer);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1895
	mutex_lock(&sctx->wr_lock);
1896
again:
1897 1898
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1899
					      GFP_KERNEL);
1900 1901
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1902 1903
			return -ENOMEM;
		}
1904 1905
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1906
	}
1907
	sbio = sctx->wr_curr_bio;
1908 1909 1910 1911 1912
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1913
		sbio->dev = sctx->wr_tgtdev;
1914 1915
		bio = sbio->bio;
		if (!bio) {
1916
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1917
					sctx->pages_per_wr_bio);
1918
			if (!bio) {
1919
				mutex_unlock(&sctx->wr_lock);
1920 1921 1922 1923 1924 1925 1926 1927
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1928
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1929
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1944
			mutex_unlock(&sctx->wr_lock);
1945 1946 1947 1948 1949 1950 1951 1952 1953
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1954
	if (sbio->page_count == sctx->pages_per_wr_bio)
1955
		scrub_wr_submit(sctx);
1956
	mutex_unlock(&sctx->wr_lock);
1957 1958 1959 1960 1961 1962 1963 1964

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1965
	if (!sctx->wr_curr_bio)
1966 1967
		return;

1968 1969
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1970 1971 1972 1973 1974 1975
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1976
	btrfsic_submit_bio(sbio->bio);
1977 1978
}

1979
static void scrub_wr_bio_end_io(struct bio *bio)
1980 1981
{
	struct scrub_bio *sbio = bio->bi_private;
1982
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1983

1984
	sbio->err = bio->bi_error;
1985 1986
	sbio->bio = bio;

1987 1988
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1989
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
2001
			&sbio->sctx->fs_info->dev_replace;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2021 2022 2023 2024
{
	u64 flags;
	int ret;

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2037 2038
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2050 2051

	return ret;
A
Arne Jansen 已提交
2052 2053
}

2054
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2055
{
2056
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2057
	u8 csum[BTRFS_CSUM_SIZE];
2058 2059 2060
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
2061
	u32 crc = ~(u32)0;
2062 2063
	u64 len;
	int index;
A
Arne Jansen 已提交
2064

2065
	BUG_ON(sblock->page_count < 1);
2066
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
2067 2068
		return 0;

2069 2070
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
2071
	buffer = kmap_atomic(page);
2072

2073
	len = sctx->fs_info->sectorsize;
2074 2075 2076 2077
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

2078
		crc = btrfs_csum_data(buffer, crc, l);
2079
		kunmap_atomic(buffer);
2080 2081 2082 2083 2084
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2085 2086
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2087
		buffer = kmap_atomic(page);
2088 2089
	}

A
Arne Jansen 已提交
2090
	btrfs_csum_final(crc, csum);
2091
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2092
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2093

2094
	return sblock->checksum_error;
A
Arne Jansen 已提交
2095 2096
}

2097
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2098
{
2099
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2100
	struct btrfs_header *h;
2101
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2102 2103 2104 2105 2106 2107
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2108
	u32 crc = ~(u32)0;
2109 2110 2111 2112
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
2113
	page = sblock->pagev[0]->page;
2114
	mapped_buffer = kmap_atomic(page);
2115
	h = (struct btrfs_header *)mapped_buffer;
2116
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
2117 2118 2119 2120 2121 2122

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2123
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2124
		sblock->header_error = 1;
A
Arne Jansen 已提交
2125

2126 2127 2128 2129
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2130

M
Miao Xie 已提交
2131
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2132
		sblock->header_error = 1;
A
Arne Jansen 已提交
2133 2134 2135

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2136
		sblock->header_error = 1;
A
Arne Jansen 已提交
2137

2138
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2139 2140 2141 2142 2143 2144
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2145
		crc = btrfs_csum_data(p, crc, l);
2146
		kunmap_atomic(mapped_buffer);
2147 2148 2149 2150 2151
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2152 2153
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2154
		mapped_buffer = kmap_atomic(page);
2155 2156 2157 2158 2159
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2160
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2161
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2162

2163
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2164 2165
}

2166
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2167 2168
{
	struct btrfs_super_block *s;
2169
	struct scrub_ctx *sctx = sblock->sctx;
2170 2171 2172 2173 2174 2175
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2176
	u32 crc = ~(u32)0;
2177 2178
	int fail_gen = 0;
	int fail_cor = 0;
2179 2180
	u64 len;
	int index;
A
Arne Jansen 已提交
2181

