scrub.c 128.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
22
#include "zoned.h"
23
#include "fs.h"
24
#include "accessors.h"
25
#include "file-item.h"
26
#include "scrub.h"
A
Arne Jansen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

41
struct scrub_block;
42
struct scrub_ctx;
A
Arne Jansen 已提交
43

44
/*
45 46
 * The following three values only influence the performance.
 *
47
 * The last one configures the number of parallel and outstanding I/O
48
 * operations. The first one configures an upper limit for the number
49 50
 * of (dynamically allocated) pages that are added to a bio.
 */
51 52
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
53 54

/*
55
 * The following value times PAGE_SIZE needs to be large enough to match the
56 57
 * largest node/leaf/sector size that shall be supported.
 */
58
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
59

60 61
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

62 63 64 65 66 67 68 69 70 71 72
/*
 * Maximum number of mirrors that can be available for all profiles counting
 * the target device of dev-replace as one. During an active device replace
 * procedure, the target device of the copy operation is a mirror for the
 * filesystem data as well that can be used to read data in order to repair
 * read errors on other disks.
 *
 * Current value is derived from RAID1C4 with 4 copies.
 */
#define BTRFS_MAX_MIRRORS (4 + 1)

73
struct scrub_recover {
74
	refcount_t		refs;
75
	struct btrfs_io_context	*bioc;
76 77 78
	u64			map_length;
};

79
struct scrub_sector {
80
	struct scrub_block	*sblock;
81
	struct list_head	list;
A
Arne Jansen 已提交
82 83
	u64			flags;  /* extent flags */
	u64			generation;
84 85
	/* Offset in bytes to @sblock. */
	u32			offset;
86
	atomic_t		refs;
87 88
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98
	struct bio		*bio;
99
	blk_status_t		status;
A
Arne Jansen 已提交
100 101
	u64			logical;
	u64			physical;
102 103
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
104
	int			next_free;
105
	struct work_struct	work;
A
Arne Jansen 已提交
106 107
};

108
struct scrub_block {
109 110 111 112 113
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
114
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
115
	struct btrfs_device	*dev;
116 117
	/* Logical bytenr of the sblock */
	u64			logical;
118 119
	u64			physical;
	u64			physical_for_dev_replace;
120 121
	/* Length of sblock in bytes */
	u32			len;
122
	int			sector_count;
123
	int			mirror_num;
124

125
	atomic_t		outstanding_sectors;
126
	refcount_t		refs; /* free mem on transition to zero */
127
	struct scrub_ctx	*sctx;
128
	struct scrub_parity	*sparity;
129 130 131 132
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
133
		unsigned int	generation_error:1; /* also sets header_error */
134 135 136 137

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
138
	};
139
	struct work_struct	work;
140 141
};

142 143 144 145 146 147 148 149 150 151 152 153
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

154
	u32			stripe_len;
155

156
	refcount_t		refs;
157

158
	struct list_head	sectors_list;
159 160

	/* Work of parity check and repair */
161
	struct work_struct	work;
162 163

	/* Mark the parity blocks which have data */
164
	unsigned long		dbitmap;
165 166 167 168 169

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
170
	unsigned long		ebitmap;
171 172
};

173
struct scrub_ctx {
174
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
175
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
176 177
	int			first_free;
	int			curr;
178 179
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			sectors_per_bio;
186

187 188 189 190
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

191
	int			is_dev_replace;
192
	u64			write_pointer;
193 194 195 196

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
197
	bool                    flush_all_writes;
198

A
Arne Jansen 已提交
199 200 201 202 203
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
204 205 206 207 208 209 210 211

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
212
	refcount_t              refs;
A
Arne Jansen 已提交
213 214
};

215 216 217 218
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
219
	u64			physical;
220 221 222 223
	u64			logical;
	struct btrfs_device	*dev;
};

224 225 226 227 228 229 230
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

231
#ifndef CONFIG_64BIT
232
/* This structure is for architectures whose (void *) is smaller than u64 */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

269 270 271 272 273
static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
					     struct btrfs_device *dev,
					     u64 logical, u64 physical,
					     u64 physical_for_dev_replace,
					     int mirror_num)
274 275 276 277 278 279 280 281
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
282
	sblock->logical = logical;
283 284 285 286
	sblock->physical = physical;
	sblock->physical_for_dev_replace = physical_for_dev_replace;
	sblock->dev = dev;
	sblock->mirror_num = mirror_num;
287
	sblock->no_io_error_seen = 1;
288 289 290 291
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
292 293 294
	return sblock;
}

295 296 297 298 299 300
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
301
					       u64 logical)
302
{
303
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
304 305
	struct scrub_sector *ssector;

306 307 308
	/* We must never have scrub_block exceed U32_MAX in size. */
	ASSERT(logical - sblock->logical < U32_MAX);

309
	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
310 311
	if (!ssector)
		return NULL;
312 313 314 315 316

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

317
		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
318 319 320 321 322 323 324 325 326 327 328 329
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
330
	}
331

332 333 334 335
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
336
	ssector->offset = logical - sblock->logical;
337

338 339 340 341 342
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;
343
	sblock->len += sblock->sctx->fs_info->sectorsize;
344 345 346 347

	return ssector;
}

348 349 350
static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;
351
	pgoff_t index;
352 353 354 355 356 357 358
	/*
	 * When calling this function, ssector must be alreaday attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
359
	ASSERT(ssector->offset < sblock->len);
360

361
	index = ssector->offset >> PAGE_SHIFT;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	ASSERT(index < SCRUB_MAX_PAGES);
	ASSERT(sblock->pages[index]);
	ASSERT(PagePrivate(sblock->pages[index]));
	return sblock->pages[index];
}

static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;

	/*
	 * When calling this function, ssector must be already attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
379
	ASSERT(ssector->offset < sblock->len);
380

381
	return offset_in_page(ssector->offset);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}

static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
{
	return page_address(scrub_sector_get_page(ssector)) +
	       scrub_sector_get_page_offset(ssector);
}

static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
				unsigned int len)
{
	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
			    scrub_sector_get_page_offset(ssector));
}

397
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
398
				     struct scrub_block *sblocks_for_recheck[]);
399
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
400 401
				struct scrub_block *sblock,
				int retry_failed_mirror);
402
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
403
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
404
					     struct scrub_block *sblock_good);
405
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
406
					    struct scrub_block *sblock_good,
407
					    int sector_num, int force_write);
408
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
409 410
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
411 412 413 414
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
415 416
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
417 418
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
419 420 421 422
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
423
static void scrub_bio_end_io(struct bio *bio);
424
static void scrub_bio_end_io_worker(struct work_struct *work);
425
static void scrub_block_complete(struct scrub_block *sblock);
426 427
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
428
static void scrub_wr_submit(struct scrub_ctx *sctx);
429
static void scrub_wr_bio_end_io(struct bio *bio);
430
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
431
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
432

433
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
434
{
435 436
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
437
}
S
Stefan Behrens 已提交
438

439 440
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
441
	refcount_inc(&sctx->refs);
442 443 444 445 446 447 448
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
449
	scrub_put_ctx(sctx);
450 451
}

452
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
453 454 455 456 457 458 459 460 461
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

462
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
463 464 465
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
466
}
467

468 469
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
470 471 472 473 474 475 476 477
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

478 479 480 481 482 483
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

503
	lockdep_assert_held(&locks_root->lock);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

519 520 521
	/*
	 * Insert new lock.
	 */
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

547
	lockdep_assert_held(&locks_root->lock);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
567
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
568 569 570 571 572 573 574 575 576 577 578 579 580
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
581 582
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
600
	struct btrfs_block_group *bg_cache;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
647
	struct btrfs_block_group *bg_cache;
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

701
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
702
{
703
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
704
		struct btrfs_ordered_sum *sum;
705
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
706 707 708 709 710 711
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

712
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
713 714 715
{
	int i;

716
	if (!sctx)
A
Arne Jansen 已提交
717 718
		return;

719
	/* this can happen when scrub is cancelled */
720 721
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
722

723
		for (i = 0; i < sbio->sector_count; i++)
724
			scrub_block_put(sbio->sectors[i]->sblock);
725 726 727
		bio_put(sbio->bio);
	}

728
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
729
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
730 731 732 733 734 735

		if (!sbio)
			break;
		kfree(sbio);
	}

736
	kfree(sctx->wr_curr_bio);
737 738
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
739 740
}

741 742
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
743
	if (refcount_dec_and_test(&sctx->refs))
744 745 746
		scrub_free_ctx(sctx);
}

747 748
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
749
{
750
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
751 752
	int		i;

753
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
754
	if (!sctx)
A
Arne Jansen 已提交
755
		goto nomem;
756
	refcount_set(&sctx->refs, 1);
757
	sctx->is_dev_replace = is_dev_replace;
758
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
759
	sctx->curr = -1;
760
	sctx->fs_info = fs_info;
761
	INIT_LIST_HEAD(&sctx->csum_list);
762
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
763 764
		struct scrub_bio *sbio;

765
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
766 767
		if (!sbio)
			goto nomem;
768
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
769 770

		sbio->index = i;
771
		sbio->sctx = sctx;
772
		sbio->sector_count = 0;
773
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
774

