scrub.c 121.8 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
21
#include <linux/sched/mm.h>
A
Arne Jansen 已提交
22 23 24 25
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
26
#include "transaction.h"
27
#include "backref.h"
28
#include "extent_io.h"
29
#include "dev-replace.h"
30
#include "check-integrity.h"
31
#include "rcu-string.h"
D
David Woodhouse 已提交
32
#include "raid56.h"
A
Arne Jansen 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

47
struct scrub_block;
48
struct scrub_ctx;
A
Arne Jansen 已提交
49

50 51 52 53 54 55 56 57 58
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
59 60 61 62 63 64

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
65
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
66

67
struct scrub_recover {
68
	refcount_t		refs;
69 70 71 72
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
73
struct scrub_page {
74 75
	struct scrub_block	*sblock;
	struct page		*page;
76
	struct btrfs_device	*dev;
77
	struct list_head	list;
A
Arne Jansen 已提交
78 79
	u64			flags;  /* extent flags */
	u64			generation;
80 81
	u64			logical;
	u64			physical;
82
	u64			physical_for_dev_replace;
83
	atomic_t		refs;
84 85 86 87 88
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98
	struct bio		*bio;
99
	blk_status_t		status;
A
Arne Jansen 已提交
100 101
	u64			logical;
	u64			physical;
102 103 104 105 106
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
107
	int			page_count;
A
Arne Jansen 已提交
108 109 110 111
	int			next_free;
	struct btrfs_work	work;
};

112
struct scrub_block {
113
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 115
	int			page_count;
	atomic_t		outstanding_pages;
116
	refcount_t		refs; /* free mem on transition to zero */
117
	struct scrub_ctx	*sctx;
118
	struct scrub_parity	*sparity;
119 120 121 122
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
123
		unsigned int	generation_error:1; /* also sets header_error */
124 125 126 127

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
128
	};
129
	struct btrfs_work	work;
130 131
};

132 133 134 135 136 137 138 139 140 141 142 143
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

144
	u64			stripe_len;
145

146
	refcount_t		refs;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

165
struct scrub_ctx {
166
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
167
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
168 169
	int			first_free;
	int			curr;
170 171
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
172 173 174 175 176
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
177
	int			readonly;
178
	int			pages_per_rd_bio;
179 180

	int			is_dev_replace;
181 182 183 184 185

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
186
	bool                    flush_all_writes;
187

A
Arne Jansen 已提交
188 189 190 191 192
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
193 194 195 196 197 198 199 200

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
201
	refcount_t              refs;
A
Arne Jansen 已提交
202 203
};

204
struct scrub_fixup_nodatasum {
205
	struct scrub_ctx	*sctx;
206
	struct btrfs_device	*dev;
207 208 209 210 211 212
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

213 214 215 216 217 218 219
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

220 221 222 223 224 225
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
226
	struct list_head	inodes;
227 228 229
	struct btrfs_work	work;
};

230 231 232 233
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
234
	u64			physical;
235 236 237 238
	u64			logical;
	struct btrfs_device	*dev;
};

239 240 241 242 243 244 245
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

246 247 248 249
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
250
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
251
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
252
				     struct scrub_block *sblocks_for_recheck);
253
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
254 255
				struct scrub_block *sblock,
				int retry_failed_mirror);
256
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
257
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
258
					     struct scrub_block *sblock_good);
259 260 261
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
262 263 264
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
265 266 267 268 269
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
270 271
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
272 273
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
274 275
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
276
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
277
		       u64 physical, struct btrfs_device *dev, u64 flags,
278 279
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
280
static void scrub_bio_end_io(struct bio *bio);
281 282
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
283 284 285 286 287 288 289 290
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
291
static void scrub_wr_bio_end_io(struct bio *bio);
292 293 294 295
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
296
				      struct scrub_copy_nocow_ctx *ctx);
297 298 299
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
300
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
303

304 305 306 307 308
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
309

310 311
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
312
	refcount_inc(&sctx->refs);
313 314 315 316 317 318 319
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
320
	scrub_put_ctx(sctx);
321 322
}

323
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
324 325 326 327 328 329 330 331 332
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

333
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
334 335 336
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
337
}
338

339 340
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
341 342 343 344 345 346 347 348
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

349 350 351 352 353 354
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

571 572 573 574 575 576
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
577
	struct btrfs_fs_info *fs_info = sctx->fs_info;
578

579
	refcount_inc(&sctx->refs);
580 581 582 583 584 585 586 587 588 589 590 591 592
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
593 594 595 596 597 598 599 600 601 602

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

603 604 605 606 607 608
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
609
	struct btrfs_fs_info *fs_info = sctx->fs_info;
610 611 612 613 614 615 616 617 618 619 620 621

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
622
	scrub_put_ctx(sctx);
623 624
}

625
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
626
{
627
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
628
		struct btrfs_ordered_sum *sum;
629
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
630 631 632 633 634 635
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

636
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
637 638 639
{
	int i;

640
	if (!sctx)
A
Arne Jansen 已提交
641 642
		return;

643
	/* this can happen when scrub is cancelled */
644 645
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
646 647

		for (i = 0; i < sbio->page_count; i++) {
648
			WARN_ON(!sbio->pagev[i]->page);
649 650 651 652 653
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

654
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
655
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
656 657 658 659 660 661

		if (!sbio)
			break;
		kfree(sbio);
	}

662
	kfree(sctx->wr_curr_bio);
663 664
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
665 666
}

667 668
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
669
	if (refcount_dec_and_test(&sctx->refs))
670 671 672
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
673
static noinline_for_stack
674
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
675
{
676
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
677
	int		i;
678
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
679

680
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
681
	if (!sctx)
A
Arne Jansen 已提交
682
		goto nomem;
683
	refcount_set(&sctx->refs, 1);
684
	sctx->is_dev_replace = is_dev_replace;
685
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
686
	sctx->curr = -1;
687
	sctx->fs_info = dev->fs_info;
688
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
689 690
		struct scrub_bio *sbio;

691
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
692 693
		if (!sbio)
			goto nomem;
694
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
695 696

		sbio->index = i;
697
		sbio->sctx = sctx;
698
		sbio->page_count = 0;
699 700
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
701

702
		if (i != SCRUB_BIOS_PER_SCTX - 1)
703
			sctx->bios[i]->next_free = i + 1;
704
		else
705 706 707
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
708 709
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
710 711 712 713 714 715 716
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
717

718 719 720
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
721
	if (is_dev_replace) {
722
		WARN_ON(!fs_info->dev_replace.tgtdev);
723
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
724
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
725
		sctx->flush_all_writes = false;
726
	}
727

728
	return sctx;
A
Arne Jansen 已提交
729 730

nomem:
731
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
732 733 734
	return ERR_PTR(-ENOMEM);
}

735 736
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
737 738 739 740 741
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
742
	unsigned nofs_flag;
743 744
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
745
	struct scrub_warning *swarn = warn_ctx;
746
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
747 748 749
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
750
	struct btrfs_key key;
751 752 753 754 755 756 757 758 759 760

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

761 762 763
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
764 765 766 767 768
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
769 770 771 772 773 774 775 776 777 778 779 780
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

