scrub.c 120.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

63
struct scrub_sector {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90 91
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
92
	int			next_free;
93
	struct work_struct	work;
A
Arne Jansen 已提交
94 95
};

96
struct scrub_block {
97
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
98
	int			sector_count;
99
	atomic_t		outstanding_sectors;
100
	refcount_t		refs; /* free mem on transition to zero */
101
	struct scrub_ctx	*sctx;
102
	struct scrub_parity	*sparity;
103 104 105 106
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
107
		unsigned int	generation_error:1; /* also sets header_error */
108 109 110 111

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
112
	};
113
	struct work_struct	work;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

128
	u32			stripe_len;
129

130
	refcount_t		refs;
131

132
	struct list_head	sectors_list;
133 134

	/* Work of parity check and repair */
135
	struct work_struct	work;
136 137 138 139 140 141 142 143 144 145

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

146
	unsigned long		bitmap[];
147 148
};

149
struct scrub_ctx {
150
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
151
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
152 153
	int			first_free;
	int			curr;
154 155
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
156 157 158 159
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
160
	int			readonly;
161
	int			sectors_per_bio;
162

163 164 165 166
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

167
	int			is_dev_replace;
168
	u64			write_pointer;
169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191 192 193 194
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
195
	u64			physical;
196 197 198 199
	u64			logical;
	struct btrfs_device	*dev;
};

200 201 202 203 204 205 206
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

207
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
208
				     struct scrub_block *sblocks_for_recheck);
209
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
210 211
				struct scrub_block *sblock,
				int retry_failed_mirror);
212
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
213
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
214
					     struct scrub_block *sblock_good);
215
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
216
					    struct scrub_block *sblock_good,
217
					    int sector_num, int force_write);
218
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219 220
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
221 222 223 224
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
225 226
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
227 228
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
229 230 231 232
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
233
static void scrub_bio_end_io(struct bio *bio);
234
static void scrub_bio_end_io_worker(struct work_struct *work);
235
static void scrub_block_complete(struct scrub_block *sblock);
236
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237
			       u64 extent_logical, u32 extent_len,
238 239 240
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
241 242
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
243
static void scrub_wr_submit(struct scrub_ctx *sctx);
244
static void scrub_wr_bio_end_io(struct bio *bio);
245
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
246
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
247

248
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
249
{
250 251
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
252
}
S
Stefan Behrens 已提交
253

254 255
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
256
	refcount_inc(&sctx->refs);
257 258 259 260 261 262 263
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
264
	scrub_put_ctx(sctx);
265 266
}

267
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
268 269 270 271 272 273 274 275 276
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

277
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
278 279 280
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
281
}
282

283 284
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
285 286 287 288 289 290 291 292
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

293 294 295 296 297 298
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

318
	lockdep_assert_held(&locks_root->lock);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

334 335 336
	/*
	 * Insert new lock.
	 */
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

362
	lockdep_assert_held(&locks_root->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
382
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
383 384 385 386 387 388 389 390 391 392 393 394 395
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
396 397
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
415
	struct btrfs_block_group *bg_cache;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
462
	struct btrfs_block_group *bg_cache;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

516
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
517
{
518
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
519
		struct btrfs_ordered_sum *sum;
520
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
521 522 523 524 525 526
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

527
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528 529 530
{
	int i;

531
	if (!sctx)
A
Arne Jansen 已提交
532 533
		return;

534
	/* this can happen when scrub is cancelled */
535 536
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
537

538 539 540
		for (i = 0; i < sbio->sector_count; i++) {
			WARN_ON(!sbio->sectors[i]->page);
			scrub_block_put(sbio->sectors[i]->sblock);
541 542 543 544
		}
		bio_put(sbio->bio);
	}

545
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
546
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
547 548 549 550 551 552

		if (!sbio)
			break;
		kfree(sbio);
	}

553
	kfree(sctx->wr_curr_bio);
554 555
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
556 557
}

558 559
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
560
	if (refcount_dec_and_test(&sctx->refs))
561 562 563
		scrub_free_ctx(sctx);
}

564 565
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
566
{
567
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
568 569
	int		i;

570
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
571
	if (!sctx)
A
Arne Jansen 已提交
572
		goto nomem;
573
	refcount_set(&sctx->refs, 1);
574
	sctx->is_dev_replace = is_dev_replace;
575
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
576
	sctx->curr = -1;
577
	sctx->fs_info = fs_info;
578
	INIT_LIST_HEAD(&sctx->csum_list);
579
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
580 581
		struct scrub_bio *sbio;

582
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
583 584
		if (!sbio)
			goto nomem;
585
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
586 587

		sbio->index = i;
588
		sbio->sctx = sctx;
589
		sbio->sector_count = 0;
590
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
591

592
		if (i != SCRUB_BIOS_PER_SCTX - 1)
593
			sctx->bios[i]->next_free = i + 1;
594
		else
595 596 597
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
598 599
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
600 601 602 603 604
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
605
	sctx->throttle_deadline = 0;
606

607 608 609
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
610
	if (is_dev_replace) {
611 612
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
613
		sctx->flush_all_writes = false;
614
	}
615

616
	return sctx;
A
Arne Jansen 已提交
617 618

nomem:
619
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
620 621 622
	return ERR_PTR(-ENOMEM);
}

623 624
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
625 626 627 628
{
	u32 nlink;
	int ret;
	int i;
629
	unsigned nofs_flag;
630 631
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
632
	struct scrub_warning *swarn = warn_ctx;
633
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
634 635
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
636
	struct btrfs_key key;
637

D
David Sterba 已提交
638
	local_root = btrfs_get_fs_root(fs_info, root, true);
639 640 641 642 643
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

644 645 646
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
647 648 649 650 651
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
652
	if (ret) {
653
		btrfs_put_root(local_root);
654 655 656 657 658 659 660 661 662 663
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

664 665 666 667 668 669
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
670
	ipath = init_ipath(4096, local_root, swarn->path);
671
	memalloc_nofs_restore(nofs_flag);
672
	if (IS_ERR(ipath)) {
673
		btrfs_put_root(local_root);
674 675 676 677
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
678 679 680 681 682 683 684 685 686 687
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
688
		btrfs_warn_in_rcu(fs_info,
689
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
690 691
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
692
				  swarn->physical,
J
Jeff Mahoney 已提交
693
				  root, inum, offset,
694
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
695
				  (char *)(unsigned long)ipath->fspath->val[i]);
696

697
	btrfs_put_root(local_root);
698 699 700 701
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
702
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
703
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
704 705
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
706
			  swarn->physical,
J
Jeff Mahoney 已提交
707
			  root, inum, offset, ret);
708 709 710 711 712

	free_ipath(ipath);
	return 0;
}

713
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
714
{
715 716
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
717 718 719 720 721
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
722 723 724
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
725
	u64 ref_root;
726
	u32 item_size;
727
	u8 ref_level = 0;
728
	int ret;
729

730 731
	WARN_ON(sblock->sector_count < 1);
	dev = sblock->sectors[0]->dev;
732
	fs_info = sblock->sctx->fs_info;
733

734
	path = btrfs_alloc_path();
735 736
	if (!path)
		return;
737

738 739
	swarn.physical = sblock->sectors[0]->physical;
	swarn.logical = sblock->sectors[0]->logical;
740
	swarn.errstr = errstr;
741
	swarn.dev = NULL;
742

743 744
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
745 746 747
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
748
	extent_item_pos = swarn.logical - found_key.objectid;
749 750 751 752
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
753
	item_size = btrfs_item_size(eb, path->slots[0]);
754

755
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
756
		do {
757 758 759
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
760
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
761
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
762
				errstr, swarn.logical,
763
				rcu_str_deref(dev->name),
D
David Sterba 已提交
764
				swarn.physical,
765 766 767 768
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
769
		btrfs_release_path(path);
770
	} else {
771
		btrfs_release_path(path);
772
		swarn.path = path;
773
		swarn.dev = dev;
774 775
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
776
					scrub_print_warning_inode, &swarn, false);
777 778 779 780 781 782
	}

out:
	btrfs_free_path(path);
}

783 784
static inline void scrub_get_recover(struct scrub_recover *recover)
{
785
	refcount_inc(&recover->refs);
786 787
}