775
		if (i != SCRUB_BIOS_PER_SCTX - 1)
776
			sctx->bios[i]->next_free = i + 1;
777
		else
778 779 780
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
781 782
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
783 784 785 786 787
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
788
	sctx->throttle_deadline = 0;
789

790 791 792
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
793
	if (is_dev_replace) {
794 795
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
796
		sctx->flush_all_writes = false;
797
	}
798

799
	return sctx;
A
Arne Jansen 已提交
800 801

nomem:
802
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
803 804 805
	return ERR_PTR(-ENOMEM);
}

806 807
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
				     u64 root, void *warn_ctx)
808 809 810 811
{
	u32 nlink;
	int ret;
	int i;
812
	unsigned nofs_flag;
813 814
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
815
	struct scrub_warning *swarn = warn_ctx;
816
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
817 818
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
819
	struct btrfs_key key;
820

D
David Sterba 已提交
821
	local_root = btrfs_get_fs_root(fs_info, root, true);
822 823 824 825 826
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

827 828 829
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
830 831 832 833 834
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
835
	if (ret) {
836
		btrfs_put_root(local_root);
837 838 839 840 841 842 843 844 845 846
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

847 848 849 850 851 852
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
853
	ipath = init_ipath(4096, local_root, swarn->path);
854
	memalloc_nofs_restore(nofs_flag);
855
	if (IS_ERR(ipath)) {
856
		btrfs_put_root(local_root);
857 858 859 860
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
861 862 863 864 865 866 867 868 869 870
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
871
		btrfs_warn_in_rcu(fs_info,
872
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
873
				  swarn->errstr, swarn->logical,
874
				  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
875
				  swarn->physical,
J
Jeff Mahoney 已提交
876
				  root, inum, offset,
877
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
878
				  (char *)(unsigned long)ipath->fspath->val[i]);
879

880
	btrfs_put_root(local_root);
881 882 883 884
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
885
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
886
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
887
			  swarn->errstr, swarn->logical,
888
			  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
889
			  swarn->physical,
J
Jeff Mahoney 已提交
890
			  root, inum, offset, ret);
891 892 893 894 895

	free_ipath(ipath);
	return 0;
}

896
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
897
{
898 899
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
900 901 902 903 904
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
905 906
	unsigned long ptr = 0;
	u64 flags = 0;
907
	u64 ref_root;
908
	u32 item_size;
909
	u8 ref_level = 0;
910
	int ret;
911

912
	WARN_ON(sblock->sector_count < 1);
913
	dev = sblock->dev;
914
	fs_info = sblock->sctx->fs_info;
915

916 917 918
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
919
			errstr, btrfs_dev_name(dev), sblock->physical);
920 921
		return;
	}
922
	path = btrfs_alloc_path();
923 924
	if (!path)
		return;
925

926 927
	swarn.physical = sblock->physical;
	swarn.logical = sblock->logical;
928
	swarn.errstr = errstr;
929
	swarn.dev = NULL;
930

931 932
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
933 934 935 936 937 938 939
	if (ret < 0)
		goto out;

	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
940
	item_size = btrfs_item_size(eb, path->slots[0]);
941

942
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
943
		do {
944 945 946
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
947
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
948
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
949
				errstr, swarn.logical,
950
				btrfs_dev_name(dev),
D
David Sterba 已提交
951
				swarn.physical,
952 953 954 955
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
956
		btrfs_release_path(path);
957
	} else {
958 959
		struct btrfs_backref_walk_ctx ctx = { 0 };

960
		btrfs_release_path(path);
961 962 963 964 965

		ctx.bytenr = found_key.objectid;
		ctx.extent_item_pos = swarn.logical - found_key.objectid;
		ctx.fs_info = fs_info;

966
		swarn.path = path;
967
		swarn.dev = dev;
968 969

		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
970 971 972 973 974 975
	}

out:
	btrfs_free_path(path);
}

976 977
static inline void scrub_get_recover(struct scrub_recover *recover)
{
978
	refcount_inc(&recover->refs);
979 980
}

981 982
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
983
{
984
	if (refcount_dec_and_test(&recover->refs)) {
985
		btrfs_bio_counter_dec(fs_info);
986
		btrfs_put_bioc(recover->bioc);
987 988 989 990
		kfree(recover);
	}
}

A
Arne Jansen 已提交
991
/*
992
 * scrub_handle_errored_block gets called when either verification of the
993 994
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
995 996 997
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
998
 */
999
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1000
{
1001
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1002
	struct btrfs_device *dev = sblock_to_check->dev;
1003 1004 1005 1006 1007
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
1008 1009
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1010 1011 1012
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
1013
	int sector_num;
1014
	int success;
1015
	bool full_stripe_locked;
1016
	unsigned int nofs_flag;
1017
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1018 1019
				      DEFAULT_RATELIMIT_BURST);

1020
	BUG_ON(sblock_to_check->sector_count < 1);
1021
	fs_info = sctx->fs_info;
1022
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1023
		/*
1024
		 * If we find an error in a super block, we just report it.
1025 1026 1027
		 * They will get written with the next transaction commit
		 * anyway
		 */
1028
		scrub_print_warning("super block error", sblock_to_check);
1029 1030 1031
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1032
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1033 1034
		return 0;
	}
1035 1036 1037
	logical = sblock_to_check->logical;
	ASSERT(sblock_to_check->mirror_num);
	failed_mirror_index = sblock_to_check->mirror_num - 1;
1038
	is_metadata = !(sblock_to_check->sectors[0]->flags &
1039
			BTRFS_EXTENT_FLAG_DATA);
1040
	have_csum = sblock_to_check->sectors[0]->have_csum;
1041

1042 1043
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
1044

1045 1046 1047 1048 1049 1050
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
1051
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1052 1053 1054
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
1064
		memalloc_nofs_restore(nofs_flag);
1065 1066 1067 1068 1069 1070 1071 1072 1073
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1074 1075 1076 1077
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1078
	 * sector by sector this time in order to know which sectors
1079 1080 1081 1082
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1093 1094 1095
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1096
	 * Only if this is not possible, the sectors are picked from
1097 1098 1099 1100 1101
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1102
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1103 1104 1105 1106 1107 1108
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
1109 1110 1111
		 *
		 * And here we don't setup the physical/dev for the sblock yet,
		 * they will be correctly initialized in scrub_setup_recheck_block().
1112
		 */
1113 1114
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
							logical, 0, 0, mirror_index);
1115 1116 1117 1118 1119 1120 1121 1122 1123
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1124 1125
	}

1126
	/* Setup the context, map the logical blocks and alloc the sectors */
1127
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1128
	if (ret) {
1129 1130 1131 1132
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1133
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1134 1135 1136
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1137
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1138

1139
	/* build and submit the bios for the failed mirror, check checksums */
1140
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1141

1142 1143 1144
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1145
		 * The error disappeared after reading sector by sector, or
1146 1147 1148 1149 1150 1151
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1152 1153
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1154
		sblock_to_check->data_corrected = 1;
1155
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1156

1157 1158
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1159
		goto out;
A
Arne Jansen 已提交
1160 1161
	}

1162
	if (!sblock_bad->no_io_error_seen) {
1163 1164 1165
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1166
		if (__ratelimit(&rs))
1167
			scrub_print_warning("i/o error", sblock_to_check);
1168
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1169
	} else if (sblock_bad->checksum_error) {
1170 1171 1172
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1173
		if (__ratelimit(&rs))
1174
			scrub_print_warning("checksum error", sblock_to_check);
1175
		btrfs_dev_stat_inc_and_print(dev,
1176
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1177
	} else if (sblock_bad->header_error) {
1178 1179 1180
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1181
		if (__ratelimit(&rs))
1182 1183
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1184
		if (sblock_bad->generation_error)
1185
			btrfs_dev_stat_inc_and_print(dev,
1186 1187
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1188
			btrfs_dev_stat_inc_and_print(dev,
1189
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1190
	}
A
Arne Jansen 已提交
1191

1192 1193 1194 1195
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1196

1197 1198
	/*
	 * now build and submit the bios for the other mirrors, check
1199 1200
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1201 1202 1203 1204 1205
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1206
	 * checksum is present, only those sectors are rewritten that had
1207
	 * an I/O error in the block to be repaired, since it cannot be
1208 1209
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1210 1211
	 * overwritten by a bad one).
	 */
1212
	for (mirror_index = 0; ;mirror_index++) {
1213
		struct scrub_block *sblock_other;
1214

1215 1216
		if (mirror_index == failed_mirror_index)
			continue;
1217 1218

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1219
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1220 1221
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1222
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1223 1224
				break;

1225
			sblock_other = sblocks_for_recheck[mirror_index];
1226
		} else {
1227
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1228
			int max_allowed = r->bioc->num_stripes - r->bioc->replace_nr_stripes;
1229 1230 1231

			if (mirror_index >= max_allowed)
				break;
1232
			if (!sblocks_for_recheck[1]->sector_count)
1233 1234 1235
				break;

			ASSERT(failed_mirror_index == 0);
1236
			sblock_other = sblocks_for_recheck[1];
1237
			sblock_other->mirror_num = 1 + mirror_index;
1238
		}
1239 1240

