scrub.c 114.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

63
struct scrub_sector {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90 91
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
92 93 94 95
	int			next_free;
	struct btrfs_work	work;
};

96
struct scrub_block {
97
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
98
	int			sector_count;
99
	atomic_t		outstanding_sectors;
100
	refcount_t		refs; /* free mem on transition to zero */
101
	struct scrub_ctx	*sctx;
102
	struct scrub_parity	*sparity;
103 104 105 106
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
107
		unsigned int	generation_error:1; /* also sets header_error */
108 109 110 111

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
112
	};
113
	struct btrfs_work	work;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

128
	u32			stripe_len;
129

130
	refcount_t		refs;
131

132
	struct list_head	sectors_list;
133 134 135 136 137 138 139 140 141 142 143 144 145

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

146
	unsigned long		bitmap[];
147 148
};

149
struct scrub_ctx {
150
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
151
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
152 153
	int			first_free;
	int			curr;
154 155
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
156 157 158 159
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
160
	int			readonly;
161
	int			sectors_per_bio;
162

163 164 165 166
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

167
	int			is_dev_replace;
168
	u64			write_pointer;
169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191 192 193 194
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
195
	u64			physical;
196 197 198 199
	u64			logical;
	struct btrfs_device	*dev;
};

200 201 202 203 204 205 206
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

207
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
208
				     struct scrub_block *sblocks_for_recheck);
209
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
210 211
				struct scrub_block *sblock,
				int retry_failed_mirror);
212
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
213
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
214
					     struct scrub_block *sblock_good);
215
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
216
					    struct scrub_block *sblock_good,
217
					    int sector_num, int force_write);
218
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219 220
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
221 222 223 224
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
225 226
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
227 228
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
229 230 231 232
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
233
static void scrub_bio_end_io(struct bio *bio);
234 235
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
236
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237
			       u64 extent_logical, u32 extent_len,
238 239 240
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
241 242
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
243
static void scrub_wr_submit(struct scrub_ctx *sctx);
244
static void scrub_wr_bio_end_io(struct bio *bio);
245
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
247

248
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
249
{
250 251
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
252
}
S
Stefan Behrens 已提交
253

254 255
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
256
	refcount_inc(&sctx->refs);
257 258 259 260 261 262 263
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
264
	scrub_put_ctx(sctx);
265 266
}

267
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
268 269 270 271 272 273 274 275 276
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

277
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
278 279 280
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
281
}
282

283 284
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
285 286 287 288 289 290 291 292
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

293 294 295 296 297 298
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

318
	lockdep_assert_held(&locks_root->lock);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

334 335 336
	/*
	 * Insert new lock.
	 */
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

362
	lockdep_assert_held(&locks_root->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
382
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
383 384 385 386 387 388 389 390 391 392 393 394 395
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
396 397
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
415
	struct btrfs_block_group *bg_cache;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
462
	struct btrfs_block_group *bg_cache;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

516
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
517
{
518
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
519
		struct btrfs_ordered_sum *sum;
520
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
521 522 523 524 525 526
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

527
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528 529 530
{
	int i;

531
	if (!sctx)
A
Arne Jansen 已提交
532 533
		return;

534
	/* this can happen when scrub is cancelled */
535 536
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
537

538 539 540
		for (i = 0; i < sbio->sector_count; i++) {
			WARN_ON(!sbio->sectors[i]->page);
			scrub_block_put(sbio->sectors[i]->sblock);
541 542 543 544
		}
		bio_put(sbio->bio);
	}

545
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
546
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
547 548 549 550 551 552

		if (!sbio)
			break;
		kfree(sbio);
	}

553
	kfree(sctx->wr_curr_bio);
554 555
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
556 557
}

558 559
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
560
	if (refcount_dec_and_test(&sctx->refs))
561 562 563
		scrub_free_ctx(sctx);
}

564 565
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
566
{
567
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
568 569
	int		i;

570
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
571
	if (!sctx)
A
Arne Jansen 已提交
572
		goto nomem;
573
	refcount_set(&sctx->refs, 1);
574
	sctx->is_dev_replace = is_dev_replace;
575
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
576
	sctx->curr = -1;
577
	sctx->fs_info = fs_info;
578
	INIT_LIST_HEAD(&sctx->csum_list);
579
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
580 581
		struct scrub_bio *sbio;

