scrub.c 121.4 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66
struct scrub_recover {
67
	refcount_t		refs;
68 69 70 71
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	refcount_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

143
	u64			stripe_len;
144

145
	refcount_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
205
	refcount_t              refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246 247 248 249
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

250 251 252 253
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
254
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
255
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
256
				     struct scrub_block *sblocks_for_recheck);
257
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
258 259
				struct scrub_block *sblock,
				int retry_failed_mirror);
260
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
261
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
262
					     struct scrub_block *sblock_good);
263 264 265
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
266 267 268
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
269 270 271 272 273
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
274 275
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
276 277
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
278 279
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
280
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
281
		       u64 physical, struct btrfs_device *dev, u64 flags,
282 283
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
284
static void scrub_bio_end_io(struct bio *bio);
285 286
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
287 288 289 290 291 292 293 294
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
295
static void scrub_wr_bio_end_io(struct bio *bio);
296 297 298 299
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
300
				      struct scrub_copy_nocow_ctx *ctx);
301 302 303
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
304
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
306
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
307 308


309 310
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
311
	refcount_inc(&sctx->refs);
312 313 314 315 316 317 318
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
319
	scrub_put_ctx(sctx);
320 321
}

322
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
323 324 325 326 327 328 329 330 331
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

332
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
333 334 335
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
336
}
337

338 339
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
340 341 342 343 344 345 346 347
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

348 349 350 351 352 353
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

570 571 572 573 574 575
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
576
	struct btrfs_fs_info *fs_info = sctx->fs_info;
577

578
	refcount_inc(&sctx->refs);
579 580 581 582 583 584 585 586 587 588 589 590 591
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
592 593 594 595 596 597 598 599 600 601

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

602 603 604 605 606 607
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
608
	struct btrfs_fs_info *fs_info = sctx->fs_info;
609 610 611 612 613 614 615 616 617 618 619 620

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
621
	scrub_put_ctx(sctx);
622 623
}

624
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
625
{
626
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
627
		struct btrfs_ordered_sum *sum;
628
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
629 630 631 632 633 634
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

635
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
636 637 638
{
	int i;

639
	if (!sctx)
A
Arne Jansen 已提交
640 641
		return;

642
	/* this can happen when scrub is cancelled */
643 644
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
645 646

		for (i = 0; i < sbio->page_count; i++) {
647
			WARN_ON(!sbio->pagev[i]->page);
648 649 650 651 652
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

653
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
654
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
655 656 657 658 659 660

		if (!sbio)
			break;
		kfree(sbio);
	}

661
	kfree(sctx->wr_ctx.wr_curr_bio);
662 663
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
664 665
}

666 667
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
668
	if (refcount_dec_and_test(&sctx->refs))
669 670 671
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
672
static noinline_for_stack
673
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
674
{
675
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
676
	int		i;
677
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
678

679
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
680
	if (!sctx)
A
Arne Jansen 已提交
681
		goto nomem;
682
	refcount_set(&sctx->refs, 1);
683
	sctx->is_dev_replace = is_dev_replace;
684
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
685
	sctx->curr = -1;
686
	sctx->fs_info = dev->fs_info;
687
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
688 689
		struct scrub_bio *sbio;

690
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
691 692
		if (!sbio)
			goto nomem;
693
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
694 695

		sbio->index = i;
696
		sbio->sctx = sctx;
697
		sbio->page_count = 0;
698 699
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
700

701
		if (i != SCRUB_BIOS_PER_SCTX - 1)
702
			sctx->bios[i]->next_free = i + 1;
703
		else
704 705 706
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
707 708
	sctx->nodesize = fs_info->nodesize;
	sctx->sectorsize = fs_info->sectorsize;
709 710
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
711 712 713 714 715 716 717
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
718

719 720 721 722 723 724 725 726
	WARN_ON(sctx->wr_ctx.wr_curr_bio != NULL);
	mutex_init(&sctx->wr_ctx.wr_lock);
	sctx->wr_ctx.wr_curr_bio = NULL;
	if (is_dev_replace) {
		WARN_ON(!dev->bdev);
		sctx->wr_ctx.pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
		sctx->wr_ctx.tgtdev = dev;
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
727
	}
728

729
	return sctx;
A
Arne Jansen 已提交
730 731

nomem:
732
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
733 734 735
	return ERR_PTR(-ENOMEM);
}

736 737
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
738 739 740 741 742 743 744
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
745
	struct scrub_warning *swarn = warn_ctx;
746
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
747 748 749
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
750
	struct btrfs_key key;
751 752 753 754 755 756 757 758 759 760

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

761 762 763
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
764 765 766 767 768
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
769 770 771 772 773 774 775 776 777 778 779 780 781
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
782 783 784 785 786
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
787 788 789 790 791 792 793 794 795 796
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
797 798 799 800 801 802 803 804
		btrfs_warn_in_rcu(fs_info,
				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
				  (unsigned long long)swarn->sector,
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
805 806 807 808 809

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
810 811 812 813 814 815
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
			  (unsigned long long)swarn->sector,
			  root, inum, offset, ret);
816 817 818 819 820

	free_ipath(ipath);
	return 0;
}

821
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
822
{
823 824
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
825 826 827 828 829
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
830 831 832
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
833
	u64 ref_root;
834
	u32 item_size;
835
	u8 ref_level = 0;
836
	int ret;
837

838
	WARN_ON(sblock->page_count < 1);
839
	dev = sblock->pagev[0]->dev;
840
	fs_info = sblock->sctx->fs_info;
841

842
	path = btrfs_alloc_path();
843 844
	if (!path)
		return;
845

846 847
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
848
	swarn.errstr = errstr;
849
	swarn.dev = NULL;
850

851 852
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
853 854 855
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
856
	extent_item_pos = swarn.logical - found_key.objectid;
857 858 859 860 861 862
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

863
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
864
		do {
865 866 867
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
868
			btrfs_warn_in_rcu(fs_info,
J
Jeff Mahoney 已提交
869 870
				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical,
871
				rcu_str_deref(dev->name),
872 873 874 875 876
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
877
		btrfs_release_path(path);
878
	} else {
879
		btrfs_release_path(path);
880
		swarn.path = path;
881
		swarn.dev = dev;
882 883
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
884 885 886 887 888 889 890
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