		/* build and submit the bios, check checksums */
1241
		scrub_recheck_block(fs_info, sblock_other, 0);
1242 1243

		if (!sblock_other->header_error &&
1244 1245
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1246 1247
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1248
				goto corrected_error;
1249 1250
			} else {
				ret = scrub_repair_block_from_good_copy(
1251 1252 1253
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1254
			}
1255 1256
		}
	}
A
Arne Jansen 已提交
1257

1258 1259
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1260 1261 1262

	/*
	 * In case of I/O errors in the area that is supposed to be
1263 1264
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1265 1266 1267 1268 1269
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1270
	 * all possible combinations of sectors from the different mirrors
1271
	 * until the checksum verification succeeds. For example, when
1272
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1273
	 * of mirror #2 is readable but the final checksum test fails,
1274
	 * then the 2nd sector of mirror #3 could be tried, whether now
1275
	 * the final checksum succeeds. But this would be a rare
1276 1277 1278 1279
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1280
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1281
	 * mirror could be repaired by taking 512 byte of a different
1282
	 * mirror, even if other 512 byte sectors in the same sectorsize
1283
	 * area are unreadable.
A
Arne Jansen 已提交
1284
	 */
1285
	success = 1;
1286 1287
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1288
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1289
		struct scrub_block *sblock_other = NULL;
1290

1291 1292
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1293
			continue;
1294

1295
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1296 1297 1298 1299 1300 1301 1302 1303
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1304 1305
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1306 1307
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1308
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1309
			     mirror_index++) {
1310
				if (!sblocks_for_recheck[mirror_index]->
1311
				    sectors[sector_num]->io_error) {
1312
					sblock_other = sblocks_for_recheck[mirror_index];
1313
					break;
1314 1315
				}
			}
1316 1317
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1318
		}
A
Arne Jansen 已提交
1319

1320 1321
		if (sctx->is_dev_replace) {
			/*
1322 1323 1324 1325
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1326 1327 1328 1329
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1330 1331
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1332
				atomic64_inc(
1333
					&fs_info->dev_replace.num_write_errors);
1334 1335 1336
				success = 0;
			}
		} else if (sblock_other) {
1337 1338 1339
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1340
			if (0 == ret)
1341
				sector_bad->io_error = 0;
1342 1343
			else
				success = 0;
1344
		}
A
Arne Jansen 已提交
1345 1346
	}

1347
	if (success && !sctx->is_dev_replace) {
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1358
			scrub_recheck_block(fs_info, sblock_bad, 1);
1359
			if (!sblock_bad->header_error &&
1360 1361 1362 1363 1364 1365 1366
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1367 1368
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1369
			sblock_to_check->data_corrected = 1;
1370
			spin_unlock(&sctx->stat_lock);
1371 1372
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1373
				logical, btrfs_dev_name(dev));
A
Arne Jansen 已提交
1374
		}
1375 1376
	} else {
did_not_correct_error:
1377 1378 1379
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1380 1381
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1382
			logical, btrfs_dev_name(dev));
I
Ilya Dryomov 已提交
1383
	}
A
Arne Jansen 已提交
1384

1385
out:
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1405
			}
1406
		}
1407
		scrub_block_put(sblock);
1408
	}
A
Arne Jansen 已提交
1409

1410
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1411
	memalloc_nofs_restore(nofs_flag);
1412 1413
	if (ret < 0)
		return ret;
1414 1415
	return 0;
}
A
Arne Jansen 已提交
1416

1417
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1418
{
1419
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1420
		return 2;
1421
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1422 1423
		return 3;
	else
1424
		return (int)bioc->num_stripes;
1425 1426
}

Z
Zhao Lei 已提交
1427
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1428
						 u64 full_stripe_logical,
1429 1430 1431 1432 1433 1434
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1435
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1436 1437 1438
		const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ?
					    nstripes - 1 : nstripes - 2;

1439
		/* RAID5/6 */
1440 1441 1442
		for (i = 0; i < nr_data_stripes; i++) {
			const u64 data_stripe_start = full_stripe_logical +
						(i * BTRFS_STRIPE_LEN);
1443

1444 1445
			if (logical >= data_stripe_start &&
			    logical < data_stripe_start + BTRFS_STRIPE_LEN)
1446 1447 1448 1449
				break;
		}

		*stripe_index = i;
1450 1451
		*stripe_offset = (logical - full_stripe_logical) &
				 BTRFS_STRIPE_LEN_MASK;
1452 1453 1454 1455 1456 1457 1458
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1459
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1460
				     struct scrub_block *sblocks_for_recheck[])
1461
{
1462
	struct scrub_ctx *sctx = original_sblock->sctx;
1463
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1464
	u64 logical = original_sblock->logical;
1465 1466 1467 1468
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1469
	struct scrub_recover *recover;
1470
	struct btrfs_io_context *bioc;
1471 1472 1473 1474
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1475
	int sector_index = 0;
1476
	int mirror_index;
1477
	int nmirrors;
1478 1479 1480
	int ret;

	while (length > 0) {
1481
		sublen = min_t(u64, length, fs_info->sectorsize);
1482
		mapped_length = sublen;
1483
		bioc = NULL;
A
Arne Jansen 已提交
1484

1485
		/*
1486 1487
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1488
		 */
1489
		btrfs_bio_counter_inc_blocked(fs_info);
1490
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1491 1492 1493
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1494
			btrfs_bio_counter_dec(fs_info);
1495 1496
			return -EIO;
		}
A
Arne Jansen 已提交
1497

1498
		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1499
		if (!recover) {
1500
			btrfs_put_bioc(bioc);
1501
			btrfs_bio_counter_dec(fs_info);
1502 1503 1504
			return -ENOMEM;
		}

1505
		refcount_set(&recover->refs, 1);
1506
		recover->bioc = bioc;
1507 1508
		recover->map_length = mapped_length;

1509
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1510

1511
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1512

1513
		for (mirror_index = 0; mirror_index < nmirrors;
1514 1515
		     mirror_index++) {
			struct scrub_block *sblock;
1516
			struct scrub_sector *sector;
1517

1518
			sblock = sblocks_for_recheck[mirror_index];
1519
			sblock->sctx = sctx;
1520

1521
			sector = alloc_scrub_sector(sblock, logical);
1522
			if (!sector) {
1523 1524 1525
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1526
				scrub_put_recover(fs_info, recover);
1527 1528
				return -ENOMEM;
			}
1529 1530 1531
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1532
			if (have_csum)
1533
				memcpy(sector->csum,
1534
				       original_sblock->sectors[0]->csum,
1535
				       sctx->fs_info->csum_size);
1536

Z
Zhao Lei 已提交
1537
			scrub_stripe_index_and_offset(logical,
1538
						      bioc->map_type,
1539
						      bioc->full_stripe_logical,
1540
						      bioc->num_stripes -
1541
						      bioc->replace_nr_stripes,
1542 1543 1544
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
			/*
			 * We're at the first sector, also populate @sblock
			 * physical and dev.
			 */
			if (sector_index == 0) {
				sblock->physical =
					bioc->stripes[stripe_index].physical +
					stripe_offset;
				sblock->dev = bioc->stripes[stripe_index].dev;
				sblock->physical_for_dev_replace =
					original_sblock->physical_for_dev_replace;
			}
1557

1558
			BUG_ON(sector_index >= original_sblock->sector_count);
1559
			scrub_get_recover(recover);
1560
			sector->recover = recover;
1561
		}
1562
		scrub_put_recover(fs_info, recover);
1563 1564
		length -= sublen;
		logical += sublen;
1565
		sector_index++;
1566 1567 1568
	}

	return 0;
I
Ilya Dryomov 已提交
1569 1570
}

1571
static void scrub_bio_wait_endio(struct bio *bio)
1572
{
1573
	complete(bio->bi_private);
1574 1575 1576 1577
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1578
					struct scrub_sector *sector)
1579
{
1580
	DECLARE_COMPLETION_ONSTACK(done);
1581

1582 1583
	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
				 SECTOR_SHIFT;
1584 1585
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1586
	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1587

1588 1589
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1590 1591
}

L
Liu Bo 已提交
1592 1593 1594
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1595
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1596
	struct bio *bio;
1597
	int i;
L
Liu Bo 已提交
1598

1599
	/* All sectors in sblock belong to the same stripe on the same device. */
1600 1601
	ASSERT(sblock->dev);
	if (!sblock->dev->bdev)
L
Liu Bo 已提交
1602 1603
		goto out;

1604
	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1605

1606
	for (i = 0; i < sblock->sector_count; i++) {
1607
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1608

1609
		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
L
Liu Bo 已提交
1610 1611
	}

1612
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1623 1624
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1625 1626 1627 1628

	sblock->no_io_error_seen = 0;
}

1629
/*
1630 1631 1632 1633 1634
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1635
 */
1636
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1637 1638
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1639
{
1640
	int i;
I
Ilya Dryomov 已提交
1641

1642
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1643

L
Liu Bo 已提交
1644
	/* short cut for raid56 */
1645
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1646 1647
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1648
	for (i = 0; i < sblock->sector_count; i++) {
1649
		struct scrub_sector *sector = sblock->sectors[i];
1650 1651
		struct bio bio;
		struct bio_vec bvec;
1652

1653
		if (sblock->dev->bdev == NULL) {
1654
			sector->io_error = 1;
1655 1656 1657 1658
			sblock->no_io_error_seen = 0;
			continue;
		}