2182
	BUG_ON(sblock->page_count < 1);
2183
	page = sblock->pagev[0]->page;
2184
	mapped_buffer = kmap_atomic(page);
2185
	s = (struct btrfs_super_block *)mapped_buffer;
2186
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2187

2188
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2189
		++fail_cor;
A
Arne Jansen 已提交
2190

2191
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2192
		++fail_gen;
A
Arne Jansen 已提交
2193

M
Miao Xie 已提交
2194
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2195
		++fail_cor;
A
Arne Jansen 已提交
2196

2197 2198 2199 2200 2201 2202 2203
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2204
		crc = btrfs_csum_data(p, crc, l);
2205
		kunmap_atomic(mapped_buffer);
2206 2207 2208 2209 2210
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2211 2212
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2213
		mapped_buffer = kmap_atomic(page);
2214 2215 2216 2217 2218
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2219
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2220
		++fail_cor;
A
Arne Jansen 已提交
2221

2222
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2223 2224 2225 2226 2227
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2228 2229 2230
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2231
		if (fail_cor)
2232
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2233 2234
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2235
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2236
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2237 2238
	}

2239
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2240 2241
}

2242 2243
static void scrub_block_get(struct scrub_block *sblock)
{
2244
	refcount_inc(&sblock->refs);
2245 2246 2247 2248
}

static void scrub_block_put(struct scrub_block *sblock)
{
2249
	if (refcount_dec_and_test(&sblock->refs)) {
2250 2251
		int i;

2252 2253 2254
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2255
		for (i = 0; i < sblock->page_count; i++)
2256
			scrub_page_put(sblock->pagev[i]);
2257 2258 2259 2260
		kfree(sblock);
	}
}

2261 2262
static void scrub_page_get(struct scrub_page *spage)
{
2263
	atomic_inc(&spage->refs);
2264 2265 2266 2267
}

static void scrub_page_put(struct scrub_page *spage)
{
2268
	if (atomic_dec_and_test(&spage->refs)) {
2269 2270 2271 2272 2273 2274
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2275
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2276 2277 2278
{
	struct scrub_bio *sbio;

2279
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2280
		return;
A
Arne Jansen 已提交
2281

2282 2283
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2284
	scrub_pending_bio_inc(sctx);
2285
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2286 2287
}

2288 2289
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2290
{
2291
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2292
	struct scrub_bio *sbio;
2293
	int ret;
A
Arne Jansen 已提交
2294 2295 2296 2297 2298

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2299 2300 2301 2302 2303 2304 2305 2306
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2307
		} else {
2308 2309
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2310 2311
		}
	}
2312
	sbio = sctx->bios[sctx->curr];
2313
	if (sbio->page_count == 0) {
2314 2315
		struct bio *bio;

2316 2317
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2318
		sbio->dev = spage->dev;
2319 2320
		bio = sbio->bio;
		if (!bio) {
2321 2322
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					sctx->pages_per_rd_bio);
2323 2324 2325 2326
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2327 2328 2329

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2330
		bio->bi_bdev = sbio->dev->bdev;
2331
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2332
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2333
		sbio->err = 0;
2334 2335 2336
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2337 2338
		   spage->logical ||
		   sbio->dev != spage->dev) {
2339
		scrub_submit(sctx);
A
Arne Jansen 已提交
2340 2341
		goto again;
	}
2342

2343 2344 2345 2346 2347 2348 2349 2350
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2351
		scrub_submit(sctx);
2352 2353 2354
		goto again;
	}

2355
	scrub_block_get(sblock); /* one for the page added to the bio */
2356 2357
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2358
	if (sbio->page_count == sctx->pages_per_rd_bio)
2359
		scrub_submit(sctx);
2360 2361 2362 2363

	return 0;
}

2364
static void scrub_missing_raid56_end_io(struct bio *bio)
2365 2366
{
	struct scrub_block *sblock = bio->bi_private;
2367
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2368

2369
	if (bio->bi_error)
2370 2371
		sblock->no_io_error_seen = 0;

2372 2373
	bio_put(bio);

2374 2375 2376 2377 2378 2379 2380
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2381
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2382 2383 2384 2385 2386 2387
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2388
	if (sblock->no_io_error_seen)
2389
		scrub_recheck_block_checksum(sblock);
2390 2391 2392 2393 2394