582
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
583 584
		if (!sbio)
			goto nomem;
585
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
586 587

		sbio->index = i;
588
		sbio->sctx = sctx;
589
		sbio->sector_count = 0;
590 591
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
592

593
		if (i != SCRUB_BIOS_PER_SCTX - 1)
594
			sctx->bios[i]->next_free = i + 1;
595
		else
596 597 598
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
599 600
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
601 602 603 604 605
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
606
	sctx->throttle_deadline = 0;
607

608 609 610
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
611
	if (is_dev_replace) {
612 613
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
614
		sctx->flush_all_writes = false;
615
	}
616

617
	return sctx;
A
Arne Jansen 已提交
618 619

nomem:
620
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
621 622 623
	return ERR_PTR(-ENOMEM);
}

624 625
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
626 627 628 629
{
	u32 nlink;
	int ret;
	int i;
630
	unsigned nofs_flag;
631 632
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
633
	struct scrub_warning *swarn = warn_ctx;
634
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
635 636
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
637
	struct btrfs_key key;
638

D
David Sterba 已提交
639
	local_root = btrfs_get_fs_root(fs_info, root, true);
640 641 642 643 644
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

645 646 647
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
648 649 650 651 652
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
653
	if (ret) {
654
		btrfs_put_root(local_root);
655 656 657 658 659 660 661 662 663 664
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

665 666 667 668 669 670
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
671
	ipath = init_ipath(4096, local_root, swarn->path);
672
	memalloc_nofs_restore(nofs_flag);
673
	if (IS_ERR(ipath)) {
674
		btrfs_put_root(local_root);
675 676 677 678
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
679 680 681 682 683 684 685 686 687 688
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
689
		btrfs_warn_in_rcu(fs_info,
690
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
691 692
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
693
				  swarn->physical,
J
Jeff Mahoney 已提交
694
				  root, inum, offset,
695
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
696
				  (char *)(unsigned long)ipath->fspath->val[i]);
697

698
	btrfs_put_root(local_root);
699 700 701 702
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
703
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
704
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
705 706
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
707
			  swarn->physical,
J
Jeff Mahoney 已提交
708
			  root, inum, offset, ret);
709 710 711 712 713

	free_ipath(ipath);
	return 0;
}

714
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
715
{
716 717
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
718 719 720 721 722
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
723 724 725
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
726
	u64 ref_root;
727
	u32 item_size;
728
	u8 ref_level = 0;
729
	int ret;
730

731 732
	WARN_ON(sblock->sector_count < 1);
	dev = sblock->sectors[0]->dev;
733
	fs_info = sblock->sctx->fs_info;
734

735
	path = btrfs_alloc_path();
736 737
	if (!path)
		return;
738

739 740
	swarn.physical = sblock->sectors[0]->physical;
	swarn.logical = sblock->sectors[0]->logical;
741
	swarn.errstr = errstr;
742
	swarn.dev = NULL;
743

744 745
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
746 747 748
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
749
	extent_item_pos = swarn.logical - found_key.objectid;
750 751 752 753
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
754
	item_size = btrfs_item_size(eb, path->slots[0]);
755

756
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
757
		do {
758 759 760
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
761
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
762
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
763
				errstr, swarn.logical,
764
				rcu_str_deref(dev->name),
D
David Sterba 已提交
765
				swarn.physical,
766 767 768 769
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
770
		btrfs_release_path(path);
771
	} else {
772
		btrfs_release_path(path);
773
		swarn.path = path;
774
		swarn.dev = dev;
775 776
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
777
					scrub_print_warning_inode, &swarn, false);
778 779 780 781 782 783
	}

out:
	btrfs_free_path(path);
}

784 785
static inline void scrub_get_recover(struct scrub_recover *recover)
{
786
	refcount_inc(&recover->refs);
787 788
}

789 790
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
791
{
792
	if (refcount_dec_and_test(&recover->refs)) {
793
		btrfs_bio_counter_dec(fs_info);
794
		btrfs_put_bioc(recover->bioc);
795 796 797 798
		kfree(recover);
	}
}

A
Arne Jansen 已提交
799
/*
800
 * scrub_handle_errored_block gets called when either verification of the
801 802
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
803 804 805
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
806
 */
807
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
808
{
809
	struct scrub_ctx *sctx = sblock_to_check->sctx;
810
	struct btrfs_device *dev;
811 812 813 814 815 816 817 818 819
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
820
	int sector_num;
821
	int success;
822
	bool full_stripe_locked;
823
	unsigned int nofs_flag;
824
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
825 826
				      DEFAULT_RATELIMIT_BURST);