781 782 783 784 785 786
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
787
	ipath = init_ipath(4096, local_root, swarn->path);
788
	memalloc_nofs_restore(nofs_flag);
789 790 791 792 793
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
794 795 796 797 798 799 800 801 802 803
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
804
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
805
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
806 807
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
808
				  swarn->physical,
J
Jeff Mahoney 已提交
809 810 811
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
812 813 814 815 816

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
817
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
818
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
819 820
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
821
			  swarn->physical,
J
Jeff Mahoney 已提交
822
			  root, inum, offset, ret);
823 824 825 826 827

	free_ipath(ipath);
	return 0;
}

828
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
829
{
830 831
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
832 833 834 835 836
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
837 838 839
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
840
	u64 ref_root;
841
	u32 item_size;
842
	u8 ref_level = 0;
843
	int ret;
844

845
	WARN_ON(sblock->page_count < 1);
846
	dev = sblock->pagev[0]->dev;
847
	fs_info = sblock->sctx->fs_info;
848

849
	path = btrfs_alloc_path();
850 851
	if (!path)
		return;
852

D
David Sterba 已提交
853
	swarn.physical = sblock->pagev[0]->physical;
854
	swarn.logical = sblock->pagev[0]->logical;
855
	swarn.errstr = errstr;
856
	swarn.dev = NULL;
857

858 859
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
860 861 862
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
863
	extent_item_pos = swarn.logical - found_key.objectid;
864 865 866 867 868 869
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

870
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
871
		do {
872 873 874
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
875
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
876
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
877
				errstr, swarn.logical,
878
				rcu_str_deref(dev->name),
D
David Sterba 已提交
879
				swarn.physical,
880 881 882 883
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
884
		btrfs_release_path(path);
885
	} else {
886
		btrfs_release_path(path);
887
		swarn.path = path;
888
		swarn.dev = dev;
889 890
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
891
					scrub_print_warning_inode, &swarn, false);
892 893 894 895 896 897
	}

out:
	btrfs_free_path(path);
}

898
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
899
{
900
	struct page *page = NULL;
901
	unsigned long index;
902
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
903
	int ret;
904
	int corrected = 0;
905
	struct btrfs_key key;
906
	struct inode *inode = NULL;
907
	struct btrfs_fs_info *fs_info;
908 909
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
910
	int srcu_index;
911 912 913 914

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
915 916 917 918 919 920 921

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
922
		return PTR_ERR(local_root);
923
	}
924 925 926 927

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
928 929
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
930 931 932
	if (IS_ERR(inode))
		return PTR_ERR(inode);

933
	index = offset >> PAGE_SHIFT;
934 935

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
962
		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
963
					fixup->logical, page,
964
					offset - page_offset(page),
965 966 967 968 969 970 971 972 973 974
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
975
					EXTENT_DAMAGED);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
993
						EXTENT_DAMAGED);
994 995 996 997 998
	}

out:
	if (page)
		put_page(page);
999 1000

	iput(inode);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
1018
	struct btrfs_fs_info *fs_info;
1019 1020
	int ret;
	struct scrub_fixup_nodatasum *fixup;
1021
	struct scrub_ctx *sctx;
1022 1023 1024 1025 1026
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1027
	sctx = fixup->sctx;
1028
	fs_info = fixup->root->fs_info;
1029 1030 1031

	path = btrfs_alloc_path();
	if (!path) {
1032 1033 1034
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
1054
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1055
					  scrub_fixup_readpage, fixup, false);
1056 1057 1058 1059 1060 1061
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

1062 1063 1064
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
1065 1066 1067

out:
	if (trans && !IS_ERR(trans))
1068
		btrfs_end_transaction(trans);
1069
	if (uncorrectable) {
1070 1071 1072
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
1073
		btrfs_dev_replace_stats_inc(
1074 1075
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
1076
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1077
			fixup->logical, rcu_str_deref(fixup->dev->name));
1078 1079 1080 1081 1082
	}

	btrfs_free_path(path);
	kfree(fixup);

1083
	scrub_pending_trans_workers_dec(sctx);
1084 1085
}

1086 1087
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1088
	refcount_inc(&recover->refs);
1089 1090
}

1091 1092
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1093
{
1094
	if (refcount_dec_and_test(&recover->refs)) {
1095
		btrfs_bio_counter_dec(fs_info);
1096
		btrfs_put_bbio(recover->bbio);
1097 1098 1099 1100
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1101
/*
1102 1103 1104 1105 1106 1107
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1108
 */
1109
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1110
{
1111
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1112
	struct btrfs_device *dev;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
1125
	bool full_stripe_locked;
1126
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1127 1128 1129
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
1130
	fs_info = sctx->fs_info;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
1142
	length = sblock_to_check->page_count * PAGE_SIZE;
1143 1144 1145 1146
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
1147
			BTRFS_EXTENT_FLAG_DATA);
1148 1149
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1169 1170 1171 1172 1173
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

1203 1204
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1205
	if (!sblocks_for_recheck) {
1206 1207 1208 1209 1210
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1211
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1212
		goto out;
A
Arne Jansen 已提交
1213 1214
	}

1215
	/* setup the context, map the logical blocks and alloc the pages */
1216
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1217
	if (ret) {
1218 1219 1220 1221
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1222
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1223 1224 1225 1226
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1227

1228
	/* build and submit the bios for the failed mirror, check checksums */
1229
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1241 1242
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1243
		sblock_to_check->data_corrected = 1;
1244
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1245

1246 1247
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1248
		goto out;
A
Arne Jansen 已提交
1249 1250
	}

1251
	if (!sblock_bad->no_io_error_seen) {
1252 1253 1254
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1255 1256
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1257
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1258
	} else if (sblock_bad->checksum_error) {
1259 1260 1261
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1262 1263
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1264
		btrfs_dev_stat_inc_and_print(dev,
1265
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1266
	} else if (sblock_bad->header_error) {
1267 1268 1269
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1270 1271 1272
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1273
		if (sblock_bad->generation_error)
1274
			btrfs_dev_stat_inc_and_print(dev,
1275 1276
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1277
			btrfs_dev_stat_inc_and_print(dev,
1278
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1279
	}
A
Arne Jansen 已提交
1280

1281 1282 1283 1284
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1285

1286 1287
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1288

1289 1290
		WARN_ON(sctx->is_dev_replace);

1291 1292
nodatasum_case:

1293 1294
		/*
		 * !is_metadata and !have_csum, this means that the data
1295
		 * might not be COWed, that it might be modified
1296 1297 1298 1299 1300 1301 1302
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1303
		fixup_nodatasum->sctx = sctx;
1304
		fixup_nodatasum->dev = dev;
1305 1306 1307
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1308
		scrub_pending_trans_workers_inc(sctx);
1309 1310
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1311 1312
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1313
		goto out;
A
Arne Jansen 已提交
1314 1315
	}

1316 1317
	/*
	 * now build and submit the bios for the other mirrors, check
1318 1319
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1331
	for (mirror_index = 0; ;mirror_index++) {
1332
		struct scrub_block *sblock_other;
1333

1334 1335
		if (mirror_index == failed_mirror_index)
			continue;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1359 1360

