scrub.c 139.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
22
#include "zoned.h"
23
#include "fs.h"
24
#include "accessors.h"
25
#include "file-item.h"
26
#include "scrub.h"
A
Arne Jansen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

41
struct scrub_block;
42
struct scrub_ctx;
A
Arne Jansen 已提交
43

44
/*
45 46
 * The following three values only influence the performance.
 *
47
 * The last one configures the number of parallel and outstanding I/O
48
 * operations. The first one configures an upper limit for the number
49 50
 * of (dynamically allocated) pages that are added to a bio.
 */
51 52
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
53 54

/*
55
 * The following value times PAGE_SIZE needs to be large enough to match the
56 57
 * largest node/leaf/sector size that shall be supported.
 */
58
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
59

60 61
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

62 63 64 65 66 67 68 69 70 71 72
/*
 * Maximum number of mirrors that can be available for all profiles counting
 * the target device of dev-replace as one. During an active device replace
 * procedure, the target device of the copy operation is a mirror for the
 * filesystem data as well that can be used to read data in order to repair
 * read errors on other disks.
 *
 * Current value is derived from RAID1C4 with 4 copies.
 */
#define BTRFS_MAX_MIRRORS (4 + 1)

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/* Represent one sector and its needed info to verify the content. */
struct scrub_sector_verification {
	bool is_metadata;

	union {
		/*
		 * Csum pointer for data csum verification.  Should point to a
		 * sector csum inside scrub_stripe::csums.
		 *
		 * NULL if this data sector has no csum.
		 */
		u8 *csum;

		/*
		 * Extra info for metadata verification.  All sectors inside a
		 * tree block share the same generation.
		 */
		u64 generation;
	};
};

enum scrub_stripe_flags {
	/* Set when @mirror_num, @dev, @physical and @logical are set. */
	SCRUB_STRIPE_FLAG_INITIALIZED,

	/* Set when the read-repair is finished. */
	SCRUB_STRIPE_FLAG_REPAIR_DONE,
};

#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)

/*
 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 */
struct scrub_stripe {
	struct btrfs_block_group *bg;

	struct page *pages[SCRUB_STRIPE_PAGES];
	struct scrub_sector_verification *sectors;

	struct btrfs_device *dev;
	u64 logical;
	u64 physical;

	u16 mirror_num;

	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
	u16 nr_sectors;

	atomic_t pending_io;
	wait_queue_head_t io_wait;

	/*
	 * Indicate the states of the stripe.  Bits are defined in
	 * scrub_stripe_flags enum.
	 */
	unsigned long state;

	/* Indicate which sectors are covered by extent items. */
	unsigned long extent_sector_bitmap;

	/*
	 * The errors hit during the initial read of the stripe.
	 *
	 * Would be utilized for error reporting and repair.
	 */
	unsigned long init_error_bitmap;

	/*
	 * The following error bitmaps are all for the current status.
	 * Every time we submit a new read, these bitmaps may be updated.
	 *
	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
	 *
	 * IO and csum errors can happen for both metadata and data.
	 */
	unsigned long error_bitmap;
	unsigned long io_error_bitmap;
	unsigned long csum_error_bitmap;
	unsigned long meta_error_bitmap;

	/*
	 * Checksum for the whole stripe if this stripe is inside a data block
	 * group.
	 */
	u8 *csums;
};

161
struct scrub_recover {
162
	refcount_t		refs;
163
	struct btrfs_io_context	*bioc;
164 165 166
	u64			map_length;
};

167
struct scrub_sector {
168
	struct scrub_block	*sblock;
169
	struct list_head	list;
A
Arne Jansen 已提交
170 171
	u64			flags;  /* extent flags */
	u64			generation;
172 173
	/* Offset in bytes to @sblock. */
	u32			offset;
174
	atomic_t		refs;
175 176
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
177
	u8			csum[BTRFS_CSUM_SIZE];
178 179

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
180 181 182 183
};

struct scrub_bio {
	int			index;
184
	struct scrub_ctx	*sctx;
185
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
186
	struct bio		*bio;
187
	blk_status_t		status;
A
Arne Jansen 已提交
188 189
	u64			logical;
	u64			physical;
190 191
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
192
	int			next_free;
193
	struct work_struct	work;
A
Arne Jansen 已提交
194 195
};

196
struct scrub_block {
197 198 199 200 201
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
202
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
203
	struct btrfs_device	*dev;
204 205
	/* Logical bytenr of the sblock */
	u64			logical;
206 207
	u64			physical;
	u64			physical_for_dev_replace;
208 209
	/* Length of sblock in bytes */
	u32			len;
210
	int			sector_count;
211
	int			mirror_num;
212

213
	atomic_t		outstanding_sectors;
214
	refcount_t		refs; /* free mem on transition to zero */
215
	struct scrub_ctx	*sctx;
216
	struct scrub_parity	*sparity;
217 218 219 220
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
221
		unsigned int	generation_error:1; /* also sets header_error */
222 223 224 225

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
226
	};
227
	struct work_struct	work;
228 229
};

230 231 232 233 234 235 236 237 238 239 240 241
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

242
	u32			stripe_len;
243

244
	refcount_t		refs;
245

246
	struct list_head	sectors_list;
247 248

	/* Work of parity check and repair */
249
	struct work_struct	work;
250 251

	/* Mark the parity blocks which have data */
252
	unsigned long		dbitmap;
253 254 255 256 257

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
258
	unsigned long		ebitmap;
259 260
};

261
struct scrub_ctx {
262
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
263
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
264 265
	int			first_free;
	int			curr;
266 267
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
268 269 270 271
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
272
	int			readonly;
273
	int			sectors_per_bio;
274

275 276 277 278
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

279
	int			is_dev_replace;
280
	u64			write_pointer;
281 282 283 284

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
285
	bool                    flush_all_writes;
286

A
Arne Jansen 已提交
287 288 289 290 291
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
292 293 294 295 296 297 298 299

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
300
	refcount_t              refs;
A
Arne Jansen 已提交
301 302
};

303 304 305 306
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
307
	u64			physical;
308 309 310 311
	u64			logical;
	struct btrfs_device	*dev;
};

312 313 314 315 316 317 318
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

319
#ifndef CONFIG_64BIT
320
/* This structure is for architectures whose (void *) is smaller than u64 */
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static void release_scrub_stripe(struct scrub_stripe *stripe)
{
	if (!stripe)
		return;

	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
		if (stripe->pages[i])
			__free_page(stripe->pages[i]);
		stripe->pages[i] = NULL;
	}
	kfree(stripe->sectors);
	kfree(stripe->csums);
	stripe->sectors = NULL;
	stripe->csums = NULL;
	stripe->state = 0;
}

int init_scrub_stripe(struct btrfs_fs_info *fs_info, struct scrub_stripe *stripe)
{
	int ret;

	memset(stripe, 0, sizeof(*stripe));

	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
	stripe->state = 0;

	init_waitqueue_head(&stripe->io_wait);
	atomic_set(&stripe->pending_io, 0);

	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
	if (ret < 0)
		goto error;

	stripe->sectors = kcalloc(stripe->nr_sectors,
				  sizeof(struct scrub_sector_verification),
				  GFP_KERNEL);
	if (!stripe->sectors)
		goto error;

	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
				fs_info->csum_size, GFP_KERNEL);
	if (!stripe->csums)
		goto error;
	return 0;
error:
	release_scrub_stripe(stripe);
	return -ENOMEM;
}

void wait_scrub_stripe_io(struct scrub_stripe *stripe)
{
	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}

411 412 413 414 415
static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
					     struct btrfs_device *dev,
					     u64 logical, u64 physical,
					     u64 physical_for_dev_replace,
					     int mirror_num)
416 417 418 419 420 421 422 423
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
424
	sblock->logical = logical;
425 426 427 428
	sblock->physical = physical;
	sblock->physical_for_dev_replace = physical_for_dev_replace;
	sblock->dev = dev;
	sblock->mirror_num = mirror_num;
429
	sblock->no_io_error_seen = 1;
430 431 432 433
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
434 435 436
	return sblock;
}

437 438 439 440 441 442
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
443
					       u64 logical)
444
{
445
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
446 447
	struct scrub_sector *ssector;

448 449 450
	/* We must never have scrub_block exceed U32_MAX in size. */
	ASSERT(logical - sblock->logical < U32_MAX);

451
	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
452 453
	if (!ssector)
		return NULL;
454 455 456 457 458

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

459
		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
460 461 462 463 464 465 466 467 468 469 470 471
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
472
	}
473

474 475 476 477
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
478
	ssector->offset = logical - sblock->logical;
479

480 481 482 483 484
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;
485
	sblock->len += sblock->sctx->fs_info->sectorsize;
486 487 488 489

	return ssector;
}

490 491 492
static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;
493
	pgoff_t index;
494 495 496 497 498 499 500
	/*
	 * When calling this function, ssector must be alreaday attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
501
	ASSERT(ssector->offset < sblock->len);
502

503
	index = ssector->offset >> PAGE_SHIFT;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	ASSERT(index < SCRUB_MAX_PAGES);
	ASSERT(sblock->pages[index]);
	ASSERT(PagePrivate(sblock->pages[index]));
	return sblock->pages[index];
}

static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;

	/*
	 * When calling this function, ssector must be already attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
521
	ASSERT(ssector->offset < sblock->len);
522

523
	return offset_in_page(ssector->offset);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
{
	return page_address(scrub_sector_get_page(ssector)) +
	       scrub_sector_get_page_offset(ssector);
}

static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
				unsigned int len)
{
	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
			    scrub_sector_get_page_offset(ssector));
}

539
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
540
				     struct scrub_block *sblocks_for_recheck[]);
541
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
542 543
				struct scrub_block *sblock,
				int retry_failed_mirror);
544
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
545
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
546
					     struct scrub_block *sblock_good);
547
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
548
					    struct scrub_block *sblock_good,
549
					    int sector_num, int force_write);
550
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
551 552
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
553 554 555 556
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
557 558
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
559 560
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
561 562 563 564
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
565
static void scrub_bio_end_io(struct bio *bio);
566
static void scrub_bio_end_io_worker(struct work_struct *work);
567
static void scrub_block_complete(struct scrub_block *sblock);
568 569
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
570
static void scrub_wr_submit(struct scrub_ctx *sctx);
571
static void scrub_wr_bio_end_io(struct bio *bio);
572
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
573
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
574