1659
		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1660
		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1661 1662
		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
					SECTOR_SHIFT;
1663

1664 1665
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1666
			sector->io_error = 1;
L
Liu Bo 已提交
1667
			sblock->no_io_error_seen = 0;
1668
		}
1669

1670
		bio_uninit(&bio);
1671
	}
I
Ilya Dryomov 已提交
1672

1673
	if (sblock->no_io_error_seen)
1674
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1675 1676
}

1677
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1678
{
1679
	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
M
Miao Xie 已提交
1680 1681
	int ret;

1682
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1683 1684 1685
	return !ret;
}

1686
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1687
{
1688 1689 1690
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1691

1692
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1693 1694 1695
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1696 1697
}

1698
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1699
					     struct scrub_block *sblock_good)
1700
{
1701
	int i;
1702
	int ret = 0;
I
Ilya Dryomov 已提交
1703

1704
	for (i = 0; i < sblock_bad->sector_count; i++) {
1705
		int ret_sub;
I
Ilya Dryomov 已提交
1706

1707 1708
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1709 1710
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1711
	}
1712 1713 1714 1715

	return ret;
}

1716 1717 1718
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1719
{
1720 1721
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1722
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1723
	const u32 sectorsize = fs_info->sectorsize;
1724 1725

	if (force_write || sblock_bad->header_error ||
1726
	    sblock_bad->checksum_error || sector_bad->io_error) {
1727 1728
		struct bio bio;
		struct bio_vec bvec;
1729 1730
		int ret;

1731
		if (!sblock_bad->dev->bdev) {
1732
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1733
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1734 1735 1736
			return -EIO;
		}

1737 1738 1739
		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = (sblock_bad->physical +
					 sector_bad->offset) >> SECTOR_SHIFT;
1740
		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1741

1742 1743 1744
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1745

1746
		if (ret) {
1747
			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1748
				BTRFS_DEV_STAT_WRITE_ERRS);
1749
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1750 1751
			return -EIO;
		}
A
Arne Jansen 已提交
1752 1753
	}

1754 1755 1756
	return 0;
}

1757 1758
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1759
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1760
	int i;
1761

1762 1763 1764 1765 1766 1767 1768
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1769
	for (i = 0; i < sblock->sector_count; i++) {
1770 1771
		int ret;

1772
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1773
		if (ret)
1774
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1775 1776 1777
	}
}

1778
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1779
{
1780
	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1781
	struct scrub_sector *sector = sblock->sectors[sector_num];
1782

1783
	if (sector->io_error)
1784
		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1785

1786
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1797 1798 1799
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1811 1812 1813 1814 1815
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

1816 1817
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1818
{
1819
	struct scrub_block *sblock = sector->sblock;
1820 1821
	struct scrub_bio *sbio;
	int ret;
1822
	const u32 sectorsize = sctx->fs_info->sectorsize;
1823

1824
	mutex_lock(&sctx->wr_lock);
1825
again:
1826 1827
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1828
					      GFP_KERNEL);
1829 1830
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1831 1832
			return -ENOMEM;
		}
1833
		sctx->wr_curr_bio->sctx = sctx;
1834
		sctx->wr_curr_bio->sector_count = 0;
1835
	}
1836
	sbio = sctx->wr_curr_bio;
1837
	if (sbio->sector_count == 0) {
1838 1839
		ret = fill_writer_pointer_gap(sctx, sector->offset +
					      sblock->physical_for_dev_replace);
1840 1841 1842 1843 1844
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1845 1846
		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
1847
		sbio->dev = sctx->wr_tgtdev;
1848 1849 1850
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1851
		}
1852 1853 1854
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1855
		sbio->status = 0;
1856
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1857
		   sblock->physical_for_dev_replace + sector->offset ||
1858
		   sbio->logical + sbio->sector_count * sectorsize !=
1859
		   sblock->logical + sector->offset) {
1860 1861 1862 1863
		scrub_wr_submit(sctx);
		goto again;
	}

1864
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1865
	if (ret != sectorsize) {
1866
		if (sbio->sector_count < 1) {
1867 1868
			bio_put(sbio->bio);
			sbio->bio = NULL;
1869
			mutex_unlock(&sctx->wr_lock);
1870 1871 1872 1873 1874 1875
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1876
	sbio->sectors[sbio->sector_count] = sector;
1877
	scrub_sector_get(sector);
1878 1879 1880 1881 1882 1883 1884
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

1885 1886
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1887
		scrub_wr_submit(sctx);
1888
	mutex_unlock(&sctx->wr_lock);
1889 1890 1891 1892 1893 1894 1895 1896

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1897
	if (!sctx->wr_curr_bio)
1898 1899
		return;

1900 1901
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1902 1903 1904 1905 1906
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1907 1908
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1909 1910

	if (btrfs_is_zoned(sctx->fs_info))
1911
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1912
			sctx->fs_info->sectorsize;
1913 1914
}

1915
static void scrub_wr_bio_end_io(struct bio *bio)
1916 1917
{
	struct scrub_bio *sbio = bio->bi_private;
1918
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1919

1920
	sbio->status = bio->bi_status;
1921 1922
	sbio->bio = bio;

1923 1924
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1925 1926
}

1927
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1928 1929 1930 1931 1932
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1933
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1934
	if (sbio->status) {
1935
		struct btrfs_dev_replace *dev_replace =
1936
			&sbio->sctx->fs_info->dev_replace;
1937

1938 1939
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1940

1941
			sector->io_error = 1;
1942
			atomic64_inc(&dev_replace->num_write_errors);
1943 1944 1945
		}
	}

1946 1947 1948 1949 1950 1951
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
1952
		scrub_sector_put(sbio->sectors[i]);
1953
	}
1954 1955 1956 1957 1958 1959 1960

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1961 1962 1963 1964
{
	u64 flags;
	int ret;

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1977 1978
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1979 1980 1981 1982 1983 1984
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1985
		ret = scrub_checksum_super(sblock);
1986 1987 1988 1989
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1990 1991

	return ret;
A
Arne Jansen 已提交
1992 1993
}

1994
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1995
{
1996
	struct scrub_ctx *sctx = sblock->sctx;
1997 1998
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1999
	u8 csum[BTRFS_CSUM_SIZE];
2000
	struct scrub_sector *sector;
2001
	char *kaddr;
A
Arne Jansen 已提交
2002

2003
	BUG_ON(sblock->sector_count < 1);
2004 2005
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
2006 2007
		return 0;

2008
	kaddr = scrub_sector_get_kaddr(sector);
2009

2010 2011
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
2012

2013
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
2014

2015
	if (memcmp(csum, sector->csum, fs_info->csum_size))
2016
		sblock->checksum_error = 1;
2017
	return sblock->checksum_error;
A
Arne Jansen 已提交
2018 2019
}

2020
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2021
{
2022
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2023
	struct btrfs_header *h;
2024
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2025
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2026 2027
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2028 2029 2030 2031 2032 2033 2034
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2035
	int i;
2036
	struct scrub_sector *sector;
2037
	char *kaddr;
2038

2039
	BUG_ON(sblock->sector_count < 1);
2040

2041
	/* Each member in sectors is just one sector */
2042
	ASSERT(sblock->sector_count == num_sectors);
2043

2044
	sector = sblock->sectors[0];
2045
	kaddr = scrub_sector_get_kaddr(sector);
2046
	h = (struct btrfs_header *)kaddr;
2047
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
2048 2049 2050 2051 2052 2053

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2054
	if (sblock->logical != btrfs_stack_header_bytenr(h)) {
2055
		sblock->header_error = 1;
2056 2057 2058 2059 2060 2061
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_bytenr(h),
			      sblock->logical);
		goto out;
2062
	}
A
Arne Jansen 已提交
2063

2064
	if (!scrub_check_fsid(h->fsid, sector)) {
2065
		sblock->header_error = 1;
2066 2067 2068 2069 2070 2071
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->fsid, sblock->dev->fs_devices->fsid);
		goto out;
	}
A
Arne Jansen 已提交
2072

2073
	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) {
2074
		sblock->header_error = 1;
2075 2076 2077 2078 2079 2080
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		goto out;
	}
A
Arne Jansen 已提交
2081

2082 2083 2084
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2085
			    sectorsize - BTRFS_CSUM_SIZE);
2086

2087
	for (i = 1; i < num_sectors; i++) {
2088
		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2089
		crypto_shash_update(shash, kaddr, sectorsize);
2090 2091
	}

2092
	crypto_shash_final(shash, calculated_csum);
2093
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) {
2094
		sblock->checksum_error = 1;
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      sblock->logical, sblock->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		goto out;
	}

	if (sector->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_generation(h),
			      sector->generation);
	}
A
Arne Jansen 已提交
2112

2113
out:
2114
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2115 2116
}

2117
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2118 2119
{
	struct btrfs_super_block *s;
2120
	struct scrub_ctx *sctx = sblock->sctx;
2121 2122
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2123
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2124
	struct scrub_sector *sector;
2125
	char *kaddr;
2126 2127
	int fail_gen = 0;
	int fail_cor = 0;
2128

2129
	BUG_ON(sblock->sector_count < 1);
2130
	sector = sblock->sectors[0];
2131
	kaddr = scrub_sector_get_kaddr(sector);
2132
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2133