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2395
		btrfs_err_rl_in_rcu(fs_info,
2396
			"IO error rebuilding logical %llu for dev %s",
2397 2398 2399 2400 2401
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2402
		btrfs_err_rl_in_rcu(fs_info,
2403
			"failed to rebuild valid logical %llu for dev %s",
2404 2405 2406 2407 2408 2409 2410 2411
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
2412 2413
	    atomic_read(&sctx->flush_all_writes)) {
		mutex_lock(&sctx->wr_lock);
2414
		scrub_wr_submit(sctx);
2415
		mutex_unlock(&sctx->wr_lock);
2416 2417 2418 2419 2420 2421 2422 2423
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2424
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2425 2426
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2427
	struct btrfs_bio *bbio = NULL;
2428 2429 2430 2431 2432
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2433
	btrfs_bio_counter_inc_blocked(fs_info);
2434
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2435
			&length, &bbio);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2458
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2478
	btrfs_bio_counter_dec(fs_info);
2479 2480 2481 2482 2483 2484
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2485
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2486
		       u64 physical, struct btrfs_device *dev, u64 flags,
2487 2488
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2489 2490 2491 2492
{
	struct scrub_block *sblock;
	int index;

2493
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2494
	if (!sblock) {
2495 2496 2497
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2498
		return -ENOMEM;
A
Arne Jansen 已提交
2499
	}
2500

2501 2502
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2503
	refcount_set(&sblock->refs, 1);
2504
	sblock->sctx = sctx;
2505 2506 2507
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2508
		struct scrub_page *spage;
2509 2510
		u64 l = min_t(u64, len, PAGE_SIZE);

2511
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2512 2513
		if (!spage) {
leave_nomem:
2514 2515 2516
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2517
			scrub_block_put(sblock);
2518 2519
			return -ENOMEM;
		}
2520 2521 2522
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2523
		spage->sblock = sblock;
2524
		spage->dev = dev;
2525 2526 2527 2528
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2529
		spage->physical_for_dev_replace = physical_for_dev_replace;
2530 2531 2532
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2533
			memcpy(spage->csum, csum, sctx->csum_size);
2534 2535 2536 2537
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2538
		spage->page = alloc_page(GFP_KERNEL);
2539 2540
		if (!spage->page)
			goto leave_nomem;
2541 2542 2543
		len -= l;
		logical += l;
		physical += l;
2544
		physical_for_dev_replace += l;
2545 2546
	}

2547
	WARN_ON(sblock->page_count == 0);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2558

2559 2560 2561 2562 2563
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2564
		}
A
Arne Jansen 已提交
2565

2566 2567 2568
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2569

2570 2571
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2572 2573 2574
	return 0;
}

2575
static void scrub_bio_end_io(struct bio *bio)
2576 2577
{
	struct scrub_bio *sbio = bio->bi_private;
2578
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2579

2580
	sbio->err = bio->bi_error;
2581 2582
	sbio->bio = bio;

2583
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2584 2585 2586 2587 2588
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2589
	struct scrub_ctx *sctx = sbio->sctx;
2590 2591
	int i;

2592
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2614 2615 2616 2617
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2618 2619

	if (sctx->is_dev_replace &&
2620 2621
	    atomic_read(&sctx->flush_all_writes)) {
		mutex_lock(&sctx->wr_lock);
2622
		scrub_wr_submit(sctx);
2623
		mutex_unlock(&sctx->wr_lock);
2624 2625
	}

2626
	scrub_pending_bio_dec(sctx);
2627 2628
}

2629 2630 2631 2632
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2633
	u64 offset;
2634
	int nsectors;
2635
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2636 2637 2638 2639 2640 2641 2642

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2643 2644
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2668 2669
static void scrub_block_complete(struct scrub_block *sblock)
{
2670 2671
	int corrupted = 0;

2672
	if (!sblock->no_io_error_seen) {
2673
		corrupted = 1;
2674
		scrub_handle_errored_block(sblock);
2675 2676 2677 2678 2679 2680
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2681 2682
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2683 2684
			scrub_write_block_to_dev_replace(sblock);
	}
2685 2686 2687 2688 2689 2690 2691 2692 2693

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2694 2695
}

2696
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2697 2698
{
	struct btrfs_ordered_sum *sum = NULL;
2699
	unsigned long index;
A
Arne Jansen 已提交
2700 2701
	unsigned long num_sectors;