788 789
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
790
{
791
	if (refcount_dec_and_test(&recover->refs)) {
792
		btrfs_bio_counter_dec(fs_info);
793
		btrfs_put_bioc(recover->bioc);
794 795 796 797
		kfree(recover);
	}
}

A
Arne Jansen 已提交
798
/*
799
 * scrub_handle_errored_block gets called when either verification of the
800 801
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
802 803 804
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
805
 */
806
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
807
{
808
	struct scrub_ctx *sctx = sblock_to_check->sctx;
809
	struct btrfs_device *dev;
810 811 812 813 814 815 816 817 818
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
819
	int sector_num;
820
	int success;
821
	bool full_stripe_locked;
822
	unsigned int nofs_flag;
823
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
824 825
				      DEFAULT_RATELIMIT_BURST);

826
	BUG_ON(sblock_to_check->sector_count < 1);
827
	fs_info = sctx->fs_info;
828
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
829 830 831 832 833 834 835 836 837 838
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
839 840 841 842
	logical = sblock_to_check->sectors[0]->logical;
	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->sectors[0]->flags &
843
			BTRFS_EXTENT_FLAG_DATA);
844 845
	have_csum = sblock_to_check->sectors[0]->have_csum;
	dev = sblock_to_check->sectors[0]->dev;
846

847 848
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
849

850 851 852 853 854 855
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
856
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
857 858 859
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
860 861 862 863 864 865 866 867 868
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
869
		memalloc_nofs_restore(nofs_flag);
870 871 872 873 874 875 876 877 878
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

879 880 881 882
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
883
	 * sector by sector this time in order to know which sectors
884 885 886 887
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
888 889 890 891 892 893 894 895 896 897
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
898 899 900
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
901
	 * Only if this is not possible, the sectors are picked from
902 903 904 905 906 907
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

908
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
909
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
910
	if (!sblocks_for_recheck) {
911 912 913 914 915
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
916
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917
		goto out;
A
Arne Jansen 已提交
918 919
	}

920
	/* Setup the context, map the logical blocks and alloc the sectors */
921
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
922
	if (ret) {
923 924 925 926
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
927
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
928 929 930 931
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
932

933
	/* build and submit the bios for the failed mirror, check checksums */
934
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
935

936 937 938
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
939
		 * The error disappeared after reading sector by sector, or
940 941 942 943 944 945
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
946 947
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
948
		sblock_to_check->data_corrected = 1;
949
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
950

951 952
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
953
		goto out;
A
Arne Jansen 已提交
954 955
	}

956
	if (!sblock_bad->no_io_error_seen) {
957 958 959
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
960
		if (__ratelimit(&rs))
961
			scrub_print_warning("i/o error", sblock_to_check);
962
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
963
	} else if (sblock_bad->checksum_error) {
964 965 966
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
967
		if (__ratelimit(&rs))
968
			scrub_print_warning("checksum error", sblock_to_check);
969
		btrfs_dev_stat_inc_and_print(dev,
970
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
971
	} else if (sblock_bad->header_error) {
972 973 974
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
975
		if (__ratelimit(&rs))
976 977
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
978
		if (sblock_bad->generation_error)
979
			btrfs_dev_stat_inc_and_print(dev,
980 981
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
982
			btrfs_dev_stat_inc_and_print(dev,
983
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
984
	}
A
Arne Jansen 已提交
985

986 987 988 989
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
990

991 992
	/*
	 * now build and submit the bios for the other mirrors, check
993 994
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
995 996 997 998 999
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1000
	 * checksum is present, only those sectors are rewritten that had
1001
	 * an I/O error in the block to be repaired, since it cannot be
1002 1003
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1004 1005
	 * overwritten by a bad one).
	 */
1006
	for (mirror_index = 0; ;mirror_index++) {
1007
		struct scrub_block *sblock_other;
1008

1009 1010
		if (mirror_index == failed_mirror_index)
			continue;
1011 1012

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1013
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1014 1015
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1016
			if (!sblocks_for_recheck[mirror_index].sector_count)
1017 1018 1019 1020
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
1021
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1022
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1023 1024 1025

			if (mirror_index >= max_allowed)
				break;
1026
			if (!sblocks_for_recheck[1].sector_count)
1027 1028 1029 1030
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
1031
			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1032
		}
1033 1034

		/* build and submit the bios, check checksums */
1035
		scrub_recheck_block(fs_info, sblock_other, 0);
1036 1037

		if (!sblock_other->header_error &&
1038 1039
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1040 1041
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1042
				goto corrected_error;
1043 1044
			} else {
				ret = scrub_repair_block_from_good_copy(
1045 1046 1047
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1048
			}
1049 1050
		}
	}
A
Arne Jansen 已提交
1051

1052 1053
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1054 1055 1056

	/*
	 * In case of I/O errors in the area that is supposed to be
1057 1058
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1059 1060 1061 1062 1063
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1064
	 * all possible combinations of sectors from the different mirrors
1065
	 * until the checksum verification succeeds. For example, when
1066
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1067
	 * of mirror #2 is readable but the final checksum test fails,
1068
	 * then the 2nd sector of mirror #3 could be tried, whether now
1069
	 * the final checksum succeeds. But this would be a rare
1070 1071 1072 1073
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1074
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1075
	 * mirror could be repaired by taking 512 byte of a different
1076
	 * mirror, even if other 512 byte sectors in the same sectorsize
1077
	 * area are unreadable.
A
Arne Jansen 已提交
1078
	 */
1079
	success = 1;
1080 1081
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1082
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1083
		struct scrub_block *sblock_other = NULL;
1084

1085 1086
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1087
			continue;
1088

1089
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1090 1091 1092 1093 1094 1095 1096 1097
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1098 1099
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1100 1101
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1102
			     sblocks_for_recheck[mirror_index].sector_count > 0;
1103 1104
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
1105
				    sectors[sector_num]->io_error) {
1106 1107 1108
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1109 1110
				}
			}
1111 1112
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1113
		}
A
Arne Jansen 已提交
1114

1115 1116
		if (sctx->is_dev_replace) {
			/*
1117 1118 1119 1120
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1121 1122 1123 1124
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1125 1126
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1127
				atomic64_inc(
1128
					&fs_info->dev_replace.num_write_errors);
1129 1130 1131
				success = 0;
			}
		} else if (sblock_other) {
1132 1133 1134
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1135
			if (0 == ret)
1136
				sector_bad->io_error = 0;
1137 1138
			else
				success = 0;
1139
		}
A
Arne Jansen 已提交
1140 1141
	}

1142
	if (success && !sctx->is_dev_replace) {
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1153
			scrub_recheck_block(fs_info, sblock_bad, 1);
1154
			if (!sblock_bad->header_error &&
1155 1156 1157 1158 1159 1160 1161
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1162 1163
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1164
			sblock_to_check->data_corrected = 1;
1165
			spin_unlock(&sctx->stat_lock);
1166 1167
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1168
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1169
		}
1170 1171
	} else {
did_not_correct_error:
1172 1173 1174
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1175 1176
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1177
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1178
	}
A
Arne Jansen 已提交
1179

1180 1181 1182 1183 1184 1185
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1186
			struct scrub_recover *recover;
1187
			int i;
1188

1189 1190 1191
			for (i = 0; i < sblock->sector_count; i++) {
				sblock->sectors[i]->sblock = NULL;
				recover = sblock->sectors[i]->recover;
1192
				if (recover) {
1193
					scrub_put_recover(fs_info, recover);
1194
					sblock->sectors[i]->recover = NULL;
1195
				}
1196
				scrub_sector_put(sblock->sectors[i]);
1197
			}
1198 1199 1200
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1201

1202
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1203
	memalloc_nofs_restore(nofs_flag);
1204 1205
	if (ret < 0)
		return ret;
1206 1207
	return 0;
}
A
Arne Jansen 已提交
1208