575
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
576
{
577 578
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
579
}
S
Stefan Behrens 已提交
580

581 582
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
583
	refcount_inc(&sctx->refs);
584 585 586 587 588 589 590
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
591
	scrub_put_ctx(sctx);
592 593
}

594
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
595 596 597 598 599 600 601 602 603
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

604
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
605 606 607
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
608
}
609

610 611
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
612 613 614 615 616 617 618 619
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

620 621 622 623 624 625
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

645
	lockdep_assert_held(&locks_root->lock);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

661 662 663
	/*
	 * Insert new lock.
	 */
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

689
	lockdep_assert_held(&locks_root->lock);
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
709
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
710 711 712 713 714 715 716 717 718 719 720 721 722
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
723 724
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
742
	struct btrfs_block_group *bg_cache;
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
789
	struct btrfs_block_group *bg_cache;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

843
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
844
{
845
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
846
		struct btrfs_ordered_sum *sum;
847
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
848 849 850 851 852 853
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

854
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
855 856 857
{
	int i;

858
	if (!sctx)
A
Arne Jansen 已提交
859 860
		return;

861
	/* this can happen when scrub is cancelled */
862 863
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
864

865
		for (i = 0; i < sbio->sector_count; i++)
866
			scrub_block_put(sbio->sectors[i]->sblock);
867 868 869
		bio_put(sbio->bio);
	}

870
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
871
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
872 873 874 875 876 877

		if (!sbio)
			break;
		kfree(sbio);
	}

878
	kfree(sctx->wr_curr_bio);
879 880
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
881 882
}

883 884
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
885
	if (refcount_dec_and_test(&sctx->refs))
886 887 888
		scrub_free_ctx(sctx);
}

889 890
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
891
{
892
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
893 894
	int		i;

895
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
896
	if (!sctx)
A
Arne Jansen 已提交
897
		goto nomem;
898
	refcount_set(&sctx->refs, 1);
899
	sctx->is_dev_replace = is_dev_replace;
900
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
901
	sctx->curr = -1;
902
	sctx->fs_info = fs_info;
903
	INIT_LIST_HEAD(&sctx->csum_list);
904
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
905 906
		struct scrub_bio *sbio;

907
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
908 909
		if (!sbio)
			goto nomem;
910
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
911 912

		sbio->index = i;
913
		sbio->sctx = sctx;
914
		sbio->sector_count = 0;
915
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
916

917
		if (i != SCRUB_BIOS_PER_SCTX - 1)
918
			sctx->bios[i]->next_free = i + 1;
919
		else
920 921 922
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
923 924
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
925 926 927 928 929
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
930
	sctx->throttle_deadline = 0;
931

932 933 934
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
935
	if (is_dev_replace) {
936 937
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
938
		sctx->flush_all_writes = false;
939
	}
940

941
	return sctx;
A
Arne Jansen 已提交
942 943

nomem:
944
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
945 946 947
	return ERR_PTR(-ENOMEM);
}

948 949
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
				     u64 root, void *warn_ctx)
950 951 952 953
{
	u32 nlink;
	int ret;
	int i;
954
	unsigned nofs_flag;
955 956
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
957
	struct scrub_warning *swarn = warn_ctx;
958
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
959 960
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
961
	struct btrfs_key key;
962

D
David Sterba 已提交
963
	local_root = btrfs_get_fs_root(fs_info, root, true);
964 965 966 967 968
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

969 970 971
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
972 973 974 975 976
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
977
	if (ret) {
978
		btrfs_put_root(local_root);
979 980 981 982 983 984 985 986 987 988
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

989 990 991 992 993 994
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
995
	ipath = init_ipath(4096, local_root, swarn->path);
996
	memalloc_nofs_restore(nofs_flag);
997
	if (IS_ERR(ipath)) {
998
		btrfs_put_root(local_root);
999 1000 1001 1002
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
1013
		btrfs_warn_in_rcu(fs_info,
1014
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
1015
				  swarn->errstr, swarn->logical,
1016
				  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
1017
				  swarn->physical,
J
Jeff Mahoney 已提交
1018
				  root, inum, offset,
1019
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
1020
				  (char *)(unsigned long)ipath->fspath->val[i]);
1021

1022
	btrfs_put_root(local_root);
1023 1024 1025 1026
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
1027
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
1028
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
1029
			  swarn->errstr, swarn->logical,
1030
			  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
1031
			  swarn->physical,
J
Jeff Mahoney 已提交
1032
			  root, inum, offset, ret);
1033 1034 1035 1036 1037

	free_ipath(ipath);
	return 0;
}

1038
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
1039
{
1040 1041
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
1042 1043 1044 1045 1046
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
1047 1048
	unsigned long ptr = 0;
	u64 flags = 0;
1049
	u64 ref_root;
1050
	u32 item_size;
1051
	u8 ref_level = 0;
1052
	int ret;
1053

1054
	WARN_ON(sblock->sector_count < 1);
1055
	dev = sblock->dev;
1056
	fs_info = sblock->sctx->fs_info;
1057

1058 1059 1060
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
1061
			errstr, btrfs_dev_name(dev), sblock->physical);
1062 1063
		return;
	}
1064
	path = btrfs_alloc_path();
1065 1066
	if (!path)
		return;
1067

1068 1069
	swarn.physical = sblock->physical;
	swarn.logical = sblock->logical;
1070
	swarn.errstr = errstr;
1071
	swarn.dev = NULL;
1072

1073 1074
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
1075 1076 1077 1078 1079 1080 1081
	if (ret < 0)
		goto out;

	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1082
	item_size = btrfs_item_size(eb, path->slots[0]);
1083

1084
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1085
		do {
1086 1087 1088
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
1089
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
1090
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
1091
				errstr, swarn.logical,
1092
				btrfs_dev_name(dev),
D
David Sterba 已提交
1093
				swarn.physical,
1094 1095 1096 1097
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
1098
		btrfs_release_path(path);
1099
	} else {
1100 1101
		struct btrfs_backref_walk_ctx ctx = { 0 };

1102
		btrfs_release_path(path);
1103 1104 1105 1106 1107

		ctx.bytenr = found_key.objectid;
		ctx.extent_item_pos = swarn.logical - found_key.objectid;
		ctx.fs_info = fs_info;

1108
		swarn.path = path;
1109
		swarn.dev = dev;
1110 1111

		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
1112 1113 1114 1115 1116 1117
	}

out:
	btrfs_free_path(path);
}

1118 1119
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1120
	refcount_inc(&recover->refs);
1121 1122
}

1123 1124
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1125
{
1126
	if (refcount_dec_and_test(&recover->refs)) {
1127
		btrfs_bio_counter_dec(fs_info);
1128
		btrfs_put_bioc(recover->bioc);
1129 1130 1131 1132
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1133
/*
1134
 * scrub_handle_errored_block gets called when either verification of the
1135 1136
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
1137 1138 1139
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1140
 */
1141
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1142
{
1143
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1144
	struct btrfs_device *dev = sblock_to_check->dev;
1145 1146 1147 1148 1149
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
1150 1151
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1152 1153 1154
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
1155
	int sector_num;
1156
	int success;
1157
	bool full_stripe_locked;
1158
	unsigned int nofs_flag;
1159
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1160 1161
				      DEFAULT_RATELIMIT_BURST);

1162
	BUG_ON(sblock_to_check->sector_count < 1);
1163
	fs_info = sctx->fs_info;
1164
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1165
		/*
1166
		 * If we find an error in a super block, we just report it.
1167 1168 1169
		 * They will get written with the next transaction commit
		 * anyway
		 */
1170
		scrub_print_warning("super block error", sblock_to_check);
1171 1172 1173
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1174
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1175 1176
		return 0;
	}
1177 1178 1179
	logical = sblock_to_check->logical;
	ASSERT(sblock_to_check->mirror_num);
	failed_mirror_index = sblock_to_check->mirror_num - 1;
1180
	is_metadata = !(sblock_to_check->sectors[0]->flags &
1181
			BTRFS_EXTENT_FLAG_DATA);
1182
	have_csum = sblock_to_check->sectors[0]->have_csum;
1183

1184 1185
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
1186

1187 1188 1189 1190 1191 1192
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
1193
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1194 1195 1196
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
1206
		memalloc_nofs_restore(nofs_flag);
1207 1208 1209 1210 1211 1212 1213 1214 1215
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1216 1217 1218 1219
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1220
	 * sector by sector this time in order to know which sectors
1221 1222 1223 1224
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1235 1236 1237
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1238
	 * Only if this is not possible, the sectors are picked from
1239 1240 1241 1242 1243
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1244
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1245 1246 1247 1248 1249 1250
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
1251 1252 1253
		 *
		 * And here we don't setup the physical/dev for the sblock yet,
		 * they will be correctly initialized in scrub_setup_recheck_block().
1254
		 */
1255 1256
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
							logical, 0, 0, mirror_index);
1257 1258 1259 1260 1261 1262 1263 1264 1265
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1266 1267
	}

1268
	/* Setup the context, map the logical blocks and alloc the sectors */
1269
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1270
	if (ret) {
1271 1272 1273 1274
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1275
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1276 1277 1278
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1279
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1280

1281
	/* build and submit the bios for the failed mirror, check checksums */
1282
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1283

1284 1285 1286
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1287
		 * The error disappeared after reading sector by sector, or
1288 1289 1290 1291 1292 1293
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1294 1295
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1296
		sblock_to_check->data_corrected = 1;
1297
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1298

1299 1300
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1301
		goto out;
A
Arne Jansen 已提交
1302 1303
	}

1304
	if (!sblock_bad->no_io_error_seen) {
1305 1306 1307
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1308
		if (__ratelimit(&rs))
1309
			scrub_print_warning("i/o error", sblock_to_check);
1310
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1311
	} else if (sblock_bad->checksum_error) {
1312 1313 1314
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1315
		if (__ratelimit(&rs))
1316
			scrub_print_warning("checksum error", sblock_to_check);
1317
		btrfs_dev_stat_inc_and_print(dev,
1318
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1319
	} else if (sblock_bad->header_error) {
1320 1321 1322
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1323
		if (__ratelimit(&rs))
1324 1325
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1326
		if (sblock_bad->generation_error)
1327
			btrfs_dev_stat_inc_and_print(dev,
1328 1329
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1330
			btrfs_dev_stat_inc_and_print(dev,
1331
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1332
	}
A
Arne Jansen 已提交
1333

