scrub.c 124.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
24
#include "fs.h"
25
#include "accessors.h"
26
#include "file-item.h"
A
Arne Jansen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

41
struct scrub_block;
42
struct scrub_ctx;
A
Arne Jansen 已提交
43

44
/*
45 46
 * The following three values only influence the performance.
 *
47
 * The last one configures the number of parallel and outstanding I/O
48
 * operations. The first one configures an upper limit for the number
49 50
 * of (dynamically allocated) pages that are added to a bio.
 */
51 52
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
53 54

/*
55
 * The following value times PAGE_SIZE needs to be large enough to match the
56 57
 * largest node/leaf/sector size that shall be supported.
 */
58
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
59

60 61
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

62 63 64 65 66 67 68 69 70 71 72
/*
 * Maximum number of mirrors that can be available for all profiles counting
 * the target device of dev-replace as one. During an active device replace
 * procedure, the target device of the copy operation is a mirror for the
 * filesystem data as well that can be used to read data in order to repair
 * read errors on other disks.
 *
 * Current value is derived from RAID1C4 with 4 copies.
 */
#define BTRFS_MAX_MIRRORS (4 + 1)

73
struct scrub_recover {
74
	refcount_t		refs;
75
	struct btrfs_io_context	*bioc;
76 77 78
	u64			map_length;
};

79
struct scrub_sector {
80
	struct scrub_block	*sblock;
81
	struct list_head	list;
A
Arne Jansen 已提交
82 83
	u64			flags;  /* extent flags */
	u64			generation;
84 85
	/* Offset in bytes to @sblock. */
	u32			offset;
86
	atomic_t		refs;
87 88
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98
	struct bio		*bio;
99
	blk_status_t		status;
A
Arne Jansen 已提交
100 101
	u64			logical;
	u64			physical;
102 103
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
104
	int			next_free;
105
	struct work_struct	work;
A
Arne Jansen 已提交
106 107
};

108
struct scrub_block {
109 110 111 112 113
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
114
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
115
	struct btrfs_device	*dev;
116 117
	/* Logical bytenr of the sblock */
	u64			logical;
118 119
	u64			physical;
	u64			physical_for_dev_replace;
120 121
	/* Length of sblock in bytes */
	u32			len;
122
	int			sector_count;
123
	int			mirror_num;
124

125
	atomic_t		outstanding_sectors;
126
	refcount_t		refs; /* free mem on transition to zero */
127
	struct scrub_ctx	*sctx;
128
	struct scrub_parity	*sparity;
129 130 131 132
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
133
		unsigned int	generation_error:1; /* also sets header_error */
134 135 136 137

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
138
	};
139
	struct work_struct	work;
140 141
};

142 143 144 145 146 147 148 149 150 151 152 153
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

154
	u32			stripe_len;
155

156
	refcount_t		refs;
157

158
	struct list_head	sectors_list;
159 160

	/* Work of parity check and repair */
161
	struct work_struct	work;
162 163

	/* Mark the parity blocks which have data */
164
	unsigned long		dbitmap;
165 166 167 168 169

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
170
	unsigned long		ebitmap;
171 172
};

173
struct scrub_ctx {
174
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
175
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
176 177
	int			first_free;
	int			curr;
178 179
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			sectors_per_bio;
186

187 188 189 190
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

191
	int			is_dev_replace;
192
	u64			write_pointer;
193 194 195 196

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
197
	bool                    flush_all_writes;
198

A
Arne Jansen 已提交
199 200 201 202 203
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
204 205 206 207 208 209 210 211

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
212
	refcount_t              refs;
A
Arne Jansen 已提交
213 214
};

215 216 217 218
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
219
	u64			physical;
220 221 222 223
	u64			logical;
	struct btrfs_device	*dev;
};

224 225 226 227 228 229 230
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#ifndef CONFIG_64BIT
/* This structure is for archtectures whose (void *) is smaller than u64 */
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

269 270 271 272 273
static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
					     struct btrfs_device *dev,
					     u64 logical, u64 physical,
					     u64 physical_for_dev_replace,
					     int mirror_num)
274 275 276 277 278 279 280 281
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
282
	sblock->logical = logical;
283 284 285 286
	sblock->physical = physical;
	sblock->physical_for_dev_replace = physical_for_dev_replace;
	sblock->dev = dev;
	sblock->mirror_num = mirror_num;
287
	sblock->no_io_error_seen = 1;
288 289 290 291
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
292 293 294
	return sblock;
}

295 296 297 298 299 300
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
301
					       u64 logical)
302
{
303
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
304 305
	struct scrub_sector *ssector;

306 307 308
	/* We must never have scrub_block exceed U32_MAX in size. */
	ASSERT(logical - sblock->logical < U32_MAX);

309
	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
310 311
	if (!ssector)
		return NULL;
312 313 314 315 316

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

317
		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
318 319 320 321 322 323 324 325 326 327 328 329
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
330
	}
331

332 333 334 335
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
336
	ssector->offset = logical - sblock->logical;
337

338 339 340 341 342
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;
343
	sblock->len += sblock->sctx->fs_info->sectorsize;
344 345 346 347

	return ssector;
}

348 349 350
static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;
351
	pgoff_t index;
352 353 354 355 356 357 358
	/*
	 * When calling this function, ssector must be alreaday attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
359
	ASSERT(ssector->offset < sblock->len);
360

361
	index = ssector->offset >> PAGE_SHIFT;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	ASSERT(index < SCRUB_MAX_PAGES);
	ASSERT(sblock->pages[index]);
	ASSERT(PagePrivate(sblock->pages[index]));
	return sblock->pages[index];
}

static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;

	/*
	 * When calling this function, ssector must be already attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
379
	ASSERT(ssector->offset < sblock->len);
380

381
	return offset_in_page(ssector->offset);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}

static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
{
	return page_address(scrub_sector_get_page(ssector)) +
	       scrub_sector_get_page_offset(ssector);
}

static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
				unsigned int len)
{
	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
			    scrub_sector_get_page_offset(ssector));
}

397
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
398
				     struct scrub_block *sblocks_for_recheck[]);
399
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
400 401
				struct scrub_block *sblock,
				int retry_failed_mirror);
402
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
403
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
404
					     struct scrub_block *sblock_good);
405
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
406
					    struct scrub_block *sblock_good,
407
					    int sector_num, int force_write);
408
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
409 410
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
411 412 413 414
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
415 416
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
417 418
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
419 420 421 422
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
423
static void scrub_bio_end_io(struct bio *bio);
424
static void scrub_bio_end_io_worker(struct work_struct *work);
425
static void scrub_block_complete(struct scrub_block *sblock);
426 427 428 429 430
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num);
431 432
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
433
static void scrub_wr_submit(struct scrub_ctx *sctx);
434
static void scrub_wr_bio_end_io(struct bio *bio);
435
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
436
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
437

438
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
439
{
440 441
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
442
}
S
Stefan Behrens 已提交
443

444 445
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
446
	refcount_inc(&sctx->refs);
447 448 449 450 451 452 453
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
454
	scrub_put_ctx(sctx);
455 456
}

457
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
458 459 460 461 462 463 464 465 466
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

467
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
468 469 470
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
471
}
472

473 474
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
475 476 477 478 479 480 481 482
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

483 484 485 486 487 488
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

508
	lockdep_assert_held(&locks_root->lock);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

524 525 526
	/*
	 * Insert new lock.
	 */
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

552
	lockdep_assert_held(&locks_root->lock);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
572
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
573 574 575 576 577 578 579 580 581 582 583 584 585
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
586 587
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
605
	struct btrfs_block_group *bg_cache;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
652
	struct btrfs_block_group *bg_cache;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

706
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
707
{
708
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
709
		struct btrfs_ordered_sum *sum;
710
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
711 712 713 714 715 716
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

717
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
718 719 720
{
	int i;

721
	if (!sctx)
A
Arne Jansen 已提交
722 723
		return;

724
	/* this can happen when scrub is cancelled */
725 726
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
727

728
		for (i = 0; i < sbio->sector_count; i++)
729
			scrub_block_put(sbio->sectors[i]->sblock);
730 731 732
		bio_put(sbio->bio);
	}

733
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
734
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
735 736 737 738 739 740

		if (!sbio)
			break;
		kfree(sbio);
	}

741
	kfree(sctx->wr_curr_bio);
742 743
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
744 745
}

746 747
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
748
	if (refcount_dec_and_test(&sctx->refs))
749 750 751
		scrub_free_ctx(sctx);
}