1209
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1210
{
1211
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1212
		return 2;
1213
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1214 1215
		return 3;
	else
1216
		return (int)bioc->num_stripes;
1217 1218
}

Z
Zhao Lei 已提交
1219 1220
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1221 1222 1223 1224 1225 1226 1227
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1228
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1249
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1250 1251
				     struct scrub_block *sblocks_for_recheck)
{
1252
	struct scrub_ctx *sctx = original_sblock->sctx;
1253
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1254 1255 1256 1257 1258
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = original_sblock->sectors[0]->logical;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1259
	struct scrub_recover *recover;
1260
	struct btrfs_io_context *bioc;
1261 1262 1263 1264
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1265
	int sector_index = 0;
1266
	int mirror_index;
1267
	int nmirrors;
1268 1269 1270
	int ret;

	/*
1271 1272
	 * Note: the two members refs and outstanding_sectors are not used (and
	 * not set) in the blocks that are used for the recheck procedure.
1273 1274 1275
	 */

	while (length > 0) {
1276
		sublen = min_t(u64, length, fs_info->sectorsize);
1277
		mapped_length = sublen;
1278
		bioc = NULL;
A
Arne Jansen 已提交
1279

1280
		/*
1281 1282
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1283
		 */
1284
		btrfs_bio_counter_inc_blocked(fs_info);
1285
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1286 1287 1288
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1289
			btrfs_bio_counter_dec(fs_info);
1290 1291
			return -EIO;
		}
A
Arne Jansen 已提交
1292

1293 1294
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1295
			btrfs_put_bioc(bioc);
1296
			btrfs_bio_counter_dec(fs_info);
1297 1298 1299
			return -ENOMEM;
		}

1300
		refcount_set(&recover->refs, 1);
1301
		recover->bioc = bioc;
1302 1303
		recover->map_length = mapped_length;

1304
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1305

1306
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1307

1308
		for (mirror_index = 0; mirror_index < nmirrors;
1309 1310
		     mirror_index++) {
			struct scrub_block *sblock;
1311
			struct scrub_sector *sector;
1312 1313

			sblock = sblocks_for_recheck + mirror_index;
1314
			sblock->sctx = sctx;
1315

1316 1317
			sector = kzalloc(sizeof(*sector), GFP_NOFS);
			if (!sector) {
1318
leave_nomem:
1319 1320 1321
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1322
				scrub_put_recover(fs_info, recover);
1323 1324
				return -ENOMEM;
			}
1325 1326 1327 1328 1329 1330 1331
			scrub_sector_get(sector);
			sblock->sectors[sector_index] = sector;
			sector->sblock = sblock;
			sector->flags = flags;
			sector->generation = generation;
			sector->logical = logical;
			sector->have_csum = have_csum;
1332
			if (have_csum)
1333
				memcpy(sector->csum,
1334
				       original_sblock->sectors[0]->csum,
1335
				       sctx->fs_info->csum_size);
1336

Z
Zhao Lei 已提交
1337
			scrub_stripe_index_and_offset(logical,
1338 1339
						      bioc->map_type,
						      bioc->raid_map,
1340
						      mapped_length,
1341 1342
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1343 1344 1345
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1346
			sector->physical = bioc->stripes[stripe_index].physical +
1347
					 stripe_offset;
1348
			sector->dev = bioc->stripes[stripe_index].dev;
1349

1350
			BUG_ON(sector_index >= original_sblock->sector_count);
1351
			sector->physical_for_dev_replace =
1352
				original_sblock->sectors[sector_index]->
1353
				physical_for_dev_replace;
1354 1355
			/* For missing devices, dev->bdev is NULL */
			sector->mirror_num = mirror_index + 1;
1356
			sblock->sector_count++;
1357 1358
			sector->page = alloc_page(GFP_NOFS);
			if (!sector->page)
1359
				goto leave_nomem;
1360 1361

			scrub_get_recover(recover);
1362
			sector->recover = recover;
1363
		}
1364
		scrub_put_recover(fs_info, recover);
1365 1366
		length -= sublen;
		logical += sublen;
1367
		sector_index++;
1368 1369 1370
	}

	return 0;
I
Ilya Dryomov 已提交
1371 1372
}

1373
static void scrub_bio_wait_endio(struct bio *bio)
1374
{
1375
	complete(bio->bi_private);
1376 1377 1378 1379
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1380
					struct scrub_sector *sector)
1381
{
1382
	DECLARE_COMPLETION_ONSTACK(done);
1383
	int ret;
1384
	int mirror_num;
1385

1386
	bio->bi_iter.bi_sector = sector->logical >> 9;
1387 1388 1389
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1390 1391 1392
	mirror_num = sector->sblock->sectors[0]->mirror_num;
	ret = raid56_parity_recover(bio, sector->recover->bioc,
				    sector->recover->map_length,
1393
				    mirror_num, 0);
1394 1395 1396
	if (ret)
		return ret;

1397 1398
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1399 1400
}

L
Liu Bo 已提交
1401 1402 1403
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1404
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1405
	struct bio *bio;
1406
	int i;
L
Liu Bo 已提交
1407

1408 1409 1410
	/* All sectors in sblock belong to the same stripe on the same device. */
	ASSERT(first_sector->dev);
	if (!first_sector->dev->bdev)
L
Liu Bo 已提交
1411 1412
		goto out;

1413
	bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1414

1415
	for (i = 0; i < sblock->sector_count; i++) {
1416
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1417

1418 1419
		WARN_ON(!sector->page);
		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1420 1421
	}

1422
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1433 1434
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1435 1436 1437 1438

	sblock->no_io_error_seen = 0;
}

1439
/*
1440 1441 1442 1443 1444
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1445
 */
1446
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1447 1448
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1449
{
1450
	int i;
I
Ilya Dryomov 已提交
1451

1452
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1453

L
Liu Bo 已提交
1454
	/* short cut for raid56 */
1455
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1456 1457
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1458
	for (i = 0; i < sblock->sector_count; i++) {
1459
		struct scrub_sector *sector = sblock->sectors[i];
1460 1461
		struct bio bio;
		struct bio_vec bvec;
1462

1463 1464
		if (sector->dev->bdev == NULL) {
			sector->io_error = 1;
1465 1466 1467 1468
			sblock->no_io_error_seen = 0;
			continue;
		}

1469
		WARN_ON(!sector->page);
1470 1471 1472
		bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ);
		bio_add_page(&bio, sector->page, fs_info->sectorsize, 0);
		bio.bi_iter.bi_sector = sector->physical >> 9;
1473

1474 1475
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1476
			sector->io_error = 1;
L
Liu Bo 已提交
1477
			sblock->no_io_error_seen = 0;
1478
		}
1479

1480
		bio_uninit(&bio);
1481
	}
I
Ilya Dryomov 已提交
1482

1483
	if (sblock->no_io_error_seen)
1484
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1485 1486
}

1487
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1488
{
1489
	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
M
Miao Xie 已提交
1490 1491
	int ret;

1492
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1493 1494 1495
	return !ret;
}

1496
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1497
{
1498 1499 1500
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1501

1502
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1503 1504 1505
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1506 1507
}

1508
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1509
					     struct scrub_block *sblock_good)
1510
{
1511
	int i;
1512
	int ret = 0;
I
Ilya Dryomov 已提交
1513

1514
	for (i = 0; i < sblock_bad->sector_count; i++) {
1515
		int ret_sub;
I
Ilya Dryomov 已提交
1516

1517 1518
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1519 1520
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1521
	}
1522 1523 1524 1525

	return ret;
}

1526 1527 1528
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1529
{
1530 1531
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1532
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1533
	const u32 sectorsize = fs_info->sectorsize;
1534

1535 1536
	BUG_ON(sector_bad->page == NULL);
	BUG_ON(sector_good->page == NULL);
1537
	if (force_write || sblock_bad->header_error ||
1538
	    sblock_bad->checksum_error || sector_bad->io_error) {
1539 1540
		struct bio bio;
		struct bio_vec bvec;
1541 1542
		int ret;