1334 1335 1336 1337
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1338

1339 1340
	/*
	 * now build and submit the bios for the other mirrors, check
1341 1342
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1343 1344 1345 1346 1347
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1348
	 * checksum is present, only those sectors are rewritten that had
1349
	 * an I/O error in the block to be repaired, since it cannot be
1350 1351
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1352 1353
	 * overwritten by a bad one).
	 */
1354
	for (mirror_index = 0; ;mirror_index++) {
1355
		struct scrub_block *sblock_other;
1356

1357 1358
		if (mirror_index == failed_mirror_index)
			continue;
1359 1360

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1361
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1362 1363
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1364
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1365 1366
				break;

1367
			sblock_other = sblocks_for_recheck[mirror_index];
1368
		} else {
1369
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1370
			int max_allowed = r->bioc->num_stripes - r->bioc->replace_nr_stripes;
1371 1372 1373

			if (mirror_index >= max_allowed)
				break;
1374
			if (!sblocks_for_recheck[1]->sector_count)
1375 1376 1377
				break;

			ASSERT(failed_mirror_index == 0);
1378
			sblock_other = sblocks_for_recheck[1];
1379
			sblock_other->mirror_num = 1 + mirror_index;
1380
		}
1381 1382

		/* build and submit the bios, check checksums */
1383
		scrub_recheck_block(fs_info, sblock_other, 0);
1384 1385

		if (!sblock_other->header_error &&
1386 1387
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1388 1389
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1390
				goto corrected_error;
1391 1392
			} else {
				ret = scrub_repair_block_from_good_copy(
1393 1394 1395
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1396
			}
1397 1398
		}
	}
A
Arne Jansen 已提交
1399

1400 1401
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1402 1403 1404

	/*
	 * In case of I/O errors in the area that is supposed to be
1405 1406
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1407 1408 1409 1410 1411
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1412
	 * all possible combinations of sectors from the different mirrors
1413
	 * until the checksum verification succeeds. For example, when
1414
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1415
	 * of mirror #2 is readable but the final checksum test fails,
1416
	 * then the 2nd sector of mirror #3 could be tried, whether now
1417
	 * the final checksum succeeds. But this would be a rare
1418 1419 1420 1421
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1422
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1423
	 * mirror could be repaired by taking 512 byte of a different
1424
	 * mirror, even if other 512 byte sectors in the same sectorsize
1425
	 * area are unreadable.
A
Arne Jansen 已提交
1426
	 */
1427
	success = 1;
1428 1429
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1430
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1431
		struct scrub_block *sblock_other = NULL;
1432

1433 1434
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1435
			continue;
1436

1437
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1438 1439 1440 1441 1442 1443 1444 1445
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1446 1447
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1448 1449
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1450
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1451
			     mirror_index++) {
1452
				if (!sblocks_for_recheck[mirror_index]->
1453
				    sectors[sector_num]->io_error) {
1454
					sblock_other = sblocks_for_recheck[mirror_index];
1455
					break;
1456 1457
				}
			}
1458 1459
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1460
		}
A
Arne Jansen 已提交
1461

1462 1463
		if (sctx->is_dev_replace) {
			/*
1464 1465 1466 1467
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1468 1469 1470 1471
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1472 1473
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1474
				atomic64_inc(
1475
					&fs_info->dev_replace.num_write_errors);
1476 1477 1478
				success = 0;
			}
		} else if (sblock_other) {
1479 1480 1481
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1482
			if (0 == ret)
1483
				sector_bad->io_error = 0;
1484 1485
			else
				success = 0;
1486
		}
A
Arne Jansen 已提交
1487 1488
	}

1489
	if (success && !sctx->is_dev_replace) {
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1500
			scrub_recheck_block(fs_info, sblock_bad, 1);
1501
			if (!sblock_bad->header_error &&
1502 1503 1504 1505 1506 1507 1508
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1509 1510
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1511
			sblock_to_check->data_corrected = 1;
1512
			spin_unlock(&sctx->stat_lock);
1513 1514
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1515
				logical, btrfs_dev_name(dev));
A
Arne Jansen 已提交
1516
		}
1517 1518
	} else {
did_not_correct_error:
1519 1520 1521
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1522 1523
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1524
			logical, btrfs_dev_name(dev));
I
Ilya Dryomov 已提交
1525
	}
A
Arne Jansen 已提交
1526

1527
out:
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1547
			}
1548
		}
1549
		scrub_block_put(sblock);
1550
	}
A
Arne Jansen 已提交
1551

1552
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1553
	memalloc_nofs_restore(nofs_flag);
1554 1555
	if (ret < 0)
		return ret;
1556 1557
	return 0;
}
A
Arne Jansen 已提交
1558

1559
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1560
{
1561
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1562
		return 2;
1563
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1564 1565
		return 3;
	else
1566
		return (int)bioc->num_stripes;
1567 1568
}

Z
Zhao Lei 已提交
1569
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1570
						 u64 full_stripe_logical,
1571 1572 1573 1574 1575 1576
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1577
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1578 1579 1580
		const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ?
					    nstripes - 1 : nstripes - 2;

1581
		/* RAID5/6 */
1582 1583 1584
		for (i = 0; i < nr_data_stripes; i++) {
			const u64 data_stripe_start = full_stripe_logical +
						(i * BTRFS_STRIPE_LEN);
1585

1586 1587
			if (logical >= data_stripe_start &&
			    logical < data_stripe_start + BTRFS_STRIPE_LEN)
1588 1589 1590 1591
				break;
		}

		*stripe_index = i;
1592 1593
		*stripe_offset = (logical - full_stripe_logical) &
				 BTRFS_STRIPE_LEN_MASK;
1594 1595 1596 1597 1598 1599 1600
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1601
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1602
				     struct scrub_block *sblocks_for_recheck[])
1603
{
1604
	struct scrub_ctx *sctx = original_sblock->sctx;
1605
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1606
	u64 logical = original_sblock->logical;
1607 1608 1609 1610
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1611
	struct scrub_recover *recover;
1612
	struct btrfs_io_context *bioc;
1613 1614 1615 1616
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1617
	int sector_index = 0;
1618
	int mirror_index;
1619
	int nmirrors;
1620 1621 1622
	int ret;

	while (length > 0) {
1623
		sublen = min_t(u64, length, fs_info->sectorsize);
1624
		mapped_length = sublen;
1625
		bioc = NULL;
A
Arne Jansen 已提交
1626

1627
		/*
1628 1629
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1630
		 */
1631
		btrfs_bio_counter_inc_blocked(fs_info);
1632
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1633 1634 1635
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1636
			btrfs_bio_counter_dec(fs_info);
1637 1638
			return -EIO;
		}
A
Arne Jansen 已提交
1639

1640
		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1641
		if (!recover) {
1642
			btrfs_put_bioc(bioc);
1643
			btrfs_bio_counter_dec(fs_info);
1644 1645 1646
			return -ENOMEM;
		}

1647
		refcount_set(&recover->refs, 1);
1648
		recover->bioc = bioc;
1649 1650
		recover->map_length = mapped_length;

1651
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1652

1653
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1654

1655
		for (mirror_index = 0; mirror_index < nmirrors;
1656 1657
		     mirror_index++) {
			struct scrub_block *sblock;
1658
			struct scrub_sector *sector;
1659

1660
			sblock = sblocks_for_recheck[mirror_index];
1661
			sblock->sctx = sctx;
1662

1663
			sector = alloc_scrub_sector(sblock, logical);
1664
			if (!sector) {
1665 1666 1667
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1668
				scrub_put_recover(fs_info, recover);
1669 1670
				return -ENOMEM;
			}
1671 1672 1673
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1674
			if (have_csum)
1675
				memcpy(sector->csum,
1676
				       original_sblock->sectors[0]->csum,
1677
				       sctx->fs_info->csum_size);
1678

Z
Zhao Lei 已提交
1679
			scrub_stripe_index_and_offset(logical,
1680
						      bioc->map_type,
1681
						      bioc->full_stripe_logical,
1682
						      bioc->num_stripes -
1683
						      bioc->replace_nr_stripes,
1684 1685 1686
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
			/*
			 * We're at the first sector, also populate @sblock
			 * physical and dev.
			 */
			if (sector_index == 0) {
				sblock->physical =
					bioc->stripes[stripe_index].physical +
					stripe_offset;
				sblock->dev = bioc->stripes[stripe_index].dev;
				sblock->physical_for_dev_replace =
					original_sblock->physical_for_dev_replace;
			}
1699

1700
			BUG_ON(sector_index >= original_sblock->sector_count);
1701
			scrub_get_recover(recover);
1702
			sector->recover = recover;
1703
		}
1704
		scrub_put_recover(fs_info, recover);
1705 1706
		length -= sublen;
		logical += sublen;
1707
		sector_index++;
1708 1709 1710
	}

	return 0;
I
Ilya Dryomov 已提交
1711 1712
}

1713
static void scrub_bio_wait_endio(struct bio *bio)
1714
{
1715
	complete(bio->bi_private);
1716 1717 1718 1719
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1720
					struct scrub_sector *sector)
1721
{
1722
	DECLARE_COMPLETION_ONSTACK(done);
1723

1724 1725
	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
				 SECTOR_SHIFT;
1726 1727
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1728
	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1729

1730 1731
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1732 1733
}

L
Liu Bo 已提交
1734 1735 1736
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1737
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1738
	struct bio *bio;
1739
	int i;
L
Liu Bo 已提交
1740

1741
	/* All sectors in sblock belong to the same stripe on the same device. */
1742 1743
	ASSERT(sblock->dev);
	if (!sblock->dev->bdev)
L
Liu Bo 已提交
1744 1745
		goto out;

1746
	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1747

1748
	for (i = 0; i < sblock->sector_count; i++) {
1749
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1750

1751
		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
L
Liu Bo 已提交
1752 1753
	}

1754
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1765 1766
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1767 1768 1769 1770

	sblock->no_io_error_seen = 0;
}

1771
/*
1772 1773 1774 1775 1776
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1777
 */
1778
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1779 1780
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1781
{
1782
	int i;
I
Ilya Dryomov 已提交
1783

1784
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1785

L
Liu Bo 已提交
1786
	/* short cut for raid56 */
1787
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1788 1789
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1790
	for (i = 0; i < sblock->sector_count; i++) {
1791
		struct scrub_sector *sector = sblock->sectors[i];
1792 1793
		struct bio bio;
		struct bio_vec bvec;
1794

