scrub.c 112.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51 52 53 54 55

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
56
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
57

58
struct scrub_recover {
59
	refcount_t		refs;
60 61 62 63
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
64
struct scrub_page {
65 66
	struct scrub_block	*sblock;
	struct page		*page;
67
	struct btrfs_device	*dev;
68
	struct list_head	list;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		refs;
75 76 77
	u8			mirror_num;
	int			have_csum:1;
	int			io_error:1;
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u32			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

151
	unsigned long		bitmap[];
152 153
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167 168

	int			is_dev_replace;
169
	u64			write_pointer;
170 171 172 173 174

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
175
	bool                    flush_all_writes;
176

A
Arne Jansen 已提交
177 178 179 180 181
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
182 183 184 185 186 187 188 189

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
190
	refcount_t              refs;
A
Arne Jansen 已提交
191 192
};

193 194 195 196
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
197
	u64			physical;
198 199 200 201
	u64			logical;
	struct btrfs_device	*dev;
};

202 203 204 205 206 207 208
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

209 210
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
211
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
212
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213
				     struct scrub_block *sblocks_for_recheck);
214
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 216
				struct scrub_block *sblock,
				int retry_failed_mirror);
217
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219
					     struct scrub_block *sblock_good);
220 221 222
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
223 224 225
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
226 227 228 229 230
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
231 232
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
233 234
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
235 236
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
237
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
238
		       u64 physical, struct btrfs_device *dev, u64 flags,
239
		       u64 gen, int mirror_num, u8 *csum,
240
		       u64 physical_for_dev_replace);
241
static void scrub_bio_end_io(struct bio *bio);
242 243
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
244
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
245
			       u64 extent_logical, u32 extent_len,
246 247 248 249 250 251
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
252
static void scrub_wr_bio_end_io(struct bio *bio);
253
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
254
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
257

258
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
259
{
260 261
	return spage->recover &&
	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262
}
S
Stefan Behrens 已提交
263

264 265
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
266
	refcount_inc(&sctx->refs);
267 268 269 270 271 272 273
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
274
	scrub_put_ctx(sctx);
275 276
}

277
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
278 279 280 281 282 283 284 285 286
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

287
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
288 289 290
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
291
}
292

293 294
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
295 296 297 298 299 300 301 302
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

303 304 305 306 307 308
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

328
	lockdep_assert_held(&locks_root->lock);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

344 345 346
	/*
	 * Insert new lock.
	 */
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

372
	lockdep_assert_held(&locks_root->lock);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
392
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
393 394 395 396 397 398 399 400 401 402 403 404 405
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
406 407
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
425
	struct btrfs_block_group *bg_cache;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
472
	struct btrfs_block_group *bg_cache;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

526
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
527
{
528
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
529
		struct btrfs_ordered_sum *sum;
530
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
531 532 533 534 535 536
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

537
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
538 539 540
{
	int i;

541
	if (!sctx)
A
Arne Jansen 已提交
542 543
		return;

544
	/* this can happen when scrub is cancelled */
545 546
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
547 548

		for (i = 0; i < sbio->page_count; i++) {
549
			WARN_ON(!sbio->pagev[i]->page);
550 551 552 553 554
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

555
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
556
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
557 558 559 560 561 562

		if (!sbio)
			break;
		kfree(sbio);
	}

563
	kfree(sctx->wr_curr_bio);
564 565
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
566 567
}

568 569
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
570
	if (refcount_dec_and_test(&sctx->refs))
571 572 573
		scrub_free_ctx(sctx);
}

574 575
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
576
{
577
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
578 579
	int		i;

580
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
581
	if (!sctx)
A
Arne Jansen 已提交
582
		goto nomem;
583
	refcount_set(&sctx->refs, 1);
584
	sctx->is_dev_replace = is_dev_replace;
585
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
586
	sctx->curr = -1;
587
	sctx->fs_info = fs_info;
588
	INIT_LIST_HEAD(&sctx->csum_list);
589
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
590 591
		struct scrub_bio *sbio;

592
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
593 594
		if (!sbio)
			goto nomem;
595
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
596 597

		sbio->index = i;
598
		sbio->sctx = sctx;
599
		sbio->page_count = 0;
600 601
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
602

603
		if (i != SCRUB_BIOS_PER_SCTX - 1)
604
			sctx->bios[i]->next_free = i + 1;
605
		else
606 607 608
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
609 610
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
611 612 613 614 615
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
616

617 618 619
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
620
	if (is_dev_replace) {
621
		WARN_ON(!fs_info->dev_replace.tgtdev);
622
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
623
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
624
		sctx->flush_all_writes = false;
625
	}
626

627
	return sctx;
A
Arne Jansen 已提交
628 629

nomem:
630
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
631 632 633
	return ERR_PTR(-ENOMEM);
}

634 635
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
636 637 638 639 640
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
641
	unsigned nofs_flag;
642 643
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
644
	struct scrub_warning *swarn = warn_ctx;
645
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
646 647
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
648
	struct btrfs_key key;
649

D
David Sterba 已提交
650
	local_root = btrfs_get_fs_root(fs_info, root, true);
651 652 653 654 655
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

656 657 658
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
659 660 661 662 663
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
664
	if (ret) {
665
		btrfs_put_root(local_root);
666 667 668 669 670 671 672 673 674 675 676
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

677 678 679 680 681 682
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
683
	ipath = init_ipath(4096, local_root, swarn->path);
684
	memalloc_nofs_restore(nofs_flag);
685
	if (IS_ERR(ipath)) {
686
		btrfs_put_root(local_root);
687 688 689 690
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
691 692 693 694 695 696 697 698 699 700
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
701
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
702
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
703 704
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
705
				  swarn->physical,
J
Jeff Mahoney 已提交
706 707 708
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
709

710
	btrfs_put_root(local_root);
711 712 713 714
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
715
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
716
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
717 718
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
719
			  swarn->physical,
J
Jeff Mahoney 已提交
720
			  root, inum, offset, ret);
721 722 723 724 725

	free_ipath(ipath);
	return 0;
}

726
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
727
{
728 729
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
730 731 732 733 734
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
735 736 737
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
738
	u64 ref_root;
739
	u32 item_size;
740
	u8 ref_level = 0;
741
	int ret;
742

743
	WARN_ON(sblock->page_count < 1);
744
	dev = sblock->pagev[0]->dev;
745
	fs_info = sblock->sctx->fs_info;
746

747
	path = btrfs_alloc_path();
748 749
	if (!path)
		return;
750

D
David Sterba 已提交
751
	swarn.physical = sblock->pagev[0]->physical;
752
	swarn.logical = sblock->pagev[0]->logical;
753
	swarn.errstr = errstr;
754
	swarn.dev = NULL;
755

756 757
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
758 759 760
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
761
	extent_item_pos = swarn.logical - found_key.objectid;
762 763 764 765 766 767
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