1543
		if (!sector_bad->dev->bdev) {
1544
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1545
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1546 1547 1548
			return -EIO;
		}

1549 1550 1551
		bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = sector_bad->physical >> 9;
		__bio_add_page(&bio, sector_good->page, sectorsize, 0);
1552

1553 1554 1555
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1556

1557
		if (ret) {
1558
			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1559
				BTRFS_DEV_STAT_WRITE_ERRS);
1560
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1561 1562
			return -EIO;
		}
A
Arne Jansen 已提交
1563 1564
	}

1565 1566 1567
	return 0;
}

1568 1569
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1570
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1571
	int i;
1572

1573 1574 1575 1576 1577 1578 1579
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1580
	for (i = 0; i < sblock->sector_count; i++) {
1581 1582
		int ret;

1583
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1584
		if (ret)
1585
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1586 1587 1588
	}
}

1589
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1590
{
1591
	struct scrub_sector *sector = sblock->sectors[sector_num];
1592

1593 1594 1595
	BUG_ON(sector->page == NULL);
	if (sector->io_error)
		clear_page(page_address(sector->page));
1596

1597
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1608 1609 1610
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1622 1623
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1624 1625 1626
{
	struct scrub_bio *sbio;
	int ret;
1627
	const u32 sectorsize = sctx->fs_info->sectorsize;
1628

1629
	mutex_lock(&sctx->wr_lock);
1630
again:
1631 1632
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1633
					      GFP_KERNEL);
1634 1635
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1636 1637
			return -ENOMEM;
		}
1638
		sctx->wr_curr_bio->sctx = sctx;
1639
		sctx->wr_curr_bio->sector_count = 0;
1640
	}
1641
	sbio = sctx->wr_curr_bio;
1642
	if (sbio->sector_count == 0) {
1643
		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1644 1645 1646 1647 1648
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1649 1650
		sbio->physical = sector->physical_for_dev_replace;
		sbio->logical = sector->logical;
1651
		sbio->dev = sctx->wr_tgtdev;
1652 1653 1654
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1655
		}
1656 1657 1658
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1659
		sbio->status = 0;
1660
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1661
		   sector->physical_for_dev_replace ||
1662
		   sbio->logical + sbio->sector_count * sectorsize !=
1663
		   sector->logical) {
1664 1665 1666 1667
		scrub_wr_submit(sctx);
		goto again;
	}

1668
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1669
	if (ret != sectorsize) {
1670
		if (sbio->sector_count < 1) {
1671 1672
			bio_put(sbio->bio);
			sbio->bio = NULL;
1673
			mutex_unlock(&sctx->wr_lock);
1674 1675 1676 1677 1678 1679
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1680
	sbio->sectors[sbio->sector_count] = sector;
1681
	scrub_sector_get(sector);
1682 1683
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1684
		scrub_wr_submit(sctx);
1685
	mutex_unlock(&sctx->wr_lock);
1686 1687 1688 1689 1690 1691 1692 1693

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1694
	if (!sctx->wr_curr_bio)
1695 1696
		return;

1697 1698
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1699 1700 1701 1702 1703
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1704 1705
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1706 1707

	if (btrfs_is_zoned(sctx->fs_info))
1708
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1709
			sctx->fs_info->sectorsize;
1710 1711
}

1712
static void scrub_wr_bio_end_io(struct bio *bio)
1713 1714
{
	struct scrub_bio *sbio = bio->bi_private;
1715
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1716

1717
	sbio->status = bio->bi_status;
1718 1719
	sbio->bio = bio;

1720 1721
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1722 1723
}

1724
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1725 1726 1727 1728 1729
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1730
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1731
	if (sbio->status) {
1732
		struct btrfs_dev_replace *dev_replace =
1733
			&sbio->sctx->fs_info->dev_replace;
1734

1735 1736
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1737

1738
			sector->io_error = 1;
1739
			atomic64_inc(&dev_replace->num_write_errors);
1740 1741 1742
		}
	}

1743 1744
	for (i = 0; i < sbio->sector_count; i++)
		scrub_sector_put(sbio->sectors[i]);
1745 1746 1747 1748 1749 1750 1751

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1752 1753 1754 1755
{
	u64 flags;
	int ret;

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1768 1769
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1781 1782

	return ret;
A
Arne Jansen 已提交
1783 1784
}

1785
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1786
{
1787
	struct scrub_ctx *sctx = sblock->sctx;
1788 1789
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1790
	u8 csum[BTRFS_CSUM_SIZE];
1791
	struct scrub_sector *sector;
1792
	char *kaddr;
A
Arne Jansen 已提交
1793

1794
	BUG_ON(sblock->sector_count < 1);
1795 1796
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
1797 1798
		return 0;

1799
	kaddr = page_address(sector->page);
1800

1801 1802
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1803

1804
	/*
1805
	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1806 1807 1808
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1809

1810
	if (memcmp(csum, sector->csum, fs_info->csum_size))
1811
		sblock->checksum_error = 1;
1812
	return sblock->checksum_error;
A
Arne Jansen 已提交
1813 1814
}

1815
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1816
{
1817
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1818
	struct btrfs_header *h;
1819
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1820
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1821 1822
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1823 1824 1825 1826 1827 1828 1829
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1830
	int i;
1831
	struct scrub_sector *sector;
1832
	char *kaddr;
1833

1834
	BUG_ON(sblock->sector_count < 1);
1835

1836
	/* Each member in sectors is just one sector */
1837
	ASSERT(sblock->sector_count == num_sectors);
1838

1839 1840
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1841
	h = (struct btrfs_header *)kaddr;
1842
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1843 1844 1845 1846 1847 1848

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1849
	if (sector->logical != btrfs_stack_header_bytenr(h))
1850
		sblock->header_error = 1;
A
Arne Jansen 已提交
1851

1852
	if (sector->generation != btrfs_stack_header_generation(h)) {
1853 1854 1855
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1856

1857
	if (!scrub_check_fsid(h->fsid, sector))
1858
		sblock->header_error = 1;
A
Arne Jansen 已提交
1859 1860 1861

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1862
		sblock->header_error = 1;
A
Arne Jansen 已提交
1863

1864 1865 1866
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1867
			    sectorsize - BTRFS_CSUM_SIZE);
1868

1869
	for (i = 1; i < num_sectors; i++) {
1870
		kaddr = page_address(sblock->sectors[i]->page);
1871
		crypto_shash_update(shash, kaddr, sectorsize);
1872 1873
	}

1874
	crypto_shash_final(shash, calculated_csum);
1875
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1876
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1877

1878
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1879 1880
}

1881
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1882 1883
{
	struct btrfs_super_block *s;
1884
	struct scrub_ctx *sctx = sblock->sctx;
1885 1886
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1887
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1888
	struct scrub_sector *sector;
1889
	char *kaddr;
1890 1891
	int fail_gen = 0;
	int fail_cor = 0;
1892

1893
	BUG_ON(sblock->sector_count < 1);
1894 1895
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1896
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1897

1898
	if (sector->logical != btrfs_super_bytenr(s))
1899
		++fail_cor;
A
Arne Jansen 已提交
1900

1901
	if (sector->generation != btrfs_super_generation(s))
1902
		++fail_gen;
A
Arne Jansen 已提交
1903

1904
	if (!scrub_check_fsid(s->fsid, sector))
1905
		++fail_cor;
A
Arne Jansen 已提交
1906

1907 1908 1909 1910
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1911

1912
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1913
		++fail_cor;
A
Arne Jansen 已提交
1914

1915
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1916 1917 1918 1919 1920
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1921 1922 1923
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1924
		if (fail_cor)
1925
			btrfs_dev_stat_inc_and_print(sector->dev,
1926 1927
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1928
			btrfs_dev_stat_inc_and_print(sector->dev,
1929
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1930 1931
	}

1932
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1933 1934
}

1935 1936
static void scrub_block_get(struct scrub_block *sblock)
{
1937
	refcount_inc(&sblock->refs);
1938 1939 1940 1941
}

static void scrub_block_put(struct scrub_block *sblock)
{
1942
	if (refcount_dec_and_test(&sblock->refs)) {
1943 1944
		int i;