891
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
892
{
893
	struct page *page = NULL;
894
	unsigned long index;
895
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
896
	int ret;
897
	int corrected = 0;
898
	struct btrfs_key key;
899
	struct inode *inode = NULL;
900
	struct btrfs_fs_info *fs_info;
901 902
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
903
	int srcu_index;
904 905 906 907

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
908 909 910 911 912 913 914

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
915
		return PTR_ERR(local_root);
916
	}
917 918 919 920

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
921 922
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
923 924 925
	if (IS_ERR(inode))
		return PTR_ERR(inode);

926
	index = offset >> PAGE_SHIFT;
927 928

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
955
		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
956
					fixup->logical, page,
957
					offset - page_offset(page),
958 959 960 961 962 963 964 965 966 967
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
968
					EXTENT_DAMAGED);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
986
						EXTENT_DAMAGED);
987 988 989 990 991
	}

out:
	if (page)
		put_page(page);
992 993

	iput(inode);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
1011
	struct btrfs_fs_info *fs_info;
1012 1013
	int ret;
	struct scrub_fixup_nodatasum *fixup;
1014
	struct scrub_ctx *sctx;
1015 1016 1017 1018 1019
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1020
	sctx = fixup->sctx;
1021
	fs_info = fixup->root->fs_info;
1022 1023 1024

	path = btrfs_alloc_path();
	if (!path) {
1025 1026 1027
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
1047 1048
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
					  scrub_fixup_readpage, fixup);
1049 1050 1051 1052 1053 1054
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

1055 1056 1057
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
1058 1059 1060

out:
	if (trans && !IS_ERR(trans))
1061
		btrfs_end_transaction(trans);
1062
	if (uncorrectable) {
1063 1064 1065
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
1066
		btrfs_dev_replace_stats_inc(
1067 1068
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
1069
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1070
			fixup->logical, rcu_str_deref(fixup->dev->name));
1071 1072 1073 1074 1075
	}

	btrfs_free_path(path);
	kfree(fixup);

1076
	scrub_pending_trans_workers_dec(sctx);
1077 1078
}

1079 1080
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1081
	refcount_inc(&recover->refs);
1082 1083
}

1084 1085
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1086
{
1087
	if (refcount_dec_and_test(&recover->refs)) {
1088
		btrfs_bio_counter_dec(fs_info);
1089
		btrfs_put_bbio(recover->bbio);
1090 1091 1092 1093
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1094
/*
1095 1096 1097 1098 1099 1100
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1101
 */
1102
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1103
{
1104
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1105
	struct btrfs_device *dev;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
1118
	bool full_stripe_locked;
1119
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1120 1121 1122
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
1123
	fs_info = sctx->fs_info;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
1135
	length = sblock_to_check->page_count * PAGE_SIZE;
1136 1137 1138 1139
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
1140
			BTRFS_EXTENT_FLAG_DATA);
1141 1142
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1162 1163 1164 1165 1166
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

1196 1197
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1198
	if (!sblocks_for_recheck) {
1199 1200 1201 1202 1203
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1204
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1205
		goto out;
A
Arne Jansen 已提交
1206 1207
	}

1208
	/* setup the context, map the logical blocks and alloc the pages */
1209
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1210
	if (ret) {
1211 1212 1213 1214
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1215
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1216 1217 1218 1219
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1220

1221
	/* build and submit the bios for the failed mirror, check checksums */
1222
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1234 1235
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1236
		sblock_to_check->data_corrected = 1;
1237
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1238

1239 1240
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1241
		goto out;
A
Arne Jansen 已提交
1242 1243
	}

1244
	if (!sblock_bad->no_io_error_seen) {
1245 1246 1247
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1248 1249
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1250
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1251
	} else if (sblock_bad->checksum_error) {
1252 1253 1254
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1255 1256
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1257
		btrfs_dev_stat_inc_and_print(dev,
1258
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1259
	} else if (sblock_bad->header_error) {
1260 1261 1262
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1263 1264 1265
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1266
		if (sblock_bad->generation_error)
1267
			btrfs_dev_stat_inc_and_print(dev,
1268 1269
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1270
			btrfs_dev_stat_inc_and_print(dev,
1271
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1272
	}
A
Arne Jansen 已提交
1273

1274 1275 1276 1277
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1278

1279 1280
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1281

1282 1283
		WARN_ON(sctx->is_dev_replace);

1284 1285
nodatasum_case:

1286 1287
		/*
		 * !is_metadata and !have_csum, this means that the data
1288
		 * might not be COWed, that it might be modified
1289 1290 1291 1292 1293 1294 1295
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1296
		fixup_nodatasum->sctx = sctx;
1297
		fixup_nodatasum->dev = dev;
1298 1299 1300
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1301
		scrub_pending_trans_workers_inc(sctx);
1302 1303
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1304 1305
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1306
		goto out;
A
Arne Jansen 已提交
1307 1308
	}

1309 1310
	/*
	 * now build and submit the bios for the other mirrors, check
1311 1312
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1328
		struct scrub_block *sblock_other;
1329

1330 1331 1332 1333 1334
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1335
		scrub_recheck_block(fs_info, sblock_other, 0);
1336 1337

		if (!sblock_other->header_error &&
1338 1339
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1340 1341
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1342
				goto corrected_error;
1343 1344
			} else {
				ret = scrub_repair_block_from_good_copy(
1345 1346 1347
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1348
			}
1349 1350
		}
	}
A
Arne Jansen 已提交
1351

1352 1353
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1354 1355 1356

	/*
	 * In case of I/O errors in the area that is supposed to be
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1369
	 * the final checksum succeeds. But this would be a rare
1370 1371 1372 1373 1374 1375 1376 1377
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1378
	 */
1379
	success = 1;
1380 1381
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1382
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1383
		struct scrub_block *sblock_other = NULL;
1384

1385 1386
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1387
			continue;
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1400 1401
				}
			}
1402 1403
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1404
		}
A
Arne Jansen 已提交
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1420
					&fs_info->dev_replace.num_write_errors);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1431
		}
A
Arne Jansen 已提交
1432 1433
	}

1434
	if (success && !sctx->is_dev_replace) {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1445
			scrub_recheck_block(fs_info, sblock_bad, 1);
1446
			if (!sblock_bad->header_error &&
1447 1448 1449 1450 1451 1452 1453
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1454 1455
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1456
			sblock_to_check->data_corrected = 1;
1457
			spin_unlock(&sctx->stat_lock);
1458 1459
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1460
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1461
		}
1462 1463
	} else {
did_not_correct_error:
1464 1465 1466
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1467 1468
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1469
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1470
	}
A
Arne Jansen 已提交
1471