1795
		if (sblock->dev->bdev == NULL) {
1796
			sector->io_error = 1;
1797 1798 1799 1800
			sblock->no_io_error_seen = 0;
			continue;
		}

1801
		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1802
		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1803 1804
		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
					SECTOR_SHIFT;
1805

1806 1807
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1808
			sector->io_error = 1;
L
Liu Bo 已提交
1809
			sblock->no_io_error_seen = 0;
1810
		}
1811

1812
		bio_uninit(&bio);
1813
	}
I
Ilya Dryomov 已提交
1814

1815
	if (sblock->no_io_error_seen)
1816
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1817 1818
}

1819
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1820
{
1821
	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
M
Miao Xie 已提交
1822 1823
	int ret;

1824
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1825 1826 1827
	return !ret;
}

1828
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1829
{
1830 1831 1832
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1833

1834
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1835 1836 1837
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1838 1839
}

1840
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1841
					     struct scrub_block *sblock_good)
1842
{
1843
	int i;
1844
	int ret = 0;
I
Ilya Dryomov 已提交
1845

1846
	for (i = 0; i < sblock_bad->sector_count; i++) {
1847
		int ret_sub;
I
Ilya Dryomov 已提交
1848

1849 1850
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1851 1852
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1853
	}
1854 1855 1856 1857

	return ret;
}

1858 1859 1860
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1861
{
1862 1863
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1864
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1865
	const u32 sectorsize = fs_info->sectorsize;
1866 1867

	if (force_write || sblock_bad->header_error ||
1868
	    sblock_bad->checksum_error || sector_bad->io_error) {
1869 1870
		struct bio bio;
		struct bio_vec bvec;
1871 1872
		int ret;

1873
		if (!sblock_bad->dev->bdev) {
1874
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1875
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1876 1877 1878
			return -EIO;
		}

1879 1880 1881
		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = (sblock_bad->physical +
					 sector_bad->offset) >> SECTOR_SHIFT;
1882
		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1883

1884 1885 1886
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1887

1888
		if (ret) {
1889
			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1890
				BTRFS_DEV_STAT_WRITE_ERRS);
1891
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1892 1893
			return -EIO;
		}
A
Arne Jansen 已提交
1894 1895
	}

1896 1897 1898
	return 0;
}

1899 1900
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1901
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1902
	int i;
1903

1904 1905 1906 1907 1908 1909 1910
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1911
	for (i = 0; i < sblock->sector_count; i++) {
1912 1913
		int ret;

1914
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1915
		if (ret)
1916
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1917 1918 1919
	}
}

1920
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1921
{
1922
	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1923
	struct scrub_sector *sector = sblock->sectors[sector_num];
1924

1925
	if (sector->io_error)
1926
		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1927

1928
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1929 1930
}

1931 1932 1933 1934 1935 1936 1937 1938
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1939 1940 1941
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1953 1954 1955 1956 1957
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

1958 1959
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1960
{
1961
	struct scrub_block *sblock = sector->sblock;
1962 1963
	struct scrub_bio *sbio;
	int ret;
1964
	const u32 sectorsize = sctx->fs_info->sectorsize;
1965

1966
	mutex_lock(&sctx->wr_lock);
1967
again:
1968 1969
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1970
					      GFP_KERNEL);
1971 1972
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1973 1974
			return -ENOMEM;
		}
1975
		sctx->wr_curr_bio->sctx = sctx;
1976
		sctx->wr_curr_bio->sector_count = 0;
1977
	}
1978
	sbio = sctx->wr_curr_bio;
1979
	if (sbio->sector_count == 0) {
1980 1981
		ret = fill_writer_pointer_gap(sctx, sector->offset +
					      sblock->physical_for_dev_replace);
1982 1983 1984 1985 1986
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1987 1988
		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
1989
		sbio->dev = sctx->wr_tgtdev;
1990 1991 1992
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1993
		}
1994 1995 1996
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1997
		sbio->status = 0;
1998
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1999
		   sblock->physical_for_dev_replace + sector->offset ||
2000
		   sbio->logical + sbio->sector_count * sectorsize !=
2001
		   sblock->logical + sector->offset) {
2002 2003 2004 2005
		scrub_wr_submit(sctx);
		goto again;
	}

2006
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2007
	if (ret != sectorsize) {
2008
		if (sbio->sector_count < 1) {
2009 2010
			bio_put(sbio->bio);
			sbio->bio = NULL;
2011
			mutex_unlock(&sctx->wr_lock);
2012 2013 2014 2015 2016 2017
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

2018
	sbio->sectors[sbio->sector_count] = sector;
2019
	scrub_sector_get(sector);
2020 2021 2022 2023 2024 2025 2026
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

2027 2028
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2029
		scrub_wr_submit(sctx);
2030
	mutex_unlock(&sctx->wr_lock);
2031 2032 2033 2034 2035 2036 2037 2038

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

2039
	if (!sctx->wr_curr_bio)
2040 2041
		return;

2042 2043
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
2044 2045 2046 2047 2048
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
2049 2050
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
2051 2052

	if (btrfs_is_zoned(sctx->fs_info))
2053
		sctx->write_pointer = sbio->physical + sbio->sector_count *
2054
			sctx->fs_info->sectorsize;
2055 2056
}

2057
static void scrub_wr_bio_end_io(struct bio *bio)
2058 2059
{
	struct scrub_bio *sbio = bio->bi_private;
2060
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2061

2062
	sbio->status = bio->bi_status;
2063 2064
	sbio->bio = bio;

2065 2066
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2067 2068
}

2069
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
2070 2071 2072 2073 2074
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

2075
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2076
	if (sbio->status) {
2077
		struct btrfs_dev_replace *dev_replace =
2078
			&sbio->sctx->fs_info->dev_replace;
2079

2080 2081
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2082

2083
			sector->io_error = 1;
2084
			atomic64_inc(&dev_replace->num_write_errors);
2085 2086 2087
		}
	}

2088 2089 2090 2091 2092 2093
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
2094
		scrub_sector_put(sbio->sectors[i]);
2095
	}
2096 2097 2098 2099 2100 2101 2102

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2103 2104 2105 2106
{
	u64 flags;
	int ret;

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2119 2120
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
2121 2122 2123 2124 2125 2126
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2127
		ret = scrub_checksum_super(sblock);
2128 2129 2130 2131
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2132 2133

	return ret;
A
Arne Jansen 已提交
2134 2135
}

2136
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2137
{
2138
	struct scrub_ctx *sctx = sblock->sctx;
2139 2140
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
2141
	u8 csum[BTRFS_CSUM_SIZE];
2142
	struct scrub_sector *sector;
2143
	char *kaddr;
A
Arne Jansen 已提交
2144

2145
	BUG_ON(sblock->sector_count < 1);
2146 2147
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
2148 2149
		return 0;

2150
	kaddr = scrub_sector_get_kaddr(sector);
2151

2152 2153
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
2154

2155
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
2156

2157
	if (memcmp(csum, sector->csum, fs_info->csum_size))
2158
		sblock->checksum_error = 1;
2159
	return sblock->checksum_error;
A
Arne Jansen 已提交
2160 2161
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;

	return stripe->pages[page_index];
}

static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
						 int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;

	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
}

void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	struct btrfs_header *header;

	/*
	 * Here we don't have a good way to attach the pages (and subpages)
	 * to a dummy extent buffer, thus we have to directly grab the members
	 * from pages.
	 */
	header = (struct btrfs_header *)(page_address(first_page) + first_off);
	memcpy(on_disk_csum, header->csum, fs_info->csum_size);

	if (logical != btrfs_stack_header_bytenr(header)) {
		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_bytenr(header), logical);
		return;
	}
	if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->fsid, fs_info->fs_devices->fsid);
		return;
	}
	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		return;
	}

	/* Now check tree block csum. */
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, page_address(first_page) + first_off +
			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);

	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
		struct page *page = scrub_stripe_get_page(stripe, i);
		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);

		crypto_shash_update(shash, page_address(page) + page_off,
				    fs_info->sectorsize);
	}

	crypto_shash_final(shash, calculated_csum);
	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      logical, stripe->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		return;
	}
	if (stripe->sectors[sector_nr].generation !=
	    btrfs_stack_header_generation(header)) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_generation(header),
			      stripe->sectors[sector_nr].generation);
		return;
	}
	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
}

2268
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2269
{
2270
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2271
	struct btrfs_header *h;
2272
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2273
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2274 2275
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2276 2277 2278 2279 2280 2281 2282
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2283
	int i;
2284
	struct scrub_sector *sector;
2285
	char *kaddr;
2286

2287
	BUG_ON(sblock->sector_count < 1);
2288

2289
	/* Each member in sectors is just one sector */
2290
	ASSERT(sblock->sector_count == num_sectors);
2291

2292
	sector = sblock->sectors[0];
2293
	kaddr = scrub_sector_get_kaddr(sector);
2294
	h = (struct btrfs_header *)kaddr;
2295
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
2296 2297 2298 2299 2300 2301

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2302
	if (sblock->logical != btrfs_stack_header_bytenr(h)) {
2303
		sblock->header_error = 1;
2304 2305 2306 2307 2308 2309
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_bytenr(h),
			      sblock->logical);
		goto out;
2310
	}
A
Arne Jansen 已提交
2311

2312
	if (!scrub_check_fsid(h->fsid, sector)) {
2313
		sblock->header_error = 1;
2314 2315 2316 2317 2318 2319
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->fsid, sblock->dev->fs_devices->fsid);
		goto out;
	}
A
Arne Jansen 已提交
2320

2321
	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) {
2322
		sblock->header_error = 1;
2323 2324 2325 2326 2327 2328
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		goto out;
	}
A
Arne Jansen 已提交
2329

2330 2331 2332
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2333
			    sectorsize - BTRFS_CSUM_SIZE);
2334

2335
	for (i = 1; i < num_sectors; i++) {
2336
		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2337
		crypto_shash_update(shash, kaddr, sectorsize);
2338 2339
	}

2340
	crypto_shash_final(shash, calculated_csum);
2341
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) {
2342
		sblock->checksum_error = 1;
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      sblock->logical, sblock->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		goto out;
	}

	if (sector->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_generation(h),
			      sector->generation);
	}
A
Arne Jansen 已提交
2360