752 753
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
754
{
755
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
756 757
	int		i;

758
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
759
	if (!sctx)
A
Arne Jansen 已提交
760
		goto nomem;
761
	refcount_set(&sctx->refs, 1);
762
	sctx->is_dev_replace = is_dev_replace;
763
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
764
	sctx->curr = -1;
765
	sctx->fs_info = fs_info;
766
	INIT_LIST_HEAD(&sctx->csum_list);
767
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
768 769
		struct scrub_bio *sbio;

770
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
771 772
		if (!sbio)
			goto nomem;
773
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
774 775

		sbio->index = i;
776
		sbio->sctx = sctx;
777
		sbio->sector_count = 0;
778
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
779

780
		if (i != SCRUB_BIOS_PER_SCTX - 1)
781
			sctx->bios[i]->next_free = i + 1;
782
		else
783 784 785
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
786 787
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
788 789 790 791 792
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
793
	sctx->throttle_deadline = 0;
794

795 796 797
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
798
	if (is_dev_replace) {
799 800
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
801
		sctx->flush_all_writes = false;
802
	}
803

804
	return sctx;
A
Arne Jansen 已提交
805 806

nomem:
807
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
808 809 810
	return ERR_PTR(-ENOMEM);
}

811 812
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
813 814 815 816
{
	u32 nlink;
	int ret;
	int i;
817
	unsigned nofs_flag;
818 819
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
820
	struct scrub_warning *swarn = warn_ctx;
821
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
822 823
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
824
	struct btrfs_key key;
825

D
David Sterba 已提交
826
	local_root = btrfs_get_fs_root(fs_info, root, true);
827 828 829 830 831
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

832 833 834
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
835 836 837 838 839
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
840
	if (ret) {
841
		btrfs_put_root(local_root);
842 843 844 845 846 847 848 849 850 851
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

852 853 854 855 856 857
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
858
	ipath = init_ipath(4096, local_root, swarn->path);
859
	memalloc_nofs_restore(nofs_flag);
860
	if (IS_ERR(ipath)) {
861
		btrfs_put_root(local_root);
862 863 864 865
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
866 867 868 869 870 871 872 873 874 875
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
876
		btrfs_warn_in_rcu(fs_info,
877
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
878 879
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
880
				  swarn->physical,
J
Jeff Mahoney 已提交
881
				  root, inum, offset,
882
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
883
				  (char *)(unsigned long)ipath->fspath->val[i]);
884

885
	btrfs_put_root(local_root);
886 887 888 889
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
890
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
891
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
892 893
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
894
			  swarn->physical,
J
Jeff Mahoney 已提交
895
			  root, inum, offset, ret);
896 897 898 899 900

	free_ipath(ipath);
	return 0;
}

901
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
902
{
903 904
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
905 906 907 908 909
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
910 911 912
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
913
	u64 ref_root;
914
	u32 item_size;
915
	u8 ref_level = 0;
916
	int ret;
917

918
	WARN_ON(sblock->sector_count < 1);
919
	dev = sblock->dev;
920
	fs_info = sblock->sctx->fs_info;
921

922 923 924 925
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
			errstr, rcu_str_deref(dev->name),
926
			sblock->physical);
927 928
		return;
	}
929
	path = btrfs_alloc_path();
930 931
	if (!path)
		return;
932

933 934
	swarn.physical = sblock->physical;
	swarn.logical = sblock->logical;
935
	swarn.errstr = errstr;
936
	swarn.dev = NULL;
937

938 939
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
940 941 942
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
943
	extent_item_pos = swarn.logical - found_key.objectid;
944 945 946 947
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
948
	item_size = btrfs_item_size(eb, path->slots[0]);
949

950
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
951
		do {
952 953 954
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
955
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
956
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
957
				errstr, swarn.logical,
958
				rcu_str_deref(dev->name),
D
David Sterba 已提交
959
				swarn.physical,
960 961 962 963
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
964
		btrfs_release_path(path);
965
	} else {
966
		btrfs_release_path(path);
967
		swarn.path = path;
968
		swarn.dev = dev;
969 970
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
971
					scrub_print_warning_inode, &swarn, false);
972 973 974 975 976 977
	}

out:
	btrfs_free_path(path);
}

978 979
static inline void scrub_get_recover(struct scrub_recover *recover)
{
980
	refcount_inc(&recover->refs);
981 982
}

983 984
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
985
{
986
	if (refcount_dec_and_test(&recover->refs)) {
987
		btrfs_bio_counter_dec(fs_info);
988
		btrfs_put_bioc(recover->bioc);
989 990 991 992
		kfree(recover);
	}
}

A
Arne Jansen 已提交
993
/*
994
 * scrub_handle_errored_block gets called when either verification of the
995 996
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
997 998 999
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1000
 */
1001
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1002
{
1003
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1004
	struct btrfs_device *dev = sblock_to_check->dev;
1005 1006 1007 1008 1009
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
1010 1011
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1012 1013 1014
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
1015
	int sector_num;
1016
	int success;
1017
	bool full_stripe_locked;
1018
	unsigned int nofs_flag;
1019
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1020 1021
				      DEFAULT_RATELIMIT_BURST);

1022
	BUG_ON(sblock_to_check->sector_count < 1);
1023
	fs_info = sctx->fs_info;
1024
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1025
		/*
1026
		 * If we find an error in a super block, we just report it.
1027 1028 1029
		 * They will get written with the next transaction commit
		 * anyway
		 */
1030
		scrub_print_warning("super block error", sblock_to_check);
1031 1032 1033
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1034
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1035 1036
		return 0;
	}
1037 1038 1039
	logical = sblock_to_check->logical;
	ASSERT(sblock_to_check->mirror_num);
	failed_mirror_index = sblock_to_check->mirror_num - 1;
1040
	is_metadata = !(sblock_to_check->sectors[0]->flags &
1041
			BTRFS_EXTENT_FLAG_DATA);
1042
	have_csum = sblock_to_check->sectors[0]->have_csum;
1043

1044 1045
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
1046

1047 1048 1049 1050 1051 1052
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
1053
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1054 1055 1056
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
1057 1058 1059 1060 1061 1062 1063 1064 1065
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
1066
		memalloc_nofs_restore(nofs_flag);
1067 1068 1069 1070 1071 1072 1073 1074 1075
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1076 1077 1078 1079
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1080
	 * sector by sector this time in order to know which sectors
1081 1082 1083 1084
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1095 1096 1097
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1098
	 * Only if this is not possible, the sectors are picked from
1099 1100 1101 1102 1103
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1104
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1105 1106 1107 1108 1109 1110
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
1111 1112 1113
		 *
		 * And here we don't setup the physical/dev for the sblock yet,
		 * they will be correctly initialized in scrub_setup_recheck_block().
1114
		 */
1115 1116
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
							logical, 0, 0, mirror_index);
1117 1118 1119 1120 1121 1122 1123 1124 1125
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1126 1127
	}

1128
	/* Setup the context, map the logical blocks and alloc the sectors */
1129
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1130
	if (ret) {
1131 1132 1133 1134
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1135
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1136 1137 1138
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1139
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1140

1141
	/* build and submit the bios for the failed mirror, check checksums */
1142
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1143

1144 1145 1146
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1147
		 * The error disappeared after reading sector by sector, or
1148 1149 1150 1151 1152 1153
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1154 1155
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1156
		sblock_to_check->data_corrected = 1;
1157
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1158

1159 1160
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1161
		goto out;
A
Arne Jansen 已提交
1162 1163
	}

1164
	if (!sblock_bad->no_io_error_seen) {
1165 1166 1167
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1168
		if (__ratelimit(&rs))
1169
			scrub_print_warning("i/o error", sblock_to_check);
1170
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1171
	} else if (sblock_bad->checksum_error) {
1172 1173 1174
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1175
		if (__ratelimit(&rs))
1176
			scrub_print_warning("checksum error", sblock_to_check);
1177
		btrfs_dev_stat_inc_and_print(dev,
1178
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1179
	} else if (sblock_bad->header_error) {
1180 1181 1182
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1183
		if (__ratelimit(&rs))
1184 1185
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1186
		if (sblock_bad->generation_error)
1187
			btrfs_dev_stat_inc_and_print(dev,
1188 1189
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1190
			btrfs_dev_stat_inc_and_print(dev,
1191
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1192
	}
A
Arne Jansen 已提交
1193