768
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769
		do {
770 771 772
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
773
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
774
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
775
				errstr, swarn.logical,
776
				rcu_str_deref(dev->name),
D
David Sterba 已提交
777
				swarn.physical,
778 779 780 781
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
782
		btrfs_release_path(path);
783
	} else {
784
		btrfs_release_path(path);
785
		swarn.path = path;
786
		swarn.dev = dev;
787 788
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
789
					scrub_print_warning_inode, &swarn, false);
790 791 792 793 794 795
	}

out:
	btrfs_free_path(path);
}

796 797
static inline void scrub_get_recover(struct scrub_recover *recover)
{
798
	refcount_inc(&recover->refs);
799 800
}

801 802
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
803
{
804
	if (refcount_dec_and_test(&recover->refs)) {
805
		btrfs_bio_counter_dec(fs_info);
806
		btrfs_put_bbio(recover->bbio);
807 808 809 810
		kfree(recover);
	}
}

A
Arne Jansen 已提交
811
/*
812 813 814 815 816 817
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
818
 */
819
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
820
{
821
	struct scrub_ctx *sctx = sblock_to_check->sctx;
822
	struct btrfs_device *dev;
823 824 825 826 827 828 829 830 831 832 833
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
834
	bool full_stripe_locked;
835
	unsigned int nofs_flag;
836
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
837 838 839
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
840
	fs_info = sctx->fs_info;
841 842 843 844 845 846 847 848 849 850 851
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
852 853 854 855
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
856
			BTRFS_EXTENT_FLAG_DATA);
857 858
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
859

860 861 862 863 864 865 866 867 868 869
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
870 871 872 873 874 875 876 877 878
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
879
		memalloc_nofs_restore(nofs_flag);
880 881 882 883 884 885 886 887 888
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

918
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
919
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
920
	if (!sblocks_for_recheck) {
921 922 923 924 925
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
926
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
927
		goto out;
A
Arne Jansen 已提交
928 929
	}

930
	/* setup the context, map the logical blocks and alloc the pages */
931
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
932
	if (ret) {
933 934 935 936
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
937
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
938 939 940 941
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
942

943
	/* build and submit the bios for the failed mirror, check checksums */
944
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
945

946 947 948 949 950 951 952 953 954 955
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
958
		sblock_to_check->data_corrected = 1;
959
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
960

961 962
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
963
		goto out;
A
Arne Jansen 已提交
964 965
	}

966
	if (!sblock_bad->no_io_error_seen) {
967 968 969
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
970
		if (__ratelimit(&rs))
971
			scrub_print_warning("i/o error", sblock_to_check);
972
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
973
	} else if (sblock_bad->checksum_error) {
974 975 976
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
977
		if (__ratelimit(&rs))
978
			scrub_print_warning("checksum error", sblock_to_check);
979
		btrfs_dev_stat_inc_and_print(dev,
980
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
981
	} else if (sblock_bad->header_error) {
982 983 984
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
985
		if (__ratelimit(&rs))
986 987
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
988
		if (sblock_bad->generation_error)
989
			btrfs_dev_stat_inc_and_print(dev,
990 991
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
992
			btrfs_dev_stat_inc_and_print(dev,
993
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
994
	}
A
Arne Jansen 已提交
995

996 997 998 999
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1000

1001 1002
	/*
	 * now build and submit the bios for the other mirrors, check
1003 1004
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1016
	for (mirror_index = 0; ;mirror_index++) {
1017
		struct scrub_block *sblock_other;
1018

1019 1020
		if (mirror_index == failed_mirror_index)
			continue;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1044 1045

		/* build and submit the bios, check checksums */
1046
		scrub_recheck_block(fs_info, sblock_other, 0);
1047 1048

		if (!sblock_other->header_error &&
1049 1050
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1051 1052
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1053
				goto corrected_error;
1054 1055
			} else {
				ret = scrub_repair_block_from_good_copy(
1056 1057 1058
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1059
			}
1060 1061
		}
	}
A
Arne Jansen 已提交
1062

1063 1064
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1065 1066 1067

	/*
	 * In case of I/O errors in the area that is supposed to be
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1080
	 * the final checksum succeeds. But this would be a rare
1081 1082 1083 1084 1085 1086 1087 1088
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1089
	 */
1090
	success = 1;
1091 1092
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1093
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1094
		struct scrub_block *sblock_other = NULL;
1095

1096
		/* skip no-io-error page in scrub */
1097
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1098
			continue;
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1109
		} else if (spage_bad->io_error) {
1110
			/* try to find no-io-error page in mirrors */
1111 1112 1113 1114 1115 1116 1117 1118 1119
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1120 1121
				}
			}
1122 1123
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1124
		}
A
Arne Jansen 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1139
				atomic64_inc(
1140
					&fs_info->dev_replace.num_write_errors);
1141 1142 1143 1144 1145 1146 1147
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1148
				spage_bad->io_error = 0;
1149 1150
			else
				success = 0;
1151
		}
A
Arne Jansen 已提交
1152 1153
	}

1154
	if (success && !sctx->is_dev_replace) {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1165
			scrub_recheck_block(fs_info, sblock_bad, 1);
1166
			if (!sblock_bad->header_error &&
1167 1168 1169 1170 1171 1172 1173
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1174 1175
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1176
			sblock_to_check->data_corrected = 1;
1177
			spin_unlock(&sctx->stat_lock);
1178 1179
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1180
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1181
		}
1182 1183
	} else {
did_not_correct_error:
1184 1185 1186
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1187 1188
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1189
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1190
	}
A
Arne Jansen 已提交
1191

1192 1193 1194 1195 1196 1197
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1198
			struct scrub_recover *recover;
1199 1200
			int page_index;

1201 1202 1203
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1204 1205
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1206
					scrub_put_recover(fs_info, recover);
1207 1208 1209
					sblock->pagev[page_index]->recover =
									NULL;
				}
1210 1211
				scrub_page_put(sblock->pagev[page_index]);
			}
1212 1213 1214
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1215

1216
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1217
	memalloc_nofs_restore(nofs_flag);
1218 1219
	if (ret < 0)
		return ret;
1220 1221
	return 0;
}
A
Arne Jansen 已提交
1222

1223
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1224
{
Z
Zhao Lei 已提交
1225 1226 1227 1228 1229
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1230 1231 1232
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1233 1234
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1235 1236 1237 1238 1239 1240 1241
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1242
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1263
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1264 1265
				     struct scrub_block *sblocks_for_recheck)
{
1266
	struct scrub_ctx *sctx = original_sblock->sctx;
1267
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1268 1269
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1270 1271 1272
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1273 1274 1275 1276 1277 1278
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1279
	int page_index = 0;
1280
	int mirror_index;
1281
	int nmirrors;
1282 1283 1284
	int ret;

	/*
1285
	 * note: the two members refs and outstanding_pages
1286 1287 1288 1289 1290
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1291 1292 1293
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1294