2134
	if (sblock->logical != btrfs_super_bytenr(s))
2135
		++fail_cor;
A
Arne Jansen 已提交
2136

2137
	if (sector->generation != btrfs_super_generation(s))
2138
		++fail_gen;
A
Arne Jansen 已提交
2139

2140
	if (!scrub_check_fsid(s->fsid, sector))
2141
		++fail_cor;
A
Arne Jansen 已提交
2142

2143 2144 2145 2146
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2147

2148
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2149
		++fail_cor;
A
Arne Jansen 已提交
2150

2151
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2152 2153
}

2154 2155
static void scrub_block_put(struct scrub_block *sblock)
{
2156
	if (refcount_dec_and_test(&sblock->refs)) {
2157 2158
		int i;

2159 2160 2161
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2162
		for (i = 0; i < sblock->sector_count; i++)
2163
			scrub_sector_put(sblock->sectors[i]);
2164 2165 2166 2167 2168 2169
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2170 2171 2172 2173
		kfree(sblock);
	}
}

2174
static void scrub_sector_get(struct scrub_sector *sector)
2175
{
2176
	atomic_inc(&sector->refs);
2177 2178
}

2179
static void scrub_sector_put(struct scrub_sector *sector)
2180
{
2181
	if (atomic_dec_and_test(&sector->refs))
2182
		kfree(sector);
2183 2184
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2244
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2245 2246 2247
{
	struct scrub_bio *sbio;

2248
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2249
		return;
A
Arne Jansen 已提交
2250

2251 2252
	scrub_throttle(sctx);

2253 2254
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2255
	scrub_pending_bio_inc(sctx);
2256 2257
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2258 2259
}

2260 2261
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2262
{
2263
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2264
	struct scrub_bio *sbio;
2265
	const u32 sectorsize = sctx->fs_info->sectorsize;
2266
	int ret;
A
Arne Jansen 已提交
2267 2268 2269 2270 2271

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2272 2273 2274 2275 2276 2277
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2278
			sctx->bios[sctx->curr]->sector_count = 0;
2279
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2280
		} else {
2281 2282
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2283 2284
		}
	}
2285
	sbio = sctx->bios[sctx->curr];
2286
	if (sbio->sector_count == 0) {
2287 2288 2289
		sbio->physical = sblock->physical + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
		sbio->dev = sblock->dev;
2290 2291 2292
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2293
		}
2294 2295 2296
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2297
		sbio->status = 0;
2298
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2299
		   sblock->physical + sector->offset ||
2300
		   sbio->logical + sbio->sector_count * sectorsize !=
2301 2302
		   sblock->logical + sector->offset ||
		   sbio->dev != sblock->dev) {
2303
		scrub_submit(sctx);
A
Arne Jansen 已提交
2304 2305
		goto again;
	}
2306

2307
	sbio->sectors[sbio->sector_count] = sector;
2308
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2309
	if (ret != sectorsize) {
2310
		if (sbio->sector_count < 1) {
2311 2312 2313 2314
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2315
		scrub_submit(sctx);
2316 2317 2318
		goto again;
	}

2319
	scrub_block_get(sblock); /* one for the page added to the bio */
2320
	atomic_inc(&sblock->outstanding_sectors);
2321 2322
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2323
		scrub_submit(sctx);
2324 2325 2326 2327

	return 0;
}

2328
static void scrub_missing_raid56_end_io(struct bio *bio)
2329 2330
{
	struct scrub_block *sblock = bio->bi_private;
2331
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2332

2333
	btrfs_bio_counter_dec(fs_info);
2334
	if (bio->bi_status)
2335 2336
		sblock->no_io_error_seen = 0;

2337 2338
	bio_put(bio);

2339
	queue_work(fs_info->scrub_workers, &sblock->work);
2340 2341
}

2342
static void scrub_missing_raid56_worker(struct work_struct *work)
2343 2344 2345
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2346
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2347 2348 2349
	u64 logical;
	struct btrfs_device *dev;

2350 2351
	logical = sblock->logical;
	dev = sblock->dev;
2352

2353
	if (sblock->no_io_error_seen)
2354
		scrub_recheck_block_checksum(sblock);
2355 2356 2357 2358 2359

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2360
		btrfs_err_rl_in_rcu(fs_info,
2361
			"IO error rebuilding logical %llu for dev %s",
2362
			logical, btrfs_dev_name(dev));
2363 2364 2365 2366
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2367
		btrfs_err_rl_in_rcu(fs_info,
2368
			"failed to rebuild valid logical %llu for dev %s",
2369
			logical, btrfs_dev_name(dev));
2370 2371 2372 2373
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2374
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2375
		mutex_lock(&sctx->wr_lock);
2376
		scrub_wr_submit(sctx);
2377
		mutex_unlock(&sctx->wr_lock);
2378 2379
	}

2380
	scrub_block_put(sblock);
2381 2382 2383 2384 2385 2386
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2387
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2388
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2389
	u64 logical = sblock->logical;
2390
	struct btrfs_io_context *bioc = NULL;
2391 2392 2393 2394 2395
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2396
	btrfs_bio_counter_inc_blocked(fs_info);
2397
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2398
			       &length, &bioc);
2399
	if (ret || !bioc)
2400
		goto bioc_out;
2401 2402

	if (WARN_ON(!sctx->is_dev_replace ||
2403
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2404 2405 2406 2407
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2408
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2409
		 */
2410
		goto bioc_out;
2411 2412
	}

2413
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2414 2415 2416 2417
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2418
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2419 2420 2421
	if (!rbio)
		goto rbio_out;

2422
	for (i = 0; i < sblock->sector_count; i++) {
2423
		struct scrub_sector *sector = sblock->sectors[i];
2424

2425 2426
		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
				       scrub_sector_get_page_offset(sector),
2427
				       sector->offset + sector->sblock->logical);
2428 2429
	}

2430
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2431 2432 2433
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
2434
	btrfs_put_bioc(bioc);
2435 2436 2437 2438
	return;

rbio_out:
	bio_put(bio);
2439
bioc_out:
2440
	btrfs_bio_counter_dec(fs_info);
2441
	btrfs_put_bioc(bioc);
2442 2443 2444 2445 2446
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2447
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2448
		       u64 physical, struct btrfs_device *dev, u64 flags,
2449
		       u64 gen, int mirror_num, u8 *csum,
2450
		       u64 physical_for_dev_replace)
2451 2452
{
	struct scrub_block *sblock;
2453
	const u32 sectorsize = sctx->fs_info->sectorsize;
2454 2455
	int index;

2456 2457
	sblock = alloc_scrub_block(sctx, dev, logical, physical,
				   physical_for_dev_replace, mirror_num);
2458
	if (!sblock) {
2459 2460 2461
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2462
		return -ENOMEM;
A
Arne Jansen 已提交
2463
	}
2464 2465

	for (index = 0; len > 0; index++) {
2466
		struct scrub_sector *sector;
2467 2468 2469 2470 2471 2472
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2473

2474
		sector = alloc_scrub_sector(sblock, logical);
2475
		if (!sector) {
2476 2477 2478
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2479
			scrub_block_put(sblock);
2480 2481
			return -ENOMEM;
		}
2482 2483
		sector->flags = flags;
		sector->generation = gen;
2484
		if (csum) {
2485 2486
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2487
		} else {
2488
			sector->have_csum = 0;
2489 2490 2491 2492
		}
		len -= l;
		logical += l;
		physical += l;
2493
		physical_for_dev_replace += l;
2494 2495
	}

2496
	WARN_ON(sblock->sector_count == 0);
2497
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2498 2499 2500 2501 2502 2503
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2504
		for (index = 0; index < sblock->sector_count; index++) {
2505
			struct scrub_sector *sector = sblock->sectors[index];
2506
			int ret;
2507

2508
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2509 2510 2511 2512
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2513
		}
A
Arne Jansen 已提交
2514

2515
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2516 2517
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2518

2519 2520
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2521 2522 2523
	return 0;
}

2524
static void scrub_bio_end_io(struct bio *bio)
2525 2526
{
	struct scrub_bio *sbio = bio->bi_private;
2527
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2528

2529
	sbio->status = bio->bi_status;
2530 2531
	sbio->bio = bio;

2532
	queue_work(fs_info->scrub_workers, &sbio->work);
2533 2534
}

2535
static void scrub_bio_end_io_worker(struct work_struct *work)
2536 2537
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2538
	struct scrub_ctx *sctx = sbio->sctx;
2539 2540
	int i;

2541
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2542
	if (sbio->status) {
2543 2544
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2545

2546 2547
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2548 2549 2550
		}
	}

2551
	/* Now complete the scrub_block items that have all pages completed */
2552 2553
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2554
		struct scrub_block *sblock = sector->sblock;
2555

2556
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2557 2558 2559 2560 2561 2562
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2563 2564 2565 2566
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2567

2568
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2569
		mutex_lock(&sctx->wr_lock);
2570
		scrub_wr_submit(sctx);
2571
		mutex_unlock(&sctx->wr_lock);
2572 2573
	}

2574
	scrub_pending_bio_dec(sctx);
2575 2576
}

2577 2578
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2579
				       u64 start, u32 len)
2580
{
2581
	u64 offset;
2582
	u32 nsectors;
2583
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2584 2585 2586 2587 2588 2589 2590