1194 1195 1196 1197
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1198

1199 1200
	/*
	 * now build and submit the bios for the other mirrors, check
1201 1202
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1203 1204 1205 1206 1207
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1208
	 * checksum is present, only those sectors are rewritten that had
1209
	 * an I/O error in the block to be repaired, since it cannot be
1210 1211
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1212 1213
	 * overwritten by a bad one).
	 */
1214
	for (mirror_index = 0; ;mirror_index++) {
1215
		struct scrub_block *sblock_other;
1216

1217 1218
		if (mirror_index == failed_mirror_index)
			continue;
1219 1220

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1221
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1222 1223
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1224
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1225 1226
				break;

1227
			sblock_other = sblocks_for_recheck[mirror_index];
1228
		} else {
1229
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1230
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1231 1232 1233

			if (mirror_index >= max_allowed)
				break;
1234
			if (!sblocks_for_recheck[1]->sector_count)
1235 1236 1237
				break;

			ASSERT(failed_mirror_index == 0);
1238
			sblock_other = sblocks_for_recheck[1];
1239
			sblock_other->mirror_num = 1 + mirror_index;
1240
		}
1241 1242

		/* build and submit the bios, check checksums */
1243
		scrub_recheck_block(fs_info, sblock_other, 0);
1244 1245

		if (!sblock_other->header_error &&
1246 1247
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1248 1249
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1250
				goto corrected_error;
1251 1252
			} else {
				ret = scrub_repair_block_from_good_copy(
1253 1254 1255
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1256
			}
1257 1258
		}
	}
A
Arne Jansen 已提交
1259

1260 1261
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1262 1263 1264

	/*
	 * In case of I/O errors in the area that is supposed to be
1265 1266
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1267 1268 1269 1270 1271
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1272
	 * all possible combinations of sectors from the different mirrors
1273
	 * until the checksum verification succeeds. For example, when
1274
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1275
	 * of mirror #2 is readable but the final checksum test fails,
1276
	 * then the 2nd sector of mirror #3 could be tried, whether now
1277
	 * the final checksum succeeds. But this would be a rare
1278 1279 1280 1281
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1282
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1283
	 * mirror could be repaired by taking 512 byte of a different
1284
	 * mirror, even if other 512 byte sectors in the same sectorsize
1285
	 * area are unreadable.
A
Arne Jansen 已提交
1286
	 */
1287
	success = 1;
1288 1289
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1290
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1291
		struct scrub_block *sblock_other = NULL;
1292

1293 1294
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1295
			continue;
1296

1297
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1298 1299 1300 1301 1302 1303 1304 1305
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1306 1307
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1308 1309
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1310
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1311
			     mirror_index++) {
1312
				if (!sblocks_for_recheck[mirror_index]->
1313
				    sectors[sector_num]->io_error) {
1314
					sblock_other = sblocks_for_recheck[mirror_index];
1315
					break;
1316 1317
				}
			}
1318 1319
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1320
		}
A
Arne Jansen 已提交
1321

1322 1323
		if (sctx->is_dev_replace) {
			/*
1324 1325 1326 1327
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1328 1329 1330 1331
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1332 1333
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1334
				atomic64_inc(
1335
					&fs_info->dev_replace.num_write_errors);
1336 1337 1338
				success = 0;
			}
		} else if (sblock_other) {
1339 1340 1341
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1342
			if (0 == ret)
1343
				sector_bad->io_error = 0;
1344 1345
			else
				success = 0;
1346
		}
A
Arne Jansen 已提交
1347 1348
	}

1349
	if (success && !sctx->is_dev_replace) {
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1360
			scrub_recheck_block(fs_info, sblock_bad, 1);
1361
			if (!sblock_bad->header_error &&
1362 1363 1364 1365 1366 1367 1368
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1369 1370
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1371
			sblock_to_check->data_corrected = 1;
1372
			spin_unlock(&sctx->stat_lock);
1373 1374
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1375
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1376
		}
1377 1378
	} else {
did_not_correct_error:
1379 1380 1381
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1382 1383
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1384
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1385
	}
A
Arne Jansen 已提交
1386

1387
out:
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1407
			}
1408
		}
1409
		scrub_block_put(sblock);
1410
	}
A
Arne Jansen 已提交
1411

1412
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1413
	memalloc_nofs_restore(nofs_flag);
1414 1415
	if (ret < 0)
		return ret;
1416 1417
	return 0;
}
A
Arne Jansen 已提交
1418

1419
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1420
{
1421
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1422
		return 2;
1423
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1424 1425
		return 3;
	else
1426
		return (int)bioc->num_stripes;
1427 1428
}

Z
Zhao Lei 已提交
1429 1430
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1431 1432 1433 1434 1435 1436
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1437
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1438 1439 1440 1441 1442 1443 1444
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
1445
			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1458
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1459
				     struct scrub_block *sblocks_for_recheck[])
1460
{
1461
	struct scrub_ctx *sctx = original_sblock->sctx;
1462
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1463
	u64 logical = original_sblock->logical;
1464 1465 1466 1467
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1468
	struct scrub_recover *recover;
1469
	struct btrfs_io_context *bioc;
1470 1471 1472 1473
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1474
	int sector_index = 0;
1475
	int mirror_index;
1476
	int nmirrors;
1477 1478 1479
	int ret;

	while (length > 0) {
1480
		sublen = min_t(u64, length, fs_info->sectorsize);
1481
		mapped_length = sublen;
1482
		bioc = NULL;
A
Arne Jansen 已提交
1483

1484
		/*
1485 1486
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1487
		 */
1488
		btrfs_bio_counter_inc_blocked(fs_info);
1489
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1490 1491 1492
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1493
			btrfs_bio_counter_dec(fs_info);
1494 1495
			return -EIO;
		}
A
Arne Jansen 已提交
1496

1497
		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1498
		if (!recover) {
1499
			btrfs_put_bioc(bioc);
1500
			btrfs_bio_counter_dec(fs_info);
1501 1502 1503
			return -ENOMEM;
		}

1504
		refcount_set(&recover->refs, 1);
1505
		recover->bioc = bioc;
1506 1507
		recover->map_length = mapped_length;

1508
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1509

1510
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1511

1512
		for (mirror_index = 0; mirror_index < nmirrors;
1513 1514
		     mirror_index++) {
			struct scrub_block *sblock;
1515
			struct scrub_sector *sector;
1516

1517
			sblock = sblocks_for_recheck[mirror_index];
1518
			sblock->sctx = sctx;
1519

1520
			sector = alloc_scrub_sector(sblock, logical);
1521
			if (!sector) {
1522 1523 1524
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1525
				scrub_put_recover(fs_info, recover);
1526 1527
				return -ENOMEM;
			}
1528 1529 1530
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1531
			if (have_csum)
1532
				memcpy(sector->csum,
1533
				       original_sblock->sectors[0]->csum,
1534
				       sctx->fs_info->csum_size);
1535

Z
Zhao Lei 已提交
1536
			scrub_stripe_index_and_offset(logical,
1537 1538 1539 1540
						      bioc->map_type,
						      bioc->raid_map,
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1541 1542 1543
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			/*
			 * We're at the first sector, also populate @sblock
			 * physical and dev.
			 */
			if (sector_index == 0) {
				sblock->physical =
					bioc->stripes[stripe_index].physical +
					stripe_offset;
				sblock->dev = bioc->stripes[stripe_index].dev;
				sblock->physical_for_dev_replace =
					original_sblock->physical_for_dev_replace;
			}
1556

1557
			BUG_ON(sector_index >= original_sblock->sector_count);
1558
			scrub_get_recover(recover);
1559
			sector->recover = recover;
1560
		}
1561
		scrub_put_recover(fs_info, recover);
1562 1563
		length -= sublen;
		logical += sublen;
1564
		sector_index++;
1565 1566 1567
	}

	return 0;
I
Ilya Dryomov 已提交
1568 1569
}

1570
static void scrub_bio_wait_endio(struct bio *bio)
1571
{
1572
	complete(bio->bi_private);
1573 1574 1575 1576
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1577
					struct scrub_sector *sector)
1578
{
1579
	DECLARE_COMPLETION_ONSTACK(done);
1580

1581 1582
	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
				 SECTOR_SHIFT;
1583 1584
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1585
	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1586

1587 1588
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1589 1590
}

L
Liu Bo 已提交
1591 1592 1593
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1594
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1595
	struct bio *bio;
1596
	int i;
L
Liu Bo 已提交
1597