		/* build and submit the bios, check checksums */
1361
		scrub_recheck_block(fs_info, sblock_other, 0);
1362 1363

		if (!sblock_other->header_error &&
1364 1365
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1366 1367
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1368
				goto corrected_error;
1369 1370
			} else {
				ret = scrub_repair_block_from_good_copy(
1371 1372 1373
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1374
			}
1375 1376
		}
	}
A
Arne Jansen 已提交
1377

1378 1379
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1380 1381 1382

	/*
	 * In case of I/O errors in the area that is supposed to be
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1395
	 * the final checksum succeeds. But this would be a rare
1396 1397 1398 1399 1400 1401 1402 1403
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1404
	 */
1405
	success = 1;
1406 1407
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1408
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1409
		struct scrub_block *sblock_other = NULL;
1410

1411 1412
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1413
			continue;
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1426 1427 1428 1429 1430 1431 1432 1433 1434
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1435 1436
				}
			}
1437 1438
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1439
		}
A
Arne Jansen 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1455
					&fs_info->dev_replace.num_write_errors);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1466
		}
A
Arne Jansen 已提交
1467 1468
	}

1469
	if (success && !sctx->is_dev_replace) {
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1480
			scrub_recheck_block(fs_info, sblock_bad, 1);
1481
			if (!sblock_bad->header_error &&
1482 1483 1484 1485 1486 1487 1488
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1489 1490
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1491
			sblock_to_check->data_corrected = 1;
1492
			spin_unlock(&sctx->stat_lock);
1493 1494
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1495
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1496
		}
1497 1498
	} else {
did_not_correct_error:
1499 1500 1501
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1502 1503
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1504
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1505
	}
A
Arne Jansen 已提交
1506

1507 1508 1509 1510 1511 1512
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1513
			struct scrub_recover *recover;
1514 1515
			int page_index;

1516 1517 1518
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1519 1520
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1521
					scrub_put_recover(fs_info, recover);
1522 1523 1524
					sblock->pagev[page_index]->recover =
									NULL;
				}
1525 1526
				scrub_page_put(sblock->pagev[page_index]);
			}
1527 1528 1529
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1530

1531 1532 1533
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1534 1535
	return 0;
}
A
Arne Jansen 已提交
1536

1537
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1538
{
Z
Zhao Lei 已提交
1539 1540 1541 1542 1543
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1544 1545 1546
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1547 1548
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1549 1550 1551 1552 1553 1554 1555
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1556
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1577
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1578 1579
				     struct scrub_block *sblocks_for_recheck)
{
1580
	struct scrub_ctx *sctx = original_sblock->sctx;
1581
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1582 1583
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1584 1585 1586
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1587 1588 1589 1590 1591 1592
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1593
	int page_index = 0;
1594
	int mirror_index;
1595
	int nmirrors;
1596 1597 1598
	int ret;

	/*
1599
	 * note: the two members refs and outstanding_pages
1600 1601 1602 1603 1604
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1605 1606 1607
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1608

1609 1610 1611 1612
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1613
		btrfs_bio_counter_inc_blocked(fs_info);
1614
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1615
				logical, &mapped_length, &bbio);
1616
		if (ret || !bbio || mapped_length < sublen) {
1617
			btrfs_put_bbio(bbio);
1618
			btrfs_bio_counter_dec(fs_info);
1619 1620
			return -EIO;
		}
A
Arne Jansen 已提交
1621

1622 1623
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1624
			btrfs_put_bbio(bbio);
1625
			btrfs_bio_counter_dec(fs_info);
1626 1627 1628
			return -ENOMEM;
		}

1629
		refcount_set(&recover->refs, 1);
1630 1631 1632
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1633
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1634

1635
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1636

1637
		for (mirror_index = 0; mirror_index < nmirrors;
1638 1639 1640 1641 1642
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1643
			sblock->sctx = sctx;
1644

1645 1646 1647
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1648 1649 1650
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1651
				scrub_put_recover(fs_info, recover);
1652 1653
				return -ENOMEM;
			}
1654 1655
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1656 1657 1658
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1659
			page->logical = logical;
1660 1661 1662 1663 1664
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1665

Z
Zhao Lei 已提交
1666 1667 1668
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1669
						      mapped_length,
1670 1671
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1672 1673 1674 1675 1676 1677 1678
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1679 1680 1681 1682
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1683 1684
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1685
			sblock->page_count++;
1686 1687 1688
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1689 1690 1691

			scrub_get_recover(recover);
			page->recover = recover;
1692
		}
1693
		scrub_put_recover(fs_info, recover);
1694 1695 1696 1697 1698 1699
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1700 1701
}

1702
static void scrub_bio_wait_endio(struct bio *bio)
1703
{
1704
	complete(bio->bi_private);
1705 1706 1707 1708 1709 1710
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1711
	DECLARE_COMPLETION_ONSTACK(done);
1712
	int ret;
1713
	int mirror_num;
1714 1715 1716 1717 1718

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1719
	mirror_num = page->sblock->pagev[0]->mirror_num;
1720
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1721
				    page->recover->map_length,
1722
				    mirror_num, 0);
1723 1724 1725
	if (ret)
		return ret;

1726 1727
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1728 1729
}

1730 1731 1732 1733 1734 1735 1736
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1737
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1738 1739
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1740
{
1741
	int page_num;
I
Ilya Dryomov 已提交
1742

1743
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1744

1745 1746
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1747
		struct scrub_page *page = sblock->pagev[page_num];
1748

1749
		if (page->dev->bdev == NULL) {
1750 1751 1752 1753 1754
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1755
		WARN_ON(!page->page);
1756
		bio = btrfs_io_bio_alloc(1);
1757
		bio_set_dev(bio, page->dev->bdev);
1758

1759
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1760
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1761 1762
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
				page->io_error = 1;
1763
				sblock->no_io_error_seen = 0;
1764
			}
1765 1766
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1767
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1768

1769 1770
			if (btrfsic_submit_bio_wait(bio)) {
				page->io_error = 1;
1771
				sblock->no_io_error_seen = 0;
1772
			}
1773
		}
1774

1775 1776
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1777

1778
	if (sblock->no_io_error_seen)
1779
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1780 1781
}

M
Miao Xie 已提交
1782 1783 1784 1785 1786 1787
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1788
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1789 1790 1791
	return !ret;
}

1792
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1793
{
1794 1795 1796
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1797

1798 1799 1800 1801
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1802 1803
}

1804
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1805
					     struct scrub_block *sblock_good)
1806 1807 1808
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1809

1810 1811
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1812

1813 1814
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1815
							   page_num, 1);
1816 1817
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1818
	}
1819 1820 1821 1822 1823 1824 1825 1826

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1827 1828
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1829
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1830

1831 1832
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1833 1834 1835 1836 1837
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1838
		if (!page_bad->dev->bdev) {
1839
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1840
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1841 1842 1843
			return -EIO;
		}

1844
		bio = btrfs_io_bio_alloc(1);
1845
		bio_set_dev(bio, page_bad->dev->bdev);
1846
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1847
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1848 1849 1850 1851 1852

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1853
		}
1854

1855
		if (btrfsic_submit_bio_wait(bio)) {
1856 1857
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1858
			btrfs_dev_replace_stats_inc(
1859
				&fs_info->dev_replace.num_write_errors);
1860 1861 1862
			bio_put(bio);
			return -EIO;
		}
1863
		bio_put(bio);
A
Arne Jansen 已提交
1864 1865
	}