2361
out:
2362
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2363 2364
}

2365
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2366 2367
{
	struct btrfs_super_block *s;
2368
	struct scrub_ctx *sctx = sblock->sctx;
2369 2370
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2371
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2372
	struct scrub_sector *sector;
2373
	char *kaddr;
2374 2375
	int fail_gen = 0;
	int fail_cor = 0;
2376

2377
	BUG_ON(sblock->sector_count < 1);
2378
	sector = sblock->sectors[0];
2379
	kaddr = scrub_sector_get_kaddr(sector);
2380
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2381

2382
	if (sblock->logical != btrfs_super_bytenr(s))
2383
		++fail_cor;
A
Arne Jansen 已提交
2384

2385
	if (sector->generation != btrfs_super_generation(s))
2386
		++fail_gen;
A
Arne Jansen 已提交
2387

2388
	if (!scrub_check_fsid(s->fsid, sector))
2389
		++fail_cor;
A
Arne Jansen 已提交
2390

2391 2392 2393 2394
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2395

2396
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2397
		++fail_cor;
A
Arne Jansen 已提交
2398

2399
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2400 2401
}

2402 2403
static void scrub_block_put(struct scrub_block *sblock)
{
2404
	if (refcount_dec_and_test(&sblock->refs)) {
2405 2406
		int i;

2407 2408 2409
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2410
		for (i = 0; i < sblock->sector_count; i++)
2411
			scrub_sector_put(sblock->sectors[i]);
2412 2413 2414 2415 2416 2417
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2418 2419 2420 2421
		kfree(sblock);
	}
}

2422
static void scrub_sector_get(struct scrub_sector *sector)
2423
{
2424
	atomic_inc(&sector->refs);
2425 2426
}

2427
static void scrub_sector_put(struct scrub_sector *sector)
2428
{
2429
	if (atomic_dec_and_test(&sector->refs))
2430
		kfree(sector);
2431 2432
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2492
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2493 2494 2495
{
	struct scrub_bio *sbio;

2496
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2497
		return;
A
Arne Jansen 已提交
2498

2499 2500
	scrub_throttle(sctx);

2501 2502
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2503
	scrub_pending_bio_inc(sctx);
2504 2505
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2506 2507
}

2508 2509
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2510
{
2511
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2512
	struct scrub_bio *sbio;
2513
	const u32 sectorsize = sctx->fs_info->sectorsize;
2514
	int ret;
A
Arne Jansen 已提交
2515 2516 2517 2518 2519

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2520 2521 2522 2523 2524 2525
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2526
			sctx->bios[sctx->curr]->sector_count = 0;
2527
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2528
		} else {
2529 2530
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2531 2532
		}
	}
2533
	sbio = sctx->bios[sctx->curr];
2534
	if (sbio->sector_count == 0) {
2535 2536 2537
		sbio->physical = sblock->physical + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
		sbio->dev = sblock->dev;
2538 2539 2540
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2541
		}
2542 2543 2544
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2545
		sbio->status = 0;
2546
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2547
		   sblock->physical + sector->offset ||
2548
		   sbio->logical + sbio->sector_count * sectorsize !=
2549 2550
		   sblock->logical + sector->offset ||
		   sbio->dev != sblock->dev) {
2551
		scrub_submit(sctx);
A
Arne Jansen 已提交
2552 2553
		goto again;
	}
2554

2555
	sbio->sectors[sbio->sector_count] = sector;
2556
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2557
	if (ret != sectorsize) {
2558
		if (sbio->sector_count < 1) {
2559 2560 2561 2562
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2563
		scrub_submit(sctx);
2564 2565 2566
		goto again;
	}

2567
	scrub_block_get(sblock); /* one for the page added to the bio */
2568
	atomic_inc(&sblock->outstanding_sectors);
2569 2570
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2571
		scrub_submit(sctx);
2572 2573 2574 2575

	return 0;
}

2576
static void scrub_missing_raid56_end_io(struct bio *bio)
2577 2578
{
	struct scrub_block *sblock = bio->bi_private;
2579
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2580

2581
	btrfs_bio_counter_dec(fs_info);
2582
	if (bio->bi_status)
2583 2584
		sblock->no_io_error_seen = 0;

2585 2586
	bio_put(bio);

2587
	queue_work(fs_info->scrub_workers, &sblock->work);
2588 2589
}

2590
static void scrub_missing_raid56_worker(struct work_struct *work)
2591 2592 2593
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2594
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2595 2596 2597
	u64 logical;
	struct btrfs_device *dev;

2598 2599
	logical = sblock->logical;
	dev = sblock->dev;
2600

2601
	if (sblock->no_io_error_seen)
2602
		scrub_recheck_block_checksum(sblock);
2603 2604 2605 2606 2607

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2608
		btrfs_err_rl_in_rcu(fs_info,
2609
			"IO error rebuilding logical %llu for dev %s",
2610
			logical, btrfs_dev_name(dev));
2611 2612 2613 2614
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2615
		btrfs_err_rl_in_rcu(fs_info,
2616
			"failed to rebuild valid logical %llu for dev %s",
2617
			logical, btrfs_dev_name(dev));
2618 2619 2620 2621
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2622
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2623
		mutex_lock(&sctx->wr_lock);
2624
		scrub_wr_submit(sctx);
2625
		mutex_unlock(&sctx->wr_lock);
2626 2627
	}

2628
	scrub_block_put(sblock);
2629 2630 2631 2632 2633 2634
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2635
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2636
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2637
	u64 logical = sblock->logical;
2638
	struct btrfs_io_context *bioc = NULL;
2639 2640 2641 2642 2643
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2644
	btrfs_bio_counter_inc_blocked(fs_info);
2645
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2646
			       &length, &bioc);
2647
	if (ret || !bioc)
2648
		goto bioc_out;
2649 2650

	if (WARN_ON(!sctx->is_dev_replace ||
2651
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2652 2653 2654 2655
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2656
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2657
		 */
2658
		goto bioc_out;
2659 2660
	}

2661
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2662 2663 2664 2665
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2666
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2667 2668 2669
	if (!rbio)
		goto rbio_out;

2670
	for (i = 0; i < sblock->sector_count; i++) {
2671
		struct scrub_sector *sector = sblock->sectors[i];
2672

2673 2674
		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
				       scrub_sector_get_page_offset(sector),
2675
				       sector->offset + sector->sblock->logical);
2676 2677
	}

2678
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2679 2680 2681
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
2682
	btrfs_put_bioc(bioc);
2683 2684 2685 2686
	return;

rbio_out:
	bio_put(bio);
2687
bioc_out:
2688
	btrfs_bio_counter_dec(fs_info);
2689
	btrfs_put_bioc(bioc);
2690 2691 2692 2693 2694
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2695
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2696
		       u64 physical, struct btrfs_device *dev, u64 flags,
2697
		       u64 gen, int mirror_num, u8 *csum,
2698
		       u64 physical_for_dev_replace)
2699 2700
{
	struct scrub_block *sblock;
2701
	const u32 sectorsize = sctx->fs_info->sectorsize;
2702 2703
	int index;

2704 2705
	sblock = alloc_scrub_block(sctx, dev, logical, physical,
				   physical_for_dev_replace, mirror_num);
2706
	if (!sblock) {
2707 2708 2709
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2710
		return -ENOMEM;
A
Arne Jansen 已提交
2711
	}
2712 2713

	for (index = 0; len > 0; index++) {
2714
		struct scrub_sector *sector;
2715 2716 2717 2718 2719 2720
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2721

2722
		sector = alloc_scrub_sector(sblock, logical);
2723
		if (!sector) {
2724 2725 2726
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2727
			scrub_block_put(sblock);
2728 2729
			return -ENOMEM;
		}
2730 2731
		sector->flags = flags;
		sector->generation = gen;
2732
		if (csum) {
2733 2734
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2735
		} else {
2736
			sector->have_csum = 0;
2737 2738 2739 2740
		}
		len -= l;
		logical += l;
		physical += l;
2741
		physical_for_dev_replace += l;
2742 2743
	}

2744
	WARN_ON(sblock->sector_count == 0);
2745
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2746 2747 2748 2749 2750 2751
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2752
		for (index = 0; index < sblock->sector_count; index++) {
2753
			struct scrub_sector *sector = sblock->sectors[index];
2754
			int ret;
2755

2756
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2757 2758 2759 2760
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2761
		}
A
Arne Jansen 已提交
2762

2763
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2764 2765
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2766

2767 2768
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2769 2770 2771
	return 0;
}

2772
static void scrub_bio_end_io(struct bio *bio)
2773 2774
{
	struct scrub_bio *sbio = bio->bi_private;
2775
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2776

2777
	sbio->status = bio->bi_status;
2778 2779
	sbio->bio = bio;

2780
	queue_work(fs_info->scrub_workers, &sbio->work);
2781 2782
}

2783
static void scrub_bio_end_io_worker(struct work_struct *work)
2784 2785
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2786
	struct scrub_ctx *sctx = sbio->sctx;
2787 2788
	int i;

2789
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2790
	if (sbio->status) {
2791 2792
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2793

2794 2795
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2796 2797 2798
		}
	}

2799
	/* Now complete the scrub_block items that have all pages completed */
2800 2801
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2802
		struct scrub_block *sblock = sector->sblock;
2803

2804
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2805 2806 2807 2808 2809 2810
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2811 2812 2813 2814
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2815

2816
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2817
		mutex_lock(&sctx->wr_lock);
2818
		scrub_wr_submit(sctx);
2819
		mutex_unlock(&sctx->wr_lock);
2820 2821
	}

2822
	scrub_pending_bio_dec(sctx);
2823 2824
}

2825 2826
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2827
				       u64 start, u32 len)
2828
{
2829
	u64 offset;
2830
	u32 nsectors;
2831
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2832 2833 2834 2835 2836 2837 2838

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2839
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2840
	offset = offset >> sectorsize_bits;
2841
	nsectors = len >> sectorsize_bits;
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2853
						   u64 start, u32 len)
2854
{
2855
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2856 2857 2858
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2859
						  u64 start, u32 len)
2860
{
2861
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2862 2863
}

2864 2865
static void scrub_block_complete(struct scrub_block *sblock)
{
2866 2867
	int corrupted = 0;