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2591
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2592
	offset = offset >> sectorsize_bits;
2593
	nsectors = len >> sectorsize_bits;
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2605
						   u64 start, u32 len)
2606
{
2607
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2608 2609 2610
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2611
						  u64 start, u32 len)
2612
{
2613
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2614 2615
}

2616 2617
static void scrub_block_complete(struct scrub_block *sblock)
{
2618 2619
	int corrupted = 0;

2620
	if (!sblock->no_io_error_seen) {
2621
		corrupted = 1;
2622
		scrub_handle_errored_block(sblock);
2623 2624 2625 2626 2627 2628
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2629 2630
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2631 2632
			scrub_write_block_to_dev_replace(sblock);
	}
2633 2634

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2635 2636 2637
		u64 start = sblock->logical;
		u64 end = sblock->logical +
			  sblock->sectors[sblock->sector_count - 1]->offset +
2638
			  sblock->sctx->fs_info->sectorsize;
2639

2640
		ASSERT(end - start <= U32_MAX);
2641 2642 2643
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2644 2645
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2658
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2659 2660 2661 2662 2663
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2664
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2665
{
2666
	bool found = false;
A
Arne Jansen 已提交
2667

2668
	while (!list_empty(&sctx->csum_list)) {
2669 2670 2671 2672
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2673
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2674
				       struct btrfs_ordered_sum, list);
2675
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2676 2677 2678
		if (sum->bytenr > logical)
			break;

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2689

2690 2691 2692 2693
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2694

2695 2696 2697 2698 2699 2700 2701
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2702
	}
2703 2704
	if (!found)
		return 0;
2705
	return 1;
A
Arne Jansen 已提交
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static bool should_use_device(struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      bool follow_replace_read_mode)
{
	struct btrfs_device *replace_srcdev = fs_info->dev_replace.srcdev;
	struct btrfs_device *replace_tgtdev = fs_info->dev_replace.tgtdev;

	if (!dev->bdev)
		return false;

	/*
	 * We're doing scrub/replace, if it's pure scrub, no tgtdev should be
	 * here.  If it's replace, we're going to write data to tgtdev, thus
	 * the current data of the tgtdev is all garbage, thus we can not use
	 * it at all.
	 */
	if (dev == replace_tgtdev)
		return false;

	/* No need to follow replace read mode, any existing device is fine. */
	if (!follow_replace_read_mode)
		return true;

	/* Need to follow the mode. */
	if (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	    BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		return dev != replace_srcdev;
	return true;
}
static int scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				u64 extent_logical, u32 extent_len,
				u64 *extent_physical,
				struct btrfs_device **extent_dev,
				int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_io_context *bioc = NULL;
	int ret;
	int i;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
			      extent_logical, &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len) {
		btrfs_put_bioc(bioc);
		btrfs_err_rl(fs_info, "btrfs_map_block() failed for logical %llu: %d",
				extent_logical, ret);
		return -EIO;
	}

	/*
	 * First loop to exclude all missing devices and the source device if
	 * needed.  And we don't want to use target device as mirror either, as
	 * we're doing the replace, the target device range contains nothing.
	 */
	for (i = 0; i < bioc->num_stripes - bioc->replace_nr_stripes; i++) {
		struct btrfs_io_stripe *stripe = &bioc->stripes[i];

		if (!should_use_device(fs_info, stripe->dev, true))
			continue;
		goto found;
	}
	/*
	 * We didn't find any alternative mirrors, we have to break our replace
	 * read mode, or we can not read at all.
	 */
	for (i = 0; i < bioc->num_stripes - bioc->replace_nr_stripes; i++) {
		struct btrfs_io_stripe *stripe = &bioc->stripes[i];

		if (!should_use_device(fs_info, stripe->dev, false))
			continue;
		goto found;
	}

	btrfs_err_rl(fs_info, "failed to find any live mirror for logical %llu",
			extent_logical);
	return -EIO;

found:
	*extent_physical = bioc->stripes[i].physical;
	*extent_mirror_num = i + 1;
	*extent_dev = bioc->stripes[i].dev;
	btrfs_put_bioc(bioc);
	return 0;
}

static bool scrub_need_different_mirror(struct scrub_ctx *sctx,
					struct map_lookup *map,
					struct btrfs_device *dev)
{
	/*
	 * For RAID56, all the extra mirrors are rebuilt from other P/Q,
	 * cannot utilize other mirrors directly.
	 */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
		return false;

	if (!dev->bdev)
		return true;

	return sctx->fs_info->dev_replace.cont_reading_from_srcdev_mode ==
		BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID;
}

A
Arne Jansen 已提交
2812
/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2813
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2814
			u64 logical, u32 len,
2815
			u64 physical, struct btrfs_device *dev, u64 flags,
2816
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2817
{
2818 2819 2820
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2821 2822
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2823 2824 2825
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2826
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2827
			blocksize = BTRFS_STRIPE_LEN;
L
Liu Bo 已提交
2828
		else
2829
			blocksize = sctx->fs_info->sectorsize;
2830 2831 2832 2833
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2834
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2835
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2836
			blocksize = BTRFS_STRIPE_LEN;
L
Liu Bo 已提交
2837 2838
		else
			blocksize = sctx->fs_info->nodesize;
2839 2840 2841 2842
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2843
	} else {
2844
		blocksize = sctx->fs_info->sectorsize;
2845
		WARN_ON(1);
2846
	}
A
Arne Jansen 已提交
2847

2848
	/*
2849 2850
	 * For dev-replace case, we can have @dev being a missing device, or
	 * we want to avoid reading from the source device if possible.
2851
	 */
2852 2853 2854 2855 2856 2857
	if (sctx->is_dev_replace && scrub_need_different_mirror(sctx, map, dev)) {
		ret = scrub_find_good_copy(sctx->fs_info, logical, len,
					   &src_physical, &src_dev, &src_mirror);
		if (ret < 0)
			return ret;
	}
A
Arne Jansen 已提交
2858
	while (len) {
2859
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2860 2861 2862 2863
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2864
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2865
			if (have_csum == 0)
2866
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2867
		}
2868 2869 2870
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2871 2872 2873 2874 2875
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2876
		src_physical += l;
A
Arne Jansen 已提交
2877 2878 2879 2880
	}
	return 0;
}

2881
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2882
				  u64 logical, u32 len,
2883 2884 2885 2886 2887
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2888
	const u32 sectorsize = sctx->fs_info->sectorsize;
2889 2890
	int index;

2891 2892
	ASSERT(IS_ALIGNED(len, sectorsize));

2893
	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2905
		struct scrub_sector *sector;
2906

2907
		sector = alloc_scrub_sector(sblock, logical);
2908
		if (!sector) {
2909 2910 2911 2912 2913 2914
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2915
		sblock->sectors[index] = sector;
2916
		/* For scrub parity */
2917 2918 2919 2920
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->flags = flags;
		sector->generation = gen;
2921
		if (csum) {
2922 2923
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2924
		} else {
2925
			sector->have_csum = 0;
2926
		}
2927 2928 2929 2930 2931

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2932 2933
	}

2934 2935
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2936
		struct scrub_sector *sector = sblock->sectors[index];
2937 2938
		int ret;

2939
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2940 2941 2942 2943 2944 2945
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2946
	/* Last one frees, either here or in bio completion for last sector */
2947 2948 2949 2950 2951
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2952
				   u64 logical, u32 len,
2953 2954 2955 2956 2957 2958 2959 2960
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2961
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2962 2963 2964 2965
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2966
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2967
		blocksize = sparity->stripe_len;
2968
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2969
		blocksize = sparity->stripe_len;
2970
	} else {
2971
		blocksize = sctx->fs_info->sectorsize;
2972 2973 2974 2975
		WARN_ON(1);
	}

	while (len) {
2976
		u32 l = min(len, blocksize);
2977 2978 2979 2980
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2981
			have_csum = scrub_find_csum(sctx, logical, csum);
2982 2983 2984
			if (have_csum == 0)
				goto skip;
		}
2985
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2986 2987 2988 2989
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2990
skip:
2991 2992 2993 2994 2995 2996 2997
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2998 2999 3000 3001 3002 3003 3004 3005
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
3006 3007
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
3008 3009 3010 3011
{
	int i;
	int j = 0;
	u64 last_offset;
3012
	const int data_stripes = nr_data_stripes(map);
3013

3014
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
3015 3016 3017
	if (stripe_start)
		*stripe_start = last_offset;

3018
	*offset = last_offset;
3019
	for (i = 0; i < data_stripes; i++) {
3020 3021 3022 3023
		u32 stripe_nr;
		u32 stripe_index;
		u32 rot;

3024
		*offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT);
3025

3026
		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
3027 3028

		/* Work out the disk rotation on this stripe-set */
3029 3030
		rot = stripe_nr % map->num_stripes;
		stripe_nr /= map->num_stripes;
3031 3032
		/* calculate which stripe this data locates */
		rot += i;
3033
		stripe_index = rot % map->num_stripes;
3034 3035 3036 3037 3038
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
3039
	*offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT);
3040 3041 3042
	return 1;
}

3043 3044 3045
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3046
	struct scrub_sector *curr, *next;
3047 3048
	int nbits;

3049
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
3050 3051 3052 3053 3054 3055 3056
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