1598
	/* All sectors in sblock belong to the same stripe on the same device. */
1599 1600
	ASSERT(sblock->dev);
	if (!sblock->dev->bdev)
L
Liu Bo 已提交
1601 1602
		goto out;

1603
	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1604

1605
	for (i = 0; i < sblock->sector_count; i++) {
1606
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1607

1608
		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
L
Liu Bo 已提交
1609 1610
	}

1611
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1622 1623
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1624 1625 1626 1627

	sblock->no_io_error_seen = 0;
}

1628
/*
1629 1630 1631 1632 1633
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1634
 */
1635
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1636 1637
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1638
{
1639
	int i;
I
Ilya Dryomov 已提交
1640

1641
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1642

L
Liu Bo 已提交
1643
	/* short cut for raid56 */
1644
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1645 1646
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1647
	for (i = 0; i < sblock->sector_count; i++) {
1648
		struct scrub_sector *sector = sblock->sectors[i];
1649 1650
		struct bio bio;
		struct bio_vec bvec;
1651

1652
		if (sblock->dev->bdev == NULL) {
1653
			sector->io_error = 1;
1654 1655 1656 1657
			sblock->no_io_error_seen = 0;
			continue;
		}

1658
		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1659
		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1660 1661
		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
					SECTOR_SHIFT;
1662

1663 1664
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1665
			sector->io_error = 1;
L
Liu Bo 已提交
1666
			sblock->no_io_error_seen = 0;
1667
		}
1668

1669
		bio_uninit(&bio);
1670
	}
I
Ilya Dryomov 已提交
1671

1672
	if (sblock->no_io_error_seen)
1673
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1674 1675
}

1676
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1677
{
1678
	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
M
Miao Xie 已提交
1679 1680
	int ret;

1681
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1682 1683 1684
	return !ret;
}

1685
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1686
{
1687 1688 1689
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1690

1691
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1692 1693 1694
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1695 1696
}

1697
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1698
					     struct scrub_block *sblock_good)
1699
{
1700
	int i;
1701
	int ret = 0;
I
Ilya Dryomov 已提交
1702

1703
	for (i = 0; i < sblock_bad->sector_count; i++) {
1704
		int ret_sub;
I
Ilya Dryomov 已提交
1705

1706 1707
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1708 1709
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1710
	}
1711 1712 1713 1714

	return ret;
}

1715 1716 1717
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1718
{
1719 1720
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1721
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1722
	const u32 sectorsize = fs_info->sectorsize;
1723 1724

	if (force_write || sblock_bad->header_error ||
1725
	    sblock_bad->checksum_error || sector_bad->io_error) {
1726 1727
		struct bio bio;
		struct bio_vec bvec;
1728 1729
		int ret;

1730
		if (!sblock_bad->dev->bdev) {
1731
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1732
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1733 1734 1735
			return -EIO;
		}

1736 1737 1738
		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = (sblock_bad->physical +
					 sector_bad->offset) >> SECTOR_SHIFT;
1739
		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1740

1741 1742 1743
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1744

1745
		if (ret) {
1746
			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1747
				BTRFS_DEV_STAT_WRITE_ERRS);
1748
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1749 1750
			return -EIO;
		}
A
Arne Jansen 已提交
1751 1752
	}

1753 1754 1755
	return 0;
}

1756 1757
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1758
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1759
	int i;
1760

1761 1762 1763 1764 1765 1766 1767
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1768
	for (i = 0; i < sblock->sector_count; i++) {
1769 1770
		int ret;

1771
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1772
		if (ret)
1773
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1774 1775 1776
	}
}

1777
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1778
{
1779
	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1780
	struct scrub_sector *sector = sblock->sectors[sector_num];
1781

1782
	if (sector->io_error)
1783
		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1784

1785
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1796 1797 1798
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1810 1811 1812 1813 1814
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

1815 1816
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1817
{
1818
	struct scrub_block *sblock = sector->sblock;
1819 1820
	struct scrub_bio *sbio;
	int ret;
1821
	const u32 sectorsize = sctx->fs_info->sectorsize;
1822

1823
	mutex_lock(&sctx->wr_lock);
1824
again:
1825 1826
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1827
					      GFP_KERNEL);
1828 1829
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1830 1831
			return -ENOMEM;
		}
1832
		sctx->wr_curr_bio->sctx = sctx;
1833
		sctx->wr_curr_bio->sector_count = 0;
1834
	}
1835
	sbio = sctx->wr_curr_bio;
1836
	if (sbio->sector_count == 0) {
1837 1838
		ret = fill_writer_pointer_gap(sctx, sector->offset +
					      sblock->physical_for_dev_replace);
1839 1840 1841 1842 1843
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1844 1845
		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
1846
		sbio->dev = sctx->wr_tgtdev;
1847 1848 1849
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1850
		}
1851 1852 1853
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1854
		sbio->status = 0;
1855
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1856
		   sblock->physical_for_dev_replace + sector->offset ||
1857
		   sbio->logical + sbio->sector_count * sectorsize !=
1858
		   sblock->logical + sector->offset) {
1859 1860 1861 1862
		scrub_wr_submit(sctx);
		goto again;
	}

1863
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1864
	if (ret != sectorsize) {
1865
		if (sbio->sector_count < 1) {
1866 1867
			bio_put(sbio->bio);
			sbio->bio = NULL;
1868
			mutex_unlock(&sctx->wr_lock);
1869 1870 1871 1872 1873 1874
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1875
	sbio->sectors[sbio->sector_count] = sector;
1876
	scrub_sector_get(sector);
1877 1878 1879 1880 1881 1882 1883
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

1884 1885
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1886
		scrub_wr_submit(sctx);
1887
	mutex_unlock(&sctx->wr_lock);
1888 1889 1890 1891 1892 1893 1894 1895

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1896
	if (!sctx->wr_curr_bio)
1897 1898
		return;

1899 1900
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1901 1902 1903 1904 1905
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1906 1907
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1908 1909

	if (btrfs_is_zoned(sctx->fs_info))
1910
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1911
			sctx->fs_info->sectorsize;
1912 1913
}

1914
static void scrub_wr_bio_end_io(struct bio *bio)
1915 1916
{
	struct scrub_bio *sbio = bio->bi_private;
1917
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1918

1919
	sbio->status = bio->bi_status;
1920 1921
	sbio->bio = bio;

1922 1923
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1924 1925
}

1926
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1927 1928 1929 1930 1931
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1932
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1933
	if (sbio->status) {
1934
		struct btrfs_dev_replace *dev_replace =
1935
			&sbio->sctx->fs_info->dev_replace;
1936

1937 1938
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1939

1940
			sector->io_error = 1;
1941
			atomic64_inc(&dev_replace->num_write_errors);
1942 1943 1944
		}
	}

1945 1946 1947 1948 1949 1950
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
1951
		scrub_sector_put(sbio->sectors[i]);
1952
	}
1953 1954 1955 1956 1957 1958 1959

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1960 1961 1962 1963
{
	u64 flags;
	int ret;

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1976 1977
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1978 1979 1980 1981 1982 1983
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1984
		ret = scrub_checksum_super(sblock);
1985 1986 1987 1988
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1989 1990

	return ret;
A
Arne Jansen 已提交
1991 1992
}

1993
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1994
{
1995
	struct scrub_ctx *sctx = sblock->sctx;
1996 1997
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1998
	u8 csum[BTRFS_CSUM_SIZE];
1999
	struct scrub_sector *sector;
2000
	char *kaddr;
A
Arne Jansen 已提交
2001

2002
	BUG_ON(sblock->sector_count < 1);
2003 2004
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
2005 2006
		return 0;

2007
	kaddr = scrub_sector_get_kaddr(sector);
2008

2009 2010
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
2011

2012
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
2013

2014
	if (memcmp(csum, sector->csum, fs_info->csum_size))
2015
		sblock->checksum_error = 1;
2016
	return sblock->checksum_error;
A
Arne Jansen 已提交
2017 2018
}

2019
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2020
{
2021
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2022
	struct btrfs_header *h;
2023
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2024
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2025 2026
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2027 2028 2029 2030 2031 2032 2033
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2034
	int i;
2035
	struct scrub_sector *sector;
2036
	char *kaddr;
2037

2038
	BUG_ON(sblock->sector_count < 1);
2039

2040
	/* Each member in sectors is just one sector */
2041
	ASSERT(sblock->sector_count == num_sectors);
2042

2043
	sector = sblock->sectors[0];
2044
	kaddr = scrub_sector_get_kaddr(sector);
2045
	h = (struct btrfs_header *)kaddr;
2046
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
2047 2048 2049 2050 2051 2052