2868
	if (!sblock->no_io_error_seen) {
2869
		corrupted = 1;
2870
		scrub_handle_errored_block(sblock);
2871 2872 2873 2874 2875 2876
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2877 2878
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2879 2880
			scrub_write_block_to_dev_replace(sblock);
	}
2881 2882

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2883 2884 2885
		u64 start = sblock->logical;
		u64 end = sblock->logical +
			  sblock->sectors[sblock->sector_count - 1]->offset +
2886
			  sblock->sctx->fs_info->sectorsize;
2887

2888
		ASSERT(end - start <= U32_MAX);
2889 2890 2891
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2892 2893
}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2906
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2907 2908 2909 2910 2911
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2912
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2913
{
2914
	bool found = false;
A
Arne Jansen 已提交
2915

2916
	while (!list_empty(&sctx->csum_list)) {
2917 2918 2919 2920
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2921
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2922
				       struct btrfs_ordered_sum, list);
2923
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2924 2925 2926
		if (sum->bytenr > logical)
			break;

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2937

2938 2939 2940 2941
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2942

2943 2944 2945 2946 2947 2948 2949
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2950
	}
2951 2952
	if (!found)
		return 0;
2953
	return 1;
A
Arne Jansen 已提交
2954 2955
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static bool should_use_device(struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      bool follow_replace_read_mode)
{
	struct btrfs_device *replace_srcdev = fs_info->dev_replace.srcdev;
	struct btrfs_device *replace_tgtdev = fs_info->dev_replace.tgtdev;

	if (!dev->bdev)
		return false;

	/*
	 * We're doing scrub/replace, if it's pure scrub, no tgtdev should be
	 * here.  If it's replace, we're going to write data to tgtdev, thus
	 * the current data of the tgtdev is all garbage, thus we can not use
	 * it at all.
	 */
	if (dev == replace_tgtdev)
		return false;

	/* No need to follow replace read mode, any existing device is fine. */
	if (!follow_replace_read_mode)
		return true;

	/* Need to follow the mode. */
	if (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	    BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		return dev != replace_srcdev;
	return true;
}
static int scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				u64 extent_logical, u32 extent_len,
				u64 *extent_physical,
				struct btrfs_device **extent_dev,
				int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_io_context *bioc = NULL;
	int ret;
	int i;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
			      extent_logical, &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len) {
		btrfs_put_bioc(bioc);
		btrfs_err_rl(fs_info, "btrfs_map_block() failed for logical %llu: %d",
				extent_logical, ret);
		return -EIO;
	}

	/*
	 * First loop to exclude all missing devices and the source device if
	 * needed.  And we don't want to use target device as mirror either, as
	 * we're doing the replace, the target device range contains nothing.
	 */
	for (i = 0; i < bioc->num_stripes - bioc->replace_nr_stripes; i++) {
		struct btrfs_io_stripe *stripe = &bioc->stripes[i];

		if (!should_use_device(fs_info, stripe->dev, true))
			continue;
		goto found;
	}
	/*
	 * We didn't find any alternative mirrors, we have to break our replace
	 * read mode, or we can not read at all.
	 */
	for (i = 0; i < bioc->num_stripes - bioc->replace_nr_stripes; i++) {
		struct btrfs_io_stripe *stripe = &bioc->stripes[i];

		if (!should_use_device(fs_info, stripe->dev, false))
			continue;
		goto found;
	}

	btrfs_err_rl(fs_info, "failed to find any live mirror for logical %llu",
			extent_logical);
	return -EIO;

found:
	*extent_physical = bioc->stripes[i].physical;
	*extent_mirror_num = i + 1;
	*extent_dev = bioc->stripes[i].dev;
	btrfs_put_bioc(bioc);
	return 0;
}

static bool scrub_need_different_mirror(struct scrub_ctx *sctx,
					struct map_lookup *map,
					struct btrfs_device *dev)
{
	/*
	 * For RAID56, all the extra mirrors are rebuilt from other P/Q,
	 * cannot utilize other mirrors directly.
	 */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
		return false;

	if (!dev->bdev)
		return true;

	return sctx->fs_info->dev_replace.cont_reading_from_srcdev_mode ==
		BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID;
}

A
Arne Jansen 已提交
3060
/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
3061
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
3062
			u64 logical, u32 len,
3063
			u64 physical, struct btrfs_device *dev, u64 flags,
3064
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
3065
{
3066 3067 3068
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
3069 3070
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
3071 3072 3073
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
3074
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
3075
			blocksize = BTRFS_STRIPE_LEN;
L
Liu Bo 已提交
3076
		else
3077
			blocksize = sctx->fs_info->sectorsize;
3078 3079 3080 3081
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
3082
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
3083
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
3084
			blocksize = BTRFS_STRIPE_LEN;
L
Liu Bo 已提交
3085 3086
		else
			blocksize = sctx->fs_info->nodesize;
3087 3088 3089 3090
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
3091
	} else {
3092
		blocksize = sctx->fs_info->sectorsize;
3093
		WARN_ON(1);
3094
	}
A
Arne Jansen 已提交
3095

3096
	/*
3097 3098
	 * For dev-replace case, we can have @dev being a missing device, or
	 * we want to avoid reading from the source device if possible.
3099
	 */
3100 3101 3102 3103 3104 3105
	if (sctx->is_dev_replace && scrub_need_different_mirror(sctx, map, dev)) {
		ret = scrub_find_good_copy(sctx->fs_info, logical, len,
					   &src_physical, &src_dev, &src_mirror);
		if (ret < 0)
			return ret;
	}
A
Arne Jansen 已提交
3106
	while (len) {
3107
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
3108 3109 3110 3111
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
3112
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
3113
			if (have_csum == 0)
3114
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
3115
		}
3116 3117 3118
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
3119 3120 3121 3122 3123
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
3124
		src_physical += l;
A
Arne Jansen 已提交
3125 3126 3127 3128
	}
	return 0;
}

3129
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
3130
				  u64 logical, u32 len,
3131 3132 3133 3134 3135
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
3136
	const u32 sectorsize = sctx->fs_info->sectorsize;
3137 3138
	int index;

3139 3140
	ASSERT(IS_ALIGNED(len, sectorsize));

3141
	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
3153
		struct scrub_sector *sector;
3154

3155
		sector = alloc_scrub_sector(sblock, logical);
3156
		if (!sector) {
3157 3158 3159 3160 3161 3162
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
3163
		sblock->sectors[index] = sector;
3164
		/* For scrub parity */
3165 3166 3167 3168
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->flags = flags;
		sector->generation = gen;
3169
		if (csum) {
3170 3171
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
3172
		} else {
3173
			sector->have_csum = 0;
3174
		}
3175 3176 3177 3178 3179

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
3180 3181
	}

3182 3183
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
3184
		struct scrub_sector *sector = sblock->sectors[index];
3185 3186
		int ret;

3187
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
3188 3189 3190 3191 3192 3193
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

3194
	/* Last one frees, either here or in bio completion for last sector */
3195 3196 3197 3198 3199
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
3200
				   u64 logical, u32 len,
3201 3202 3203 3204 3205 3206 3207 3208
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

3209
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
3210 3211 3212 3213
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

3214
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
3215
		blocksize = sparity->stripe_len;
3216
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
3217
		blocksize = sparity->stripe_len;
3218
	} else {
3219
		blocksize = sctx->fs_info->sectorsize;
3220 3221 3222 3223
		WARN_ON(1);
	}

	while (len) {
3224
		u32 l = min(len, blocksize);
3225 3226 3227 3228
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
3229
			have_csum = scrub_find_csum(sctx, logical, csum);
3230 3231 3232
			if (have_csum == 0)
				goto skip;
		}
3233
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
3234 3235 3236 3237
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
3238
skip:
3239 3240 3241 3242 3243 3244 3245
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

3246 3247 3248 3249 3250 3251 3252 3253
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
3254 3255
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
3256 3257 3258 3259
{
	int i;
	int j = 0;
	u64 last_offset;
3260
	const int data_stripes = nr_data_stripes(map);
3261

3262
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
3263 3264 3265
	if (stripe_start)
		*stripe_start = last_offset;

3266
	*offset = last_offset;
3267
	for (i = 0; i < data_stripes; i++) {
3268 3269 3270 3271
		u32 stripe_nr;
		u32 stripe_index;
		u32 rot;

3272
		*offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT);
3273

3274
		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
3275 3276

		/* Work out the disk rotation on this stripe-set */
3277 3278
		rot = stripe_nr % map->num_stripes;
		stripe_nr /= map->num_stripes;
3279 3280
		/* calculate which stripe this data locates */
		rot += i;
3281
		stripe_index = rot % map->num_stripes;
3282 3283 3284 3285 3286
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
3287
	*offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT);
3288 3289 3290
	return 1;
}

3291 3292 3293
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3294
	struct scrub_sector *curr, *next;
3295 3296
	int nbits;

3297
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
3298 3299 3300 3301 3302 3303 3304
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

3305
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
3306
		list_del_init(&curr->list);
3307
		scrub_sector_put(curr);
3308 3309 3310 3311 3312
	}

	kfree(sparity);
}

3313
static void scrub_parity_bio_endio_worker(struct work_struct *work)
3314 3315 3316 3317 3318
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

3319
	btrfs_bio_counter_dec(sctx->fs_info);
3320 3321 3322 3323
	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3324
static void scrub_parity_bio_endio(struct bio *bio)
3325
{
Y
Yu Zhe 已提交
3326
	struct scrub_parity *sparity = bio->bi_private;
3327
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3328

3329
	if (bio->bi_status)
3330 3331
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
3332 3333

	bio_put(bio);
3334

3335 3336
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
3337 3338 3339 3340 3341
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3342
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3343 3344
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
3345
	struct btrfs_io_context *bioc = NULL;
3346 3347 3348
	u64 length;
	int ret;

3349 3350
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
3351 3352
		goto out;

3353
	length = sparity->logic_end - sparity->logic_start;
3354 3355

	btrfs_bio_counter_inc_blocked(fs_info);
3356
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3357
			       &length, &bioc);
3358
	if (ret || !bioc)
3359
		goto bioc_out;
3360