1295 1296 1297 1298
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1299
		btrfs_bio_counter_inc_blocked(fs_info);
1300
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1301
				logical, &mapped_length, &bbio);
1302
		if (ret || !bbio || mapped_length < sublen) {
1303
			btrfs_put_bbio(bbio);
1304
			btrfs_bio_counter_dec(fs_info);
1305 1306
			return -EIO;
		}
A
Arne Jansen 已提交
1307

1308 1309
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1310
			btrfs_put_bbio(bbio);
1311
			btrfs_bio_counter_dec(fs_info);
1312 1313 1314
			return -ENOMEM;
		}

1315
		refcount_set(&recover->refs, 1);
1316 1317 1318
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1319
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1320

1321
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1322

1323
		for (mirror_index = 0; mirror_index < nmirrors;
1324 1325
		     mirror_index++) {
			struct scrub_block *sblock;
1326
			struct scrub_page *spage;
1327 1328

			sblock = sblocks_for_recheck + mirror_index;
1329
			sblock->sctx = sctx;
1330

1331 1332
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1333
leave_nomem:
1334 1335 1336
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1337
				scrub_put_recover(fs_info, recover);
1338 1339
				return -ENOMEM;
			}
1340 1341 1342 1343 1344 1345 1346
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1347
			if (have_csum)
1348
				memcpy(spage->csum,
1349
				       original_sblock->pagev[0]->csum,
1350
				       sctx->fs_info->csum_size);
1351

Z
Zhao Lei 已提交
1352 1353 1354
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1355
						      mapped_length,
1356 1357
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1358 1359 1360
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1361
			spage->physical = bbio->stripes[stripe_index].physical +
1362
					 stripe_offset;
1363
			spage->dev = bbio->stripes[stripe_index].dev;
1364

1365
			BUG_ON(page_index >= original_sblock->page_count);
1366
			spage->physical_for_dev_replace =
1367 1368
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1369
			/* for missing devices, dev->bdev is NULL */
1370
			spage->mirror_num = mirror_index + 1;
1371
			sblock->page_count++;
1372 1373
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1374
				goto leave_nomem;
1375 1376

			scrub_get_recover(recover);
1377
			spage->recover = recover;
1378
		}
1379
		scrub_put_recover(fs_info, recover);
1380 1381 1382 1383 1384 1385
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1386 1387
}

1388
static void scrub_bio_wait_endio(struct bio *bio)
1389
{
1390
	complete(bio->bi_private);
1391 1392 1393 1394
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1395
					struct scrub_page *spage)
1396
{
1397
	DECLARE_COMPLETION_ONSTACK(done);
1398
	int ret;
1399
	int mirror_num;
1400

1401
	bio->bi_iter.bi_sector = spage->logical >> 9;
1402 1403 1404
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1405 1406 1407
	mirror_num = spage->sblock->pagev[0]->mirror_num;
	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
				    spage->recover->map_length,
1408
				    mirror_num, 0);
1409 1410 1411
	if (ret)
		return ret;

1412 1413
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1414 1415
}

L
Liu Bo 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1432
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1433

1434 1435
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1455 1456 1457 1458 1459 1460 1461
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1462
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1463 1464
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1465
{
1466
	int page_num;
I
Ilya Dryomov 已提交
1467

1468
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1469

L
Liu Bo 已提交
1470 1471 1472 1473
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1474 1475
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1476
		struct scrub_page *spage = sblock->pagev[page_num];
1477

1478 1479
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1480 1481 1482 1483
			sblock->no_io_error_seen = 0;
			continue;
		}

1484
		WARN_ON(!spage->page);
1485
		bio = btrfs_io_bio_alloc(1);
1486
		bio_set_dev(bio, spage->dev->bdev);
1487

1488 1489
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1490
		bio->bi_opf = REQ_OP_READ;
1491

L
Liu Bo 已提交
1492
		if (btrfsic_submit_bio_wait(bio)) {
1493
			spage->io_error = 1;
L
Liu Bo 已提交
1494
			sblock->no_io_error_seen = 0;
1495
		}
1496

1497 1498
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1499

1500
	if (sblock->no_io_error_seen)
1501
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1502 1503
}

M
Miao Xie 已提交
1504 1505 1506 1507 1508 1509
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1510
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1511 1512 1513
	return !ret;
}

1514
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1515
{
1516 1517 1518
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1519

1520 1521 1522 1523
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1524 1525
}

1526
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1527
					     struct scrub_block *sblock_good)
1528 1529 1530
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1531

1532 1533
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1534

1535 1536
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1537
							   page_num, 1);
1538 1539
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1540
	}
1541 1542 1543 1544 1545 1546 1547 1548

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1549 1550
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1551
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1552

1553 1554
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1555
	if (force_write || sblock_bad->header_error ||
1556
	    sblock_bad->checksum_error || spage_bad->io_error) {
1557 1558 1559
		struct bio *bio;
		int ret;

1560
		if (!spage_bad->dev->bdev) {
1561
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1562
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1563 1564 1565
			return -EIO;
		}

1566
		bio = btrfs_io_bio_alloc(1);
1567 1568
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1569
		bio->bi_opf = REQ_OP_WRITE;
1570

1571
		ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1572 1573 1574
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1575
		}
1576

1577
		if (btrfsic_submit_bio_wait(bio)) {
1578
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1579
				BTRFS_DEV_STAT_WRITE_ERRS);
1580
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1581 1582 1583
			bio_put(bio);
			return -EIO;
		}
1584
		bio_put(bio);
A
Arne Jansen 已提交
1585 1586
	}

1587 1588 1589
	return 0;
}

1590 1591
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1592
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1593 1594
	int page_num;

1595 1596 1597 1598 1599 1600 1601
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1602 1603 1604 1605 1606
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1607
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1608 1609 1610 1611 1612 1613 1614 1615 1616
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1617 1618
	if (spage->io_error)
		clear_page(page_address(spage->page));
1619 1620 1621 1622

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1623 1624 1625 1626 1627 1628 1629 1630
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1631 1632 1633
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1645 1646 1647 1648 1649 1650
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1651
	mutex_lock(&sctx->wr_lock);
1652
again:
1653 1654
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655
					      GFP_KERNEL);
1656 1657
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1658 1659
			return -ENOMEM;
		}
1660 1661
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1662
	}
1663
	sbio = sctx->wr_curr_bio;
1664 1665 1666
	if (sbio->page_count == 0) {
		struct bio *bio;

1667 1668 1669 1670 1671 1672 1673
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1674 1675
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1676
		sbio->dev = sctx->wr_tgtdev;
1677 1678
		bio = sbio->bio;
		if (!bio) {
1679
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680 1681 1682 1683 1684
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1685
		bio_set_dev(bio, sbio->dev->bdev);
1686
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1687
		bio->bi_opf = REQ_OP_WRITE;
1688
		sbio->status = 0;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1702
			mutex_unlock(&sctx->wr_lock);
1703 1704 1705 1706 1707 1708 1709 1710 1711
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1712
	if (sbio->page_count == sctx->pages_per_wr_bio)
1713
		scrub_wr_submit(sctx);
1714
	mutex_unlock(&sctx->wr_lock);
1715 1716 1717 1718 1719 1720 1721 1722