1945 1946 1947
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1948
		for (i = 0; i < sblock->sector_count; i++)
1949
			scrub_sector_put(sblock->sectors[i]);
1950 1951 1952 1953
		kfree(sblock);
	}
}

1954
static void scrub_sector_get(struct scrub_sector *sector)
1955
{
1956
	atomic_inc(&sector->refs);
1957 1958
}

1959
static void scrub_sector_put(struct scrub_sector *sector)
1960
{
1961 1962 1963 1964
	if (atomic_dec_and_test(&sector->refs)) {
		if (sector->page)
			__free_page(sector->page);
		kfree(sector);
1965 1966 1967
	}
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2027
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2028 2029 2030
{
	struct scrub_bio *sbio;

2031
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2032
		return;
A
Arne Jansen 已提交
2033

2034 2035
	scrub_throttle(sctx);

2036 2037
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2038
	scrub_pending_bio_inc(sctx);
2039 2040
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2041 2042
}

2043 2044
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2045
{
2046
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2047
	struct scrub_bio *sbio;
2048
	const u32 sectorsize = sctx->fs_info->sectorsize;
2049
	int ret;
A
Arne Jansen 已提交
2050 2051 2052 2053 2054

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2055 2056 2057 2058 2059 2060
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2061
			sctx->bios[sctx->curr]->sector_count = 0;
2062
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2063
		} else {
2064 2065
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2066 2067
		}
	}
2068
	sbio = sctx->bios[sctx->curr];
2069
	if (sbio->sector_count == 0) {
2070 2071 2072
		sbio->physical = sector->physical;
		sbio->logical = sector->logical;
		sbio->dev = sector->dev;
2073 2074 2075
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2076
		}
2077 2078 2079
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2080
		sbio->status = 0;
2081
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2082
		   sector->physical ||
2083
		   sbio->logical + sbio->sector_count * sectorsize !=
2084 2085
		   sector->logical ||
		   sbio->dev != sector->dev) {
2086
		scrub_submit(sctx);
A
Arne Jansen 已提交
2087 2088
		goto again;
	}
2089

2090
	sbio->sectors[sbio->sector_count] = sector;
2091
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2092
	if (ret != sectorsize) {
2093
		if (sbio->sector_count < 1) {
2094 2095 2096 2097
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2098
		scrub_submit(sctx);
2099 2100 2101
		goto again;
	}

2102
	scrub_block_get(sblock); /* one for the page added to the bio */
2103
	atomic_inc(&sblock->outstanding_sectors);
2104 2105
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2106
		scrub_submit(sctx);
2107 2108 2109 2110

	return 0;
}

2111
static void scrub_missing_raid56_end_io(struct bio *bio)
2112 2113
{
	struct scrub_block *sblock = bio->bi_private;
2114
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2115

2116
	if (bio->bi_status)
2117 2118
		sblock->no_io_error_seen = 0;

2119 2120
	bio_put(bio);

2121
	queue_work(fs_info->scrub_workers, &sblock->work);
2122 2123
}

2124
static void scrub_missing_raid56_worker(struct work_struct *work)
2125 2126 2127
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2128
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2129 2130 2131
	u64 logical;
	struct btrfs_device *dev;

2132 2133
	logical = sblock->sectors[0]->logical;
	dev = sblock->sectors[0]->dev;
2134

2135
	if (sblock->no_io_error_seen)
2136
		scrub_recheck_block_checksum(sblock);
2137 2138 2139 2140 2141

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2142
		btrfs_err_rl_in_rcu(fs_info,
2143
			"IO error rebuilding logical %llu for dev %s",
2144 2145 2146 2147 2148
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2149
		btrfs_err_rl_in_rcu(fs_info,
2150
			"failed to rebuild valid logical %llu for dev %s",
2151 2152 2153 2154 2155
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2156
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2157
		mutex_lock(&sctx->wr_lock);
2158
		scrub_wr_submit(sctx);
2159
		mutex_unlock(&sctx->wr_lock);
2160 2161
	}

2162
	scrub_block_put(sblock);
2163 2164 2165 2166 2167 2168
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2169
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2170 2171
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = sblock->sectors[0]->logical;
2172
	struct btrfs_io_context *bioc = NULL;
2173 2174 2175 2176 2177
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2178
	btrfs_bio_counter_inc_blocked(fs_info);
2179
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2180 2181 2182
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2183 2184

	if (WARN_ON(!sctx->is_dev_replace ||
2185
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2186 2187 2188 2189 2190 2191
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
2192
		goto bioc_out;
2193 2194
	}

2195
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2196 2197 2198 2199
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2200
	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2201 2202 2203
	if (!rbio)
		goto rbio_out;

2204
	for (i = 0; i < sblock->sector_count; i++) {
2205
		struct scrub_sector *sector = sblock->sectors[i];
2206

2207 2208 2209 2210 2211
		/*
		 * For now, our scrub is still one page per sector, so pgoff
		 * is always 0.
		 */
		raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical);
2212 2213
	}

2214
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2215 2216 2217 2218 2219 2220 2221
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2222
bioc_out:
2223
	btrfs_bio_counter_dec(fs_info);
2224
	btrfs_put_bioc(bioc);
2225 2226 2227 2228 2229
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2230
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2231
		       u64 physical, struct btrfs_device *dev, u64 flags,
2232
		       u64 gen, int mirror_num, u8 *csum,
2233
		       u64 physical_for_dev_replace)
2234 2235
{
	struct scrub_block *sblock;
2236
	const u32 sectorsize = sctx->fs_info->sectorsize;
2237 2238
	int index;

2239
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2240
	if (!sblock) {
2241 2242 2243
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2244
		return -ENOMEM;
A
Arne Jansen 已提交
2245
	}
2246

2247 2248
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2249
	refcount_set(&sblock->refs, 1);
2250
	sblock->sctx = sctx;
2251 2252 2253
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2254
		struct scrub_sector *sector;
2255 2256 2257 2258 2259 2260
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2261

2262 2263
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2264
leave_nomem:
2265 2266 2267
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2268
			scrub_block_put(sblock);
2269 2270
			return -ENOMEM;
		}
2271
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->physical_for_dev_replace = physical_for_dev_replace;
		sector->mirror_num = mirror_num;
2282
		if (csum) {
2283 2284
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2285
		} else {
2286
			sector->have_csum = 0;
2287
		}
2288
		sblock->sector_count++;
2289 2290
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2291
			goto leave_nomem;
2292 2293 2294
		len -= l;
		logical += l;
		physical += l;
2295
		physical_for_dev_replace += l;
2296 2297
	}

2298
	WARN_ON(sblock->sector_count == 0);
2299
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2300 2301 2302 2303 2304 2305
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2306
		for (index = 0; index < sblock->sector_count; index++) {
2307
			struct scrub_sector *sector = sblock->sectors[index];
2308
			int ret;
2309

2310
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2311 2312 2313 2314
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2315
		}
A
Arne Jansen 已提交
2316

2317
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2318 2319
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2320

2321 2322
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2323 2324 2325
	return 0;
}

2326
static void scrub_bio_end_io(struct bio *bio)
2327 2328
{
	struct scrub_bio *sbio = bio->bi_private;
2329
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2330

2331
	sbio->status = bio->bi_status;
2332 2333
	sbio->bio = bio;

2334
	queue_work(fs_info->scrub_workers, &sbio->work);
2335 2336
}

2337
static void scrub_bio_end_io_worker(struct work_struct *work)
2338 2339
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2340
	struct scrub_ctx *sctx = sbio->sctx;
2341 2342
	int i;

2343
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2344
	if (sbio->status) {
2345 2346
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2347

2348 2349
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2350 2351 2352
		}
	}

2353
	/* Now complete the scrub_block items that have all pages completed */
2354 2355
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2356
		struct scrub_block *sblock = sector->sblock;
2357

2358
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2359 2360 2361 2362 2363 2364
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2365 2366 2367 2368
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2369