3361
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
3362 3363 3364 3365
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3366
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
3367
					      sparity->scrub_dev,
3368
					      &sparity->dbitmap,
3369
					      sparity->nsectors);
3370
	btrfs_put_bioc(bioc);
3371 3372 3373 3374 3375 3376 3377 3378 3379
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
3380
bioc_out:
3381
	btrfs_bio_counter_dec(fs_info);
3382
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3393
	refcount_inc(&sparity->refs);
3394 3395 3396 3397
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3398
	if (!refcount_dec_and_test(&sparity->refs))
3399 3400 3401 3402 3403
		return;

	scrub_parity_check_and_repair(sparity);
}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3530 3531 3532 3533 3534 3535 3536 3537 3538
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3549
	u64 cur_logical = logical;
3550 3551 3552 3553 3554 3555 3556
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3557
	while (cur_logical < logical + BTRFS_STRIPE_LEN) {
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3568
		ret = find_first_extent_item(extent_root, path, cur_logical,
3569
					     logical + BTRFS_STRIPE_LEN - cur_logical);
3570 3571 3572
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3573 3574
			break;
		}
3575
		if (ret < 0)
3576
			break;
3577 3578
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3579

3580
		/* Metadata should not cross stripe boundaries */
3581
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3582
		    does_range_cross_boundary(extent_start, extent_size,
3583
					      logical, BTRFS_STRIPE_LEN)) {
3584
			btrfs_err(fs_info,
3585 3586
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3587 3588 3589
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3590 3591
			cur_logical += extent_size;
			continue;
3592 3593
		}

3594 3595
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3596

3597 3598
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
3599
				  logical + BTRFS_STRIPE_LEN) - cur_logical;
3600 3601
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

3621 3622 3623
		ret = btrfs_lookup_csums_list(csum_root, extent_start,
					      extent_start + extent_size - 1,
					      &sctx->csum_list, 1, false);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3643
		cur_logical += extent_size;
3644 3645 3646 3647 3648
	}
	btrfs_release_path(path);
	return ret;
}

3649 3650 3651 3652 3653 3654
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3655
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3656
	struct btrfs_path *path;
3657
	u64 cur_logical;
3658 3659 3660 3661
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3672
	nsectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
3673 3674
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3675 3676 3677 3678
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3679
		btrfs_free_path(path);
3680 3681 3682
		return -ENOMEM;
	}

3683
	sparity->stripe_len = BTRFS_STRIPE_LEN;
3684 3685 3686 3687 3688
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3689
	refcount_set(&sparity->refs, 1);
3690
	INIT_LIST_HEAD(&sparity->sectors_list);
3691 3692

	ret = 0;
3693
	for (cur_logical = logic_start; cur_logical < logic_end;
3694
	     cur_logical += BTRFS_STRIPE_LEN) {
3695 3696
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3697 3698
		if (ret < 0)
			break;
3699
	}
3700

3701 3702
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3703
	mutex_lock(&sctx->wr_lock);
3704
	scrub_wr_submit(sctx);
3705
	mutex_unlock(&sctx->wr_lock);
3706

3707
	btrfs_free_path(path);
3708 3709 3710
	return ret < 0 ? ret : 0;
}

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
				 struct scrub_stripe *stripe,
				 u64 extent_start, u64 extent_len,
				 u64 extent_flags, u64 extent_gen)
{
	for (u64 cur_logical = max(stripe->logical, extent_start);
	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
			       extent_start + extent_len);
	     cur_logical += fs_info->sectorsize) {
		const int nr_sector = (cur_logical - stripe->logical) >>
				      fs_info->sectorsize_bits;
		struct scrub_sector_verification *sector =
						&stripe->sectors[nr_sector];

		set_bit(nr_sector, &stripe->extent_sector_bitmap);
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			sector->is_metadata = true;
			sector->generation = extent_gen;
		}
	}
}

static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
{
	stripe->extent_sector_bitmap = 0;
	stripe->init_error_bitmap = 0;
	stripe->error_bitmap = 0;
	stripe->io_error_bitmap = 0;
	stripe->csum_error_bitmap = 0;
	stripe->meta_error_bitmap = 0;
}

/*
 * Locate one stripe which has at least one extent in its range.
 *
 * Return 0 if found such stripe, and store its info into @stripe.
 * Return >0 if there is no such stripe in the specified range.
 * Return <0 for error.
 */
int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
				 struct btrfs_device *dev, u64 physical,
				 int mirror_num, u64 logical_start,
				 u32 logical_len, struct scrub_stripe *stripe)
{
	struct btrfs_fs_info *fs_info = bg->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
	const u64 logical_end = logical_start + logical_len;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	u64 stripe_end;
	u64 extent_start;
	u64 extent_len;
	u64 extent_flags;
	u64 extent_gen;
	int ret;

	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
				   stripe->nr_sectors);
	scrub_stripe_reset_bitmaps(stripe);

	/* The range must be inside the bg. */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;

	ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
	/* Either error or not found. */
	if (ret)
		goto out;
	get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
	cur_logical = max(extent_start, cur_logical);

	/*
	 * Round down to stripe boundary.
	 *
	 * The extra calculation against bg->start is to handle block groups
	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
	 */
	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
			  bg->start;
	stripe->physical = physical + stripe->logical - logical_start;
	stripe->dev = dev;
	stripe->bg = bg;
	stripe->mirror_num = mirror_num;
	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;

	/* Fill the first extent info into stripe->sectors[] array. */
	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
			     extent_flags, extent_gen);
	cur_logical = extent_start + extent_len;

	/* Fill the extent info for the remaining sectors. */
	while (cur_logical <= stripe_end) {
		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     stripe_end - cur_logical + 1);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
				     extent_flags, extent_gen);
		cur_logical = extent_start + extent_len;
	}

	/* Now fill the data csum. */
	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
		int sector_nr;
		unsigned long csum_bitmap = 0;

		/* Csum space should have already been allocated. */
		ASSERT(stripe->csums);

		/*
		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
		 * should contain at most 16 sectors.
		 */
		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);

		ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
						stripe_end, stripe->csums,
						&csum_bitmap, true);
		if (ret < 0)
			goto out;
		if (ret > 0)
			ret = 0;

		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
			stripe->sectors[sector_nr].csum = stripe->csums +
				sector_nr * fs_info->csum_size;
		}
	}
	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
out:
	btrfs_release_path(&path);
	return ret;
}

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3910 3911
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
3953
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3988
			ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3989
					cur_logical + scrub_len - 1,
3990
					&sctx->csum_list, 1, false);
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
4006 4007 4008 4009
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

4023 4024 4025 4026 4027 4028
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

4029
	return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
4045 4046
	return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) +
	       bg->start;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
4080 4081 4082
		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
					  BTRFS_STRIPE_LEN, device, cur_physical,
					  mirror_num);
4083 4084 4085 4086 4087
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
4088
		cur_physical += BTRFS_STRIPE_LEN;
4089 4090 4091 4092
	}
	return ret;
}

4093
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
4094
					   struct btrfs_block_group *bg,
4095
					   struct extent_map *em,
4096
					   struct btrfs_device *scrub_dev,
4097
					   int stripe_index)
A
Arne Jansen 已提交
4098
{
4099
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4100
	struct blk_plug plug;
4101
	struct map_lookup *map = em->map_lookup;
4102
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
4103
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
4104
	int ret;
4105
	u64 physical = map->stripes[stripe_index].physical;
4106 4107
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
4108
	u64 logical;
L
Liu Bo 已提交
4109
	u64 logic_end;
4110
	/* The logical increment after finishing one stripe */
4111
	u64 increment;
4112
	/* Offset inside the chunk */
A
Arne Jansen 已提交
4113
	u64 offset;
4114 4115
	u64 stripe_logical;
	u64 stripe_end;
4116
	int stop_loop = 0;
D
David Woodhouse 已提交
4117

4118
	wait_event(sctx->list_wait,
4119
		   atomic_read(&sctx->bios_in_flight) == 0);
4120
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4121

A
Arne Jansen 已提交
4122 4123 4124 4125
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
4126
	blk_start_plug(&plug);
A
Arne Jansen 已提交
4127

4128 4129 4130 4131 4132 4133 4134 4135
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
4153 4154
		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
				scrub_dev, map->stripes[stripe_index].physical,
4155
				stripe_index + 1);
4156
		offset = 0;
4157 4158
		goto out;
	}
4159
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4160
		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
4161
		offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
4162 4163 4164 4165 4166
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
4167
	ret = 0;
4168 4169 4170 4171 4172 4173 4174 4175

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
4176
	increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
4177

4178 4179 4180 4181
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
4182
	while (physical < physical_end) {
4183 4184
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
4195
			goto next;
4196 4197
		}

4198 4199 4200 4201 4202 4203 4204 4205
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
4206
		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
4207
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
4208 4209 4210 4211
		if (ret < 0)
			goto out;
next:
		logical += increment;
4212
		physical += BTRFS_STRIPE_LEN;
4213
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
4214
		if (stop_loop)
4215 4216
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
4217 4218
		else
			sctx->stat.last_physical = physical;
4219
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
4220 4221
		if (stop_loop)
			break;
A
Arne Jansen 已提交
4222
	}
4223
out:
A
Arne Jansen 已提交
4224
	/* push queued extents */
4225
	scrub_submit(sctx);
4226
	mutex_lock(&sctx->wr_lock);
4227
	scrub_wr_submit(sctx);
4228
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
4229

4230
	blk_finish_plug(&plug);
4231 4232 4233 4234

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

4235 4236 4237 4238
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
4239 4240 4241 4242
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
4243 4244 4245
	return ret < 0 ? ret : 0;
}

4246
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
4247
					  struct btrfs_block_group *bg,
4248
					  struct btrfs_device *scrub_dev,
4249
					  u64 dev_offset,
4250
					  u64 dev_extent_len)
A
Arne Jansen 已提交
4251
{
4252
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4253
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
4254 4255 4256
	struct map_lookup *map;
	struct extent_map *em;
	int i;
4257
	int ret = 0;
A
Arne Jansen 已提交
4258

4259
	read_lock(&map_tree->lock);
4260
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
4261
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
4262

4263 4264 4265 4266 4267
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
4268
		spin_lock(&bg->lock);
4269
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
4270
			ret = -EINVAL;
4271
		spin_unlock(&bg->lock);
4272 4273 4274

		return ret;
	}
4275
	if (em->start != bg->start)
A
Arne Jansen 已提交
4276
		goto out;
4277
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
4278 4279
		goto out;