1472 1473 1474 1475 1476 1477
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1478
			struct scrub_recover *recover;
1479 1480
			int page_index;

1481 1482 1483
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1484 1485
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1486
					scrub_put_recover(fs_info, recover);
1487 1488 1489
					sblock->pagev[page_index]->recover =
									NULL;
				}
1490 1491
				scrub_page_put(sblock->pagev[page_index]);
			}
1492 1493 1494
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1495

1496 1497 1498
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1499 1500
	return 0;
}
A
Arne Jansen 已提交
1501

1502
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1503
{
Z
Zhao Lei 已提交
1504 1505 1506 1507 1508
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1509 1510 1511
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1512 1513
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1514 1515 1516 1517 1518 1519 1520
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1521
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1542
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1543 1544
				     struct scrub_block *sblocks_for_recheck)
{
1545
	struct scrub_ctx *sctx = original_sblock->sctx;
1546
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1547 1548
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1549 1550 1551
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1552 1553 1554 1555 1556 1557
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1558
	int page_index = 0;
1559
	int mirror_index;
1560
	int nmirrors;
1561 1562 1563
	int ret;

	/*
1564
	 * note: the two members refs and outstanding_pages
1565 1566 1567 1568 1569
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1570 1571 1572
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1573

1574 1575 1576 1577
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1578
		btrfs_bio_counter_inc_blocked(fs_info);
1579
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1580
				logical, &mapped_length, &bbio);
1581
		if (ret || !bbio || mapped_length < sublen) {
1582
			btrfs_put_bbio(bbio);
1583
			btrfs_bio_counter_dec(fs_info);
1584 1585
			return -EIO;
		}
A
Arne Jansen 已提交
1586

1587 1588
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1589
			btrfs_put_bbio(bbio);
1590
			btrfs_bio_counter_dec(fs_info);
1591 1592 1593
			return -ENOMEM;
		}

1594
		refcount_set(&recover->refs, 1);
1595 1596 1597
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1598
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1599

1600
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1601

1602
		for (mirror_index = 0; mirror_index < nmirrors;
1603 1604 1605 1606 1607
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1608
			sblock->sctx = sctx;
1609

1610 1611 1612
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1613 1614 1615
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1616
				scrub_put_recover(fs_info, recover);
1617 1618
				return -ENOMEM;
			}
1619 1620
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1621 1622 1623
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1624
			page->logical = logical;
1625 1626 1627 1628 1629
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1630

Z
Zhao Lei 已提交
1631 1632 1633
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1634
						      mapped_length,
1635 1636
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1637 1638 1639 1640 1641 1642 1643
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1644 1645 1646 1647
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1648 1649
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1650
			sblock->page_count++;
1651 1652 1653
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1654 1655 1656

			scrub_get_recover(recover);
			page->recover = recover;
1657
		}
1658
		scrub_put_recover(fs_info, recover);
1659 1660 1661 1662 1663 1664
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1665 1666
}

1667 1668 1669 1670 1671
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1672
static void scrub_bio_wait_endio(struct bio *bio)
1673 1674 1675
{
	struct scrub_bio_ret *ret = bio->bi_private;

1676
	ret->error = bio->bi_error;
1677 1678 1679 1680 1681
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1682
	return page->recover &&
1683
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1699
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1700
				    page->recover->map_length,
1701
				    page->mirror_num, 0);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1712 1713 1714 1715 1716 1717 1718
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1719
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1720 1721
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1722
{
1723
	int page_num;
I
Ilya Dryomov 已提交
1724

1725
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1726

1727 1728
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1729
		struct scrub_page *page = sblock->pagev[page_num];
1730

1731
		if (page->dev->bdev == NULL) {
1732 1733 1734 1735 1736
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1737
		WARN_ON(!page->page);
1738
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1739 1740 1741 1742 1743
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1744
		bio->bi_bdev = page->dev->bdev;
1745

1746
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1747
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1748 1749
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
				page->io_error = 1;
1750
				sblock->no_io_error_seen = 0;
1751
			}
1752 1753
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1754
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1755

1756 1757
			if (btrfsic_submit_bio_wait(bio)) {
				page->io_error = 1;
1758
				sblock->no_io_error_seen = 0;
1759
			}
1760
		}
1761

1762 1763
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1764

1765
	if (sblock->no_io_error_seen)
1766
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1767 1768
}

M
Miao Xie 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1779
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1780
{
1781 1782 1783
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1784

1785 1786 1787 1788
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1789 1790
}

1791
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1792
					     struct scrub_block *sblock_good)
1793 1794 1795
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1796

1797 1798
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1799

1800 1801
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1802
							   page_num, 1);
1803 1804
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1805
	}
1806 1807 1808 1809 1810 1811 1812 1813

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1814 1815
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1816
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1817

1818 1819
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1820 1821 1822 1823 1824
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1825
		if (!page_bad->dev->bdev) {
1826
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1827
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1828 1829 1830
			return -EIO;
		}

1831
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1832 1833
		if (!bio)
			return -EIO;
1834
		bio->bi_bdev = page_bad->dev->bdev;
1835
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1836
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1837 1838 1839 1840 1841

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1842
		}
1843

1844
		if (btrfsic_submit_bio_wait(bio)) {
1845 1846
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1847
			btrfs_dev_replace_stats_inc(
1848
				&fs_info->dev_replace.num_write_errors);
1849 1850 1851
			bio_put(bio);
			return -EIO;
		}
1852
		bio_put(bio);
A
Arne Jansen 已提交
1853 1854
	}

1855 1856 1857
	return 0;
}

1858 1859
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1860
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1861 1862
	int page_num;

1863 1864 1865 1866 1867 1868 1869
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1870 1871 1872 1873 1874 1875
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1876
				&fs_info->dev_replace.num_write_errors);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1889
		clear_page(mapped_buffer);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1907
					      GFP_KERNEL);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1924 1925
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					wr_ctx->pages_per_wr_bio);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1936
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1937
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1985
	btrfsic_submit_bio(sbio->bio);
1986 1987
}