827
	BUG_ON(sblock_to_check->sector_count < 1);
828
	fs_info = sctx->fs_info;
829
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
830 831 832 833 834 835 836 837 838 839
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
840 841 842 843
	logical = sblock_to_check->sectors[0]->logical;
	BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->sectors[0]->flags &
844
			BTRFS_EXTENT_FLAG_DATA);
845 846
	have_csum = sblock_to_check->sectors[0]->have_csum;
	dev = sblock_to_check->sectors[0]->dev;
847

848 849
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
850

851 852 853 854 855 856
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
857
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
858 859 860
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
861 862 863 864 865 866 867 868 869
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
870
		memalloc_nofs_restore(nofs_flag);
871 872 873 874 875 876 877 878 879
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

880 881 882 883
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
884
	 * sector by sector this time in order to know which sectors
885 886 887 888
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
889 890 891 892 893 894 895 896 897 898
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
899 900 901
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
902
	 * Only if this is not possible, the sectors are picked from
903 904 905 906 907 908
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

909
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
910
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
911
	if (!sblocks_for_recheck) {
912 913 914 915 916
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
917
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918
		goto out;
A
Arne Jansen 已提交
919 920
	}

921
	/* Setup the context, map the logical blocks and alloc the sectors */
922
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
923
	if (ret) {
924 925 926 927
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
928
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929 930 931 932
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
933

934
	/* build and submit the bios for the failed mirror, check checksums */
935
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
936

937 938 939
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
940
		 * The error disappeared after reading sector by sector, or
941 942 943 944 945 946
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
947 948
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
949
		sblock_to_check->data_corrected = 1;
950
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
951

952 953
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
954
		goto out;
A
Arne Jansen 已提交
955 956
	}

957
	if (!sblock_bad->no_io_error_seen) {
958 959 960
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
961
		if (__ratelimit(&rs))
962
			scrub_print_warning("i/o error", sblock_to_check);
963
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964
	} else if (sblock_bad->checksum_error) {
965 966 967
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
968
		if (__ratelimit(&rs))
969
			scrub_print_warning("checksum error", sblock_to_check);
970
		btrfs_dev_stat_inc_and_print(dev,
971
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
972
	} else if (sblock_bad->header_error) {
973 974 975
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
976
		if (__ratelimit(&rs))
977 978
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
979
		if (sblock_bad->generation_error)
980
			btrfs_dev_stat_inc_and_print(dev,
981 982
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
983
			btrfs_dev_stat_inc_and_print(dev,
984
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
985
	}
A
Arne Jansen 已提交
986

987 988 989 990
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
991

992 993
	/*
	 * now build and submit the bios for the other mirrors, check
994 995
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
996 997 998 999 1000
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1001
	 * checksum is present, only those sectors are rewritten that had
1002
	 * an I/O error in the block to be repaired, since it cannot be
1003 1004
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1005 1006
	 * overwritten by a bad one).
	 */
1007
	for (mirror_index = 0; ;mirror_index++) {
1008
		struct scrub_block *sblock_other;
1009

1010 1011
		if (mirror_index == failed_mirror_index)
			continue;
1012 1013

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1014
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1015 1016
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1017
			if (!sblocks_for_recheck[mirror_index].sector_count)
1018 1019 1020 1021
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
1022
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1023
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1024 1025 1026

			if (mirror_index >= max_allowed)
				break;
1027
			if (!sblocks_for_recheck[1].sector_count)
1028 1029 1030 1031
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
1032
			sblock_other->sectors[0]->mirror_num = 1 + mirror_index;
1033
		}
1034 1035

		/* build and submit the bios, check checksums */
1036
		scrub_recheck_block(fs_info, sblock_other, 0);
1037 1038

		if (!sblock_other->header_error &&
1039 1040
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1041 1042
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1043
				goto corrected_error;
1044 1045
			} else {
				ret = scrub_repair_block_from_good_copy(
1046 1047 1048
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1049
			}
1050 1051
		}
	}
A
Arne Jansen 已提交
1052