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1723
	if (!sctx->wr_curr_bio)
1724 1725
		return;

1726 1727
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1728
	WARN_ON(!sbio->bio->bi_disk);
1729 1730 1731 1732 1733
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1734
	btrfsic_submit_bio(sbio->bio);
1735 1736 1737

	if (btrfs_is_zoned(sctx->fs_info))
		sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE;
1738 1739
}

1740
static void scrub_wr_bio_end_io(struct bio *bio)
1741 1742
{
	struct scrub_bio *sbio = bio->bi_private;
1743
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1744

1745
	sbio->status = bio->bi_status;
1746 1747
	sbio->bio = bio;

1748
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1749
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1750 1751 1752 1753 1754 1755 1756 1757 1758
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1759
	if (sbio->status) {
1760
		struct btrfs_dev_replace *dev_replace =
1761
			&sbio->sctx->fs_info->dev_replace;
1762 1763 1764 1765 1766

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1767
			atomic64_inc(&dev_replace->num_write_errors);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1780 1781 1782 1783
{
	u64 flags;
	int ret;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1796 1797
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1809 1810

	return ret;
A
Arne Jansen 已提交
1811 1812
}

1813
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1814
{
1815
	struct scrub_ctx *sctx = sblock->sctx;
1816 1817
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1818
	u8 csum[BTRFS_CSUM_SIZE];
1819
	struct scrub_page *spage;
1820
	char *kaddr;
A
Arne Jansen 已提交
1821

1822
	BUG_ON(sblock->page_count < 1);
1823 1824
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1825 1826
		return 0;

1827
	kaddr = page_address(spage->page);
1828

1829 1830
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1831

1832 1833 1834 1835 1836
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1837

1838 1839
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1840
	return sblock->checksum_error;
A
Arne Jansen 已提交
1841 1842
}

1843
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1844
{
1845
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1846
	struct btrfs_header *h;
1847
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1848
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1849 1850
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1851 1852 1853 1854 1855 1856 1857
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1858
	int i;
1859
	struct scrub_page *spage;
1860
	char *kaddr;
1861

1862
	BUG_ON(sblock->page_count < 1);
1863 1864 1865 1866

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1867 1868
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1869
	h = (struct btrfs_header *)kaddr;
1870
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1871 1872 1873 1874 1875 1876

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1877
	if (spage->logical != btrfs_stack_header_bytenr(h))
1878
		sblock->header_error = 1;
A
Arne Jansen 已提交
1879

1880
	if (spage->generation != btrfs_stack_header_generation(h)) {
1881 1882 1883
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1884

1885
	if (!scrub_check_fsid(h->fsid, spage))
1886
		sblock->header_error = 1;
A
Arne Jansen 已提交
1887 1888 1889

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1890
		sblock->header_error = 1;
A
Arne Jansen 已提交
1891

1892 1893 1894
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1895
			    sectorsize - BTRFS_CSUM_SIZE);
1896

1897
	for (i = 1; i < num_sectors; i++) {
1898
		kaddr = page_address(sblock->pagev[i]->page);
1899
		crypto_shash_update(shash, kaddr, sectorsize);
1900 1901
	}

1902
	crypto_shash_final(shash, calculated_csum);
1903
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1904
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1905

1906
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1907 1908
}

1909
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1910 1911
{
	struct btrfs_super_block *s;
1912
	struct scrub_ctx *sctx = sblock->sctx;
1913 1914
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1915
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1916
	struct scrub_page *spage;
1917
	char *kaddr;
1918 1919
	int fail_gen = 0;
	int fail_cor = 0;
1920

1921
	BUG_ON(sblock->page_count < 1);
1922 1923
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1924
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1925

1926
	if (spage->logical != btrfs_super_bytenr(s))
1927
		++fail_cor;
A
Arne Jansen 已提交
1928

1929
	if (spage->generation != btrfs_super_generation(s))
1930
		++fail_gen;
A
Arne Jansen 已提交
1931

1932
	if (!scrub_check_fsid(s->fsid, spage))
1933
		++fail_cor;
A
Arne Jansen 已提交
1934

1935 1936 1937 1938
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1939

1940
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1941
		++fail_cor;
A
Arne Jansen 已提交
1942

1943
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1944 1945 1946 1947 1948
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1949 1950 1951
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1952
		if (fail_cor)
1953
			btrfs_dev_stat_inc_and_print(spage->dev,
1954 1955
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1956
			btrfs_dev_stat_inc_and_print(spage->dev,
1957
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1958 1959
	}

1960
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1961 1962
}

1963 1964
static void scrub_block_get(struct scrub_block *sblock)
{
1965
	refcount_inc(&sblock->refs);
1966 1967 1968 1969
}

static void scrub_block_put(struct scrub_block *sblock)
{
1970
	if (refcount_dec_and_test(&sblock->refs)) {
1971 1972
		int i;

1973 1974 1975
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1976
		for (i = 0; i < sblock->page_count; i++)
1977
			scrub_page_put(sblock->pagev[i]);
1978 1979 1980 1981
		kfree(sblock);
	}
}

1982 1983
static void scrub_page_get(struct scrub_page *spage)
{
1984
	atomic_inc(&spage->refs);
1985 1986 1987 1988
}

static void scrub_page_put(struct scrub_page *spage)
{
1989
	if (atomic_dec_and_test(&spage->refs)) {
1990 1991 1992 1993 1994 1995
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1996
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1997 1998 1999
{
	struct scrub_bio *sbio;

2000
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2001
		return;
A
Arne Jansen 已提交
2002

2003 2004
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2005
	scrub_pending_bio_inc(sctx);
2006
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2007 2008
}

2009 2010
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2011
{
2012
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2013
	struct scrub_bio *sbio;
2014
	int ret;
A
Arne Jansen 已提交
2015 2016 2017 2018 2019

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2020 2021 2022 2023 2024 2025 2026 2027
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2028
		} else {
2029 2030
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2031 2032
		}
	}
2033
	sbio = sctx->bios[sctx->curr];
2034
	if (sbio->page_count == 0) {
2035 2036
		struct bio *bio;

2037 2038
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2039
		sbio->dev = spage->dev;
2040 2041
		bio = sbio->bio;
		if (!bio) {
2042
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2043 2044
			sbio->bio = bio;
		}
2045 2046 2047

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2048
		bio_set_dev(bio, sbio->dev->bdev);
2049
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2050
		bio->bi_opf = REQ_OP_READ;
2051
		sbio->status = 0;
2052 2053 2054
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2055 2056
		   spage->logical ||
		   sbio->dev != spage->dev) {
2057
		scrub_submit(sctx);
A
Arne Jansen 已提交
2058 2059
		goto again;
	}
2060