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2053
	if (sblock->logical != btrfs_stack_header_bytenr(h))
2054
		sblock->header_error = 1;
A
Arne Jansen 已提交
2055

2056
	if (sector->generation != btrfs_stack_header_generation(h)) {
2057 2058 2059
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2060

2061
	if (!scrub_check_fsid(h->fsid, sector))
2062
		sblock->header_error = 1;
A
Arne Jansen 已提交
2063 2064 2065

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2066
		sblock->header_error = 1;
A
Arne Jansen 已提交
2067

2068 2069 2070
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2071
			    sectorsize - BTRFS_CSUM_SIZE);
2072

2073
	for (i = 1; i < num_sectors; i++) {
2074
		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2075
		crypto_shash_update(shash, kaddr, sectorsize);
2076 2077
	}

2078
	crypto_shash_final(shash, calculated_csum);
2079
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2080
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2081

2082
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2083 2084
}

2085
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2086 2087
{
	struct btrfs_super_block *s;
2088
	struct scrub_ctx *sctx = sblock->sctx;
2089 2090
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2091
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2092
	struct scrub_sector *sector;
2093
	char *kaddr;
2094 2095
	int fail_gen = 0;
	int fail_cor = 0;
2096

2097
	BUG_ON(sblock->sector_count < 1);
2098
	sector = sblock->sectors[0];
2099
	kaddr = scrub_sector_get_kaddr(sector);
2100
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2101

2102
	if (sblock->logical != btrfs_super_bytenr(s))
2103
		++fail_cor;
A
Arne Jansen 已提交
2104

2105
	if (sector->generation != btrfs_super_generation(s))
2106
		++fail_gen;
A
Arne Jansen 已提交
2107

2108
	if (!scrub_check_fsid(s->fsid, sector))
2109
		++fail_cor;
A
Arne Jansen 已提交
2110

2111 2112 2113 2114
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2115

2116
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2117
		++fail_cor;
A
Arne Jansen 已提交
2118

2119
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2120 2121
}

2122 2123
static void scrub_block_put(struct scrub_block *sblock)
{
2124
	if (refcount_dec_and_test(&sblock->refs)) {
2125 2126
		int i;

2127 2128 2129
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2130
		for (i = 0; i < sblock->sector_count; i++)
2131
			scrub_sector_put(sblock->sectors[i]);
2132 2133 2134 2135 2136 2137
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2138 2139 2140 2141
		kfree(sblock);
	}
}

2142
static void scrub_sector_get(struct scrub_sector *sector)
2143
{
2144
	atomic_inc(&sector->refs);
2145 2146
}

2147
static void scrub_sector_put(struct scrub_sector *sector)
2148
{
2149
	if (atomic_dec_and_test(&sector->refs))
2150
		kfree(sector);
2151 2152
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2212
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2213 2214 2215
{
	struct scrub_bio *sbio;

2216
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2217
		return;
A
Arne Jansen 已提交
2218

2219 2220
	scrub_throttle(sctx);

2221 2222
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2223
	scrub_pending_bio_inc(sctx);
2224 2225
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2226 2227
}

2228 2229
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2230
{
2231
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2232
	struct scrub_bio *sbio;
2233
	const u32 sectorsize = sctx->fs_info->sectorsize;
2234
	int ret;
A
Arne Jansen 已提交
2235 2236 2237 2238 2239

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2240 2241 2242 2243 2244 2245
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2246
			sctx->bios[sctx->curr]->sector_count = 0;
2247
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2248
		} else {
2249 2250
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2251 2252
		}
	}
2253
	sbio = sctx->bios[sctx->curr];
2254
	if (sbio->sector_count == 0) {
2255 2256 2257
		sbio->physical = sblock->physical + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
		sbio->dev = sblock->dev;
2258 2259 2260
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2261
		}
2262 2263 2264
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2265
		sbio->status = 0;
2266
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2267
		   sblock->physical + sector->offset ||
2268
		   sbio->logical + sbio->sector_count * sectorsize !=
2269 2270
		   sblock->logical + sector->offset ||
		   sbio->dev != sblock->dev) {
2271
		scrub_submit(sctx);
A
Arne Jansen 已提交
2272 2273
		goto again;
	}
2274

2275
	sbio->sectors[sbio->sector_count] = sector;
2276
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2277
	if (ret != sectorsize) {
2278
		if (sbio->sector_count < 1) {
2279 2280 2281 2282
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2283
		scrub_submit(sctx);
2284 2285 2286
		goto again;
	}

2287
	scrub_block_get(sblock); /* one for the page added to the bio */
2288
	atomic_inc(&sblock->outstanding_sectors);
2289 2290
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2291
		scrub_submit(sctx);
2292 2293 2294 2295

	return 0;
}

2296
static void scrub_missing_raid56_end_io(struct bio *bio)
2297 2298
{
	struct scrub_block *sblock = bio->bi_private;
2299
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2300

2301
	btrfs_bio_counter_dec(fs_info);
2302
	if (bio->bi_status)
2303 2304
		sblock->no_io_error_seen = 0;

2305 2306
	bio_put(bio);

2307
	queue_work(fs_info->scrub_workers, &sblock->work);
2308 2309
}

2310
static void scrub_missing_raid56_worker(struct work_struct *work)
2311 2312 2313
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2314
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2315 2316 2317
	u64 logical;
	struct btrfs_device *dev;

2318 2319
	logical = sblock->logical;
	dev = sblock->dev;
2320

2321
	if (sblock->no_io_error_seen)
2322
		scrub_recheck_block_checksum(sblock);
2323 2324 2325 2326 2327

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2328
		btrfs_err_rl_in_rcu(fs_info,
2329
			"IO error rebuilding logical %llu for dev %s",
2330 2331 2332 2333 2334
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2335
		btrfs_err_rl_in_rcu(fs_info,
2336
			"failed to rebuild valid logical %llu for dev %s",
2337 2338 2339 2340 2341
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2342
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2343
		mutex_lock(&sctx->wr_lock);
2344
		scrub_wr_submit(sctx);
2345
		mutex_unlock(&sctx->wr_lock);
2346 2347
	}

2348
	scrub_block_put(sblock);
2349 2350 2351 2352 2353 2354
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2355
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2356
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2357
	u64 logical = sblock->logical;
2358
	struct btrfs_io_context *bioc = NULL;
2359 2360 2361 2362 2363
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2364
	btrfs_bio_counter_inc_blocked(fs_info);
2365
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2366 2367 2368
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2369 2370

	if (WARN_ON(!sctx->is_dev_replace ||
2371
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2372 2373 2374 2375
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2376
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2377
		 */
2378
		goto bioc_out;
2379 2380
	}

2381
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2382 2383 2384 2385
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2386
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2387 2388 2389
	if (!rbio)
		goto rbio_out;

2390
	for (i = 0; i < sblock->sector_count; i++) {
2391
		struct scrub_sector *sector = sblock->sectors[i];
2392

2393 2394
		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
				       scrub_sector_get_page_offset(sector),
2395
				       sector->offset + sector->sblock->logical);
2396 2397
	}

2398
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2399 2400 2401
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
2402
	btrfs_put_bioc(bioc);
2403 2404 2405 2406
	return;

rbio_out:
	bio_put(bio);
2407
bioc_out:
2408
	btrfs_bio_counter_dec(fs_info);
2409
	btrfs_put_bioc(bioc);
2410 2411 2412 2413 2414
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2415
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2416
		       u64 physical, struct btrfs_device *dev, u64 flags,
2417
		       u64 gen, int mirror_num, u8 *csum,
2418
		       u64 physical_for_dev_replace)
2419 2420
{
	struct scrub_block *sblock;
2421
	const u32 sectorsize = sctx->fs_info->sectorsize;
2422 2423
	int index;

2424 2425
	sblock = alloc_scrub_block(sctx, dev, logical, physical,
				   physical_for_dev_replace, mirror_num);
2426
	if (!sblock) {
2427 2428 2429
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2430
		return -ENOMEM;
A
Arne Jansen 已提交
2431
	}
2432 2433

	for (index = 0; len > 0; index++) {
2434
		struct scrub_sector *sector;
2435 2436 2437 2438 2439 2440
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2441