4280
	map = em->map_lookup;
A
Arne Jansen 已提交
4281
	for (i = 0; i < map->num_stripes; ++i) {
4282
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
4283
		    map->stripes[i].physical == dev_offset) {
4284
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
4314
static noinline_for_stack
4315
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
4316
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
4317 4318 4319
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
4320 4321
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
4322
	u64 chunk_offset;
4323
	int ret = 0;
4324
	int ro_set;
A
Arne Jansen 已提交
4325 4326 4327 4328
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
4329
	struct btrfs_block_group *cache;
4330
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
4331 4332 4333 4334 4335

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4336
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
4337 4338 4339
	path->search_commit_root = 1;
	path->skip_locking = 1;

4340
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
4341 4342 4343 4344
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
4345 4346
		u64 dev_extent_len;

A
Arne Jansen 已提交
4347 4348
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
4349 4350 4351 4352 4353
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
4354 4355 4356 4357
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
4358
					break;
4359 4360 4361
				}
			} else {
				ret = 0;
4362 4363
			}
		}
A
Arne Jansen 已提交
4364 4365 4366 4367 4368 4369

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

4370
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
4371 4372
			break;

4373
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4383
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
4384

4385
		if (found_key.offset + dev_extent_len <= start)
4386
			goto skip;
A
Arne Jansen 已提交
4387 4388 4389 4390 4391 4392 4393 4394

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
4395 4396 4397 4398 4399 4400

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

4426
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
4427
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
4428 4429
				btrfs_put_block_group(cache);
				goto skip;
4430 4431 4432
			}
		}

4433 4434 4435 4436 4437 4438 4439 4440 4441
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
4442
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
4443 4444 4445 4446
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
4447
		btrfs_freeze_block_group(cache);
4448 4449
		spin_unlock(&cache->lock);

4450 4451 4452 4453 4454 4455 4456 4457 4458
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
4489
		 */
4490
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

4501 4502
		if (ret == 0) {
			ro_set = 1;
4503
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4504 4505 4506
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
4507
			 * It is not a problem for scrub, because
4508 4509 4510 4511
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
4512 4513 4514 4515 4516 4517 4518
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
4519
		} else {
J
Jeff Mahoney 已提交
4520
			btrfs_warn(fs_info,
4521
				   "failed setting block group ro: %d", ret);
4522
			btrfs_unfreeze_block_group(cache);
4523
			btrfs_put_block_group(cache);
4524
			scrub_pause_off(fs_info);
4525 4526 4527
			break;
		}

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
4540
		down_write(&dev_replace->rwsem);
4541
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4542 4543
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
4544 4545
		up_write(&dev_replace->rwsem);

4546 4547
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
4559
		sctx->flush_all_writes = true;
4560
		scrub_submit(sctx);
4561
		mutex_lock(&sctx->wr_lock);
4562
		scrub_wr_submit(sctx);
4563
		mutex_unlock(&sctx->wr_lock);
4564 4565 4566

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
4567 4568

		scrub_pause_on(fs_info);
4569 4570 4571 4572 4573 4574

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
4575 4576
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
4577
		sctx->flush_all_writes = false;
4578

4579
		scrub_pause_off(fs_info);
4580

4581 4582 4583 4584 4585
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4586
		down_write(&dev_replace->rwsem);
4587 4588
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4589
		up_write(&dev_replace->rwsem);
4590

4591
		if (ro_set)
4592
			btrfs_dec_block_group_ro(cache);
4593

4594 4595 4596 4597 4598 4599 4600 4601
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
4602 4603
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4604
			spin_unlock(&cache->lock);
4605 4606 4607 4608 4609
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4610 4611 4612
		} else {
			spin_unlock(&cache->lock);
		}
4613
skip_unfreeze:
4614
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4615 4616 4617
		btrfs_put_block_group(cache);
		if (ret)
			break;
4618
		if (sctx->is_dev_replace &&
4619
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4620 4621 4622 4623 4624 4625 4626
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4627
skip:
4628
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4629
		btrfs_release_path(path);
A
Arne Jansen 已提交
4630 4631 4632
	}

	btrfs_free_path(path);
4633

4634
	return ret;
A
Arne Jansen 已提交
4635 4636
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
			   struct page *page, u64 physical, u64 generation)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct bio_vec bvec;
	struct bio bio;
	struct btrfs_super_block *sb = page_address(page);
	int ret;

	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
	ret = submit_bio_wait(&bio);
	bio_uninit(&bio);

	if (ret < 0)
		return ret;
	ret = btrfs_check_super_csum(fs_info, sb);
	if (ret != 0) {
		btrfs_err_rl(fs_info,
			"super block at physical %llu devid %llu has bad csum",
			physical, dev->devid);
		return -EIO;
	}
	if (btrfs_super_generation(sb) != generation) {
		btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad generation %llu expect %llu",
			     physical, dev->devid,
			     btrfs_super_generation(sb), generation);
		return -EUCLEAN;
	}

	return btrfs_validate_super(fs_info, sb, -1);
}

4672 4673
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4674 4675 4676 4677
{
	int	i;
	u64	bytenr;
	u64	gen;
4678 4679
	int ret = 0;
	struct page *page;
4680
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4681

J
Josef Bacik 已提交
4682
	if (BTRFS_FS_ERROR(fs_info))
4683
		return -EROFS;
4684

4685 4686 4687 4688 4689 4690 4691 4692
	page = alloc_page(GFP_KERNEL);
	if (!page) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

4693
	/* Seed devices of a new filesystem has their own generation. */
4694
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4695 4696
		gen = scrub_dev->generation;
	else
4697
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4698 4699 4700

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4701 4702
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4703
			break;
4704 4705
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4706

4707 4708 4709 4710 4711 4712
		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
		if (ret) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.super_errors++;
			spin_unlock(&sctx->stat_lock);
		}
A
Arne Jansen 已提交
4713
	}
4714
	__free_page(page);
A
Arne Jansen 已提交
4715 4716 4717
	return 0;
}

4718 4719 4720 4721
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4722 4723 4724 4725 4726
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4727 4728 4729 4730 4731 4732

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4733 4734 4735 4736 4737 4738
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4739 4740 4741
	}
}

A
Arne Jansen 已提交
4742 4743 4744
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4745 4746
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4747
{
4748 4749 4750
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4751
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4752
	int max_active = fs_info->thread_pool_size;
4753
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4754

4755 4756
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4757

4758 4759
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4760 4761
	if (!scrub_workers)
		goto fail_scrub_workers;
4762

4763
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4764 4765
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4766

4767
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4779
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4780 4781
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4782
	}
4783 4784 4785
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4786

4787
	ret = 0;
4788
	destroy_workqueue(scrub_parity);
4789
fail_scrub_parity_workers:
4790
	destroy_workqueue(scrub_wr_comp);
4791
fail_scrub_wr_completion_workers:
4792
	destroy_workqueue(scrub_workers);
4793
fail_scrub_workers:
4794
	return ret;
A
Arne Jansen 已提交
4795 4796
}

4797 4798
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4799
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4800
{
4801
	struct btrfs_dev_lookup_args args = { .devid = devid };
4802
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4803 4804
	int ret;
	struct btrfs_device *dev;
4805
	unsigned int nofs_flag;
4806
	bool need_commit = false;
A
Arne Jansen 已提交
4807

4808
	if (btrfs_fs_closing(fs_info))
4809
		return -EAGAIN;
A
Arne Jansen 已提交
4810

4811 4812
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4813

4814 4815 4816 4817 4818 4819 4820
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4821

4822 4823 4824 4825
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4826

4827 4828 4829 4830
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4831
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4832
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4833 4834
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4835
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4836
		ret = -ENODEV;
4837
		goto out;
A
Arne Jansen 已提交
4838 4839
	}

4840 4841
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4842
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4843 4844
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
4845
				 devid, btrfs_dev_name(dev));
4846
		ret = -EROFS;
4847
		goto out;
4848 4849
	}

4850
	mutex_lock(&fs_info->scrub_lock);
4851
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4852
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4853
		mutex_unlock(&fs_info->scrub_lock);
4854
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4855
		ret = -EIO;
4856
		goto out;
A
Arne Jansen 已提交
4857 4858
	}

4859
	down_read(&fs_info->dev_replace.rwsem);
4860
	if (dev->scrub_ctx ||
4861 4862
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4863
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4864
		mutex_unlock(&fs_info->scrub_lock);
4865
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4866
		ret = -EINPROGRESS;
4867
		goto out;
A
Arne Jansen 已提交
4868
	}
4869
	up_read(&fs_info->dev_replace.rwsem);
4870

4871
	sctx->readonly = readonly;
4872
	dev->scrub_ctx = sctx;
4873
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4874

4875 4876 4877 4878
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4879
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4880 4881 4882
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4883 4884 4885
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4886
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4887 4888 4889 4890 4891 4892
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4893
	if (!is_dev_replace) {
4894 4895 4896 4897 4898 4899
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

4900
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4901 4902 4903 4904
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4905
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4906
		ret = scrub_supers(sctx, dev);
4907
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
4918
	}
A
Arne Jansen 已提交
4919 4920

	if (!ret)
4921
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4922
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4923

4924
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4925 4926 4927
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4928
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4929

A
Arne Jansen 已提交
4930
	if (progress)
4931
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4932

4933 4934 4935 4936
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4937
	mutex_lock(&fs_info->scrub_lock);
4938
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4939 4940
	mutex_unlock(&fs_info->scrub_lock);

4941
	scrub_workers_put(fs_info);
4942
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4943

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
4963
	return ret;
4964 4965
out:
	scrub_workers_put(fs_info);
4966 4967 4968
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4969 4970 4971
	return ret;
}

4972
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4987
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4988 4989 4990 4991 4992
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4993
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

5014
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
5015
{
5016
	struct btrfs_fs_info *fs_info = dev->fs_info;
5017
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
5018 5019

	mutex_lock(&fs_info->scrub_lock);
5020
	sctx = dev->scrub_ctx;
5021
	if (!sctx) {
A
Arne Jansen 已提交
5022 5023 5024
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
5025
	atomic_inc(&sctx->cancel_req);
5026
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
5027 5028
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
5029
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
5030 5031 5032 5033 5034 5035
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
5036

5037
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
5038 5039
			 struct btrfs_scrub_progress *progress)
{
5040
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
5041
	struct btrfs_device *dev;
5042
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
5043

5044
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5045
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
5046
	if (dev)
5047
		sctx = dev->scrub_ctx;
5048 5049
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
5050
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
5051

5052
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
5053
}