2702 2703
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2704 2705 2706 2707 2708 2709
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2710
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2711 2712 2713 2714 2715 2716 2717
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2718 2719
	index = ((u32)(logical - sum->bytenr)) / sctx->fs_info->sectorsize;
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2720 2721
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2722 2723 2724
		list_del(&sum->list);
		kfree(sum);
	}
2725
	return 1;
A
Arne Jansen 已提交
2726 2727 2728
}

/* scrub extent tries to collect up to 64 kB for each bio */
2729
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2730
			u64 physical, struct btrfs_device *dev, u64 flags,
2731
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2732 2733 2734
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2735 2736 2737
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2738
		blocksize = sctx->fs_info->sectorsize;
2739 2740 2741 2742
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2743
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2744
		blocksize = sctx->fs_info->nodesize;
2745 2746 2747 2748
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2749
	} else {
2750
		blocksize = sctx->fs_info->sectorsize;
2751
		WARN_ON(1);
2752
	}
A
Arne Jansen 已提交
2753 2754

	while (len) {
2755
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2756 2757 2758 2759
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2760
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2761
			if (have_csum == 0)
2762
				++sctx->stat.no_csum;
2763 2764 2765 2766 2767 2768
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2769
		}
2770
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2771 2772 2773
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2774 2775 2776 2777 2778
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2779
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2780 2781 2782 2783
	}
	return 0;
}

2784 2785 2786 2787 2788 2789 2790 2791 2792
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2793
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2794 2795 2796 2797 2798 2799 2800 2801 2802
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2803
	refcount_set(&sblock->refs, 1);
2804 2805 2806 2807 2808 2809 2810 2811 2812
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2813
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2843
		spage->page = alloc_page(GFP_KERNEL);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2878 2879 2880 2881 2882
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2883
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2884
		blocksize = sctx->fs_info->sectorsize;
2885
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2886
		blocksize = sctx->fs_info->nodesize;
2887
	} else {
2888
		blocksize = sctx->fs_info->sectorsize;
2889 2890 2891 2892 2893 2894 2895 2896 2897
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2898
			have_csum = scrub_find_csum(sctx, logical, csum);
2899 2900 2901 2902 2903 2904 2905 2906
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2907
skip:
2908 2909 2910 2911 2912 2913 2914
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2915 2916 2917 2918 2919 2920 2921 2922
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2923 2924
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2925 2926 2927 2928 2929
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2930 2931
	u32 stripe_index;
	u32 rot;
2932 2933 2934

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2935 2936 2937
	if (stripe_start)
		*stripe_start = last_offset;

2938 2939 2940 2941
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2942
		stripe_nr = div64_u64(*offset, map->stripe_len);
2943
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2944 2945

		/* Work out the disk rotation on this stripe-set */
2946
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2947 2948
		/* calculate which stripe this data locates */
		rot += i;
2949
		stripe_index = rot % map->num_stripes;
2950 2951 2952 2953 2954 2955 2956 2957 2958
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2991
static void scrub_parity_bio_endio(struct bio *bio)
2992 2993
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2994
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2995

2996
	if (bio->bi_error)
2997 2998 2999 3000
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
3001 3002 3003

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
3004
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3005 3006 3007 3008 3009
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3010
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

3021
	length = sparity->logic_end - sparity->logic_start;
3022 3023

	btrfs_bio_counter_inc_blocked(fs_info);
3024
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3025
			       &length, &bbio);
3026
	if (ret || !bbio || !bbio->raid_map)
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3037
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3038
					      length, sparity->scrub_dev,
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
3051
	btrfs_bio_counter_dec(fs_info);
3052
	btrfs_put_bbio(bbio);
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
3064
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3065 3066 3067 3068
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3069
	refcount_inc(&sparity->refs);
3070 3071 3072 3073
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3074
	if (!refcount_dec_and_test(&sparity->refs))
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
3087
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3088 3089 3090
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3091
	struct btrfs_bio *bbio = NULL;
3092 3093 3094 3095 3096 3097 3098 3099 3100
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3101
	u64 mapped_length;
3102 3103 3104 3105 3106 3107 3108
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3109
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3126
	refcount_set(&sparity->refs, 1);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3175 3176 3177 3178
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3179
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3180
				bytes = fs_info->nodesize;
3181 3182 3183 3184 3185 3186
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3187
			if (key.objectid >= logic_end) {
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3200 3201 3202 3203
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3204 3205
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3206
					  key.objectid, logic_start);
3207 3208 3209
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3229
			mapped_length = extent_len;
3230
			bbio = NULL;
3231 3232 3233
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3260 3261 3262

			scrub_free_csums(sctx);