2442
		sector = alloc_scrub_sector(sblock, logical);
2443
		if (!sector) {
2444 2445 2446
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2447
			scrub_block_put(sblock);
2448 2449
			return -ENOMEM;
		}
2450 2451
		sector->flags = flags;
		sector->generation = gen;
2452
		if (csum) {
2453 2454
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2455
		} else {
2456
			sector->have_csum = 0;
2457 2458 2459 2460
		}
		len -= l;
		logical += l;
		physical += l;
2461
		physical_for_dev_replace += l;
2462 2463
	}

2464
	WARN_ON(sblock->sector_count == 0);
2465
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2466 2467 2468 2469 2470 2471
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2472
		for (index = 0; index < sblock->sector_count; index++) {
2473
			struct scrub_sector *sector = sblock->sectors[index];
2474
			int ret;
2475

2476
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2477 2478 2479 2480
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2481
		}
A
Arne Jansen 已提交
2482

2483
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2484 2485
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2486

2487 2488
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2489 2490 2491
	return 0;
}

2492
static void scrub_bio_end_io(struct bio *bio)
2493 2494
{
	struct scrub_bio *sbio = bio->bi_private;
2495
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2496

2497
	sbio->status = bio->bi_status;
2498 2499
	sbio->bio = bio;

2500
	queue_work(fs_info->scrub_workers, &sbio->work);
2501 2502
}

2503
static void scrub_bio_end_io_worker(struct work_struct *work)
2504 2505
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2506
	struct scrub_ctx *sctx = sbio->sctx;
2507 2508
	int i;

2509
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2510
	if (sbio->status) {
2511 2512
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2513

2514 2515
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2516 2517 2518
		}
	}

2519
	/* Now complete the scrub_block items that have all pages completed */
2520 2521
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2522
		struct scrub_block *sblock = sector->sblock;
2523

2524
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2525 2526 2527 2528 2529 2530
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2531 2532 2533 2534
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2535

2536
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2537
		mutex_lock(&sctx->wr_lock);
2538
		scrub_wr_submit(sctx);
2539
		mutex_unlock(&sctx->wr_lock);
2540 2541
	}

2542
	scrub_pending_bio_dec(sctx);
2543 2544
}

2545 2546
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2547
				       u64 start, u32 len)
2548
{
2549
	u64 offset;
2550
	u32 nsectors;
2551
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2552 2553 2554 2555 2556 2557 2558

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2559
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2560
	offset = offset >> sectorsize_bits;
2561
	nsectors = len >> sectorsize_bits;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2573
						   u64 start, u32 len)
2574
{
2575
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2576 2577 2578
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2579
						  u64 start, u32 len)
2580
{
2581
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2582 2583
}

2584 2585
static void scrub_block_complete(struct scrub_block *sblock)
{
2586 2587
	int corrupted = 0;

2588
	if (!sblock->no_io_error_seen) {
2589
		corrupted = 1;
2590
		scrub_handle_errored_block(sblock);
2591 2592 2593 2594 2595 2596
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2597 2598
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2599 2600
			scrub_write_block_to_dev_replace(sblock);
	}
2601 2602

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2603 2604 2605
		u64 start = sblock->logical;
		u64 end = sblock->logical +
			  sblock->sectors[sblock->sector_count - 1]->offset +
2606
			  sblock->sctx->fs_info->sectorsize;
2607

2608
		ASSERT(end - start <= U32_MAX);
2609 2610 2611
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2612 2613
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2626
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2627 2628 2629 2630 2631
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2632
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2633
{
2634
	bool found = false;
A
Arne Jansen 已提交
2635

2636
	while (!list_empty(&sctx->csum_list)) {
2637 2638 2639 2640
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2641
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2642
				       struct btrfs_ordered_sum, list);
2643
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2644 2645 2646
		if (sum->bytenr > logical)
			break;

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2657

2658 2659 2660 2661
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2662

2663 2664 2665 2666 2667 2668 2669
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2670
	}
2671 2672
	if (!found)
		return 0;
2673
	return 1;
A
Arne Jansen 已提交
2674 2675 2676
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2677
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2678
			u64 logical, u32 len,
2679
			u64 physical, struct btrfs_device *dev, u64 flags,
2680
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2681
{
2682 2683 2684
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2685 2686
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2687 2688 2689
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2690 2691 2692
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
2693
			blocksize = sctx->fs_info->sectorsize;
2694 2695 2696 2697
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2698
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2699 2700 2701 2702
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2703 2704 2705 2706
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2707
	} else {
2708
		blocksize = sctx->fs_info->sectorsize;
2709
		WARN_ON(1);
2710
	}
A
Arne Jansen 已提交
2711

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	/*
	 * For dev-replace case, we can have @dev being a missing device.
	 * Regular scrub will avoid its execution on missing device at all,
	 * as that would trigger tons of read error.
	 *
	 * Reading from missing device will cause read error counts to
	 * increase unnecessarily.
	 * So here we change the read source to a good mirror.
	 */
	if (sctx->is_dev_replace && !dev->bdev)
		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
				     &src_dev, &src_mirror);
A
Arne Jansen 已提交
2724
	while (len) {
2725
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2726 2727 2728 2729
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2730
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2731
			if (have_csum == 0)
2732
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2733
		}
2734 2735 2736
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2737 2738 2739 2740 2741
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2742
		src_physical += l;
A
Arne Jansen 已提交
2743 2744 2745 2746
	}
	return 0;
}

2747
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2748
				  u64 logical, u32 len,
2749 2750 2751 2752 2753
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2754
	const u32 sectorsize = sctx->fs_info->sectorsize;
2755 2756
	int index;

2757 2758
	ASSERT(IS_ALIGNED(len, sectorsize));

2759
	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2771
		struct scrub_sector *sector;
2772

2773
		sector = alloc_scrub_sector(sblock, logical);
2774
		if (!sector) {
2775 2776 2777 2778 2779 2780
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2781
		sblock->sectors[index] = sector;
2782
		/* For scrub parity */
2783 2784 2785 2786
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->flags = flags;
		sector->generation = gen;
2787
		if (csum) {
2788 2789
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2790
		} else {
2791
			sector->have_csum = 0;
2792
		}
2793 2794 2795 2796 2797

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2798 2799
	}

2800 2801
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2802
		struct scrub_sector *sector = sblock->sectors[index];
2803 2804
		int ret;

2805
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2806 2807 2808 2809 2810 2811
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2812
	/* Last one frees, either here or in bio completion for last sector */
2813 2814 2815 2816 2817
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2818
				   u64 logical, u32 len,
2819 2820 2821 2822 2823 2824 2825 2826
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2827
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2828 2829 2830 2831
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2832
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2833
		blocksize = sparity->stripe_len;
2834
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2835
		blocksize = sparity->stripe_len;
2836
	} else {
2837
		blocksize = sctx->fs_info->sectorsize;
2838 2839 2840 2841
		WARN_ON(1);
	}

	while (len) {
2842
		u32 l = min(len, blocksize);
2843 2844 2845 2846
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2847
			have_csum = scrub_find_csum(sctx, logical, csum);
2848 2849 2850
			if (have_csum == 0)
				goto skip;
		}
2851
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2852 2853 2854 2855
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2856
skip:
2857 2858 2859 2860 2861 2862 2863
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2864 2865 2866 2867 2868 2869 2870 2871
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2872 2873
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2874 2875 2876 2877 2878
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2879 2880
	u32 stripe_index;
	u32 rot;
2881
	const int data_stripes = nr_data_stripes(map);
2882

2883
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2884 2885 2886
	if (stripe_start)
		*stripe_start = last_offset;

2887
	*offset = last_offset;
2888
	for (i = 0; i < data_stripes; i++) {
2889 2890
		*offset = last_offset + i * map->stripe_len;

2891
		stripe_nr = div64_u64(*offset, map->stripe_len);
2892
		stripe_nr = div_u64(stripe_nr, data_stripes);
2893 2894

		/* Work out the disk rotation on this stripe-set */
2895
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2896 2897
		/* calculate which stripe this data locates */
		rot += i;
2898
		stripe_index = rot % map->num_stripes;
2899 2900 2901 2902 2903 2904 2905 2906 2907
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2908 2909 2910
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2911
	struct scrub_sector *curr, *next;
2912 2913
	int nbits;

2914
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2915 2916 2917 2918 2919 2920 2921
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2922
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2923
		list_del_init(&curr->list);
2924
		scrub_sector_put(curr);
2925 2926 2927 2928 2929
	}

	kfree(sparity);
}

2930
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2931 2932 2933 2934 2935
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