2370
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2371
		mutex_lock(&sctx->wr_lock);
2372
		scrub_wr_submit(sctx);
2373
		mutex_unlock(&sctx->wr_lock);
2374 2375
	}

2376
	scrub_pending_bio_dec(sctx);
2377 2378
}

2379 2380
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2381
				       u64 start, u32 len)
2382
{
2383
	u64 offset;
2384
	u32 nsectors;
2385
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2386 2387 2388 2389 2390 2391 2392

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2393
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2394
	offset = offset >> sectorsize_bits;
2395
	nsectors = len >> sectorsize_bits;
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2407
						   u64 start, u32 len)
2408 2409 2410 2411 2412
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2413
						  u64 start, u32 len)
2414 2415 2416 2417
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2418 2419
static void scrub_block_complete(struct scrub_block *sblock)
{
2420 2421
	int corrupted = 0;

2422
	if (!sblock->no_io_error_seen) {
2423
		corrupted = 1;
2424
		scrub_handle_errored_block(sblock);
2425 2426 2427 2428 2429 2430
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2431 2432
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2433 2434
			scrub_write_block_to_dev_replace(sblock);
	}
2435 2436

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2437 2438
		u64 start = sblock->sectors[0]->logical;
		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2439
			  sblock->sctx->fs_info->sectorsize;
2440

2441
		ASSERT(end - start <= U32_MAX);
2442 2443 2444
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2445 2446
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2459
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2460 2461 2462 2463 2464
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2465
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2466
{
2467
	bool found = false;
A
Arne Jansen 已提交
2468

2469
	while (!list_empty(&sctx->csum_list)) {
2470 2471 2472 2473
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2474
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2475
				       struct btrfs_ordered_sum, list);
2476
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2477 2478 2479
		if (sum->bytenr > logical)
			break;

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2490

2491 2492 2493 2494
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2495

2496 2497 2498 2499 2500 2501 2502
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2503
	}
2504 2505
	if (!found)
		return 0;
2506
	return 1;
A
Arne Jansen 已提交
2507 2508 2509
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2510
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2511
			u64 logical, u32 len,
2512
			u64 physical, struct btrfs_device *dev, u64 flags,
2513
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2514 2515 2516
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2517 2518 2519
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2520 2521 2522 2523
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2524 2525 2526 2527
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2528
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2529 2530 2531 2532
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2533 2534 2535 2536
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2537
	} else {
2538
		blocksize = sctx->fs_info->sectorsize;
2539
		WARN_ON(1);
2540
	}
A
Arne Jansen 已提交
2541 2542

	while (len) {
2543
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2544 2545 2546 2547
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2548
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2549
			if (have_csum == 0)
2550
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2551
		}
2552
		ret = scrub_sectors(sctx, logical, l, physical, dev, flags, gen,
2553
				  mirror_num, have_csum ? csum : NULL,
2554
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2555 2556 2557 2558 2559
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2560
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2561 2562 2563 2564
	}
	return 0;
}

2565
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2566
				  u64 logical, u32 len,
2567 2568 2569 2570 2571
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2572
	const u32 sectorsize = sctx->fs_info->sectorsize;
2573 2574
	int index;

2575 2576
	ASSERT(IS_ALIGNED(len, sectorsize));

2577
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2578 2579 2580 2581 2582 2583 2584 2585 2586
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2587
	refcount_set(&sblock->refs, 1);
2588 2589 2590 2591 2592 2593
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2594
		struct scrub_sector *sector;
2595

2596 2597
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2598 2599 2600 2601 2602 2603 2604
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2605
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2606
		/* For scrub block */
2607 2608
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
2609
		/* For scrub parity */
2610 2611 2612 2613 2614 2615 2616 2617 2618
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->mirror_num = mirror_num;
2619
		if (csum) {
2620 2621
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2622
		} else {
2623
			sector->have_csum = 0;
2624
		}
2625
		sblock->sector_count++;
2626 2627
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2628
			goto leave_nomem;
2629 2630 2631 2632 2633 2634


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2635 2636
	}

2637 2638
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2639
		struct scrub_sector *sector = sblock->sectors[index];
2640 2641
		int ret;

2642
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2643 2644 2645 2646 2647 2648
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2649
	/* Last one frees, either here or in bio completion for last sector */
2650 2651 2652 2653 2654
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2655
				   u64 logical, u32 len,
2656 2657 2658 2659 2660 2661 2662 2663
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2664
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2665 2666 2667 2668
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2669
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2670
		blocksize = sparity->stripe_len;
2671
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2672
		blocksize = sparity->stripe_len;
2673
	} else {
2674
		blocksize = sctx->fs_info->sectorsize;
2675 2676 2677 2678
		WARN_ON(1);
	}

	while (len) {
2679
		u32 l = min(len, blocksize);
2680 2681 2682 2683
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2684
			have_csum = scrub_find_csum(sctx, logical, csum);
2685 2686 2687
			if (have_csum == 0)
				goto skip;
		}
2688
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2689 2690 2691 2692
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2693
skip:
2694 2695 2696 2697 2698 2699 2700
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2701 2702 2703 2704 2705 2706 2707 2708
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2709 2710
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2711 2712 2713 2714 2715
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2716 2717
	u32 stripe_index;
	u32 rot;
2718
	const int data_stripes = nr_data_stripes(map);
2719

2720
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2721 2722 2723
	if (stripe_start)
		*stripe_start = last_offset;

2724
	*offset = last_offset;
2725
	for (i = 0; i < data_stripes; i++) {
2726 2727
		*offset = last_offset + i * map->stripe_len;

2728
		stripe_nr = div64_u64(*offset, map->stripe_len);
2729
		stripe_nr = div_u64(stripe_nr, data_stripes);
2730 2731

		/* Work out the disk rotation on this stripe-set */
2732
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2733 2734
		/* calculate which stripe this data locates */
		rot += i;
2735
		stripe_index = rot % map->num_stripes;
2736 2737 2738 2739 2740 2741 2742 2743 2744
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2745 2746 2747
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2748
	struct scrub_sector *curr, *next;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2759
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2760
		list_del_init(&curr->list);
2761
		scrub_sector_put(curr);
2762 2763 2764 2765 2766
	}

	kfree(sparity);
}

2767
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2768 2769 2770 2771 2772 2773 2774 2775 2776
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2777
static void scrub_parity_bio_endio(struct bio *bio)
2778
{
Y
Yu Zhe 已提交
2779
	struct scrub_parity *sparity = bio->bi_private;
2780
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2781

2782
	if (bio->bi_status)
2783 2784 2785 2786
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2787

2788 2789
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2790 2791 2792 2793 2794
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2795
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2796 2797
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2798
	struct btrfs_io_context *bioc = NULL;
2799 2800 2801 2802 2803 2804 2805
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2806
	length = sparity->logic_end - sparity->logic_start;
2807 2808

	btrfs_bio_counter_inc_blocked(fs_info);
2809
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2810 2811 2812
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2813

2814
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2815 2816 2817 2818
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2819 2820
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
					      sparity->scrub_dev,
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2832
bioc_out:
2833
	btrfs_bio_counter_dec(fs_info);
2834
	btrfs_put_bioc(bioc);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2846
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2847 2848 2849 2850
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2851
	refcount_inc(&sparity->refs);
2852 2853 2854 2855
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2856
	if (!refcount_dec_and_test(&sparity->refs))
2857 2858 2859 2860 2861
		return;

	scrub_parity_check_and_repair(sparity);
}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

2988 2989 2990 2991 2992 2993 2994 2995 2996
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

2997 2998 2999 3000 3001 3002
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3003
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3004
	struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
3005
	struct btrfs_root *csum_root;
3006
	struct btrfs_extent_item *extent;
3007
	struct btrfs_io_context *bioc = NULL;
3008
	struct btrfs_path *path;
3009 3010 3011 3012 3013 3014 3015 3016
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
3017 3018
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
3019
	u64 mapped_length;
3020 3021 3022 3023 3024 3025 3026
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3037
	ASSERT(map->stripe_len <= U32_MAX);
3038
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3039 3040 3041 3042 3043 3044 3045
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3046
		btrfs_free_path(path);
3047 3048 3049
		return -ENOMEM;
	}