1866 1867 1868
	return 0;
}

1869 1870
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1871
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1872 1873
	int page_num;

1874 1875 1876 1877 1878 1879 1880
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1881 1882 1883 1884 1885 1886
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1887
				&fs_info->dev_replace.num_write_errors);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1900
		clear_page(mapped_buffer);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1913
	mutex_lock(&sctx->wr_lock);
1914
again:
1915 1916
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1917
					      GFP_KERNEL);
1918 1919
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1920 1921
			return -ENOMEM;
		}
1922 1923
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1924
	}
1925
	sbio = sctx->wr_curr_bio;
1926 1927 1928 1929 1930
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1931
		sbio->dev = sctx->wr_tgtdev;
1932 1933
		bio = sbio->bio;
		if (!bio) {
1934
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1935 1936 1937 1938 1939
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1940
		bio_set_dev(bio, sbio->dev->bdev);
1941
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1942
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1943
		sbio->status = 0;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1957
			mutex_unlock(&sctx->wr_lock);
1958 1959 1960 1961 1962 1963 1964 1965 1966
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1967
	if (sbio->page_count == sctx->pages_per_wr_bio)
1968
		scrub_wr_submit(sctx);
1969
	mutex_unlock(&sctx->wr_lock);
1970 1971 1972 1973 1974 1975 1976 1977

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1978
	if (!sctx->wr_curr_bio)
1979 1980
		return;

1981 1982
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1983
	WARN_ON(!sbio->bio->bi_disk);
1984 1985 1986 1987 1988
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1989
	btrfsic_submit_bio(sbio->bio);
1990 1991
}

1992
static void scrub_wr_bio_end_io(struct bio *bio)
1993 1994
{
	struct scrub_bio *sbio = bio->bi_private;
1995
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1996

1997
	sbio->status = bio->bi_status;
1998 1999
	sbio->bio = bio;

2000 2001
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
2002
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2003 2004 2005 2006 2007 2008 2009 2010 2011
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2012
	if (sbio->status) {
2013
		struct btrfs_dev_replace *dev_replace =
2014
			&sbio->sctx->fs_info->dev_replace;
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2034 2035 2036 2037
{
	u64 flags;
	int ret;

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2050 2051
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2063 2064

	return ret;
A
Arne Jansen 已提交
2065 2066
}

2067
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2068
{
2069
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2070
	u8 csum[BTRFS_CSUM_SIZE];
2071 2072 2073
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
2074
	u32 crc = ~(u32)0;
2075 2076
	u64 len;
	int index;
A
Arne Jansen 已提交
2077

2078
	BUG_ON(sblock->page_count < 1);
2079
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
2080 2081
		return 0;

2082 2083
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
2084
	buffer = kmap_atomic(page);
2085

2086
	len = sctx->fs_info->sectorsize;
2087 2088 2089 2090
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

2091
		crc = btrfs_csum_data(buffer, crc, l);
2092
		kunmap_atomic(buffer);
2093 2094 2095 2096 2097
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2098 2099
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2100
		buffer = kmap_atomic(page);
2101 2102
	}

A
Arne Jansen 已提交
2103
	btrfs_csum_final(crc, csum);
2104
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2105
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2106

2107
	return sblock->checksum_error;
A
Arne Jansen 已提交
2108 2109
}

2110
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2111
{
2112
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2113
	struct btrfs_header *h;
2114
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2115 2116 2117 2118 2119 2120
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2121
	u32 crc = ~(u32)0;
2122 2123 2124 2125
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
2126
	page = sblock->pagev[0]->page;
2127
	mapped_buffer = kmap_atomic(page);
2128
	h = (struct btrfs_header *)mapped_buffer;
2129
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
2130 2131 2132 2133 2134 2135

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2136
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2137
		sblock->header_error = 1;
A
Arne Jansen 已提交
2138

2139 2140 2141 2142
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2143

M
Miao Xie 已提交
2144
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2145
		sblock->header_error = 1;
A
Arne Jansen 已提交
2146 2147 2148

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2149
		sblock->header_error = 1;
A
Arne Jansen 已提交
2150

2151
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2152 2153 2154 2155 2156 2157
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2158
		crc = btrfs_csum_data(p, crc, l);
2159
		kunmap_atomic(mapped_buffer);
2160 2161 2162 2163 2164
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2165 2166
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2167
		mapped_buffer = kmap_atomic(page);
2168 2169 2170 2171 2172
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2173
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2174
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2175

2176
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2177 2178
}

2179
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2180 2181
{
	struct btrfs_super_block *s;
2182
	struct scrub_ctx *sctx = sblock->sctx;
2183 2184 2185 2186 2187 2188
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2189
	u32 crc = ~(u32)0;
2190 2191
	int fail_gen = 0;
	int fail_cor = 0;
2192 2193
	u64 len;
	int index;
A
Arne Jansen 已提交
2194

2195
	BUG_ON(sblock->page_count < 1);
2196
	page = sblock->pagev[0]->page;
2197
	mapped_buffer = kmap_atomic(page);
2198
	s = (struct btrfs_super_block *)mapped_buffer;
2199
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2200

2201
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2202
		++fail_cor;
A
Arne Jansen 已提交
2203

2204
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2205
		++fail_gen;
A
Arne Jansen 已提交
2206

M
Miao Xie 已提交
2207
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2208
		++fail_cor;
A
Arne Jansen 已提交
2209

2210 2211 2212 2213 2214 2215 2216
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2217
		crc = btrfs_csum_data(p, crc, l);
2218
		kunmap_atomic(mapped_buffer);
2219 2220 2221 2222 2223
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2224 2225
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2226
		mapped_buffer = kmap_atomic(page);
2227 2228 2229 2230 2231
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2232
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2233
		++fail_cor;
A
Arne Jansen 已提交
2234

2235
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2236 2237 2238 2239 2240
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2241 2242 2243
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2244
		if (fail_cor)
2245
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2246 2247
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2248
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2249
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2250 2251
	}

2252
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2253 2254
}

2255 2256
static void scrub_block_get(struct scrub_block *sblock)
{
2257
	refcount_inc(&sblock->refs);
2258 2259 2260 2261
}

static void scrub_block_put(struct scrub_block *sblock)
{
2262
	if (refcount_dec_and_test(&sblock->refs)) {
2263 2264
		int i;

2265 2266 2267
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2268
		for (i = 0; i < sblock->page_count; i++)
2269
			scrub_page_put(sblock->pagev[i]);
2270 2271 2272 2273
		kfree(sblock);
	}
}

2274 2275
static void scrub_page_get(struct scrub_page *spage)
{
2276
	atomic_inc(&spage->refs);
2277 2278 2279 2280
}

static void scrub_page_put(struct scrub_page *spage)
{
2281
	if (atomic_dec_and_test(&spage->refs)) {
2282 2283 2284 2285 2286 2287
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2288
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2289 2290 2291
{
	struct scrub_bio *sbio;

2292
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2293
		return;
A
Arne Jansen 已提交
2294

2295 2296
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2297
	scrub_pending_bio_inc(sctx);
2298
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2299 2300
}

2301 2302
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2303
{
2304
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2305
	struct scrub_bio *sbio;
2306
	int ret;
A
Arne Jansen 已提交
2307 2308 2309 2310 2311