1988
static void scrub_wr_bio_end_io(struct bio *bio)
1989 1990
{
	struct scrub_bio *sbio = bio->bi_private;
1991
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1992

1993
	sbio->err = bio->bi_error;
1994 1995
	sbio->bio = bio;

1996 1997
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1998
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
2010
			&sbio->sctx->fs_info->dev_replace;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2030 2031 2032 2033
{
	u64 flags;
	int ret;

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2046 2047
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2059 2060

	return ret;
A
Arne Jansen 已提交
2061 2062
}

2063
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2064
{
2065
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2066
	u8 csum[BTRFS_CSUM_SIZE];
2067 2068 2069
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
2070
	u32 crc = ~(u32)0;
2071 2072
	u64 len;
	int index;
A
Arne Jansen 已提交
2073

2074
	BUG_ON(sblock->page_count < 1);
2075
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
2076 2077
		return 0;

2078 2079
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
2080
	buffer = kmap_atomic(page);
2081

2082
	len = sctx->sectorsize;
2083 2084 2085 2086
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

2087
		crc = btrfs_csum_data(buffer, crc, l);
2088
		kunmap_atomic(buffer);
2089 2090 2091 2092 2093
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2094 2095
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2096
		buffer = kmap_atomic(page);
2097 2098
	}

A
Arne Jansen 已提交
2099
	btrfs_csum_final(crc, csum);
2100
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2101
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2102

2103
	return sblock->checksum_error;
A
Arne Jansen 已提交
2104 2105
}

2106
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2107
{
2108
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2109
	struct btrfs_header *h;
2110
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2111 2112 2113 2114 2115 2116
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2117
	u32 crc = ~(u32)0;
2118 2119 2120 2121
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
2122
	page = sblock->pagev[0]->page;
2123
	mapped_buffer = kmap_atomic(page);
2124
	h = (struct btrfs_header *)mapped_buffer;
2125
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
2126 2127 2128 2129 2130 2131

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2132
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2133
		sblock->header_error = 1;
A
Arne Jansen 已提交
2134

2135 2136 2137 2138
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2139

M
Miao Xie 已提交
2140
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2141
		sblock->header_error = 1;
A
Arne Jansen 已提交
2142 2143 2144

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2145
		sblock->header_error = 1;
A
Arne Jansen 已提交
2146

2147
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
2148 2149 2150 2151 2152 2153
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2154
		crc = btrfs_csum_data(p, crc, l);
2155
		kunmap_atomic(mapped_buffer);
2156 2157 2158 2159 2160
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2161 2162
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2163
		mapped_buffer = kmap_atomic(page);
2164 2165 2166 2167 2168
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2169
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2170
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2171

2172
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2173 2174
}

2175
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2176 2177
{
	struct btrfs_super_block *s;
2178
	struct scrub_ctx *sctx = sblock->sctx;
2179 2180 2181 2182 2183 2184
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2185
	u32 crc = ~(u32)0;
2186 2187
	int fail_gen = 0;
	int fail_cor = 0;
2188 2189
	u64 len;
	int index;
A
Arne Jansen 已提交
2190

2191
	BUG_ON(sblock->page_count < 1);
2192
	page = sblock->pagev[0]->page;
2193
	mapped_buffer = kmap_atomic(page);
2194
	s = (struct btrfs_super_block *)mapped_buffer;
2195
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2196

2197
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2198
		++fail_cor;
A
Arne Jansen 已提交
2199

2200
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2201
		++fail_gen;
A
Arne Jansen 已提交
2202

M
Miao Xie 已提交
2203
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2204
		++fail_cor;
A
Arne Jansen 已提交
2205

2206 2207 2208 2209 2210 2211 2212
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2213
		crc = btrfs_csum_data(p, crc, l);
2214
		kunmap_atomic(mapped_buffer);
2215 2216 2217 2218 2219
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2220 2221
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2222
		mapped_buffer = kmap_atomic(page);
2223 2224 2225 2226 2227
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2228
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2229
		++fail_cor;
A
Arne Jansen 已提交
2230

2231
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2232 2233 2234 2235 2236
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2237 2238 2239
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2240
		if (fail_cor)
2241
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2242 2243
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2244
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2245
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2246 2247
	}

2248
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2249 2250
}

2251 2252
static void scrub_block_get(struct scrub_block *sblock)
{
2253
	refcount_inc(&sblock->refs);
2254 2255 2256 2257
}

static void scrub_block_put(struct scrub_block *sblock)
{
2258
	if (refcount_dec_and_test(&sblock->refs)) {
2259 2260
		int i;

2261 2262 2263
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2264
		for (i = 0; i < sblock->page_count; i++)
2265
			scrub_page_put(sblock->pagev[i]);
2266 2267 2268 2269
		kfree(sblock);
	}
}

2270 2271
static void scrub_page_get(struct scrub_page *spage)
{
2272
	atomic_inc(&spage->refs);
2273 2274 2275 2276
}

static void scrub_page_put(struct scrub_page *spage)
{
2277
	if (atomic_dec_and_test(&spage->refs)) {
2278 2279 2280 2281 2282 2283
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2284
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2285 2286 2287
{
	struct scrub_bio *sbio;

2288
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2289
		return;
A
Arne Jansen 已提交
2290

2291 2292
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2293
	scrub_pending_bio_inc(sctx);
2294
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2295 2296
}

2297 2298
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2299
{
2300
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2301
	struct scrub_bio *sbio;
2302
	int ret;
A
Arne Jansen 已提交
2303 2304 2305 2306 2307

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2308 2309 2310 2311 2312 2313 2314 2315
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2316
		} else {
2317 2318
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2319 2320
		}
	}
2321
	sbio = sctx->bios[sctx->curr];
2322
	if (sbio->page_count == 0) {
2323 2324
		struct bio *bio;

2325 2326
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2327
		sbio->dev = spage->dev;
2328 2329
		bio = sbio->bio;
		if (!bio) {
2330 2331
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					sctx->pages_per_rd_bio);
2332 2333 2334 2335
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2336 2337 2338

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2339
		bio->bi_bdev = sbio->dev->bdev;
2340
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2341
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2342
		sbio->err = 0;
2343 2344 2345
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2346 2347
		   spage->logical ||
		   sbio->dev != spage->dev) {
2348
		scrub_submit(sctx);
A
Arne Jansen 已提交
2349 2350
		goto again;
	}
2351