1053 1054
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1055 1056 1057

	/*
	 * In case of I/O errors in the area that is supposed to be
1058 1059
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1060 1061 1062 1063 1064
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1065
	 * all possible combinations of sectors from the different mirrors
1066
	 * until the checksum verification succeeds. For example, when
1067
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1068
	 * of mirror #2 is readable but the final checksum test fails,
1069
	 * then the 2nd sector of mirror #3 could be tried, whether now
1070
	 * the final checksum succeeds. But this would be a rare
1071 1072 1073 1074
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1075
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1076
	 * mirror could be repaired by taking 512 byte of a different
1077
	 * mirror, even if other 512 byte sectors in the same sectorsize
1078
	 * area are unreadable.
A
Arne Jansen 已提交
1079
	 */
1080
	success = 1;
1081 1082
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1083
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1084
		struct scrub_block *sblock_other = NULL;
1085

1086 1087
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1088
			continue;
1089

1090
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1091 1092 1093 1094 1095 1096 1097 1098
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1099 1100
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1101 1102
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1103
			     sblocks_for_recheck[mirror_index].sector_count > 0;
1104 1105
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
1106
				    sectors[sector_num]->io_error) {
1107 1108 1109
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1110 1111
				}
			}
1112 1113
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1114
		}
A
Arne Jansen 已提交
1115

1116 1117
		if (sctx->is_dev_replace) {
			/*
1118 1119 1120 1121
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1122 1123 1124 1125
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1126 1127
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1128
				atomic64_inc(
1129
					&fs_info->dev_replace.num_write_errors);
1130 1131 1132
				success = 0;
			}
		} else if (sblock_other) {
1133 1134 1135
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1136
			if (0 == ret)
1137
				sector_bad->io_error = 0;
1138 1139
			else
				success = 0;
1140
		}
A
Arne Jansen 已提交
1141 1142
	}

1143
	if (success && !sctx->is_dev_replace) {
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1154
			scrub_recheck_block(fs_info, sblock_bad, 1);
1155
			if (!sblock_bad->header_error &&
1156 1157 1158 1159 1160 1161 1162
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1163 1164
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1165
			sblock_to_check->data_corrected = 1;
1166
			spin_unlock(&sctx->stat_lock);
1167 1168
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1169
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1170
		}
1171 1172
	} else {
did_not_correct_error:
1173 1174 1175
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1176 1177
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1178
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1179
	}
A
Arne Jansen 已提交
1180

1181 1182 1183 1184 1185 1186
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1187
			struct scrub_recover *recover;
1188
			int i;
1189

1190 1191 1192
			for (i = 0; i < sblock->sector_count; i++) {
				sblock->sectors[i]->sblock = NULL;
				recover = sblock->sectors[i]->recover;
1193
				if (recover) {
1194
					scrub_put_recover(fs_info, recover);
1195
					sblock->sectors[i]->recover = NULL;
1196
				}
1197
				scrub_sector_put(sblock->sectors[i]);
1198
			}
1199 1200 1201
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1202

1203
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1204
	memalloc_nofs_restore(nofs_flag);
1205 1206
	if (ret < 0)
		return ret;
1207 1208
	return 0;
}
A
Arne Jansen 已提交
1209

1210
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1211
{
1212
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1213
		return 2;
1214
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1215 1216
		return 3;
	else
1217
		return (int)bioc->num_stripes;
1218 1219
}

Z
Zhao Lei 已提交
1220 1221
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1222 1223 1224 1225 1226 1227 1228
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1229
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1250
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1251 1252
				     struct scrub_block *sblocks_for_recheck)
{
1253
	struct scrub_ctx *sctx = original_sblock->sctx;
1254
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1255 1256 1257 1258 1259
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = original_sblock->sectors[0]->logical;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1260
	struct scrub_recover *recover;
1261
	struct btrfs_io_context *bioc;
1262 1263 1264 1265
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1266
	int sector_index = 0;
1267
	int mirror_index;
1268
	int nmirrors;
1269 1270 1271
	int ret;

	/*
1272 1273
	 * Note: the two members refs and outstanding_sectors are not used (and
	 * not set) in the blocks that are used for the recheck procedure.
1274 1275 1276
	 */

	while (length > 0) {
1277
		sublen = min_t(u64, length, fs_info->sectorsize);
1278
		mapped_length = sublen;
1279
		bioc = NULL;
A
Arne Jansen 已提交
1280