2936
	btrfs_bio_counter_dec(sctx->fs_info);
2937 2938 2939 2940
	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2941
static void scrub_parity_bio_endio(struct bio *bio)
2942
{
Y
Yu Zhe 已提交
2943
	struct scrub_parity *sparity = bio->bi_private;
2944
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2945

2946
	if (bio->bi_status)
2947 2948
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
2949 2950

	bio_put(bio);
2951

2952 2953
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2954 2955 2956 2957 2958
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2959
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2960 2961
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2962
	struct btrfs_io_context *bioc = NULL;
2963 2964 2965
	u64 length;
	int ret;

2966 2967
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
2968 2969
		goto out;

2970
	length = sparity->logic_end - sparity->logic_start;
2971 2972

	btrfs_bio_counter_inc_blocked(fs_info);
2973
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2974 2975 2976
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2977

2978
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2979 2980 2981 2982
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2983
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2984
					      sparity->scrub_dev,
2985
					      &sparity->dbitmap,
2986
					      sparity->nsectors);
2987
	btrfs_put_bioc(bioc);
2988 2989 2990 2991 2992 2993 2994 2995 2996
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2997
bioc_out:
2998
	btrfs_bio_counter_dec(fs_info);
2999
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3010
	refcount_inc(&sparity->refs);
3011 3012 3013 3014
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3015
	if (!refcount_dec_and_test(&sparity->refs))
3016 3017 3018 3019 3020
		return;

	scrub_parity_check_and_repair(sparity);
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3147 3148 3149 3150 3151 3152 3153 3154 3155
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3166
	u64 cur_logical = logical;
3167 3168 3169 3170 3171 3172 3173
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3174
	while (cur_logical < logical + map->stripe_len) {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3185 3186 3187 3188 3189
		ret = find_first_extent_item(extent_root, path, cur_logical,
					     logical + map->stripe_len - cur_logical);
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3190 3191
			break;
		}
3192
		if (ret < 0)
3193
			break;
3194 3195
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3196

3197
		/* Metadata should not cross stripe boundaries */
3198
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3199 3200
		    does_range_cross_boundary(extent_start, extent_size,
					      logical, map->stripe_len)) {
3201
			btrfs_err(fs_info,
3202 3203
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3204 3205 3206
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3207 3208
			cur_logical += extent_size;
			continue;
3209 3210
		}

3211 3212
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3213

3214 3215 3216 3217 3218
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
				  logical + map->stripe_len) - cur_logical;
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

		ret = btrfs_lookup_csums_range(csum_root, extent_start,
					       extent_start + extent_size - 1,
3240
					       &sctx->csum_list, 1, false);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3260
		cur_logical += extent_size;
3261 3262 3263 3264 3265
	}
	btrfs_release_path(path);
	return ret;
}

3266 3267 3268 3269 3270 3271
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3272
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3273
	struct btrfs_path *path;
3274
	u64 cur_logical;
3275 3276 3277 3278
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3289
	ASSERT(map->stripe_len <= U32_MAX);
3290
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3291 3292
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3293 3294 3295 3296
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3297
		btrfs_free_path(path);
3298 3299 3300
		return -ENOMEM;
	}

3301
	ASSERT(map->stripe_len <= U32_MAX);
3302 3303 3304 3305 3306 3307
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3308
	refcount_set(&sparity->refs, 1);
3309
	INIT_LIST_HEAD(&sparity->sectors_list);
3310 3311

	ret = 0;
3312 3313 3314 3315
	for (cur_logical = logic_start; cur_logical < logic_end;
	     cur_logical += map->stripe_len) {
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3316 3317
		if (ret < 0)
			break;
3318
	}
3319

3320 3321
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3322
	mutex_lock(&sctx->wr_lock);
3323
	scrub_wr_submit(sctx);
3324
	mutex_unlock(&sctx->wr_lock);
3325

3326
	btrfs_free_path(path);
3327 3328 3329
	return ret < 0 ? ret : 0;
}

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
3429
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
					cur_logical + scrub_len - 1,
3466
					&sctx->csum_list, 1, false);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3482 3483 3484 3485
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return map->num_stripes / map->sub_stripes * map->stripe_len;
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
					  cur_logical, map->stripe_len, device,
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += map->stripe_len;
	}
	return ret;
}

3570
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3571
					   struct btrfs_block_group *bg,
3572
					   struct extent_map *em,
3573
					   struct btrfs_device *scrub_dev,
3574
					   int stripe_index)
A
Arne Jansen 已提交
3575
{
3576
	struct btrfs_path *path;
3577
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3578
	struct btrfs_root *root;
3579
	struct btrfs_root *csum_root;
3580
	struct blk_plug plug;
3581
	struct map_lookup *map = em->map_lookup;
3582
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3583
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3584
	int ret;
3585
	u64 physical = map->stripes[stripe_index].physical;
3586 3587
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3588
	u64 logical;
L
Liu Bo 已提交
3589
	u64 logic_end;
3590
	/* The logical increment after finishing one stripe */
3591
	u64 increment;
3592
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3593
	u64 offset;
3594 3595
	u64 stripe_logical;
	u64 stripe_end;
3596
	int stop_loop = 0;
D
David Woodhouse 已提交
3597

A
Arne Jansen 已提交
3598 3599 3600 3601
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3602 3603 3604 3605 3606
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3607 3608
	path->search_commit_root = 1;
	path->skip_locking = 1;
3609
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3610

3611
	wait_event(sctx->list_wait,
3612
		   atomic_read(&sctx->bios_in_flight) == 0);
3613
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3614

3615 3616
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3617

A
Arne Jansen 已提交
3618 3619 3620 3621
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3622
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3623

3624 3625 3626 3627 3628 3629 3630 3631
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3653
		offset = 0;
3654 3655
		goto out;
	}
3656 3657 3658
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3659
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3660 3661 3662 3663 3664
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3665
	ret = 0;
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = map->stripe_len * nr_data_stripes(map);

3676 3677 3678 3679
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3680
	while (physical < physical_end) {
3681 3682
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3693
			goto next;
3694 3695
		}

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
					  logical, map->stripe_len,
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3707 3708 3709 3710 3711
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += map->stripe_len;
3712
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3713
		if (stop_loop)
3714 3715
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3716 3717
		else
			sctx->stat.last_physical = physical;
3718
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3719 3720
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3721
	}
3722
out:
A
Arne Jansen 已提交
3723
	/* push queued extents */
3724
	scrub_submit(sctx);
3725
	mutex_lock(&sctx->wr_lock);
3726
	scrub_wr_submit(sctx);
3727
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3728

3729
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3730
	btrfs_free_path(path);
3731 3732 3733 3734

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3735 3736 3737 3738
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3739 3740 3741 3742
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3743 3744 3745
	return ret < 0 ? ret : 0;
}

3746
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3747
					  struct btrfs_block_group *bg,
3748
					  struct btrfs_device *scrub_dev,
3749
					  u64 dev_offset,
3750
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3751
{
3752
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3753
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3754 3755 3756
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3757
	int ret = 0;
A
Arne Jansen 已提交
3758

3759
	read_lock(&map_tree->lock);
3760
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3761
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3762

3763 3764 3765 3766 3767
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3768
		spin_lock(&bg->lock);
3769
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3770
			ret = -EINVAL;
3771
		spin_unlock(&bg->lock);
3772 3773 3774

		return ret;
	}
3775
	if (em->start != bg->start)
A
Arne Jansen 已提交
3776
		goto out;
3777
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3778 3779
		goto out;

3780
	map = em->map_lookup;
A
Arne Jansen 已提交
3781
	for (i = 0; i < map->num_stripes; ++i) {
3782
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3783
		    map->stripes[i].physical == dev_offset) {
3784
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3814
static noinline_for_stack
3815
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3816
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3817 3818 3819
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3820 3821
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3822
	u64 chunk_offset;
3823
	int ret = 0;
3824
	int ro_set;
A
Arne Jansen 已提交
3825 3826 3827 3828
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3829
	struct btrfs_block_group *cache;
3830
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3831 3832 3833 3834 3835

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3836
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3837 3838 3839
	path->search_commit_root = 1;
	path->skip_locking = 1;

3840
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3841 3842 3843 3844
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3845 3846
		u64 dev_extent_len;

A
Arne Jansen 已提交
3847 3848
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3849 3850 3851 3852 3853
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3854 3855 3856 3857
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3858
					break;
3859 3860 3861
				}
			} else {
				ret = 0;
3862 3863
			}
		}
A
Arne Jansen 已提交
3864 3865 3866 3867 3868 3869

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3870
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3871 3872
			break;