2352 2353 2354 2355 2356 2357 2358 2359
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2360
		scrub_submit(sctx);
2361 2362 2363
		goto again;
	}

2364
	scrub_block_get(sblock); /* one for the page added to the bio */
2365 2366
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2367
	if (sbio->page_count == sctx->pages_per_rd_bio)
2368
		scrub_submit(sctx);
2369 2370 2371 2372

	return 0;
}

2373
static void scrub_missing_raid56_end_io(struct bio *bio)
2374 2375
{
	struct scrub_block *sblock = bio->bi_private;
2376
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2377

2378
	if (bio->bi_error)
2379 2380
		sblock->no_io_error_seen = 0;

2381 2382
	bio_put(bio);

2383 2384 2385 2386 2387 2388 2389
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2390
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2391 2392 2393 2394 2395 2396
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2397
	if (sblock->no_io_error_seen)
2398
		scrub_recheck_block_checksum(sblock);
2399 2400 2401 2402 2403

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2404
		btrfs_err_rl_in_rcu(fs_info,
2405
			"IO error rebuilding logical %llu for dev %s",
2406 2407 2408 2409 2410
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2411
		btrfs_err_rl_in_rcu(fs_info,
2412
			"failed to rebuild valid logical %llu for dev %s",
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2433
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2434 2435
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2436
	struct btrfs_bio *bbio = NULL;
2437 2438 2439 2440 2441
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2442
	btrfs_bio_counter_inc_blocked(fs_info);
2443
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2444
			&length, &bbio);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2467
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2487
	btrfs_bio_counter_dec(fs_info);
2488 2489 2490 2491 2492 2493
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2494
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2495
		       u64 physical, struct btrfs_device *dev, u64 flags,
2496 2497
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2498 2499 2500 2501
{
	struct scrub_block *sblock;
	int index;

2502
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2503
	if (!sblock) {
2504 2505 2506
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2507
		return -ENOMEM;
A
Arne Jansen 已提交
2508
	}
2509

2510 2511
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2512
	refcount_set(&sblock->refs, 1);
2513
	sblock->sctx = sctx;
2514 2515 2516
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2517
		struct scrub_page *spage;
2518 2519
		u64 l = min_t(u64, len, PAGE_SIZE);

2520
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2521 2522
		if (!spage) {
leave_nomem:
2523 2524 2525
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2526
			scrub_block_put(sblock);
2527 2528
			return -ENOMEM;
		}
2529 2530 2531
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2532
		spage->sblock = sblock;
2533
		spage->dev = dev;
2534 2535 2536 2537
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2538
		spage->physical_for_dev_replace = physical_for_dev_replace;
2539 2540 2541
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2542
			memcpy(spage->csum, csum, sctx->csum_size);
2543 2544 2545 2546
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2547
		spage->page = alloc_page(GFP_KERNEL);
2548 2549
		if (!spage->page)
			goto leave_nomem;
2550 2551 2552
		len -= l;
		logical += l;
		physical += l;
2553
		physical_for_dev_replace += l;
2554 2555
	}

2556
	WARN_ON(sblock->page_count == 0);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2567

2568 2569 2570 2571 2572
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2573
		}
A
Arne Jansen 已提交
2574

2575 2576 2577
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2578

2579 2580
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2581 2582 2583
	return 0;
}

2584
static void scrub_bio_end_io(struct bio *bio)
2585 2586
{
	struct scrub_bio *sbio = bio->bi_private;
2587
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2588

2589
	sbio->err = bio->bi_error;
2590 2591
	sbio->bio = bio;

2592
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2593 2594 2595 2596 2597
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2598
	struct scrub_ctx *sctx = sbio->sctx;
2599 2600
	int i;

2601
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2623 2624 2625 2626
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2627 2628 2629 2630 2631 2632 2633 2634

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2635
	scrub_pending_bio_dec(sctx);
2636 2637
}

2638 2639 2640 2641
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2642
	u64 offset;
2643
	int nsectors;
2644
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2645 2646 2647 2648 2649 2650 2651

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2652 2653
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2677 2678
static void scrub_block_complete(struct scrub_block *sblock)
{
2679 2680
	int corrupted = 0;

2681
	if (!sblock->no_io_error_seen) {
2682
		corrupted = 1;
2683
		scrub_handle_errored_block(sblock);
2684 2685 2686 2687 2688 2689
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2690 2691
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2692 2693
			scrub_write_block_to_dev_replace(sblock);
	}
2694 2695 2696 2697 2698 2699 2700 2701 2702

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2703 2704
}

2705
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2706 2707
{
	struct btrfs_ordered_sum *sum = NULL;
2708
	unsigned long index;
A
Arne Jansen 已提交
2709 2710
	unsigned long num_sectors;

2711 2712
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2713 2714 2715 2716 2717 2718
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2719
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2720 2721 2722 2723 2724 2725 2726
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2727
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2728
	num_sectors = sum->len / sctx->sectorsize;
2729 2730
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2731 2732 2733
		list_del(&sum->list);
		kfree(sum);
	}
2734
	return 1;
A
Arne Jansen 已提交
2735 2736 2737
}

/* scrub extent tries to collect up to 64 kB for each bio */
2738
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2739
			u64 physical, struct btrfs_device *dev, u64 flags,
2740
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2741 2742 2743
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2744 2745 2746
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2747 2748 2749 2750 2751
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2752
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2753 2754 2755 2756 2757
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2758
	} else {
2759
		blocksize = sctx->sectorsize;
2760
		WARN_ON(1);
2761
	}
A
Arne Jansen 已提交
2762 2763

	while (len) {
2764
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2765 2766 2767 2768
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2769
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2770
			if (have_csum == 0)
2771
				++sctx->stat.no_csum;
2772 2773 2774 2775 2776 2777
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2778
		}
2779
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2780 2781 2782
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2783 2784 2785 2786 2787
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2788
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2789 2790 2791 2792
	}
	return 0;
}

2793 2794 2795 2796 2797 2798 2799 2800 2801
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2802
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2803 2804 2805 2806 2807 2808 2809 2810 2811
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2812
	refcount_set(&sblock->refs, 1);
2813 2814 2815 2816 2817 2818 2819 2820 2821
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2822
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2852
		spage->page = alloc_page(GFP_KERNEL);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2887 2888 2889 2890 2891
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2907
			have_csum = scrub_find_csum(sctx, logical, csum);
2908 2909 2910 2911 2912 2913 2914 2915
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2916
skip:
2917 2918 2919 2920 2921 2922 2923
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2924 2925 2926 2927 2928 2929 2930 2931
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2932 2933
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2934 2935 2936 2937 2938
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2939 2940
	u32 stripe_index;
	u32 rot;
2941 2942 2943