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3294
						logic_end - logic_start);
3295 3296
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3297
	mutex_lock(&sctx->wr_lock);
3298
	scrub_wr_submit(sctx);
3299
	mutex_unlock(&sctx->wr_lock);
3300 3301 3302 3303 3304

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3305
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3306 3307
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3308 3309
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3310
{
3311
	struct btrfs_path *path, *ppath;
3312
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3313 3314 3315
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3316
	struct blk_plug plug;
A
Arne Jansen 已提交
3317 3318 3319 3320 3321 3322 3323
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3324
	u64 logic_end;
3325
	u64 physical_end;
A
Arne Jansen 已提交
3326
	u64 generation;
3327
	int mirror_num;
A
Arne Jansen 已提交
3328 3329
	struct reada_control *reada1;
	struct reada_control *reada2;
3330
	struct btrfs_key key;
A
Arne Jansen 已提交
3331
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3332 3333
	u64 increment = map->stripe_len;
	u64 offset;
3334 3335 3336
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3337 3338
	u64 stripe_logical;
	u64 stripe_end;
3339 3340
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3341
	int stop_loop = 0;
D
David Woodhouse 已提交
3342

3343
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3344
	offset = 0;
3345
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3346 3347 3348
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3349
		mirror_num = 1;
A
Arne Jansen 已提交
3350 3351 3352 3353
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3354
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3355 3356
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3357
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3358 3359
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3360
		mirror_num = num % map->num_stripes + 1;
3361
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3362
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3363 3364
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3365 3366
	} else {
		increment = map->stripe_len;
3367
		mirror_num = 1;
A
Arne Jansen 已提交
3368 3369 3370 3371 3372 3373
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3374 3375
	ppath = btrfs_alloc_path();
	if (!ppath) {
3376
		btrfs_free_path(path);
3377 3378 3379
		return -ENOMEM;
	}

3380 3381 3382 3383 3384
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3385 3386 3387
	path->search_commit_root = 1;
	path->skip_locking = 1;

3388 3389
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3390
	/*
A
Arne Jansen 已提交
3391 3392 3393
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3394 3395
	 */
	logical = base + offset;
3396
	physical_end = physical + nstripes * map->stripe_len;
3397
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398
		get_raid56_logic_offset(physical_end, num,
3399
					map, &logic_end, NULL);
3400 3401 3402 3403
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3404
	wait_event(sctx->list_wait,
3405
		   atomic_read(&sctx->bios_in_flight) == 0);
3406
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3407 3408

	/* FIXME it might be better to start readahead at commit root */
3409 3410 3411
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3412
	key_end.objectid = logic_end;
3413 3414
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3415
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3416

3417 3418 3419
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3420 3421
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3422
	key_end.offset = logic_end;
3423
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3424 3425 3426 3427 3428 3429

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3430 3431 3432 3433 3434

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3435
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3436 3437 3438 3439 3440

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3441
	while (physical < physical_end) {
A
Arne Jansen 已提交
3442 3443 3444 3445
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3446
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3447 3448 3449 3450 3451 3452 3453 3454
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3455
			atomic_set(&sctx->flush_all_writes, 1);
3456
			scrub_submit(sctx);
3457
			mutex_lock(&sctx->wr_lock);
3458
			scrub_wr_submit(sctx);
3459
			mutex_unlock(&sctx->wr_lock);
3460
			wait_event(sctx->list_wait,
3461
				   atomic_read(&sctx->bios_in_flight) == 0);
3462
			atomic_set(&sctx->flush_all_writes, 0);
3463
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3464 3465
		}

3466 3467 3468 3469 3470 3471
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3472
				/* it is parity strip */
3473
				stripe_logical += base;
3474
				stripe_end = stripe_logical + increment;
3475 3476 3477 3478 3479 3480 3481 3482 3483
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3484 3485 3486 3487
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3488
		key.objectid = logical;
L
Liu Bo 已提交
3489
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3490 3491 3492 3493

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3494

3495
		if (ret > 0) {
3496
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3497 3498
			if (ret < 0)
				goto out;
3499 3500 3501 3502 3503 3504 3505 3506 3507
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3508 3509
		}

L
Liu Bo 已提交
3510
		stop_loop = 0;
A
Arne Jansen 已提交
3511
		while (1) {
3512 3513
			u64 bytes;