3050
	ASSERT(map->stripe_len <= U32_MAX);
3051 3052 3053 3054 3055 3056
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3057
	refcount_set(&sparity->refs, 1);
3058
	INIT_LIST_HEAD(&sparity->sectors_list);
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3106 3107 3108 3109
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3110
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3111
				bytes = fs_info->nodesize;
3112 3113 3114 3115 3116 3117
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3118
			if (key.objectid >= logic_end) {
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3131 3132 3133 3134
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3135 3136
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3137
					  key.objectid, logic_start);
3138 3139 3140
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3141 3142 3143 3144
				goto next;
			}
again:
			extent_logical = key.objectid;
3145
			ASSERT(bytes <= U32_MAX);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3161
			mapped_length = extent_len;
3162
			bioc = NULL;
3163
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3164
					extent_logical, &mapped_length, &bioc,
3165
					0);
3166
			if (!ret) {
3167
				if (!bioc || mapped_length < extent_len)
3168 3169 3170
					ret = -EIO;
			}
			if (ret) {
3171
				btrfs_put_bioc(bioc);
3172 3173
				goto out;
			}
3174 3175 3176 3177
			extent_physical = bioc->stripes[0].physical;
			extent_mirror_num = bioc->mirror_num;
			extent_dev = bioc->stripes[0].dev;
			btrfs_put_bioc(bioc);
3178

3179
			csum_root = btrfs_csum_root(fs_info, extent_logical);
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3193 3194 3195

			scrub_free_csums(sctx);

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3225 3226
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3227
		scrub_parity_mark_sectors_error(sparity, logic_start,
3228
						logic_end - logic_start);
3229
	}
3230 3231
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3232
	mutex_lock(&sctx->wr_lock);
3233
	scrub_wr_submit(sctx);
3234
	mutex_unlock(&sctx->wr_lock);
3235

3236
	btrfs_free_path(path);
3237 3238 3239
	return ret < 0 ? ret : 0;
}

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		int cur_mirror = mirror_num;
		struct btrfs_device *target_dev = device;
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;
		u64 cur_physical;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
		if (bg->removed) {
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;
		cur_physical = cur_logical - logical_start + physical;

		if (sctx->is_dev_replace)
			scrub_remap_extent(fs_info, cur_logical, scrub_len,
					   &cur_physical, &target_dev, &cur_mirror);
		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
					cur_logical + scrub_len - 1,
					&sctx->csum_list, 1);
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
		ret = scrub_extent(sctx, map, cur_logical, scrub_len, cur_physical,
				   target_dev, extent_flags, extent_gen,
				   cur_mirror, cur_logical - logical_start +
				   physical);
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return map->num_stripes / map->sub_stripes * map->stripe_len;
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
					  cur_logical, map->stripe_len, device,
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += map->stripe_len;
	}
	return ret;
}

3487
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3488
					   struct btrfs_block_group *bg,
3489 3490
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3491
					   int stripe_index, u64 dev_extent_len)
A
Arne Jansen 已提交
3492
{
3493
	struct btrfs_path *path;
3494
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3495
	struct btrfs_root *root;
3496
	struct btrfs_root *csum_root;
3497
	struct blk_plug plug;
3498
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3499
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3500
	int ret;
3501
	u64 physical = map->stripes[stripe_index].physical;
3502
	const u64 physical_end = physical + dev_extent_len;
A
Arne Jansen 已提交
3503
	u64 logical;
L
Liu Bo 已提交
3504
	u64 logic_end;
3505
	/* The logical increment after finishing one stripe */
3506
	u64 increment;
3507
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3508
	u64 offset;
3509 3510
	u64 stripe_logical;
	u64 stripe_end;
3511
	int stop_loop = 0;
D
David Woodhouse 已提交
3512

A
Arne Jansen 已提交
3513 3514 3515 3516
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3517 3518 3519 3520 3521
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3522 3523
	path->search_commit_root = 1;
	path->skip_locking = 1;
3524
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3525

3526
	wait_event(sctx->list_wait,
3527
		   atomic_read(&sctx->bios_in_flight) == 0);
3528
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3529

3530 3531
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3532

A
Arne Jansen 已提交
3533 3534 3535 3536
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3537
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3538

3539 3540 3541 3542 3543 3544 3545 3546
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3568
		offset = 0;
3569 3570
		goto out;
	}
3571 3572 3573
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3574
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3575 3576 3577 3578 3579
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3580
	ret = 0;
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = map->stripe_len * nr_data_stripes(map);

3591 3592 3593 3594
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3595
	while (physical < physical_end) {
3596 3597
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3608
			goto next;
3609 3610
		}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
					  logical, map->stripe_len,
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3622 3623 3624 3625 3626
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += map->stripe_len;
3627
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3628
		if (stop_loop)
3629 3630
			sctx->stat.last_physical = map->stripes[stripe_index].physical +
						   dev_extent_len;
L
Liu Bo 已提交
3631 3632
		else
			sctx->stat.last_physical = physical;
3633
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3634 3635
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3636
	}
3637
out:
A
Arne Jansen 已提交
3638
	/* push queued extents */
3639
	scrub_submit(sctx);
3640
	mutex_lock(&sctx->wr_lock);
3641
	scrub_wr_submit(sctx);
3642
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3643

3644
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3645
	btrfs_free_path(path);
3646 3647 3648 3649

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3650 3651 3652 3653
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3654 3655 3656 3657
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3658 3659 3660
	return ret < 0 ? ret : 0;
}

3661
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3662
					  struct btrfs_block_group *bg,
3663
					  struct btrfs_device *scrub_dev,
3664
					  u64 dev_offset,
3665
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3666
{
3667
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3668
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3669 3670 3671
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3672
	int ret = 0;
A
Arne Jansen 已提交
3673

3674
	read_lock(&map_tree->lock);
3675
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3676
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3677

3678 3679 3680 3681 3682
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3683 3684
		spin_lock(&bg->lock);
		if (!bg->removed)
3685
			ret = -EINVAL;
3686
		spin_unlock(&bg->lock);
3687 3688 3689

		return ret;
	}
3690
	if (em->start != bg->start)
A
Arne Jansen 已提交
3691
		goto out;
3692
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3693 3694
		goto out;

3695
	map = em->map_lookup;
A
Arne Jansen 已提交
3696
	for (i = 0; i < map->num_stripes; ++i) {
3697
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3698
		    map->stripes[i].physical == dev_offset) {
3699 3700
			ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
					   dev_extent_len);
A
Arne Jansen 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3730
static noinline_for_stack
3731
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3732
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3733 3734 3735
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3736 3737
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3738
	u64 chunk_offset;
3739
	int ret = 0;
3740
	int ro_set;
A
Arne Jansen 已提交
3741 3742 3743 3744
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3745
	struct btrfs_block_group *cache;
3746
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3747 3748 3749 3750 3751

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3752
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3753 3754 3755
	path->search_commit_root = 1;
	path->skip_locking = 1;

3756
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3757 3758 3759 3760
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3761 3762
		u64 dev_extent_len;

A
Arne Jansen 已提交
3763 3764
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3765 3766 3767 3768 3769
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3770 3771 3772 3773
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3774
					break;
3775 3776 3777
				}
			} else {
				ret = 0;
3778 3779
			}
		}
A
Arne Jansen 已提交
3780 3781 3782 3783 3784 3785

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3786
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3787 3788
			break;

3789
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3799
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3800

3801
		if (found_key.offset + dev_extent_len <= start)
3802
			goto skip;
A
Arne Jansen 已提交
3803 3804 3805 3806 3807 3808 3809 3810

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3811 3812 3813 3814 3815 3816

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3842 3843 3844 3845
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3846 3847
				btrfs_put_block_group(cache);
				goto skip;
3848 3849 3850 3851
			}
			spin_unlock(&cache->lock);
		}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3866
		btrfs_freeze_block_group(cache);
3867 3868
		spin_unlock(&cache->lock);