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2312 2313 2314 2315 2316 2317 2318 2319
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2320
		} else {
2321 2322
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2323 2324
		}
	}
2325
	sbio = sctx->bios[sctx->curr];
2326
	if (sbio->page_count == 0) {
2327 2328
		struct bio *bio;

2329 2330
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2331
		sbio->dev = spage->dev;
2332 2333
		bio = sbio->bio;
		if (!bio) {
2334
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2335 2336
			sbio->bio = bio;
		}
2337 2338 2339

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2340
		bio_set_dev(bio, sbio->dev->bdev);
2341
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2342
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2343
		sbio->status = 0;
2344 2345 2346
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2347 2348
		   spage->logical ||
		   sbio->dev != spage->dev) {
2349
		scrub_submit(sctx);
A
Arne Jansen 已提交
2350 2351
		goto again;
	}
2352

2353 2354 2355 2356 2357 2358 2359 2360
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2361
		scrub_submit(sctx);
2362 2363 2364
		goto again;
	}

2365
	scrub_block_get(sblock); /* one for the page added to the bio */
2366 2367
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2368
	if (sbio->page_count == sctx->pages_per_rd_bio)
2369
		scrub_submit(sctx);
2370 2371 2372 2373

	return 0;
}

2374
static void scrub_missing_raid56_end_io(struct bio *bio)
2375 2376
{
	struct scrub_block *sblock = bio->bi_private;
2377
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2378

2379
	if (bio->bi_status)
2380 2381
		sblock->no_io_error_seen = 0;

2382 2383
	bio_put(bio);

2384 2385 2386 2387 2388 2389 2390
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2391
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2392 2393 2394 2395 2396 2397
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2398
	if (sblock->no_io_error_seen)
2399
		scrub_recheck_block_checksum(sblock);
2400 2401 2402 2403 2404

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2405
		btrfs_err_rl_in_rcu(fs_info,
2406
			"IO error rebuilding logical %llu for dev %s",
2407 2408 2409 2410 2411
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2412
		btrfs_err_rl_in_rcu(fs_info,
2413
			"failed to rebuild valid logical %llu for dev %s",
2414 2415 2416 2417 2418 2419 2420
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2421
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2422
		mutex_lock(&sctx->wr_lock);
2423
		scrub_wr_submit(sctx);
2424
		mutex_unlock(&sctx->wr_lock);
2425 2426 2427 2428 2429 2430 2431 2432
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2433
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2434 2435
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2436
	struct btrfs_bio *bbio = NULL;
2437 2438 2439 2440 2441
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2442
	btrfs_bio_counter_inc_blocked(fs_info);
2443
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2444
			&length, &bbio);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2459
	bio = btrfs_io_bio_alloc(0);
2460 2461 2462 2463
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2464
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2484
	btrfs_bio_counter_dec(fs_info);
2485 2486 2487 2488 2489 2490
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2491
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2492
		       u64 physical, struct btrfs_device *dev, u64 flags,
2493 2494
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2495 2496 2497 2498
{
	struct scrub_block *sblock;
	int index;

2499
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2500
	if (!sblock) {
2501 2502 2503
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2504
		return -ENOMEM;
A
Arne Jansen 已提交
2505
	}
2506

2507 2508
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2509
	refcount_set(&sblock->refs, 1);
2510
	sblock->sctx = sctx;
2511 2512 2513
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2514
		struct scrub_page *spage;
2515 2516
		u64 l = min_t(u64, len, PAGE_SIZE);

2517
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2518 2519
		if (!spage) {
leave_nomem:
2520 2521 2522
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2523
			scrub_block_put(sblock);
2524 2525
			return -ENOMEM;
		}
2526 2527 2528
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2529
		spage->sblock = sblock;
2530
		spage->dev = dev;
2531 2532 2533 2534
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2535
		spage->physical_for_dev_replace = physical_for_dev_replace;
2536 2537 2538
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2539
			memcpy(spage->csum, csum, sctx->csum_size);
2540 2541 2542 2543
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2544
		spage->page = alloc_page(GFP_KERNEL);
2545 2546
		if (!spage->page)
			goto leave_nomem;
2547 2548 2549
		len -= l;
		logical += l;
		physical += l;
2550
		physical_for_dev_replace += l;
2551 2552
	}

2553
	WARN_ON(sblock->page_count == 0);
2554
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2555 2556 2557 2558 2559 2560 2561 2562 2563
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2564

2565 2566 2567 2568 2569
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2570
		}
A
Arne Jansen 已提交
2571

2572 2573 2574
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2575

2576 2577
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2578 2579 2580
	return 0;
}

2581
static void scrub_bio_end_io(struct bio *bio)
2582 2583
{
	struct scrub_bio *sbio = bio->bi_private;
2584
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2585

2586
	sbio->status = bio->bi_status;
2587 2588
	sbio->bio = bio;

2589
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2590 2591 2592 2593 2594
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2595
	struct scrub_ctx *sctx = sbio->sctx;
2596 2597
	int i;

2598
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2599
	if (sbio->status) {
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2620 2621 2622 2623
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2624

2625
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2626
		mutex_lock(&sctx->wr_lock);
2627
		scrub_wr_submit(sctx);
2628
		mutex_unlock(&sctx->wr_lock);
2629 2630
	}

2631
	scrub_pending_bio_dec(sctx);
2632 2633
}

2634 2635 2636 2637
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2638
	u64 offset;
2639 2640
	u64 nsectors64;
	u32 nsectors;
2641
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2642 2643 2644 2645 2646 2647 2648

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2649 2650
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2651 2652 2653 2654
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2677 2678
static void scrub_block_complete(struct scrub_block *sblock)
{
2679 2680
	int corrupted = 0;

2681
	if (!sblock->no_io_error_seen) {
2682
		corrupted = 1;
2683
		scrub_handle_errored_block(sblock);
2684 2685 2686 2687 2688 2689
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2690 2691
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2692 2693
			scrub_write_block_to_dev_replace(sblock);
	}
2694 2695 2696 2697 2698 2699 2700 2701 2702

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2703 2704
}

2705
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2706 2707
{
	struct btrfs_ordered_sum *sum = NULL;
2708
	unsigned long index;
A
Arne Jansen 已提交
2709 2710
	unsigned long num_sectors;

2711 2712
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2713 2714 2715 2716 2717 2718
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2719
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2720 2721 2722 2723 2724 2725 2726
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2727 2728 2729
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2730
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2731 2732
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2733 2734 2735
		list_del(&sum->list);
		kfree(sum);
	}
2736
	return 1;
A
Arne Jansen 已提交
2737 2738 2739
}

/* scrub extent tries to collect up to 64 kB for each bio */
2740
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2741
			u64 physical, struct btrfs_device *dev, u64 flags,
2742
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2743 2744 2745
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2746 2747 2748
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2749
		blocksize = sctx->fs_info->sectorsize;
2750 2751 2752 2753
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2754
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2755
		blocksize = sctx->fs_info->nodesize;
2756 2757 2758 2759
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2760
	} else {
2761
		blocksize = sctx->fs_info->sectorsize;
2762
		WARN_ON(1);
2763
	}
A
Arne Jansen 已提交
2764 2765

	while (len) {
2766
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2767 2768 2769 2770
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2771
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2772
			if (have_csum == 0)
2773
				++sctx->stat.no_csum;
2774 2775 2776 2777 2778 2779
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2780
		}
2781
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2782 2783 2784
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2785 2786 2787 2788 2789
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2790
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2791 2792 2793 2794
	}
	return 0;
}