A
Arne Jansen 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3523
				stop_loop = 1;
A
Arne Jansen 已提交
3524 3525 3526 3527
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3528 3529 3530 3531
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3532
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3533
				bytes = fs_info->nodesize;
3534 3535 3536 3537
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3538 3539
				goto next;

L
Liu Bo 已提交
3540 3541 3542 3543 3544 3545
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3546 3547 3548 3549 3550 3551

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3552 3553 3554 3555
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3556
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3557
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3558
				       key.objectid, logical);
3559 3560 3561
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3562 3563 3564
				goto next;
			}

L
Liu Bo 已提交
3565 3566 3567 3568
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3569 3570 3571
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3572 3573 3574
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3575
			}
L
Liu Bo 已提交
3576
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3577
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3578 3579
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3580 3581
			}

L
Liu Bo 已提交
3582
			extent_physical = extent_logical - logical + physical;
3583 3584 3585 3586 3587 3588 3589
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3590

3591 3592 3593 3594 3595
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3596 3597 3598
			if (ret)
				goto out;

3599 3600 3601
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3602
					   extent_logical - logical + physical);
3603 3604 3605

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3606 3607 3608
			if (ret)
				goto out;

L
Liu Bo 已提交
3609 3610
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3611
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3612 3613 3614 3615
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3626
								increment;
3627 3628 3629 3630 3631 3632 3633 3634
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3635 3636 3637 3638
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3639 3640 3641 3642 3643
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3644
				if (physical >= physical_end) {
L
Liu Bo 已提交
3645 3646 3647 3648
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3649 3650 3651
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3652
		btrfs_release_path(path);
3653
skip:
A
Arne Jansen 已提交
3654 3655
		logical += increment;
		physical += map->stripe_len;
3656
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3657 3658 3659 3660 3661
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3662
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3663 3664
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3665
	}
3666
out:
A
Arne Jansen 已提交
3667
	/* push queued extents */
3668
	scrub_submit(sctx);
3669
	mutex_lock(&sctx->wr_lock);
3670
	scrub_wr_submit(sctx);
3671
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3672

3673
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3674
	btrfs_free_path(path);
3675
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3676 3677 3678
	return ret < 0 ? ret : 0;
}

3679
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3680 3681
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3682 3683 3684
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3685
{
3686 3687
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3688 3689 3690
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3691
	int ret = 0;
A
Arne Jansen 已提交
3692 3693 3694 3695 3696

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3709

3710
	map = em->map_lookup;
A
Arne Jansen 已提交
3711 3712 3713 3714 3715 3716 3717
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3718
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3719
		    map->stripes[i].physical == dev_offset) {
3720
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3721 3722
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3734
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3735 3736
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3737 3738 3739
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3740 3741
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3742 3743
	u64 length;
	u64 chunk_offset;
3744
	int ret = 0;
3745
	int ro_set;
A
Arne Jansen 已提交
3746 3747 3748 3749 3750
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3751
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3752 3753 3754 3755 3756

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3757
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3758 3759 3760
	path->search_commit_root = 1;
	path->skip_locking = 1;

3761
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3762 3763 3764 3765 3766 3767
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3768 3769 3770 3771 3772
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3773 3774 3775 3776
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3777
					break;
3778 3779 3780
				}
			} else {
				ret = 0;
3781 3782
			}
		}
A
Arne Jansen 已提交
3783 3784 3785 3786 3787 3788

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3789
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3790 3791
			break;

3792
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3804 3805
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3806 3807 3808 3809 3810 3811 3812 3813

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3814 3815 3816 3817 3818 3819

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3820 3821 3822 3823 3824 3825 3826 3827 3828
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3829
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
			ret = btrfs_wait_ordered_roots(fs_info, -1,
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3861
					ret = btrfs_commit_transaction(trans);
3862 3863 3864 3865 3866 3867 3868
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3869
		scrub_pause_off(fs_info);
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3883 3884
			btrfs_warn(fs_info,
				   "failed setting block group ro, ret=%d\n",
3885
				   ret);
3886 3887 3888 3889
			btrfs_put_block_group(cache);
			break;
		}

3890
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3891 3892 3893
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3894
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3895
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3896
				  found_key.offset, cache, is_dev_replace);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3908
		atomic_set(&sctx->flush_all_writes, 1);
3909
		scrub_submit(sctx);
3910
		mutex_lock(&sctx->wr_lock);
3911
		scrub_wr_submit(sctx);
3912
		mutex_unlock(&sctx->wr_lock);
3913 3914 3915