3057
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
3058
		list_del_init(&curr->list);
3059
		scrub_sector_put(curr);
3060 3061 3062 3063 3064
	}

	kfree(sparity);
}

3065
static void scrub_parity_bio_endio_worker(struct work_struct *work)
3066 3067 3068 3069 3070
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

3071
	btrfs_bio_counter_dec(sctx->fs_info);
3072 3073 3074 3075
	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3076
static void scrub_parity_bio_endio(struct bio *bio)
3077
{
Y
Yu Zhe 已提交
3078
	struct scrub_parity *sparity = bio->bi_private;
3079
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3080

3081
	if (bio->bi_status)
3082 3083
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
3084 3085

	bio_put(bio);
3086

3087 3088
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
3089 3090 3091 3092 3093
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3094
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3095 3096
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
3097
	struct btrfs_io_context *bioc = NULL;
3098 3099 3100
	u64 length;
	int ret;

3101 3102
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
3103 3104
		goto out;

3105
	length = sparity->logic_end - sparity->logic_start;
3106 3107

	btrfs_bio_counter_inc_blocked(fs_info);
3108
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3109
			       &length, &bioc);
3110
	if (ret || !bioc)
3111
		goto bioc_out;
3112

3113
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
3114 3115 3116 3117
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3118
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
3119
					      sparity->scrub_dev,
3120
					      &sparity->dbitmap,
3121
					      sparity->nsectors);
3122
	btrfs_put_bioc(bioc);
3123 3124 3125 3126 3127 3128 3129 3130 3131
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
3132
bioc_out:
3133
	btrfs_bio_counter_dec(fs_info);
3134
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3145
	refcount_inc(&sparity->refs);
3146 3147 3148 3149
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3150
	if (!refcount_dec_and_test(&sparity->refs))
3151 3152 3153 3154 3155
		return;

	scrub_parity_check_and_repair(sparity);
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3282 3283 3284 3285 3286 3287 3288 3289 3290
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3301
	u64 cur_logical = logical;
3302 3303 3304 3305 3306 3307 3308
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3309
	while (cur_logical < logical + BTRFS_STRIPE_LEN) {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3320
		ret = find_first_extent_item(extent_root, path, cur_logical,
3321
					     logical + BTRFS_STRIPE_LEN - cur_logical);
3322 3323 3324
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3325 3326
			break;
		}
3327
		if (ret < 0)
3328
			break;
3329 3330
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3331

3332
		/* Metadata should not cross stripe boundaries */
3333
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3334
		    does_range_cross_boundary(extent_start, extent_size,
3335
					      logical, BTRFS_STRIPE_LEN)) {
3336
			btrfs_err(fs_info,
3337 3338
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3339 3340 3341
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3342 3343
			cur_logical += extent_size;
			continue;
3344 3345
		}

3346 3347
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3348

3349 3350
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
3351
				  logical + BTRFS_STRIPE_LEN) - cur_logical;
3352 3353
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

3373 3374 3375
		ret = btrfs_lookup_csums_list(csum_root, extent_start,
					      extent_start + extent_size - 1,
					      &sctx->csum_list, 1, false);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3395
		cur_logical += extent_size;
3396 3397 3398 3399 3400
	}
	btrfs_release_path(path);
	return ret;
}

3401 3402 3403 3404 3405 3406
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3407
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3408
	struct btrfs_path *path;
3409
	u64 cur_logical;
3410 3411 3412 3413
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3424
	nsectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
3425 3426
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3427 3428 3429 3430
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3431
		btrfs_free_path(path);
3432 3433 3434
		return -ENOMEM;
	}

3435
	sparity->stripe_len = BTRFS_STRIPE_LEN;
3436 3437 3438 3439 3440
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3441
	refcount_set(&sparity->refs, 1);
3442
	INIT_LIST_HEAD(&sparity->sectors_list);
3443 3444

	ret = 0;
3445
	for (cur_logical = logic_start; cur_logical < logic_end;
3446
	     cur_logical += BTRFS_STRIPE_LEN) {
3447 3448
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3449 3450
		if (ret < 0)
			break;
3451
	}
3452

3453 3454
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3455
	mutex_lock(&sctx->wr_lock);
3456
	scrub_wr_submit(sctx);
3457
	mutex_unlock(&sctx->wr_lock);
3458

3459
	btrfs_free_path(path);
3460 3461 3462
	return ret < 0 ? ret : 0;
}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3519 3520
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
3562
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3597
			ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3598
					cur_logical + scrub_len - 1,
3599
					&sctx->csum_list, 1, false);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3615 3616 3617 3618
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3632 3633 3634 3635 3636 3637
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

3638
	return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
3654 3655
	return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) +
	       bg->start;
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
3689 3690 3691
		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
					  BTRFS_STRIPE_LEN, device, cur_physical,
					  mirror_num);
3692 3693 3694 3695 3696
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
3697
		cur_physical += BTRFS_STRIPE_LEN;
3698 3699 3700 3701
	}
	return ret;
}

3702
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3703
					   struct btrfs_block_group *bg,
3704
					   struct extent_map *em,
3705
					   struct btrfs_device *scrub_dev,
3706
					   int stripe_index)
A
Arne Jansen 已提交
3707
{
3708
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3709
	struct blk_plug plug;
3710
	struct map_lookup *map = em->map_lookup;
3711
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3712
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3713
	int ret;
3714
	u64 physical = map->stripes[stripe_index].physical;
3715 3716
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3717
	u64 logical;
L
Liu Bo 已提交
3718
	u64 logic_end;
3719
	/* The logical increment after finishing one stripe */
3720
	u64 increment;
3721
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3722
	u64 offset;
3723 3724
	u64 stripe_logical;
	u64 stripe_end;
3725
	int stop_loop = 0;
D
David Woodhouse 已提交
3726

3727
	wait_event(sctx->list_wait,
3728
		   atomic_read(&sctx->bios_in_flight) == 0);
3729
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3730

A
Arne Jansen 已提交
3731 3732 3733 3734
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3735
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3736

3737 3738 3739 3740 3741 3742 3743 3744
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
3762 3763
		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
				scrub_dev, map->stripes[stripe_index].physical,
3764
				stripe_index + 1);
3765
		offset = 0;
3766 3767
		goto out;
	}
3768
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3769
		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
3770
		offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
3771 3772 3773 3774 3775
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3776
	ret = 0;
3777 3778 3779 3780 3781 3782 3783 3784

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3785
	increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
3786

3787 3788 3789 3790
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3791
	while (physical < physical_end) {
3792 3793
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3804
			goto next;
3805 3806
		}

3807 3808 3809 3810 3811 3812 3813 3814
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
3815
		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
3816
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3817 3818 3819 3820
		if (ret < 0)
			goto out;
next:
		logical += increment;
3821
		physical += BTRFS_STRIPE_LEN;
3822
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3823
		if (stop_loop)
3824 3825
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3826 3827
		else
			sctx->stat.last_physical = physical;
3828
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3829 3830
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3831
	}
3832
out:
A
Arne Jansen 已提交
3833
	/* push queued extents */
3834
	scrub_submit(sctx);
3835
	mutex_lock(&sctx->wr_lock);
3836
	scrub_wr_submit(sctx);
3837
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3838

3839
	blk_finish_plug(&plug);
3840 3841 3842 3843

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3844 3845 3846 3847
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3848 3849 3850 3851
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3852 3853 3854
	return ret < 0 ? ret : 0;
}

3855
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3856
					  struct btrfs_block_group *bg,
3857
					  struct btrfs_device *scrub_dev,
3858
					  u64 dev_offset,
3859
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3860
{
3861
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3862
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3863 3864 3865
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3866
	int ret = 0;
A
Arne Jansen 已提交
3867

3868
	read_lock(&map_tree->lock);
3869
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3870
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3871

3872 3873 3874 3875 3876
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3877
		spin_lock(&bg->lock);
3878
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3879
			ret = -EINVAL;
3880
		spin_unlock(&bg->lock);
3881 3882 3883

		return ret;
	}
3884
	if (em->start != bg->start)
A
Arne Jansen 已提交
3885
		goto out;
3886
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3887 3888
		goto out;

3889
	map = em->map_lookup;
A
Arne Jansen 已提交
3890
	for (i = 0; i < map->num_stripes; ++i) {
3891
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3892
		    map->stripes[i].physical == dev_offset) {
3893
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3923
static noinline_for_stack
3924
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3925
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3926 3927 3928
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3929 3930
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3931
	u64 chunk_offset;
3932
	int ret = 0;
3933
	int ro_set;
A
Arne Jansen 已提交
3934 3935 3936 3937
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3938
	struct btrfs_block_group *cache;
3939
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3940 3941 3942 3943 3944

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3945
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3946 3947 3948
	path->search_commit_root = 1;
	path->skip_locking = 1;

3949
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3950 3951 3952 3953
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3954 3955
		u64 dev_extent_len;

A
Arne Jansen 已提交
3956 3957
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3958 3959 3960 3961 3962
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3963 3964 3965 3966
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3967
					break;
3968 3969 3970
				}
			} else {
				ret = 0;
3971 3972
			}
		}
A
Arne Jansen 已提交
3973 3974 3975 3976 3977 3978

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3979
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3980 3981
			break;

3982
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3992
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3993