2795 2796 2797 2798 2799 2800 2801 2802 2803
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2804
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2805 2806 2807 2808 2809 2810 2811 2812 2813
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2814
	refcount_set(&sblock->refs, 1);
2815 2816 2817 2818 2819 2820 2821 2822 2823
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2824
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2854
		spage->page = alloc_page(GFP_KERNEL);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2889
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2890 2891 2892 2893
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2894
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2895
		blocksize = sctx->fs_info->sectorsize;
2896
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2897
		blocksize = sctx->fs_info->nodesize;
2898
	} else {
2899
		blocksize = sctx->fs_info->sectorsize;
2900 2901 2902 2903 2904 2905 2906 2907 2908
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2909
			have_csum = scrub_find_csum(sctx, logical, csum);
2910 2911 2912 2913 2914 2915 2916 2917
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2918
skip:
2919 2920 2921 2922 2923 2924 2925
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2926 2927 2928 2929 2930 2931 2932 2933
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2934 2935
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2936 2937 2938 2939 2940
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2941 2942
	u32 stripe_index;
	u32 rot;
2943 2944 2945

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2946 2947 2948
	if (stripe_start)
		*stripe_start = last_offset;

2949 2950 2951 2952
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2953
		stripe_nr = div64_u64(*offset, map->stripe_len);
2954
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2955 2956

		/* Work out the disk rotation on this stripe-set */
2957
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2958 2959
		/* calculate which stripe this data locates */
		rot += i;
2960
		stripe_index = rot % map->num_stripes;
2961 2962 2963 2964 2965 2966 2967 2968 2969
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3002
static void scrub_parity_bio_endio(struct bio *bio)
3003 3004
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3005
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3006

3007
	if (bio->bi_status)
3008 3009 3010 3011
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
3012 3013 3014

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
3015
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3016 3017 3018 3019 3020
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3021
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

3032
	length = sparity->logic_end - sparity->logic_start;
3033 3034

	btrfs_bio_counter_inc_blocked(fs_info);
3035
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3036
			       &length, &bbio);
3037
	if (ret || !bbio || !bbio->raid_map)
3038 3039
		goto bbio_out;

3040
	bio = btrfs_io_bio_alloc(0);
3041 3042 3043 3044
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3045
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3046
					      length, sparity->scrub_dev,
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
3059
	btrfs_bio_counter_dec(fs_info);
3060
	btrfs_put_bbio(bbio);
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
3072
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3073 3074 3075 3076
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3077
	refcount_inc(&sparity->refs);
3078 3079 3080 3081
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3082
	if (!refcount_dec_and_test(&sparity->refs))
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
3095
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3096 3097 3098
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3099
	struct btrfs_bio *bbio = NULL;
3100 3101 3102 3103 3104 3105 3106 3107 3108
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3109
	u64 mapped_length;
3110 3111 3112 3113 3114 3115 3116
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3117
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3134
	refcount_set(&sparity->refs, 1);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3183 3184 3185 3186
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3187
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3188
				bytes = fs_info->nodesize;
3189 3190 3191 3192 3193 3194
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3195
			if (key.objectid >= logic_end) {
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3208 3209 3210 3211
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3212 3213
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3214
					  key.objectid, logic_start);
3215 3216 3217
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3237
			mapped_length = extent_len;
3238
			bbio = NULL;
3239 3240 3241
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3268 3269 3270

			scrub_free_csums(sctx);

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3302
						logic_end - logic_start);
3303 3304
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3305
	mutex_lock(&sctx->wr_lock);
3306
	scrub_wr_submit(sctx);
3307
	mutex_unlock(&sctx->wr_lock);
3308 3309 3310 3311 3312

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3313
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3314 3315
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3316 3317
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3318
{
3319
	struct btrfs_path *path, *ppath;
3320
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3321 3322 3323
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3324
	struct blk_plug plug;
A
Arne Jansen 已提交
3325 3326 3327 3328 3329 3330 3331
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3332
	u64 logic_end;
3333
	u64 physical_end;
A
Arne Jansen 已提交
3334
	u64 generation;
3335
	int mirror_num;
A
Arne Jansen 已提交
3336 3337
	struct reada_control *reada1;
	struct reada_control *reada2;
3338
	struct btrfs_key key;
A
Arne Jansen 已提交
3339
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3340 3341
	u64 increment = map->stripe_len;
	u64 offset;
3342 3343 3344
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3345 3346
	u64 stripe_logical;
	u64 stripe_end;
3347 3348
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3349
	int stop_loop = 0;
D
David Woodhouse 已提交
3350

3351
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3352
	offset = 0;
3353
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3354 3355 3356
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3357
		mirror_num = 1;
A
Arne Jansen 已提交
3358 3359 3360 3361
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3362
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3363 3364
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3365
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3366 3367
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3368
		mirror_num = num % map->num_stripes + 1;
3369
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3371 3372
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3373 3374
	} else {
		increment = map->stripe_len;
3375
		mirror_num = 1;
A
Arne Jansen 已提交
3376 3377 3378 3379 3380 3381
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3382 3383
	ppath = btrfs_alloc_path();
	if (!ppath) {
3384
		btrfs_free_path(path);
3385 3386 3387
		return -ENOMEM;
	}

3388 3389 3390 3391 3392
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3393 3394 3395
	path->search_commit_root = 1;
	path->skip_locking = 1;

3396 3397
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3398
	/*
A
Arne Jansen 已提交
3399 3400 3401
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3402 3403
	 */
	logical = base + offset;
3404
	physical_end = physical + nstripes * map->stripe_len;
3405
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3406
		get_raid56_logic_offset(physical_end, num,
3407
					map, &logic_end, NULL);
3408 3409 3410 3411
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3412
	wait_event(sctx->list_wait,
3413
		   atomic_read(&sctx->bios_in_flight) == 0);
3414
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3415 3416

	/* FIXME it might be better to start readahead at commit root */
3417 3418 3419
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3420
	key_end.objectid = logic_end;
3421 3422
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3423
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3424

3425 3426 3427
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3428 3429
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3430
	key_end.offset = logic_end;
3431
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3432 3433 3434 3435 3436 3437

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3438 3439 3440 3441 3442

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3443
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3444 3445 3446 3447 3448

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3449
	while (physical < physical_end) {
A
Arne Jansen 已提交
3450 3451 3452 3453
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3454
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3455 3456 3457 3458 3459 3460 3461 3462
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3463
			sctx->flush_all_writes = true;
3464
			scrub_submit(sctx);
3465
			mutex_lock(&sctx->wr_lock);
3466
			scrub_wr_submit(sctx);
3467
			mutex_unlock(&sctx->wr_lock);
3468
			wait_event(sctx->list_wait,
3469
				   atomic_read(&sctx->bios_in_flight) == 0);
3470
			sctx->flush_all_writes = false;
3471
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3472 3473
		}