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3916 3917

		scrub_pause_on(fs_info);
3918 3919 3920 3921 3922 3923

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3924 3925
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3926
		atomic_set(&sctx->flush_all_writes, 0);
3927

3928
		scrub_pause_off(fs_info);
3929

3930 3931 3932 3933 3934
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3935
		if (ro_set)
3936
			btrfs_dec_block_group_ro(cache);
3937

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3960 3961 3962
		btrfs_put_block_group(cache);
		if (ret)
			break;
3963 3964
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3965 3966 3967 3968 3969 3970 3971
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3972
skip:
A
Arne Jansen 已提交
3973
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3974
		btrfs_release_path(path);
A
Arne Jansen 已提交
3975 3976 3977
	}

	btrfs_free_path(path);
3978

3979
	return ret;
A
Arne Jansen 已提交
3980 3981
}

3982 3983
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3984 3985 3986 3987 3988
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3989
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3990

3991
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3992 3993
		return -EIO;

3994
	/* Seed devices of a new filesystem has their own generation. */
3995
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3996 3997
		gen = scrub_dev->generation;
	else
3998
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3999 4000 4001

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4002 4003
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4004 4005
			break;

4006
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4007
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4008
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
4009 4010 4011
		if (ret)
			return ret;
	}
4012
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4013 4014 4015 4016 4017 4018 4019

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4020 4021
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4022
{
4023
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4024
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
4025

A
Arne Jansen 已提交
4026
	if (fs_info->scrub_workers_refcnt == 0) {
4027
		if (is_dev_replace)
4028
			fs_info->scrub_workers =
4029
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4030
						      1, 4);
4031
		else
4032
			fs_info->scrub_workers =
4033
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4034
						      max_active, 4);
4035 4036 4037
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

4038
		fs_info->scrub_wr_completion_workers =
4039
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4040
					      max_active, 2);
4041 4042 4043
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

4044
		fs_info->scrub_nocow_workers =
4045
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4046 4047
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
4048
		fs_info->scrub_parity_workers =
4049
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4050
					      max_active, 2);
4051 4052
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
4053
	}
A
Arne Jansen 已提交
4054
	++fs_info->scrub_workers_refcnt;
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
4065 4066
}

4067
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4068
{
4069
	if (--fs_info->scrub_workers_refcnt == 0) {
4070 4071 4072
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4073
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4074
	}
A
Arne Jansen 已提交
4075 4076 4077
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

4078 4079
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4080
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4081
{
4082
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4083 4084
	int ret;
	struct btrfs_device *dev;
4085
	struct rcu_string *name;
A
Arne Jansen 已提交
4086

4087
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
4088 4089
		return -EINVAL;

4090
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4091 4092 4093 4094 4095
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4096 4097
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4098 4099
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4100 4101 4102
		return -EINVAL;
	}

4103
	if (fs_info->sectorsize != PAGE_SIZE) {
4104
		/* not supported for data w/o checksums */
4105
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
4106
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4107
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
4108 4109 4110
		return -EINVAL;
	}

4111
	if (fs_info->nodesize >
4112
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4113
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4114 4115 4116 4117
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4118 4119
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4120
		       fs_info->nodesize,
4121
		       SCRUB_MAX_PAGES_PER_BLOCK,
4122
		       fs_info->sectorsize,
4123 4124 4125 4126
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
4127

4128 4129
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4130
	if (!dev || (dev->missing && !is_dev_replace)) {
4131
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4132 4133 4134
		return -ENODEV;
	}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

4145
	mutex_lock(&fs_info->scrub_lock);
4146
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
4147
		mutex_unlock(&fs_info->scrub_lock);
4148 4149
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
4150 4151
	}

4152
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4153 4154 4155
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4156
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
4157
		mutex_unlock(&fs_info->scrub_lock);
4158
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4159 4160
		return -EINPROGRESS;
	}
4161
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4162 4163 4164 4165 4166 4167 4168 4169

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

4170
	sctx = scrub_setup_ctx(dev, is_dev_replace);
4171
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
4172
		mutex_unlock(&fs_info->scrub_lock);
4173 4174
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
4175
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4176
	}
4177 4178
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
4179
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4180

4181 4182 4183 4184
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4185
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4186 4187 4188
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4189
	if (!is_dev_replace) {
4190 4191 4192 4193
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4194
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4195
		ret = scrub_supers(sctx, dev);
4196
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4197
	}
A
Arne Jansen 已提交
4198 4199

	if (!ret)
4200 4201
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
4202

4203
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4204 4205 4206
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4207
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4208