2061 2062 2063 2064 2065 2066 2067 2068
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2069
		scrub_submit(sctx);
2070 2071 2072
		goto again;
	}

2073
	scrub_block_get(sblock); /* one for the page added to the bio */
2074 2075
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2076
	if (sbio->page_count == sctx->pages_per_rd_bio)
2077
		scrub_submit(sctx);
2078 2079 2080 2081

	return 0;
}

2082
static void scrub_missing_raid56_end_io(struct bio *bio)
2083 2084
{
	struct scrub_block *sblock = bio->bi_private;
2085
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2086

2087
	if (bio->bi_status)
2088 2089
		sblock->no_io_error_seen = 0;

2090 2091
	bio_put(bio);

2092 2093 2094 2095 2096 2097 2098
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2099
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2100 2101 2102 2103 2104 2105
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2106
	if (sblock->no_io_error_seen)
2107
		scrub_recheck_block_checksum(sblock);
2108 2109 2110 2111 2112

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2113
		btrfs_err_rl_in_rcu(fs_info,
2114
			"IO error rebuilding logical %llu for dev %s",
2115 2116 2117 2118 2119
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2120
		btrfs_err_rl_in_rcu(fs_info,
2121
			"failed to rebuild valid logical %llu for dev %s",
2122 2123 2124 2125 2126
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2127
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2128
		mutex_lock(&sctx->wr_lock);
2129
		scrub_wr_submit(sctx);
2130
		mutex_unlock(&sctx->wr_lock);
2131 2132
	}

2133
	scrub_block_put(sblock);
2134 2135 2136 2137 2138 2139
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2140
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2141 2142
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2143
	struct btrfs_bio *bbio = NULL;
2144 2145 2146 2147 2148
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2149
	btrfs_bio_counter_inc_blocked(fs_info);
2150
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2151
			&length, &bbio);
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2166
	bio = btrfs_io_bio_alloc(0);
2167 2168 2169 2170
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2171
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2181
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2182 2183 2184 2185 2186 2187 2188 2189
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2190
	btrfs_bio_counter_dec(fs_info);
2191 2192 2193 2194 2195 2196
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2197
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2198
		       u64 physical, struct btrfs_device *dev, u64 flags,
2199
		       u64 gen, int mirror_num, u8 *csum,
2200
		       u64 physical_for_dev_replace)
2201 2202
{
	struct scrub_block *sblock;
2203
	const u32 sectorsize = sctx->fs_info->sectorsize;
2204 2205
	int index;

2206
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2207
	if (!sblock) {
2208 2209 2210
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2211
		return -ENOMEM;
A
Arne Jansen 已提交
2212
	}
2213

2214 2215
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2216
	refcount_set(&sblock->refs, 1);
2217
	sblock->sctx = sctx;
2218 2219 2220
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2221
		struct scrub_page *spage;
2222 2223 2224 2225 2226 2227
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2228

2229
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2230 2231
		if (!spage) {
leave_nomem:
2232 2233 2234
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2235
			scrub_block_put(sblock);
2236 2237
			return -ENOMEM;
		}
2238 2239 2240
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2241
		spage->sblock = sblock;
2242
		spage->dev = dev;
2243 2244 2245 2246
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2247
		spage->physical_for_dev_replace = physical_for_dev_replace;
2248 2249 2250
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2251
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2252 2253 2254 2255
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2256
		spage->page = alloc_page(GFP_KERNEL);
2257 2258
		if (!spage->page)
			goto leave_nomem;
2259 2260 2261
		len -= l;
		logical += l;
		physical += l;
2262
		physical_for_dev_replace += l;
2263 2264
	}

2265
	WARN_ON(sblock->page_count == 0);
2266
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2267 2268 2269 2270 2271 2272 2273 2274 2275
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2276

2277 2278 2279 2280 2281
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2282
		}
A
Arne Jansen 已提交
2283

2284
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2285 2286
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2287

2288 2289
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2290 2291 2292
	return 0;
}

2293
static void scrub_bio_end_io(struct bio *bio)
2294 2295
{
	struct scrub_bio *sbio = bio->bi_private;
2296
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2297

2298
	sbio->status = bio->bi_status;
2299 2300
	sbio->bio = bio;

2301
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2302 2303 2304 2305 2306
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2307
	struct scrub_ctx *sctx = sbio->sctx;
2308 2309
	int i;

2310
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2311
	if (sbio->status) {
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2332 2333 2334 2335
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2336

2337
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2338
		mutex_lock(&sctx->wr_lock);
2339
		scrub_wr_submit(sctx);
2340
		mutex_unlock(&sctx->wr_lock);
2341 2342
	}

2343
	scrub_pending_bio_dec(sctx);
2344 2345
}

2346 2347
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2348
				       u64 start, u32 len)
2349
{
2350
	u64 offset;
2351
	u32 nsectors;
2352
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2353 2354 2355 2356 2357 2358 2359

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2360
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2361
	offset = offset >> sectorsize_bits;
2362
	nsectors = len >> sectorsize_bits;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2374
						   u64 start, u32 len)
2375 2376 2377 2378 2379
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2380
						  u64 start, u32 len)
2381 2382 2383 2384
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2385 2386
static void scrub_block_complete(struct scrub_block *sblock)
{
2387 2388
	int corrupted = 0;

2389
	if (!sblock->no_io_error_seen) {
2390
		corrupted = 1;
2391
		scrub_handle_errored_block(sblock);
2392 2393 2394 2395 2396 2397
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2398 2399
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2400 2401
			scrub_write_block_to_dev_replace(sblock);
	}
2402 2403 2404 2405 2406 2407

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

2408
		ASSERT(end - start <= U32_MAX);
2409 2410 2411
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
 * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2432
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2433
{
2434
	bool found = false;
A
Arne Jansen 已提交
2435

2436
	while (!list_empty(&sctx->csum_list)) {
2437 2438 2439 2440
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2441
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2442
				       struct btrfs_ordered_sum, list);
2443
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2444 2445 2446
		if (sum->bytenr > logical)
			break;

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2457

2458 2459 2460 2461
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2462

2463 2464 2465 2466 2467 2468 2469
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2470
	}
2471 2472
	if (!found)
		return 0;
2473
	return 1;
A
Arne Jansen 已提交
2474 2475 2476
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2477
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2478
			u64 logical, u32 len,
2479
			u64 physical, struct btrfs_device *dev, u64 flags,
2480
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2481 2482 2483
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2484 2485 2486
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2487 2488 2489 2490
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2491 2492 2493 2494
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2495
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2496 2497 2498 2499
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2500 2501 2502 2503
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2504
	} else {
2505
		blocksize = sctx->fs_info->sectorsize;
2506
		WARN_ON(1);
2507
	}
A
Arne Jansen 已提交
2508 2509

	while (len) {
2510
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2511 2512 2513 2514
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2515
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2516
			if (have_csum == 0)
2517
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2518
		}
2519
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2520
				  mirror_num, have_csum ? csum : NULL,
2521
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2522 2523 2524 2525 2526
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2527
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2528 2529 2530 2531
	}
	return 0;
}