3994
		if (found_key.offset + dev_extent_len <= start)
3995
			goto skip;
A
Arne Jansen 已提交
3996 3997 3998 3999 4000 4001 4002 4003

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
4004 4005 4006 4007 4008 4009

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

4035
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
4036
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
4037 4038
				btrfs_put_block_group(cache);
				goto skip;
4039 4040 4041
			}
		}

4042 4043 4044 4045 4046 4047 4048 4049 4050
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
4051
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
4052 4053 4054 4055
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
4056
		btrfs_freeze_block_group(cache);
4057 4058
		spin_unlock(&cache->lock);

4059 4060 4061 4062 4063 4064 4065 4066 4067
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
4098
		 */
4099
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

4110 4111
		if (ret == 0) {
			ro_set = 1;
4112
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4113 4114 4115
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
4116
			 * It is not a problem for scrub, because
4117 4118 4119 4120
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
4121 4122 4123 4124 4125 4126 4127
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
4128
		} else {
J
Jeff Mahoney 已提交
4129
			btrfs_warn(fs_info,
4130
				   "failed setting block group ro: %d", ret);
4131
			btrfs_unfreeze_block_group(cache);
4132
			btrfs_put_block_group(cache);
4133
			scrub_pause_off(fs_info);
4134 4135 4136
			break;
		}

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
4149
		down_write(&dev_replace->rwsem);
4150
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4151 4152
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
4153 4154
		up_write(&dev_replace->rwsem);

4155 4156
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
4168
		sctx->flush_all_writes = true;
4169
		scrub_submit(sctx);
4170
		mutex_lock(&sctx->wr_lock);
4171
		scrub_wr_submit(sctx);
4172
		mutex_unlock(&sctx->wr_lock);
4173 4174 4175

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
4176 4177

		scrub_pause_on(fs_info);
4178 4179 4180 4181 4182 4183

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
4184 4185
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
4186
		sctx->flush_all_writes = false;
4187

4188
		scrub_pause_off(fs_info);
4189

4190 4191 4192 4193 4194
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4195
		down_write(&dev_replace->rwsem);
4196 4197
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4198
		up_write(&dev_replace->rwsem);
4199

4200
		if (ro_set)
4201
			btrfs_dec_block_group_ro(cache);
4202

4203 4204 4205 4206 4207 4208 4209 4210
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
4211 4212
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4213
			spin_unlock(&cache->lock);
4214 4215 4216 4217 4218
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4219 4220 4221
		} else {
			spin_unlock(&cache->lock);
		}
4222
skip_unfreeze:
4223
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4224 4225 4226
		btrfs_put_block_group(cache);
		if (ret)
			break;
4227
		if (sctx->is_dev_replace &&
4228
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4229 4230 4231 4232 4233 4234 4235
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4236
skip:
4237
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4238
		btrfs_release_path(path);
A
Arne Jansen 已提交
4239 4240 4241
	}

	btrfs_free_path(path);
4242

4243
	return ret;
A
Arne Jansen 已提交
4244 4245
}

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
			   struct page *page, u64 physical, u64 generation)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct bio_vec bvec;
	struct bio bio;
	struct btrfs_super_block *sb = page_address(page);
	int ret;

	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
	ret = submit_bio_wait(&bio);
	bio_uninit(&bio);

	if (ret < 0)
		return ret;
	ret = btrfs_check_super_csum(fs_info, sb);
	if (ret != 0) {
		btrfs_err_rl(fs_info,
			"super block at physical %llu devid %llu has bad csum",
			physical, dev->devid);
		return -EIO;
	}
	if (btrfs_super_generation(sb) != generation) {
		btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad generation %llu expect %llu",
			     physical, dev->devid,
			     btrfs_super_generation(sb), generation);
		return -EUCLEAN;
	}

	return btrfs_validate_super(fs_info, sb, -1);
}

4281 4282
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4283 4284 4285 4286
{
	int	i;
	u64	bytenr;
	u64	gen;
4287 4288
	int ret = 0;
	struct page *page;
4289
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4290

J
Josef Bacik 已提交
4291
	if (BTRFS_FS_ERROR(fs_info))
4292
		return -EROFS;
4293

4294 4295 4296 4297 4298 4299 4300 4301
	page = alloc_page(GFP_KERNEL);
	if (!page) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

4302
	/* Seed devices of a new filesystem has their own generation. */
4303
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4304 4305
		gen = scrub_dev->generation;
	else
4306
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4307 4308 4309

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4310 4311
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4312
			break;
4313 4314
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4315

4316 4317 4318 4319 4320 4321
		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
		if (ret) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.super_errors++;
			spin_unlock(&sctx->stat_lock);
		}
A
Arne Jansen 已提交
4322
	}
4323
	__free_page(page);
A
Arne Jansen 已提交
4324 4325 4326
	return 0;
}

4327 4328 4329 4330
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4331 4332 4333 4334 4335
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4336 4337 4338 4339 4340 4341

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4342 4343 4344 4345 4346 4347
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4348 4349 4350
	}
}

A
Arne Jansen 已提交
4351 4352 4353
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4354 4355
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4356
{
4357 4358 4359
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4360
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4361
	int max_active = fs_info->thread_pool_size;
4362
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4363

4364 4365
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4366

4367 4368
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4369 4370
	if (!scrub_workers)
		goto fail_scrub_workers;
4371

4372
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4373 4374
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4375

4376
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4388
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4389 4390
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4391
	}
4392 4393 4394
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4395

4396
	ret = 0;
4397
	destroy_workqueue(scrub_parity);
4398
fail_scrub_parity_workers:
4399
	destroy_workqueue(scrub_wr_comp);
4400
fail_scrub_wr_completion_workers:
4401
	destroy_workqueue(scrub_workers);
4402
fail_scrub_workers:
4403
	return ret;
A
Arne Jansen 已提交
4404 4405
}

4406 4407
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4408
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4409
{
4410
	struct btrfs_dev_lookup_args args = { .devid = devid };
4411
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4412 4413
	int ret;
	struct btrfs_device *dev;
4414
	unsigned int nofs_flag;
4415
	bool need_commit = false;
A
Arne Jansen 已提交
4416

4417
	if (btrfs_fs_closing(fs_info))
4418
		return -EAGAIN;
A
Arne Jansen 已提交
4419

4420 4421
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4422

4423 4424 4425 4426 4427 4428 4429
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4430

4431 4432 4433 4434
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4435

4436 4437 4438 4439
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4440
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4441
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4442 4443
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4444
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4445
		ret = -ENODEV;
4446
		goto out;
A
Arne Jansen 已提交
4447 4448
	}

4449 4450
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4451
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4452 4453
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
4454
				 devid, btrfs_dev_name(dev));
4455
		ret = -EROFS;
4456
		goto out;
4457 4458
	}

4459
	mutex_lock(&fs_info->scrub_lock);
4460
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4461
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4462
		mutex_unlock(&fs_info->scrub_lock);
4463
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4464
		ret = -EIO;
4465
		goto out;
A
Arne Jansen 已提交
4466 4467
	}

4468
	down_read(&fs_info->dev_replace.rwsem);
4469
	if (dev->scrub_ctx ||
4470 4471
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4472
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4473
		mutex_unlock(&fs_info->scrub_lock);
4474
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4475
		ret = -EINPROGRESS;
4476
		goto out;
A
Arne Jansen 已提交
4477
	}
4478
	up_read(&fs_info->dev_replace.rwsem);
4479

4480
	sctx->readonly = readonly;
4481
	dev->scrub_ctx = sctx;
4482
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4483

4484 4485 4486 4487
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4488
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4489 4490 4491
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4492 4493 4494
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4495
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4496 4497 4498 4499 4500 4501
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4502
	if (!is_dev_replace) {
4503 4504 4505 4506 4507 4508
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

4509
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4510 4511 4512 4513
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4514
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4515
		ret = scrub_supers(sctx, dev);
4516
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
4527
	}
A
Arne Jansen 已提交
4528 4529

	if (!ret)
4530
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4531
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4532

4533
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4534 4535 4536
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4537
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4538

A
Arne Jansen 已提交
4539
	if (progress)
4540
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4541

4542 4543 4544 4545
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4546
	mutex_lock(&fs_info->scrub_lock);
4547
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4548 4549
	mutex_unlock(&fs_info->scrub_lock);

4550
	scrub_workers_put(fs_info);
4551
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4552

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
4572
	return ret;
4573 4574
out:
	scrub_workers_put(fs_info);
4575 4576 4577
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4578 4579 4580
	return ret;
}

4581
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4596
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4597 4598 4599 4600 4601
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4602
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4623
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4624
{
4625
	struct btrfs_fs_info *fs_info = dev->fs_info;
4626
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4627 4628

	mutex_lock(&fs_info->scrub_lock);
4629
	sctx = dev->scrub_ctx;
4630
	if (!sctx) {
A
Arne Jansen 已提交
4631 4632 4633
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4634
	atomic_inc(&sctx->cancel_req);
4635
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4636 4637
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4638
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4639 4640 4641 4642 4643 4644
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4645

4646
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4647 4648
			 struct btrfs_scrub_progress *progress)
{
4649
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4650
	struct btrfs_device *dev;
4651
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4652

4653
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4654
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4655
	if (dev)
4656
		sctx = dev->scrub_ctx;
4657 4658
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4659
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4660

4661
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4662
}