3474 3475 3476 3477 3478 3479
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3480
				/* it is parity strip */
3481
				stripe_logical += base;
3482
				stripe_end = stripe_logical + increment;
3483 3484 3485 3486 3487 3488 3489 3490 3491
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3492 3493 3494 3495
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3496
		key.objectid = logical;
L
Liu Bo 已提交
3497
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3498 3499 3500 3501

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3502

3503
		if (ret > 0) {
3504
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3505 3506
			if (ret < 0)
				goto out;
3507 3508 3509 3510 3511 3512 3513 3514 3515
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3516 3517
		}

L
Liu Bo 已提交
3518
		stop_loop = 0;
A
Arne Jansen 已提交
3519
		while (1) {
3520 3521
			u64 bytes;

A
Arne Jansen 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3531
				stop_loop = 1;
A
Arne Jansen 已提交
3532 3533 3534 3535
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3536 3537 3538 3539
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3540
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3541
				bytes = fs_info->nodesize;
3542 3543 3544 3545
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3546 3547
				goto next;

L
Liu Bo 已提交
3548 3549 3550 3551 3552 3553
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3554 3555 3556 3557 3558 3559

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3560 3561 3562 3563
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3564
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3565
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3566
				       key.objectid, logical);
3567 3568 3569
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3570 3571 3572
				goto next;
			}

L
Liu Bo 已提交
3573 3574 3575 3576
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3577 3578 3579
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3580 3581 3582
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3583
			}
L
Liu Bo 已提交
3584
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3585
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3586 3587
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3588 3589
			}

L
Liu Bo 已提交
3590
			extent_physical = extent_logical - logical + physical;
3591 3592 3593 3594 3595 3596 3597
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3598

3599 3600 3601 3602 3603
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3604 3605 3606
			if (ret)
				goto out;

3607 3608 3609
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3610
					   extent_logical - logical + physical);
3611 3612 3613

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3614 3615 3616
			if (ret)
				goto out;

L
Liu Bo 已提交
3617 3618
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3619
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3620 3621 3622 3623
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3634
								increment;
3635 3636 3637 3638 3639 3640 3641 3642
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3643 3644 3645 3646
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3647 3648 3649 3650 3651
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3652
				if (physical >= physical_end) {
L
Liu Bo 已提交
3653 3654 3655 3656
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3657 3658 3659
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3660
		btrfs_release_path(path);
3661
skip:
A
Arne Jansen 已提交
3662 3663
		logical += increment;
		physical += map->stripe_len;
3664
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3665 3666 3667 3668 3669
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3670
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3671 3672
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3673
	}
3674
out:
A
Arne Jansen 已提交
3675
	/* push queued extents */
3676
	scrub_submit(sctx);
3677
	mutex_lock(&sctx->wr_lock);
3678
	scrub_wr_submit(sctx);
3679
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3680

3681
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3682
	btrfs_free_path(path);
3683
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3684 3685 3686
	return ret < 0 ? ret : 0;
}

3687
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3688 3689
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3690 3691 3692
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3693
{
3694 3695
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3696 3697 3698
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3699
	int ret = 0;
A
Arne Jansen 已提交
3700 3701 3702 3703 3704

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3717

3718
	map = em->map_lookup;
A
Arne Jansen 已提交
3719 3720 3721 3722 3723 3724 3725
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3726
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3727
		    map->stripes[i].physical == dev_offset) {
3728
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3729 3730
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3742
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3743 3744
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3745 3746 3747
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3748 3749
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3750 3751
	u64 length;
	u64 chunk_offset;
3752
	int ret = 0;
3753
	int ro_set;
A
Arne Jansen 已提交
3754 3755 3756 3757 3758
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3759
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3760 3761 3762 3763 3764

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3765
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3766 3767 3768
	path->search_commit_root = 1;
	path->skip_locking = 1;

3769
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3770 3771 3772 3773 3774 3775
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3776 3777 3778 3779 3780
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3781 3782 3783 3784
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3785
					break;
3786 3787 3788
				}
			} else {
				ret = 0;
3789 3790
			}
		}
A
Arne Jansen 已提交
3791 3792 3793 3794 3795 3796

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3797
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3798 3799
			break;

3800
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3812 3813
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3814 3815 3816 3817 3818 3819 3820 3821

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3822 3823 3824 3825 3826 3827

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3828 3829 3830 3831 3832 3833 3834 3835 3836
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3837
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3859
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3860 3861 3862 3863 3864 3865 3866 3867 3868
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3869
					ret = btrfs_commit_transaction(trans);
3870 3871 3872 3873 3874 3875 3876
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3877
		scrub_pause_off(fs_info);
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3891
			btrfs_warn(fs_info,
3892
				   "failed setting block group ro: %d", ret);
3893 3894 3895 3896
			btrfs_put_block_group(cache);
			break;
		}

3897
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3898 3899 3900
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3901
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3902
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3903
				  found_key.offset, cache, is_dev_replace);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3915
		sctx->flush_all_writes = true;
3916
		scrub_submit(sctx);
3917
		mutex_lock(&sctx->wr_lock);
3918
		scrub_wr_submit(sctx);
3919
		mutex_unlock(&sctx->wr_lock);
3920 3921 3922

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3923 3924

		scrub_pause_on(fs_info);
3925 3926 3927 3928 3929 3930

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3931 3932
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3933
		sctx->flush_all_writes = false;
3934

3935
		scrub_pause_off(fs_info);
3936

3937 3938 3939 3940 3941
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3942
		if (ro_set)
3943
			btrfs_dec_block_group_ro(cache);
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3967 3968 3969
		btrfs_put_block_group(cache);
		if (ret)
			break;
3970 3971
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3972 3973 3974 3975 3976 3977 3978
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3979
skip:
A
Arne Jansen 已提交
3980
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3981
		btrfs_release_path(path);
A
Arne Jansen 已提交
3982 3983 3984
	}

	btrfs_free_path(path);
3985

3986
	return ret;
A
Arne Jansen 已提交
3987 3988
}

3989 3990
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3991 3992 3993 3994 3995
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3996
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3997

3998
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3999 4000
		return -EIO;

4001
	/* Seed devices of a new filesystem has their own generation. */
4002
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4003 4004
		gen = scrub_dev->generation;
	else
4005
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4006 4007 4008

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4009 4010
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4011 4012
			break;

4013
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4014
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4015
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
4016 4017 4018
		if (ret)
			return ret;
	}
4019
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4020 4021 4022 4023 4024 4025 4026

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4027 4028
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4029
{
4030
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4031
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
4032

A
Arne Jansen 已提交
4033
	if (fs_info->scrub_workers_refcnt == 0) {
4034 4035
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
4036 4037 4038
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

4039
		fs_info->scrub_wr_completion_workers =
4040
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4041
					      max_active, 2);
4042 4043 4044
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

4045
		fs_info->scrub_nocow_workers =
4046
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4047 4048
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
4049
		fs_info->scrub_parity_workers =
4050
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4051
					      max_active, 2);
4052 4053
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
4054
	}
A
Arne Jansen 已提交
4055
	++fs_info->scrub_workers_refcnt;
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
4066 4067
}

4068
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4069
{
4070
	if (--fs_info->scrub_workers_refcnt == 0) {
4071 4072 4073
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4074
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4075
	}
A
Arne Jansen 已提交
4076 4077 4078
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