3869 3870 3871 3872 3873 3874 3875 3876 3877
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3908
		 */
3909
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3920 3921
		if (ret == 0) {
			ro_set = 1;
3922
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3923 3924 3925
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3926
			 * It is not a problem for scrub, because
3927 3928 3929 3930
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3931 3932 3933 3934 3935 3936 3937
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3938
		} else {
J
Jeff Mahoney 已提交
3939
			btrfs_warn(fs_info,
3940
				   "failed setting block group ro: %d", ret);
3941
			btrfs_unfreeze_block_group(cache);
3942
			btrfs_put_block_group(cache);
3943
			scrub_pause_off(fs_info);
3944 3945 3946
			break;
		}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3959
		down_write(&dev_replace->rwsem);
3960
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3961 3962
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3963 3964
		up_write(&dev_replace->rwsem);

3965 3966
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3978
		sctx->flush_all_writes = true;
3979
		scrub_submit(sctx);
3980
		mutex_lock(&sctx->wr_lock);
3981
		scrub_wr_submit(sctx);
3982
		mutex_unlock(&sctx->wr_lock);
3983 3984 3985

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3986 3987

		scrub_pause_on(fs_info);
3988 3989 3990 3991 3992 3993

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3994 3995
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3996
		sctx->flush_all_writes = false;
3997

3998
		scrub_pause_off(fs_info);
3999

4000 4001 4002 4003 4004
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4005
		down_write(&dev_replace->rwsem);
4006 4007
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4008
		up_write(&dev_replace->rwsem);
4009

4010
		if (ro_set)
4011
			btrfs_dec_block_group_ro(cache);
4012

4013 4014 4015 4016 4017 4018 4019 4020 4021
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
4022
		    cache->used == 0) {
4023
			spin_unlock(&cache->lock);
4024 4025 4026 4027 4028
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4029 4030 4031
		} else {
			spin_unlock(&cache->lock);
		}
4032
skip_unfreeze:
4033
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4034 4035 4036
		btrfs_put_block_group(cache);
		if (ret)
			break;
4037
		if (sctx->is_dev_replace &&
4038
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4039 4040 4041 4042 4043 4044 4045
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4046
skip:
4047
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4048
		btrfs_release_path(path);
A
Arne Jansen 已提交
4049 4050 4051
	}

	btrfs_free_path(path);
4052

4053
	return ret;
A
Arne Jansen 已提交
4054 4055
}

4056 4057
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4058 4059 4060 4061 4062
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4063
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4064

J
Josef Bacik 已提交
4065
	if (BTRFS_FS_ERROR(fs_info))
4066
		return -EROFS;
4067

4068
	/* Seed devices of a new filesystem has their own generation. */
4069
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4070 4071
		gen = scrub_dev->generation;
	else
4072
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4073 4074 4075

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4076 4077
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4078
			break;
4079 4080
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4081

4082 4083 4084
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4085 4086 4087
		if (ret)
			return ret;
	}
4088
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4089 4090 4091 4092

	return 0;
}

4093 4094 4095 4096
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4097 4098 4099 4100 4101
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4102 4103 4104 4105 4106 4107

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4108 4109 4110 4111 4112 4113
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4114 4115 4116
	}
}

A
Arne Jansen 已提交
4117 4118 4119
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4120 4121
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4122
{
4123 4124 4125
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4126
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4127
	int max_active = fs_info->thread_pool_size;
4128
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4129

4130 4131
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4132

4133 4134
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4135 4136
	if (!scrub_workers)
		goto fail_scrub_workers;
4137

4138
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4139 4140
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4141

4142
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4154
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4155 4156
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4157
	}
4158 4159 4160
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4161

4162
	ret = 0;
4163
	destroy_workqueue(scrub_parity);
4164
fail_scrub_parity_workers:
4165
	destroy_workqueue(scrub_wr_comp);
4166
fail_scrub_wr_completion_workers:
4167
	destroy_workqueue(scrub_workers);
4168
fail_scrub_workers:
4169
	return ret;
A
Arne Jansen 已提交
4170 4171
}

4172 4173
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4174
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4175
{
4176
	struct btrfs_dev_lookup_args args = { .devid = devid };
4177
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4178 4179
	int ret;
	struct btrfs_device *dev;
4180
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4181

4182
	if (btrfs_fs_closing(fs_info))
4183
		return -EAGAIN;
A
Arne Jansen 已提交
4184

4185
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4186 4187 4188 4189 4190
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4191 4192
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4193 4194
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4195 4196 4197
		return -EINVAL;
	}

4198
	if (fs_info->nodesize >
4199 4200
	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
4201
		/*
4202
		 * Would exhaust the array bounds of sectorv member in
4203 4204
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4205
		btrfs_err(fs_info,
4206 4207 4208
"scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
4209 4210 4211
		return -EINVAL;
	}

4212 4213 4214 4215
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4216

4217 4218 4219 4220
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4221
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4222
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4223 4224
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4225
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4226
		ret = -ENODEV;
4227
		goto out;
A
Arne Jansen 已提交
4228 4229
	}

4230 4231
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4232
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4233 4234 4235
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4236
		ret = -EROFS;
4237
		goto out;
4238 4239
	}

4240
	mutex_lock(&fs_info->scrub_lock);
4241
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4242
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4243
		mutex_unlock(&fs_info->scrub_lock);
4244
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4245
		ret = -EIO;
4246
		goto out;
A
Arne Jansen 已提交
4247 4248
	}

4249
	down_read(&fs_info->dev_replace.rwsem);
4250
	if (dev->scrub_ctx ||
4251 4252
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4253
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4254
		mutex_unlock(&fs_info->scrub_lock);
4255
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4256
		ret = -EINPROGRESS;
4257
		goto out;
A
Arne Jansen 已提交
4258
	}
4259
	up_read(&fs_info->dev_replace.rwsem);
4260

4261
	sctx->readonly = readonly;
4262
	dev->scrub_ctx = sctx;
4263
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4264

4265 4266 4267 4268
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4269
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4270 4271 4272
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4273 4274 4275
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4276
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4277 4278 4279 4280 4281 4282
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4283
	if (!is_dev_replace) {
4284
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4285 4286 4287 4288
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4289
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4290
		ret = scrub_supers(sctx, dev);
4291
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4292
	}
A
Arne Jansen 已提交
4293 4294

	if (!ret)
4295
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4296
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4297

4298
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4299 4300 4301
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4302
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4303

A
Arne Jansen 已提交
4304
	if (progress)
4305
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4306

4307 4308 4309 4310
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4311
	mutex_lock(&fs_info->scrub_lock);
4312
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4313 4314
	mutex_unlock(&fs_info->scrub_lock);

4315
	scrub_workers_put(fs_info);
4316
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4317

4318
	return ret;
4319 4320
out:
	scrub_workers_put(fs_info);
4321 4322 4323
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4324 4325 4326
	return ret;
}

4327
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4342
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4343 4344 4345 4346 4347
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4348
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4369
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4370
{
4371
	struct btrfs_fs_info *fs_info = dev->fs_info;
4372
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4373 4374

	mutex_lock(&fs_info->scrub_lock);
4375
	sctx = dev->scrub_ctx;
4376
	if (!sctx) {
A
Arne Jansen 已提交
4377 4378 4379
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4380
	atomic_inc(&sctx->cancel_req);
4381
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4382 4383
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4384
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4385 4386 4387 4388 4389 4390
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4391

4392
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4393 4394
			 struct btrfs_scrub_progress *progress)
{
4395
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4396
	struct btrfs_device *dev;
4397
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4398

4399
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4400
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4401
	if (dev)
4402
		sctx = dev->scrub_ctx;
4403 4404
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4405
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4406

4407
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4408
}
4409 4410

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4411
			       u64 extent_logical, u32 extent_len,
4412 4413 4414 4415 4416
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
4417
	struct btrfs_io_context *bioc = NULL;
4418 4419 4420
	int ret;

	mapped_length = extent_len;
4421
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4422 4423 4424 4425
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4426 4427 4428
		return;
	}

4429 4430 4431 4432
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4433
}