2532
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2533
				  u64 logical, u32 len,
2534 2535 2536 2537 2538
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2539
	const u32 sectorsize = sctx->fs_info->sectorsize;
2540 2541
	int index;

2542 2543
	ASSERT(IS_ALIGNED(len, sectorsize));

2544
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2554
	refcount_set(&sblock->refs, 1);
2555 2556 2557 2558 2559 2560 2561 2562
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2563
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2588
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2589 2590 2591 2592
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2593
		spage->page = alloc_page(GFP_KERNEL);
2594 2595
		if (!spage->page)
			goto leave_nomem;
2596 2597 2598 2599 2600 2601


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2622
				   u64 logical, u32 len,
2623 2624 2625 2626 2627 2628 2629 2630
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2631
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2632 2633 2634 2635
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2636
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2637
		blocksize = sparity->stripe_len;
2638
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2639
		blocksize = sparity->stripe_len;
2640
	} else {
2641
		blocksize = sctx->fs_info->sectorsize;
2642 2643 2644 2645
		WARN_ON(1);
	}

	while (len) {
2646
		u32 l = min(len, blocksize);
2647 2648 2649 2650
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2651
			have_csum = scrub_find_csum(sctx, logical, csum);
2652 2653 2654 2655 2656 2657 2658 2659
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2660
skip:
2661 2662 2663 2664 2665 2666 2667
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2668 2669 2670 2671 2672 2673 2674 2675
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2676 2677
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2678 2679 2680 2681 2682
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2683 2684
	u32 stripe_index;
	u32 rot;
2685
	const int data_stripes = nr_data_stripes(map);
2686

2687
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2688 2689 2690
	if (stripe_start)
		*stripe_start = last_offset;

2691
	*offset = last_offset;
2692
	for (i = 0; i < data_stripes; i++) {
2693 2694
		*offset = last_offset + i * map->stripe_len;

2695
		stripe_nr = div64_u64(*offset, map->stripe_len);
2696
		stripe_nr = div_u64(stripe_nr, data_stripes);
2697 2698

		/* Work out the disk rotation on this stripe-set */
2699
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2700 2701
		/* calculate which stripe this data locates */
		rot += i;
2702
		stripe_index = rot % map->num_stripes;
2703 2704 2705 2706 2707 2708 2709 2710 2711
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2744
static void scrub_parity_bio_endio(struct bio *bio)
2745 2746
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2747
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2748

2749
	if (bio->bi_status)
2750 2751 2752 2753
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2754

2755 2756
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2757
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2758 2759 2760 2761 2762
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2763
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2774
	length = sparity->logic_end - sparity->logic_start;
2775 2776

	btrfs_bio_counter_inc_blocked(fs_info);
2777
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2778
			       &length, &bbio);
2779
	if (ret || !bbio || !bbio->raid_map)
2780 2781
		goto bbio_out;

2782
	bio = btrfs_io_bio_alloc(0);
2783 2784 2785 2786
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2787
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2788
					      length, sparity->scrub_dev,
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2801
	btrfs_bio_counter_dec(fs_info);
2802
	btrfs_put_bbio(bbio);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2814
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2815 2816 2817 2818
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2819
	refcount_inc(&sparity->refs);
2820 2821 2822 2823
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2824
	if (!refcount_dec_and_test(&sparity->refs))
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2837
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2838 2839 2840
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2841
	struct btrfs_bio *bbio = NULL;
2842 2843 2844 2845 2846 2847 2848 2849
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2850 2851
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2852
	u64 mapped_length;
2853 2854 2855 2856 2857 2858 2859
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2860
	ASSERT(map->stripe_len <= U32_MAX);
2861
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2872
	ASSERT(map->stripe_len <= U32_MAX);
2873 2874 2875 2876 2877 2878
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2879
	refcount_set(&sparity->refs, 1);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2928 2929 2930 2931
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2932
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2933
				bytes = fs_info->nodesize;
2934 2935 2936 2937 2938 2939
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2940
			if (key.objectid >= logic_end) {
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2953 2954 2955 2956
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2957 2958
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2959
					  key.objectid, logic_start);
2960 2961 2962
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2963 2964 2965 2966
				goto next;
			}
again:
			extent_logical = key.objectid;
2967
			ASSERT(bytes <= U32_MAX);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2983
			mapped_length = extent_len;
2984
			bbio = NULL;
2985 2986 2987
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3014 3015 3016

			scrub_free_csums(sctx);

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3046 3047
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3048
		scrub_parity_mark_sectors_error(sparity, logic_start,
3049
						logic_end - logic_start);
3050
	}
3051 3052
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3053
	mutex_lock(&sctx->wr_lock);
3054
	scrub_wr_submit(sctx);
3055
	mutex_unlock(&sctx->wr_lock);
3056 3057 3058 3059 3060

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3101
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3102 3103
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3104 3105
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3106
{
3107
	struct btrfs_path *path, *ppath;
3108
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3109 3110 3111
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3112
	struct blk_plug plug;
A
Arne Jansen 已提交
3113 3114 3115 3116 3117 3118 3119
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3120
	u64 logic_end;
3121
	u64 physical_end;
A
Arne Jansen 已提交
3122
	u64 generation;
3123
	int mirror_num;
A
Arne Jansen 已提交
3124 3125
	struct reada_control *reada1;
	struct reada_control *reada2;
3126
	struct btrfs_key key;
A
Arne Jansen 已提交
3127
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3128 3129
	u64 increment = map->stripe_len;
	u64 offset;
3130 3131
	u64 extent_logical;
	u64 extent_physical;
3132 3133 3134 3135 3136
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3137 3138
	u64 stripe_logical;
	u64 stripe_end;
3139 3140
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3141
	int stop_loop = 0;
D
David Woodhouse 已提交
3142

3143
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3144
	offset = 0;
3145
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3146 3147 3148
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3149
		mirror_num = 1;
A
Arne Jansen 已提交
3150 3151 3152 3153
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3154
		mirror_num = num % map->sub_stripes + 1;
3155
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3156
		increment = map->stripe_len;
3157
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3158 3159
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3160
		mirror_num = num % map->num_stripes + 1;
3161
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3162
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3163 3164
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3165 3166
	} else {
		increment = map->stripe_len;
3167
		mirror_num = 1;
A
Arne Jansen 已提交
3168 3169 3170 3171 3172 3173
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3174 3175
	ppath = btrfs_alloc_path();
	if (!ppath) {
3176
		btrfs_free_path(path);
3177 3178 3179
		return -ENOMEM;
	}

3180 3181 3182 3183 3184
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3185 3186 3187
	path->search_commit_root = 1;
	path->skip_locking = 1;