4079 4080
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4081
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4082
{
4083
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4084 4085
	int ret;
	struct btrfs_device *dev;
4086
	struct rcu_string *name;
A
Arne Jansen 已提交
4087

4088
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
4089 4090
		return -EINVAL;

4091
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4092 4093 4094 4095 4096
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4097 4098
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4099 4100
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4101 4102 4103
		return -EINVAL;
	}

4104
	if (fs_info->sectorsize != PAGE_SIZE) {
4105
		/* not supported for data w/o checksums */
4106
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
4107
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4108
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
4109 4110 4111
		return -EINVAL;
	}

4112
	if (fs_info->nodesize >
4113
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4114
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4115 4116 4117 4118
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4119 4120
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4121
		       fs_info->nodesize,
4122
		       SCRUB_MAX_PAGES_PER_BLOCK,
4123
		       fs_info->sectorsize,
4124 4125 4126 4127
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
4128

4129 4130
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4131 4132
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4133
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4134 4135 4136
		return -ENODEV;
	}

4137 4138
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4139 4140 4141 4142 4143 4144 4145 4146 4147
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

4148
	mutex_lock(&fs_info->scrub_lock);
4149
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4150
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4151
		mutex_unlock(&fs_info->scrub_lock);
4152 4153
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
4154 4155
	}

4156
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4157
	if (dev->scrub_ctx ||
4158 4159
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4160
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
4161
		mutex_unlock(&fs_info->scrub_lock);
4162
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4163 4164
		return -EINPROGRESS;
	}
4165
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4166 4167 4168 4169 4170 4171 4172 4173

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

4174
	sctx = scrub_setup_ctx(dev, is_dev_replace);
4175
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
4176
		mutex_unlock(&fs_info->scrub_lock);
4177 4178
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
4179
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4180
	}
4181
	sctx->readonly = readonly;
4182
	dev->scrub_ctx = sctx;
4183
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4184

4185 4186 4187 4188
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4189
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4190 4191 4192
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4193
	if (!is_dev_replace) {
4194 4195 4196 4197
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4198
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4199
		ret = scrub_supers(sctx, dev);
4200
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4201
	}
A
Arne Jansen 已提交
4202 4203

	if (!ret)
4204 4205
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
4206

4207
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4208 4209 4210
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4211
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4212

A
Arne Jansen 已提交
4213
	if (progress)
4214
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4215 4216

	mutex_lock(&fs_info->scrub_lock);
4217
	dev->scrub_ctx = NULL;
4218
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
4219 4220
	mutex_unlock(&fs_info->scrub_lock);

4221
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4222 4223 4224 4225

	return ret;
}

4226
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4241
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4242 4243 4244 4245 4246
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4247
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4268 4269
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4270
{
4271
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4272 4273

	mutex_lock(&fs_info->scrub_lock);
4274
	sctx = dev->scrub_ctx;
4275
	if (!sctx) {
A
Arne Jansen 已提交
4276 4277 4278
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4279
	atomic_inc(&sctx->cancel_req);
4280
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4281 4282
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4283
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4284 4285 4286 4287 4288 4289
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4290

4291
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4292 4293 4294
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4295
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4296

4297 4298
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4299
	if (dev)
4300
		sctx = dev->scrub_ctx;
4301 4302
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4303
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4304

4305
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4306
}
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4319
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4320 4321 4322
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4323
		btrfs_put_bbio(bbio);
4324 4325 4326 4327 4328 4329
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4330
	btrfs_put_bbio(bbio);
4331 4332 4333 4334 4335 4336
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4337
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4354 4355
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4356
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4357 4358
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4359 4360 4361 4362

	return 0;
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4380 4381 4382 4383 4384
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4385 4386
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4412
			record_inode_for_nocow, nocow_ctx, false);
4413
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4414 4415 4416 4417
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4418 4419 4420 4421
		not_written = 1;
		goto out;
	}

4422
	btrfs_end_transaction(trans);
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4440
out:
4441 4442 4443 4444 4445 4446 4447 4448
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4449
	if (trans && !IS_ERR(trans))
4450
		btrfs_end_transaction(trans);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4461
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4462 4463 4464 4465 4466 4467 4468 4469 4470
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4471
	io_tree = &inode->io_tree;
4472

4473
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4474
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
4492 4493
	    em->block_start + em->block_len < logical + len ||
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4494 4495 4496 4497 4498 4499 4500
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
4501
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4502 4503 4504
	return ret;
}

4505 4506
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4507
{
4508
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4509
	struct btrfs_key key;
4510 4511
	struct inode *inode;
	struct page *page;
4512
	struct btrfs_root *local_root;
4513
	struct extent_io_tree *io_tree;
4514
	u64 physical_for_dev_replace;
4515
	u64 nocow_ctx_logical;
4516
	u64 len = nocow_ctx->len;
4517
	unsigned long index;
4518
	int srcu_index;
4519 4520
	int ret = 0;
	int err = 0;
4521 4522 4523 4524

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4525 4526 4527

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4528
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4529 4530
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4531
		return PTR_ERR(local_root);
4532
	}
4533 4534 4535 4536 4537

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4538
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4539 4540 4541
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4542
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4543
	inode_lock(inode);
4544 4545
	inode_dio_wait(inode);

4546
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4547
	io_tree = &BTRFS_I(inode)->io_tree;
4548
	nocow_ctx_logical = nocow_ctx->logical;
4549

4550 4551
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4552 4553 4554
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4555 4556
	}

4557 4558
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4559
again:
4560 4561
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4562
			btrfs_err(fs_info, "find_or_create_page() failed");
4563
			ret = -ENOMEM;
4564
			goto out;
4565 4566 4567 4568 4569 4570 4571
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4572
			err = extent_read_full_page(io_tree, page,
4573 4574
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4575 4576
			if (err) {
				ret = err;
4577 4578
				goto next_page;
			}
4579

4580
			lock_page(page);
4581 4582 4583 4584 4585 4586 4587
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4588
				unlock_page(page);
4589
				put_page(page);
4590 4591
				goto again;
			}
4592 4593 4594 4595 4596
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4597

4598
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4599 4600 4601 4602 4603 4604
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4605 4606 4607 4608
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4609
next_page:
4610
		unlock_page(page);
4611
		put_page(page);
4612 4613 4614 4615

		if (ret)
			break;

4616 4617 4618 4619
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4620
	}
4621
	ret = COPY_COMPLETE;
4622
out:
A
Al Viro 已提交
4623
	inode_unlock(inode);
4624
	iput(inode);
4625 4626 4627 4628 4629 4630 4631 4632 4633
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;

4634
	dev = sctx->wr_tgtdev;
4635 4636 4637
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4638
		btrfs_warn_rl(dev->fs_info,
4639
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4640 4641
		return -EIO;
	}
4642
	bio = btrfs_io_bio_alloc(1);
4643 4644
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4645
	bio_set_dev(bio, dev->bdev);
4646
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4647 4648 4649 4650
	/* bio_add_page won't fail on a freshly allocated bio */
	bio_add_page(bio, page, PAGE_SIZE, 0);

	if (btrfsic_submit_bio_wait(bio)) {
4651 4652 4653 4654 4655 4656 4657 4658
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

	bio_put(bio);
	return 0;
}