1281
		/*
1282 1283
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1284
		 */
1285
		btrfs_bio_counter_inc_blocked(fs_info);
1286
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1287 1288 1289
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1290
			btrfs_bio_counter_dec(fs_info);
1291 1292
			return -EIO;
		}
A
Arne Jansen 已提交
1293

1294 1295
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1296
			btrfs_put_bioc(bioc);
1297
			btrfs_bio_counter_dec(fs_info);
1298 1299 1300
			return -ENOMEM;
		}

1301
		refcount_set(&recover->refs, 1);
1302
		recover->bioc = bioc;
1303 1304
		recover->map_length = mapped_length;

1305
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1306

1307
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1308

1309
		for (mirror_index = 0; mirror_index < nmirrors;
1310 1311
		     mirror_index++) {
			struct scrub_block *sblock;
1312
			struct scrub_sector *sector;
1313 1314

			sblock = sblocks_for_recheck + mirror_index;
1315
			sblock->sctx = sctx;
1316

1317 1318
			sector = kzalloc(sizeof(*sector), GFP_NOFS);
			if (!sector) {
1319
leave_nomem:
1320 1321 1322
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1323
				scrub_put_recover(fs_info, recover);
1324 1325
				return -ENOMEM;
			}
1326 1327 1328 1329 1330 1331 1332
			scrub_sector_get(sector);
			sblock->sectors[sector_index] = sector;
			sector->sblock = sblock;
			sector->flags = flags;
			sector->generation = generation;
			sector->logical = logical;
			sector->have_csum = have_csum;
1333
			if (have_csum)
1334
				memcpy(sector->csum,
1335
				       original_sblock->sectors[0]->csum,
1336
				       sctx->fs_info->csum_size);
1337

Z
Zhao Lei 已提交
1338
			scrub_stripe_index_and_offset(logical,
1339 1340
						      bioc->map_type,
						      bioc->raid_map,
1341
						      mapped_length,
1342 1343
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1344 1345 1346
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1347
			sector->physical = bioc->stripes[stripe_index].physical +
1348
					 stripe_offset;
1349
			sector->dev = bioc->stripes[stripe_index].dev;
1350

1351
			BUG_ON(sector_index >= original_sblock->sector_count);
1352
			sector->physical_for_dev_replace =
1353
				original_sblock->sectors[sector_index]->
1354
				physical_for_dev_replace;
1355 1356
			/* For missing devices, dev->bdev is NULL */
			sector->mirror_num = mirror_index + 1;
1357
			sblock->sector_count++;
1358 1359
			sector->page = alloc_page(GFP_NOFS);
			if (!sector->page)
1360
				goto leave_nomem;
1361 1362

			scrub_get_recover(recover);
1363
			sector->recover = recover;
1364
		}
1365
		scrub_put_recover(fs_info, recover);
1366 1367
		length -= sublen;
		logical += sublen;
1368
		sector_index++;
1369 1370 1371
	}

	return 0;
I
Ilya Dryomov 已提交
1372 1373
}

1374
static void scrub_bio_wait_endio(struct bio *bio)
1375
{
1376
	complete(bio->bi_private);
1377 1378 1379 1380
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1381
					struct scrub_sector *sector)
1382
{
1383
	DECLARE_COMPLETION_ONSTACK(done);
1384
	int ret;
1385
	int mirror_num;
1386

1387
	bio->bi_iter.bi_sector = sector->logical >> 9;
1388 1389 1390
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1391 1392 1393
	mirror_num = sector->sblock->sectors[0]->mirror_num;
	ret = raid56_parity_recover(bio, sector->recover->bioc,
				    sector->recover->map_length,
1394
				    mirror_num, 0);
1395 1396 1397
	if (ret)
		return ret;

1398 1399
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1400 1401
}

L
Liu Bo 已提交
1402 1403 1404
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1405
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1406
	struct bio *bio;
1407
	int i;
L
Liu Bo 已提交
1408

1409 1410 1411
	/* All sectors in sblock belong to the same stripe on the same device. */
	ASSERT(first_sector->dev);
	if (!first_sector->dev->bdev)
L
Liu Bo 已提交
1412 1413
		goto out;

1414
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
1415
	bio_set_dev(bio, first_sector->dev->bdev);
L
Liu Bo 已提交
1416