3873
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3883
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3884

3885
		if (found_key.offset + dev_extent_len <= start)
3886
			goto skip;
A
Arne Jansen 已提交
3887 3888 3889 3890 3891 3892 3893 3894

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3895 3896 3897 3898 3899 3900

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3926
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3927
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3928 3929
				btrfs_put_block_group(cache);
				goto skip;
3930 3931 3932
			}
		}

3933 3934 3935 3936 3937 3938 3939 3940 3941
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
3942
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3943 3944 3945 3946
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3947
		btrfs_freeze_block_group(cache);
3948 3949
		spin_unlock(&cache->lock);

3950 3951 3952 3953 3954 3955 3956 3957 3958
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3989
		 */
3990
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

4001 4002
		if (ret == 0) {
			ro_set = 1;
4003
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4004 4005 4006
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
4007
			 * It is not a problem for scrub, because
4008 4009 4010 4011
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
4012 4013 4014 4015 4016 4017 4018
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
4019
		} else {
J
Jeff Mahoney 已提交
4020
			btrfs_warn(fs_info,
4021
				   "failed setting block group ro: %d", ret);
4022
			btrfs_unfreeze_block_group(cache);
4023
			btrfs_put_block_group(cache);
4024
			scrub_pause_off(fs_info);
4025 4026 4027
			break;
		}

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
4040
		down_write(&dev_replace->rwsem);
4041
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4042 4043
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
4044 4045
		up_write(&dev_replace->rwsem);

4046 4047
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
4059
		sctx->flush_all_writes = true;
4060
		scrub_submit(sctx);
4061
		mutex_lock(&sctx->wr_lock);
4062
		scrub_wr_submit(sctx);
4063
		mutex_unlock(&sctx->wr_lock);
4064 4065 4066

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
4067 4068

		scrub_pause_on(fs_info);
4069 4070 4071 4072 4073 4074

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
4075 4076
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
4077
		sctx->flush_all_writes = false;
4078

4079
		scrub_pause_off(fs_info);
4080

4081 4082 4083 4084 4085
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4086
		down_write(&dev_replace->rwsem);
4087 4088
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4089
		up_write(&dev_replace->rwsem);
4090

4091
		if (ro_set)
4092
			btrfs_dec_block_group_ro(cache);
4093

4094 4095 4096 4097 4098 4099 4100 4101
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
4102 4103
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4104
			spin_unlock(&cache->lock);
4105 4106 4107 4108 4109
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4110 4111 4112
		} else {
			spin_unlock(&cache->lock);
		}
4113
skip_unfreeze:
4114
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4115 4116 4117
		btrfs_put_block_group(cache);
		if (ret)
			break;
4118
		if (sctx->is_dev_replace &&
4119
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4120 4121 4122 4123 4124 4125 4126
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4127
skip:
4128
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4129
		btrfs_release_path(path);
A
Arne Jansen 已提交
4130 4131 4132
	}

	btrfs_free_path(path);
4133

4134
	return ret;
A
Arne Jansen 已提交
4135 4136
}

4137 4138
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4139 4140 4141 4142 4143
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4144
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4145

J
Josef Bacik 已提交
4146
	if (BTRFS_FS_ERROR(fs_info))
4147
		return -EROFS;
4148

4149
	/* Seed devices of a new filesystem has their own generation. */
4150
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4151 4152
		gen = scrub_dev->generation;
	else
4153
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4154 4155 4156

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4157 4158
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4159
			break;
4160 4161
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4162

4163 4164 4165
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4166 4167 4168
		if (ret)
			return ret;
	}
4169
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4170 4171 4172 4173

	return 0;
}

4174 4175 4176 4177
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4178 4179 4180 4181 4182
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4183 4184 4185 4186 4187 4188

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4189 4190 4191 4192 4193 4194
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4195 4196 4197
	}
}

A
Arne Jansen 已提交
4198 4199 4200
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4201 4202
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4203
{
4204 4205 4206
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4207
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4208
	int max_active = fs_info->thread_pool_size;
4209
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4210

4211 4212
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4213

4214 4215
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4216 4217
	if (!scrub_workers)
		goto fail_scrub_workers;
4218

4219
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4220 4221
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4222

4223
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4235
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4236 4237
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4238
	}
4239 4240 4241
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4242

4243
	ret = 0;
4244
	destroy_workqueue(scrub_parity);
4245
fail_scrub_parity_workers:
4246
	destroy_workqueue(scrub_wr_comp);
4247
fail_scrub_wr_completion_workers:
4248
	destroy_workqueue(scrub_workers);
4249
fail_scrub_workers:
4250
	return ret;
A
Arne Jansen 已提交
4251 4252
}

4253 4254
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4255
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4256
{
4257
	struct btrfs_dev_lookup_args args = { .devid = devid };
4258
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4259 4260
	int ret;
	struct btrfs_device *dev;
4261
	unsigned int nofs_flag;
4262
	bool need_commit = false;
A
Arne Jansen 已提交
4263

4264
	if (btrfs_fs_closing(fs_info))
4265
		return -EAGAIN;
A
Arne Jansen 已提交
4266

4267 4268
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4269

4270 4271 4272 4273 4274 4275 4276
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4277

4278 4279 4280 4281
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4282

4283 4284 4285 4286
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4287
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4288
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4289 4290
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4291
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4292
		ret = -ENODEV;
4293
		goto out;
A
Arne Jansen 已提交
4294 4295
	}

4296 4297
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4298
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4299 4300 4301
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4302
		ret = -EROFS;
4303
		goto out;
4304 4305
	}

4306
	mutex_lock(&fs_info->scrub_lock);
4307
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4308
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4309
		mutex_unlock(&fs_info->scrub_lock);
4310
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4311
		ret = -EIO;
4312
		goto out;
A
Arne Jansen 已提交
4313 4314
	}

4315
	down_read(&fs_info->dev_replace.rwsem);
4316
	if (dev->scrub_ctx ||
4317 4318
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4319
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4320
		mutex_unlock(&fs_info->scrub_lock);
4321
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4322
		ret = -EINPROGRESS;
4323
		goto out;
A
Arne Jansen 已提交
4324
	}
4325
	up_read(&fs_info->dev_replace.rwsem);
4326

4327
	sctx->readonly = readonly;
4328
	dev->scrub_ctx = sctx;
4329
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4330

4331 4332 4333 4334
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4335
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4336 4337 4338
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4339 4340 4341
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4342
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4343 4344 4345 4346 4347 4348
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4349
	if (!is_dev_replace) {
4350 4351 4352 4353 4354 4355
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

4356
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4357 4358 4359 4360
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4361
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4362
		ret = scrub_supers(sctx, dev);
4363
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
4374
	}
A
Arne Jansen 已提交
4375 4376

	if (!ret)
4377
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4378
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4379

4380
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4381 4382 4383
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4384
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4385

A
Arne Jansen 已提交
4386
	if (progress)
4387
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4388

4389 4390 4391 4392
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4393
	mutex_lock(&fs_info->scrub_lock);
4394
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4395 4396
	mutex_unlock(&fs_info->scrub_lock);

4397
	scrub_workers_put(fs_info);
4398
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4399

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
4419
	return ret;
4420 4421
out:
	scrub_workers_put(fs_info);
4422 4423 4424
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4425 4426 4427
	return ret;
}

4428
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4443
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4444 4445 4446 4447 4448
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4449
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4470
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4471
{
4472
	struct btrfs_fs_info *fs_info = dev->fs_info;
4473
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4474 4475

	mutex_lock(&fs_info->scrub_lock);
4476
	sctx = dev->scrub_ctx;
4477
	if (!sctx) {
A
Arne Jansen 已提交
4478 4479 4480
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4481
	atomic_inc(&sctx->cancel_req);
4482
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4483 4484
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4485
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4486 4487 4488 4489 4490 4491
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4492

4493
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4494 4495
			 struct btrfs_scrub_progress *progress)
{
4496
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4497
	struct btrfs_device *dev;
4498
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4499

4500
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4501
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4502
	if (dev)
4503
		sctx = dev->scrub_ctx;
4504 4505
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4506
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4507

4508
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4509
}
4510

4511 4512 4513 4514 4515
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num)
4516 4517
{
	u64 mapped_length;
4518
	struct btrfs_io_context *bioc = NULL;
4519 4520 4521
	int ret;

	mapped_length = extent_len;
4522
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4523 4524 4525 4526
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4527 4528 4529
		return;
	}

4530 4531 4532 4533
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4534
}