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2944 2945 2946
	if (stripe_start)
		*stripe_start = last_offset;

2947 2948 2949 2950
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2951
		stripe_nr = div64_u64(*offset, map->stripe_len);
2952
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2953 2954

		/* Work out the disk rotation on this stripe-set */
2955
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2956 2957
		/* calculate which stripe this data locates */
		rot += i;
2958
		stripe_index = rot % map->num_stripes;
2959 2960 2961 2962 2963 2964 2965 2966 2967
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3000
static void scrub_parity_bio_endio(struct bio *bio)
3001 3002
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3003
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3004

3005
	if (bio->bi_error)
3006 3007 3008 3009
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
3010 3011 3012

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
3013
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3014 3015 3016 3017 3018
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3019
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

3030
	length = sparity->logic_end - sparity->logic_start;
3031 3032

	btrfs_bio_counter_inc_blocked(fs_info);
3033
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3034
			       &length, &bbio);
3035
	if (ret || !bbio || !bbio->raid_map)
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3046
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3047
					      length, sparity->scrub_dev,
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
3060
	btrfs_bio_counter_dec(fs_info);
3061
	btrfs_put_bbio(bbio);
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
3073
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3074 3075 3076 3077
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3078
	refcount_inc(&sparity->refs);
3079 3080 3081 3082
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3083
	if (!refcount_dec_and_test(&sparity->refs))
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
3096
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3097 3098 3099
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3100
	struct btrfs_bio *bbio = NULL;
3101 3102 3103 3104 3105 3106 3107 3108 3109
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3110
	u64 mapped_length;
3111 3112 3113 3114 3115 3116 3117
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3118
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3135
	refcount_set(&sparity->refs, 1);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3184 3185 3186 3187
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3188
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3189
				bytes = fs_info->nodesize;
3190 3191 3192 3193 3194 3195
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3196
			if (key.objectid >= logic_end) {
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3209 3210 3211 3212
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3213 3214
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3215
					  key.objectid, logic_start);
3216 3217 3218
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3238
			mapped_length = extent_len;
3239
			bbio = NULL;
3240 3241 3242
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3269 3270 3271

			scrub_free_csums(sctx);

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3303
						logic_end - logic_start);
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3314
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3315 3316
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3317 3318
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3319
{
3320
	struct btrfs_path *path, *ppath;
3321
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3322 3323 3324
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3325
	struct blk_plug plug;
A
Arne Jansen 已提交
3326 3327 3328 3329 3330 3331 3332
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3333
	u64 logic_end;
3334
	u64 physical_end;
A
Arne Jansen 已提交
3335
	u64 generation;
3336
	int mirror_num;
A
Arne Jansen 已提交
3337 3338
	struct reada_control *reada1;
	struct reada_control *reada2;
3339
	struct btrfs_key key;
A
Arne Jansen 已提交
3340
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3341 3342
	u64 increment = map->stripe_len;
	u64 offset;
3343 3344 3345
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3346 3347
	u64 stripe_logical;
	u64 stripe_end;
3348 3349
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3350
	int stop_loop = 0;
D
David Woodhouse 已提交
3351

3352
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3353
	offset = 0;
3354
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3355 3356 3357
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3358
		mirror_num = 1;
A
Arne Jansen 已提交
3359 3360 3361 3362
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3363
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3364 3365
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3366
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3367 3368
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3369
		mirror_num = num % map->num_stripes + 1;
3370
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3371
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3372 3373
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3374 3375
	} else {
		increment = map->stripe_len;
3376
		mirror_num = 1;
A
Arne Jansen 已提交
3377 3378 3379 3380 3381 3382
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3383 3384
	ppath = btrfs_alloc_path();
	if (!ppath) {
3385
		btrfs_free_path(path);
3386 3387 3388
		return -ENOMEM;
	}

3389 3390 3391 3392 3393
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3394 3395 3396
	path->search_commit_root = 1;
	path->skip_locking = 1;

3397 3398
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3399
	/*
A
Arne Jansen 已提交
3400 3401 3402
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3403 3404
	 */
	logical = base + offset;
3405
	physical_end = physical + nstripes * map->stripe_len;
3406
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3407
		get_raid56_logic_offset(physical_end, num,
3408
					map, &logic_end, NULL);
3409 3410 3411 3412
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3413
	wait_event(sctx->list_wait,
3414
		   atomic_read(&sctx->bios_in_flight) == 0);
3415
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3416 3417

	/* FIXME it might be better to start readahead at commit root */
3418 3419 3420
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3421
	key_end.objectid = logic_end;
3422 3423
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3424
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3425

3426 3427 3428
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3429 3430
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3431
	key_end.offset = logic_end;
3432
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3433 3434 3435 3436 3437 3438

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3439 3440 3441 3442 3443

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3444
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3445 3446 3447 3448 3449

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3450
	while (physical < physical_end) {
A
Arne Jansen 已提交
3451 3452 3453 3454
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3455
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3456 3457 3458 3459 3460 3461 3462 3463
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3464
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3465
			scrub_submit(sctx);
3466 3467 3468
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3469
			wait_event(sctx->list_wait,
3470
				   atomic_read(&sctx->bios_in_flight) == 0);
3471
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3472
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3473 3474
		}

3475 3476 3477 3478 3479 3480
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3481
				/* it is parity strip */
3482
				stripe_logical += base;
3483
				stripe_end = stripe_logical + increment;
3484 3485 3486 3487 3488 3489 3490 3491 3492
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3493 3494 3495 3496
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3497
		key.objectid = logical;
L
Liu Bo 已提交
3498
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3499 3500 3501 3502

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3503

3504
		if (ret > 0) {
3505
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3506 3507
			if (ret < 0)
				goto out;
3508 3509 3510 3511 3512 3513 3514 3515 3516
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3517 3518
		}

L
Liu Bo 已提交
3519
		stop_loop = 0;
A
Arne Jansen 已提交
3520
		while (1) {
3521 3522
			u64 bytes;