3188 3189
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3190
	/*
A
Arne Jansen 已提交
3191 3192 3193
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3194 3195
	 */
	logical = base + offset;
3196
	physical_end = physical + nstripes * map->stripe_len;
3197
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3198
		get_raid56_logic_offset(physical_end, num,
3199
					map, &logic_end, NULL);
3200 3201 3202 3203
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3204
	wait_event(sctx->list_wait,
3205
		   atomic_read(&sctx->bios_in_flight) == 0);
3206
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3207 3208

	/* FIXME it might be better to start readahead at commit root */
3209 3210 3211
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3212
	key_end.objectid = logic_end;
3213 3214
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3215
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3216

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3228 3229 3230

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3231
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3232 3233
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3234 3235 3236 3237 3238

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3239
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3240

3241 3242 3243 3244 3245 3246 3247 3248
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3249 3250 3251 3252
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3253
	while (physical < physical_end) {
A
Arne Jansen 已提交
3254 3255 3256 3257
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3258
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3259 3260 3261 3262 3263 3264 3265 3266
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3267
			sctx->flush_all_writes = true;
3268
			scrub_submit(sctx);
3269
			mutex_lock(&sctx->wr_lock);
3270
			scrub_wr_submit(sctx);
3271
			mutex_unlock(&sctx->wr_lock);
3272
			wait_event(sctx->list_wait,
3273
				   atomic_read(&sctx->bios_in_flight) == 0);
3274
			sctx->flush_all_writes = false;
3275
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3276 3277
		}

3278 3279 3280 3281 3282 3283
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3284
				/* it is parity strip */
3285
				stripe_logical += base;
3286
				stripe_end = stripe_logical + increment;
3287 3288 3289 3290 3291 3292 3293 3294 3295
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3296 3297 3298 3299
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3300
		key.objectid = logical;
L
Liu Bo 已提交
3301
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3302 3303 3304 3305

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3306

3307
		if (ret > 0) {
3308
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3309 3310
			if (ret < 0)
				goto out;
3311 3312 3313 3314 3315 3316 3317 3318 3319
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3320 3321
		}

L
Liu Bo 已提交
3322
		stop_loop = 0;
A
Arne Jansen 已提交
3323
		while (1) {
3324 3325
			u64 bytes;

A
Arne Jansen 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3335
				stop_loop = 1;
A
Arne Jansen 已提交
3336 3337 3338 3339
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3340 3341 3342 3343
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3344
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3345
				bytes = fs_info->nodesize;
3346 3347 3348 3349
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3350 3351
				goto next;

L
Liu Bo 已提交
3352 3353 3354 3355 3356 3357
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3373 3374 3375 3376 3377
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3378 3379 3380 3381
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3382
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3383
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3384
				       key.objectid, logical);
3385 3386 3387
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3388 3389 3390
				goto next;
			}

L
Liu Bo 已提交
3391 3392
again:
			extent_logical = key.objectid;
3393
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3394 3395
			extent_len = bytes;

A
Arne Jansen 已提交
3396 3397 3398
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3399 3400 3401
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3402
			}
L
Liu Bo 已提交
3403
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3404
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3405 3406
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3407 3408
			}

L
Liu Bo 已提交
3409
			extent_physical = extent_logical - logical + physical;
3410 3411
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3412
			if (sctx->is_dev_replace)
3413 3414 3415 3416
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3417

3418 3419 3420 3421 3422 3423 3424 3425
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3426

L
Liu Bo 已提交
3427
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3428 3429
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3430
					   extent_logical - logical + physical);
3431 3432 3433

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3434 3435 3436
			if (ret)
				goto out;

3437 3438 3439
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3440 3441
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3442
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3443 3444 3445 3446
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3457
								increment;
3458 3459 3460 3461 3462 3463 3464 3465
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3466 3467 3468 3469
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3470 3471 3472 3473 3474
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3475
				if (physical >= physical_end) {
L
Liu Bo 已提交
3476 3477 3478 3479
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3480 3481 3482
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3483
		btrfs_release_path(path);
3484
skip:
A
Arne Jansen 已提交
3485 3486
		logical += increment;
		physical += map->stripe_len;
3487
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3488 3489 3490 3491 3492
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3493
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3494 3495
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3496
	}
3497
out:
A
Arne Jansen 已提交
3498
	/* push queued extents */
3499
	scrub_submit(sctx);
3500
	mutex_lock(&sctx->wr_lock);
3501
	scrub_wr_submit(sctx);
3502
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3503

3504
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3505
	btrfs_free_path(path);
3506
	btrfs_free_path(ppath);
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3518 3519 3520
	return ret < 0 ? ret : 0;
}

3521
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3522 3523
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3524
					  u64 dev_offset,
3525
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3526
{
3527
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3528
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3529 3530 3531
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3532
	int ret = 0;
A
Arne Jansen 已提交
3533

3534 3535 3536
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3550

3551
	map = em->map_lookup;
A
Arne Jansen 已提交
3552 3553 3554 3555 3556 3557 3558
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3559
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3560
		    map->stripes[i].physical == dev_offset) {
3561
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3562
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3592
static noinline_for_stack
3593
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3594
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3595 3596 3597
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3598 3599
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3600 3601
	u64 length;
	u64 chunk_offset;
3602
	int ret = 0;
3603
	int ro_set;
A
Arne Jansen 已提交
3604 3605 3606 3607
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3608
	struct btrfs_block_group *cache;
3609
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3610 3611 3612 3613 3614

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3615
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3616 3617 3618
	path->search_commit_root = 1;
	path->skip_locking = 1;

3619
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3620 3621 3622 3623 3624 3625
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3626 3627 3628 3629 3630
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3631 3632 3633 3634
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3635
					break;
3636 3637 3638
				}
			} else {
				ret = 0;
3639 3640
			}
		}
A
Arne Jansen 已提交
3641 3642 3643 3644 3645 3646

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3647
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3648 3649
			break;

3650
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3662 3663
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3664 3665 3666 3667 3668 3669 3670 3671

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3672 3673 3674 3675 3676 3677

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
				ro_set = 0;
				goto done;
			}
			spin_unlock(&cache->lock);
		}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3702
		btrfs_freeze_block_group(cache);
3703 3704
		spin_unlock(&cache->lock);

3705 3706 3707 3708 3709 3710 3711 3712 3713
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3744
		 */
3745
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3756 3757
		if (ret == 0) {
			ro_set = 1;
3758
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3759 3760 3761
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3762
			 * It is not a problem for scrub, because
3763 3764 3765 3766 3767
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3768
			btrfs_warn(fs_info,
3769
				   "failed setting block group ro: %d", ret);
3770
			btrfs_unfreeze_block_group(cache);
3771
			btrfs_put_block_group(cache);
3772
			scrub_pause_off(fs_info);
3773 3774 3775
			break;
		}