A
Arne Jansen 已提交
4209
	if (progress)
4210
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4211 4212 4213

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
4214
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
4215 4216
	mutex_unlock(&fs_info->scrub_lock);

4217
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4218 4219 4220 4221

	return ret;
}

4222
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4237
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4238 4239 4240 4241 4242
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4243
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4264 4265
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4266
{
4267
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4268 4269

	mutex_lock(&fs_info->scrub_lock);
4270 4271
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4272 4273 4274
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4275
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4286

4287
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4288 4289 4290
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4291
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4292

4293 4294
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4295
	if (dev)
4296 4297 4298
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4299
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4300

4301
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4302
}
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4315
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4316 4317 4318
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4319
		btrfs_put_bbio(bbio);
4320 4321 4322 4323 4324 4325
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4326
	btrfs_put_bbio(bbio);
4327 4328 4329 4330 4331 4332
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4333
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4350 4351
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4352
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4353 4354
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4355 4356 4357 4358

	return 0;
}

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4376 4377 4378 4379 4380
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4381 4382
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4408
					  record_inode_for_nocow, nocow_ctx);
4409
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4410 4411 4412 4413
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4414 4415 4416 4417
		not_written = 1;
		goto out;
	}

4418
	btrfs_end_transaction(trans);
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4436
out:
4437 4438 4439 4440 4441 4442 4443 4444
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4445
	if (trans && !IS_ERR(trans))
4446
		btrfs_end_transaction(trans);
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4457
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4458 4459 4460 4461 4462 4463 4464 4465 4466
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4467
	io_tree = &inode->io_tree;
4468

4469
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4470
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4501 4502
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4503
{
4504
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4505
	struct btrfs_key key;
4506 4507
	struct inode *inode;
	struct page *page;
4508
	struct btrfs_root *local_root;
4509
	struct extent_io_tree *io_tree;
4510
	u64 physical_for_dev_replace;
4511
	u64 nocow_ctx_logical;
4512
	u64 len = nocow_ctx->len;
4513
	unsigned long index;
4514
	int srcu_index;
4515 4516
	int ret = 0;
	int err = 0;
4517 4518 4519 4520

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4521 4522 4523

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4524
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4525 4526
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4527
		return PTR_ERR(local_root);
4528
	}
4529 4530 4531 4532 4533

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4534
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4535 4536 4537
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4538
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4539
	inode_lock(inode);
4540 4541
	inode_dio_wait(inode);

4542
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4543
	io_tree = &BTRFS_I(inode)->io_tree;
4544
	nocow_ctx_logical = nocow_ctx->logical;
4545

4546 4547
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4548 4549 4550
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4551 4552
	}

4553 4554
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4555
again:
4556 4557
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4558
			btrfs_err(fs_info, "find_or_create_page() failed");
4559
			ret = -ENOMEM;
4560
			goto out;
4561 4562 4563 4564 4565 4566 4567
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4568
			err = extent_read_full_page(io_tree, page,
4569 4570
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4571 4572
			if (err) {
				ret = err;
4573 4574
				goto next_page;
			}
4575

4576
			lock_page(page);
4577 4578 4579 4580 4581 4582 4583
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4584
				unlock_page(page);
4585
				put_page(page);
4586 4587
				goto again;
			}
4588 4589 4590 4591 4592
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4593

4594
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4595 4596 4597 4598 4599 4600
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4601 4602 4603 4604
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4605
next_page:
4606
		unlock_page(page);
4607
		put_page(page);
4608 4609 4610 4611

		if (ret)
			break;

4612 4613 4614 4615
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4616
	}
4617
	ret = COPY_COMPLETE;
4618
out:
A
Al Viro 已提交
4619
	inode_unlock(inode);
4620
	iput(inode);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

4631
	dev = sctx->wr_tgtdev;
4632 4633 4634
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4635
		btrfs_warn_rl(dev->fs_info,
4636
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4637 4638
		return -EIO;
	}
4639
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4640 4641 4642 4643 4644 4645
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4646 4647
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4648
	bio->bi_bdev = dev->bdev;
4649
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4650 4651
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4652 4653 4654 4655 4656 4657
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4658
	if (btrfsic_submit_bio_wait(bio))
4659 4660 4661 4662 4663
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}