A
Arne Jansen 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3532
				stop_loop = 1;
A
Arne Jansen 已提交
3533 3534 3535 3536
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3537 3538 3539 3540
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3541
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3542
				bytes = fs_info->nodesize;
3543 3544 3545 3546
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3547 3548
				goto next;

L
Liu Bo 已提交
3549 3550 3551 3552 3553 3554
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3555 3556 3557 3558 3559 3560

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3561 3562 3563 3564
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3565
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3566
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3567
				       key.objectid, logical);
3568 3569 3570
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3571 3572 3573
				goto next;
			}

L
Liu Bo 已提交
3574 3575 3576 3577
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3578 3579 3580
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3581 3582 3583
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3584
			}
L
Liu Bo 已提交
3585
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3586
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3587 3588
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3589 3590
			}

L
Liu Bo 已提交
3591
			extent_physical = extent_logical - logical + physical;
3592 3593 3594 3595 3596 3597 3598
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3599

3600 3601 3602 3603 3604
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3605 3606 3607
			if (ret)
				goto out;

3608 3609 3610
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3611
					   extent_logical - logical + physical);
3612 3613 3614

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3615 3616 3617
			if (ret)
				goto out;

L
Liu Bo 已提交
3618 3619
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3620
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3621 3622 3623 3624
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3635
								increment;
3636 3637 3638 3639 3640 3641 3642 3643
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3644 3645 3646 3647
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3648 3649 3650 3651 3652
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3653
				if (physical >= physical_end) {
L
Liu Bo 已提交
3654 3655 3656 3657
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3658 3659 3660
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3661
		btrfs_release_path(path);
3662
skip:
A
Arne Jansen 已提交
3663 3664
		logical += increment;
		physical += map->stripe_len;
3665
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3666 3667 3668 3669 3670
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3671
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3672 3673
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3674
	}
3675
out:
A
Arne Jansen 已提交
3676
	/* push queued extents */
3677
	scrub_submit(sctx);
3678 3679 3680
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3681

3682
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3683
	btrfs_free_path(path);
3684
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3685 3686 3687
	return ret < 0 ? ret : 0;
}

3688
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3689 3690
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3691 3692 3693
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3694
{
3695 3696
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3697 3698 3699
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3700
	int ret = 0;
A
Arne Jansen 已提交
3701 3702 3703 3704 3705

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3718

3719
	map = em->map_lookup;
A
Arne Jansen 已提交
3720 3721 3722 3723 3724 3725 3726
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3727
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3728
		    map->stripes[i].physical == dev_offset) {
3729
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3730 3731
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3743
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3744 3745
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3746 3747 3748
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3749 3750
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3751 3752
	u64 length;
	u64 chunk_offset;
3753
	int ret = 0;
3754
	int ro_set;
A
Arne Jansen 已提交
3755 3756 3757 3758 3759
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3760
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3761 3762 3763 3764 3765

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3766
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3767 3768 3769
	path->search_commit_root = 1;
	path->skip_locking = 1;

3770
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3771 3772 3773 3774 3775 3776
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3777 3778 3779 3780 3781
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3782 3783 3784 3785
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3786
					break;
3787 3788 3789
				}
			} else {
				ret = 0;
3790 3791
			}
		}
A
Arne Jansen 已提交
3792 3793 3794 3795 3796 3797

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3798
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3799 3800
			break;

3801
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3813 3814
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3815 3816 3817 3818 3819 3820 3821 3822

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3823 3824 3825 3826 3827 3828

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3829 3830 3831 3832 3833 3834 3835 3836 3837
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3838
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
			ret = btrfs_wait_ordered_roots(fs_info, -1,
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3870
					ret = btrfs_commit_transaction(trans);
3871 3872 3873 3874 3875 3876 3877
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3878
		scrub_pause_off(fs_info);
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3892 3893
			btrfs_warn(fs_info,
				   "failed setting block group ro, ret=%d\n",
3894
				   ret);
3895 3896 3897 3898
			btrfs_put_block_group(cache);
			break;
		}

3899
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3900 3901 3902
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3903
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3904
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3905
				  found_key.offset, cache, is_dev_replace);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3925 3926

		scrub_pause_on(fs_info);
3927 3928 3929 3930 3931 3932

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3933 3934
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3935 3936
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3937
		scrub_pause_off(fs_info);
3938

3939 3940 3941 3942 3943
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3944
		if (ro_set)
3945
			btrfs_dec_block_group_ro(cache);
3946

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3969 3970 3971
		btrfs_put_block_group(cache);
		if (ret)
			break;
3972 3973
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3974 3975 3976 3977 3978 3979 3980
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3981
skip:
A
Arne Jansen 已提交
3982
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3983
		btrfs_release_path(path);
A
Arne Jansen 已提交
3984 3985 3986
	}

	btrfs_free_path(path);
3987

3988
	return ret;
A
Arne Jansen 已提交
3989 3990
}

3991 3992
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3993 3994 3995 3996 3997
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3998
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3999

4000
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4001 4002
		return -EIO;

4003
	/* Seed devices of a new filesystem has their own generation. */
4004
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4005 4006
		gen = scrub_dev->generation;
	else
4007
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4008 4009 4010

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4011 4012
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4013 4014
			break;

4015
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4016
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4017
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
4018 4019 4020
		if (ret)
			return ret;
	}
4021
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4022 4023 4024 4025 4026 4027 4028

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4029 4030
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4031
{
4032
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4033
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
4034

A
Arne Jansen 已提交
4035
	if (fs_info->scrub_workers_refcnt == 0) {
4036
		if (is_dev_replace)
4037
			fs_info->scrub_workers =
4038
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4039
						      1, 4);
4040
		else
4041
			fs_info->scrub_workers =
4042
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4043
						      max_active, 4);
4044 4045 4046
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

4047
		fs_info->scrub_wr_completion_workers =
4048
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4049
					      max_active, 2);
4050 4051 4052
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

4053
		fs_info->scrub_nocow_workers =
4054
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4055 4056
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
4057
		fs_info->scrub_parity_workers =
4058
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4059
					      max_active, 2);
4060 4061
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
4062
	}
A
Arne Jansen 已提交
4063
	++fs_info->scrub_workers_refcnt;
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
4074 4075
}

4076
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4077
{
4078
	if (--fs_info->scrub_workers_refcnt == 0) {
4079 4080 4081
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4082
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4083
	}
A
Arne Jansen 已提交
4084 4085 4086
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