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3788
		down_write(&dev_replace->rwsem);
3789 3790 3791
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3792 3793
		up_write(&dev_replace->rwsem);

3794
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3795
				  found_key.offset, cache);
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3807
		sctx->flush_all_writes = true;
3808
		scrub_submit(sctx);
3809
		mutex_lock(&sctx->wr_lock);
3810
		scrub_wr_submit(sctx);
3811
		mutex_unlock(&sctx->wr_lock);
3812 3813 3814

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3815 3816

		scrub_pause_on(fs_info);
3817 3818 3819 3820 3821 3822

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3823 3824
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3825
		sctx->flush_all_writes = false;
3826

3827
		scrub_pause_off(fs_info);
3828

3829 3830 3831 3832 3833 3834
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

done:
3835
		down_write(&dev_replace->rwsem);
3836 3837
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3838
		up_write(&dev_replace->rwsem);
3839

3840
		if (ro_set)
3841
			btrfs_dec_block_group_ro(cache);
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3852
		    cache->used == 0) {
3853
			spin_unlock(&cache->lock);
3854 3855 3856 3857 3858
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3859 3860 3861 3862
		} else {
			spin_unlock(&cache->lock);
		}

3863
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3864 3865 3866
		btrfs_put_block_group(cache);
		if (ret)
			break;
3867
		if (sctx->is_dev_replace &&
3868
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3869 3870 3871 3872 3873 3874 3875
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3876
skip:
A
Arne Jansen 已提交
3877
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3878
		btrfs_release_path(path);
A
Arne Jansen 已提交
3879 3880 3881
	}

	btrfs_free_path(path);
3882

3883
	return ret;
A
Arne Jansen 已提交
3884 3885
}

3886 3887
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3888 3889 3890 3891 3892
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3893
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3894

3895
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3896
		return -EROFS;
3897

3898
	/* Seed devices of a new filesystem has their own generation. */
3899
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3900 3901
		gen = scrub_dev->generation;
	else
3902
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3903 3904 3905

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3906 3907
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3908
			break;
3909 3910
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3911

3912
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3913
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3914
				  NULL, bytenr);
A
Arne Jansen 已提交
3915 3916 3917
		if (ret)
			return ret;
	}
3918
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3919 3920 3921 3922

	return 0;
}

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
3946 3947 3948
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3949 3950
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3951
{
3952 3953 3954
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
3955
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3956
	int max_active = fs_info->thread_pool_size;
3957
	int ret = -ENOMEM;
A
Arne Jansen 已提交
3958

3959 3960
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
3961

3962 3963 3964 3965
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
3966

3967
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3968
					      max_active, 2);
3969 3970
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
3971

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
3985
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3986 3987
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
3988
	}
3989 3990 3991
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
3992

3993 3994
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
3995
fail_scrub_parity_workers:
3996
	btrfs_destroy_workqueue(scrub_wr_comp);
3997
fail_scrub_wr_completion_workers:
3998
	btrfs_destroy_workqueue(scrub_workers);
3999
fail_scrub_workers:
4000
	return ret;
A
Arne Jansen 已提交
4001 4002
}

4003 4004
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4005
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4006
{
4007
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4008 4009
	int ret;
	struct btrfs_device *dev;
4010
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4011

4012
	if (btrfs_fs_closing(fs_info))
4013
		return -EAGAIN;
A
Arne Jansen 已提交
4014

4015
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4016 4017 4018 4019 4020
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4021 4022
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4023 4024
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4025 4026 4027
		return -EINVAL;
	}

4028
	if (fs_info->nodesize >
4029
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4030
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4031 4032 4033 4034
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4035 4036
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4037
		       fs_info->nodesize,
4038
		       SCRUB_MAX_PAGES_PER_BLOCK,
4039
		       fs_info->sectorsize,
4040 4041 4042 4043
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4044 4045 4046 4047
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4048

4049 4050 4051 4052
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4053
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4054
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4055 4056
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4057
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058
		ret = -ENODEV;
4059
		goto out;
A
Arne Jansen 已提交
4060 4061
	}

4062 4063
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4064
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4065 4066 4067
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4068
		ret = -EROFS;
4069
		goto out;
4070 4071
	}

4072
	mutex_lock(&fs_info->scrub_lock);
4073
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4074
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4075
		mutex_unlock(&fs_info->scrub_lock);
4076
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4077
		ret = -EIO;
4078
		goto out;
A
Arne Jansen 已提交
4079 4080
	}

4081
	down_read(&fs_info->dev_replace.rwsem);
4082
	if (dev->scrub_ctx ||
4083 4084
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4085
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4086
		mutex_unlock(&fs_info->scrub_lock);
4087
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088
		ret = -EINPROGRESS;
4089
		goto out;
A
Arne Jansen 已提交
4090
	}
4091
	up_read(&fs_info->dev_replace.rwsem);
4092

4093
	sctx->readonly = readonly;
4094
	dev->scrub_ctx = sctx;
4095
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4096

4097 4098 4099 4100
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4101
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4102 4103 4104
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4115
	if (!is_dev_replace) {
4116
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4117 4118 4119 4120
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4121
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4122
		ret = scrub_supers(sctx, dev);
4123
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4124
	}
A
Arne Jansen 已提交
4125 4126

	if (!ret)
4127
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4128
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4129

4130
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4131 4132 4133
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4134
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4135

A
Arne Jansen 已提交
4136
	if (progress)
4137
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4138

4139 4140 4141 4142
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4143
	mutex_lock(&fs_info->scrub_lock);
4144
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4145 4146
	mutex_unlock(&fs_info->scrub_lock);

4147
	scrub_workers_put(fs_info);
4148
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4149

4150
	return ret;
4151 4152
out:
	scrub_workers_put(fs_info);
4153 4154 4155
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4156 4157 4158
	return ret;
}

4159
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4174
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4175 4176 4177 4178 4179
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4180
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4201
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4202
{
4203
	struct btrfs_fs_info *fs_info = dev->fs_info;
4204
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4205 4206

	mutex_lock(&fs_info->scrub_lock);
4207
	sctx = dev->scrub_ctx;
4208
	if (!sctx) {
A
Arne Jansen 已提交
4209 4210 4211
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4212
	atomic_inc(&sctx->cancel_req);
4213
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4214 4215
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4216
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4217 4218 4219 4220 4221 4222
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4223

4224
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4225 4226 4227
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4228
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4229

4230
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4231
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
A
Arne Jansen 已提交
4232
	if (dev)
4233
		sctx = dev->scrub_ctx;
4234 4235
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4236
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4237

4238
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4239
}
4240 4241

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4242
			       u64 extent_logical, u32 extent_len,
4243 4244 4245 4246 4247 4248 4249 4250 4251
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4252
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4253 4254 4255
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4256
		btrfs_put_bbio(bbio);
4257 4258 4259 4260 4261 4262
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4263
	btrfs_put_bbio(bbio);
4264
}