4087 4088
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4089
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4090
{
4091
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4092 4093
	int ret;
	struct btrfs_device *dev;
4094
	struct rcu_string *name;
A
Arne Jansen 已提交
4095

4096
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
4097 4098
		return -EINVAL;

4099
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4100 4101 4102 4103 4104
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4105 4106
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4107 4108
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4109 4110 4111
		return -EINVAL;
	}

4112
	if (fs_info->sectorsize != PAGE_SIZE) {
4113
		/* not supported for data w/o checksums */
4114
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
4115
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4116
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
4117 4118 4119
		return -EINVAL;
	}

4120
	if (fs_info->nodesize >
4121
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4122
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4123 4124 4125 4126
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4127 4128
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4129
		       fs_info->nodesize,
4130
		       SCRUB_MAX_PAGES_PER_BLOCK,
4131
		       fs_info->sectorsize,
4132 4133 4134 4135
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
4136

4137 4138
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4139
	if (!dev || (dev->missing && !is_dev_replace)) {
4140
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4141 4142 4143
		return -ENODEV;
	}

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

4154
	mutex_lock(&fs_info->scrub_lock);
4155
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
4156
		mutex_unlock(&fs_info->scrub_lock);
4157 4158
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
4159 4160
	}

4161
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4162 4163 4164
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4165
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
4166
		mutex_unlock(&fs_info->scrub_lock);
4167
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4168 4169
		return -EINPROGRESS;
	}
4170
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4171 4172 4173 4174 4175 4176 4177 4178

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

4179
	sctx = scrub_setup_ctx(dev, is_dev_replace);
4180
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
4181
		mutex_unlock(&fs_info->scrub_lock);
4182 4183
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
4184
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4185
	}
4186 4187
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
4188
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4189

4190 4191 4192 4193
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4194
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4195 4196 4197
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4198
	if (!is_dev_replace) {
4199 4200 4201 4202
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4203
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4204
		ret = scrub_supers(sctx, dev);
4205
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4206
	}
A
Arne Jansen 已提交
4207 4208

	if (!ret)
4209 4210
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
4211

4212
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4213 4214 4215
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4216
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4217

A
Arne Jansen 已提交
4218
	if (progress)
4219
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4220 4221 4222

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
4223
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
4224 4225
	mutex_unlock(&fs_info->scrub_lock);

4226
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4227 4228 4229 4230

	return ret;
}

4231
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4246
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4247 4248 4249 4250 4251
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4252
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4273 4274
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4275
{
4276
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4277 4278

	mutex_lock(&fs_info->scrub_lock);
4279 4280
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4281 4282 4283
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4284
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4295

4296
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4297 4298 4299
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4300
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4301

4302 4303
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4304
	if (dev)
4305 4306 4307
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4308
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4309

4310
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4311
}
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4324
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4325 4326 4327
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4328
		btrfs_put_bbio(bbio);
4329 4330 4331 4332 4333 4334
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4335
	btrfs_put_bbio(bbio);
4336 4337 4338 4339 4340 4341
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4342
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4359 4360
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4361
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4362 4363
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4364 4365 4366 4367

	return 0;
}

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4385 4386 4387 4388 4389
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4390 4391
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4417
					  record_inode_for_nocow, nocow_ctx);
4418
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4419 4420 4421 4422
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4423 4424 4425 4426
		not_written = 1;
		goto out;
	}

4427
	btrfs_end_transaction(trans);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4445
out:
4446 4447 4448 4449 4450 4451 4452 4453
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4454
	if (trans && !IS_ERR(trans))
4455
		btrfs_end_transaction(trans);
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4466
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4467 4468 4469 4470 4471 4472 4473 4474 4475
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4476
	io_tree = &inode->io_tree;
4477

4478
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4479
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4510 4511
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4512
{
4513
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4514
	struct btrfs_key key;
4515 4516
	struct inode *inode;
	struct page *page;
4517
	struct btrfs_root *local_root;
4518
	struct extent_io_tree *io_tree;
4519
	u64 physical_for_dev_replace;
4520
	u64 nocow_ctx_logical;
4521
	u64 len = nocow_ctx->len;
4522
	unsigned long index;
4523
	int srcu_index;
4524 4525
	int ret = 0;
	int err = 0;
4526 4527 4528 4529

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4530 4531 4532

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4533
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4534 4535
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4536
		return PTR_ERR(local_root);
4537
	}
4538 4539 4540 4541 4542

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4543
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4544 4545 4546
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4547
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4548
	inode_lock(inode);
4549 4550
	inode_dio_wait(inode);

4551
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4552
	io_tree = &BTRFS_I(inode)->io_tree;
4553
	nocow_ctx_logical = nocow_ctx->logical;
4554

4555 4556
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4557 4558 4559
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4560 4561
	}

4562 4563
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4564
again:
4565 4566
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4567
			btrfs_err(fs_info, "find_or_create_page() failed");
4568
			ret = -ENOMEM;
4569
			goto out;
4570 4571 4572 4573 4574 4575 4576
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4577
			err = extent_read_full_page(io_tree, page,
4578 4579
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4580 4581
			if (err) {
				ret = err;
4582 4583
				goto next_page;
			}
4584

4585
			lock_page(page);
4586 4587 4588 4589 4590 4591 4592
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4593
				unlock_page(page);
4594
				put_page(page);
4595 4596
				goto again;
			}
4597 4598 4599 4600 4601
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4602

4603
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4604 4605 4606 4607 4608 4609
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4610 4611 4612 4613
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4614
next_page:
4615
		unlock_page(page);
4616
		put_page(page);
4617 4618 4619 4620

		if (ret)
			break;

4621 4622 4623 4624
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4625
	}
4626
	ret = COPY_COMPLETE;
4627
out:
A
Al Viro 已提交
4628
	inode_unlock(inode);
4629
	iput(inode);
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4644
		btrfs_warn_rl(dev->fs_info,
4645
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4646 4647
		return -EIO;
	}
4648
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4649 4650 4651 4652 4653 4654
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4655 4656
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4657
	bio->bi_bdev = dev->bdev;
4658
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4659 4660
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4661 4662 4663 4664 4665 4666
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4667
	if (btrfsic_submit_bio_wait(bio))
4668 4669 4670 4671 4672
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}