1417
	for (i = 0; i < sblock->sector_count; i++) {
1418
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1419

1420 1421
		WARN_ON(!sector->page);
		bio_add_page(bio, sector->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1422 1423
	}

1424
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1435 1436
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1437 1438 1439 1440

	sblock->no_io_error_seen = 0;
}

1441
/*
1442 1443 1444 1445 1446
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1447
 */
1448
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1449 1450
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1451
{
1452
	int i;
I
Ilya Dryomov 已提交
1453

1454
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1455

L
Liu Bo 已提交
1456
	/* short cut for raid56 */
1457
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1458 1459
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1460
	for (i = 0; i < sblock->sector_count; i++) {
1461
		struct bio *bio;
1462
		struct scrub_sector *sector = sblock->sectors[i];
1463

1464 1465
		if (sector->dev->bdev == NULL) {
			sector->io_error = 1;
1466 1467 1468 1469
			sblock->no_io_error_seen = 0;
			continue;
		}

1470
		WARN_ON(!sector->page);
1471
		bio = btrfs_bio_alloc(1);
1472
		bio_set_dev(bio, sector->dev->bdev);
1473

1474 1475
		bio_add_page(bio, sector->page, fs_info->sectorsize, 0);
		bio->bi_iter.bi_sector = sector->physical >> 9;
L
Liu Bo 已提交
1476
		bio->bi_opf = REQ_OP_READ;
1477

1478 1479
		btrfsic_check_bio(bio);
		if (submit_bio_wait(bio)) {
1480
			sector->io_error = 1;
L
Liu Bo 已提交
1481
			sblock->no_io_error_seen = 0;
1482
		}
1483

1484 1485
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1486

1487
	if (sblock->no_io_error_seen)
1488
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1489 1490
}

1491
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1492
{
1493
	struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices;
M
Miao Xie 已提交
1494 1495
	int ret;

1496
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1497 1498 1499
	return !ret;
}

1500
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1501
{
1502 1503 1504
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1505

1506
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1507 1508 1509
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1510 1511
}

1512
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1513
					     struct scrub_block *sblock_good)
1514
{
1515
	int i;
1516
	int ret = 0;
I
Ilya Dryomov 已提交
1517

1518
	for (i = 0; i < sblock_bad->sector_count; i++) {
1519
		int ret_sub;
I
Ilya Dryomov 已提交
1520

1521 1522
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1523 1524
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1525
	}
1526 1527 1528 1529

	return ret;
}

1530 1531 1532
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1533
{
1534 1535
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1536
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1537
	const u32 sectorsize = fs_info->sectorsize;
1538

1539 1540
	BUG_ON(sector_bad->page == NULL);
	BUG_ON(sector_good->page == NULL);
1541
	if (force_write || sblock_bad->header_error ||
1542
	    sblock_bad->checksum_error || sector_bad->io_error) {
1543 1544 1545
		struct bio *bio;
		int ret;

1546
		if (!sector_bad->dev->bdev) {
1547
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1548
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1549 1550 1551
			return -EIO;
		}

1552
		bio = btrfs_bio_alloc(1);
1553 1554
		bio_set_dev(bio, sector_bad->dev->bdev);
		bio->bi_iter.bi_sector = sector_bad->physical >> 9;
D
David Sterba 已提交
1555
		bio->bi_opf = REQ_OP_WRITE;
1556

1557
		ret = bio_add_page(bio, sector_good->page, sectorsize, 0);
1558
		if (ret != sectorsize) {
1559 1560
			bio_put(bio);
			return -EIO;
1561
		}
1562

1563 1564
		btrfsic_check_bio(bio);
		if (submit_bio_wait(bio)) {
1565
			btrfs_dev_stat_inc_and_print(sector_bad->dev,
1566
				BTRFS_DEV_STAT_WRITE_ERRS);
1567
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1568 1569 1570
			bio_put(bio);
			return -EIO;
		}
1571
		bio_put(bio);
A
Arne Jansen 已提交
1572 1573
	}

1574 1575 1576
	return 0;
}

1577 1578
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1579
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1580
	int i;
1581

1582 1583 1584 1585 1586 1587 1588
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1589
	for (i = 0; i < sblock->sector_count; i++) {
1590 1591
		int ret;

1592
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1593
		if (ret)
1594
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1595 1596 1597
	}
}

1598
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1599
{
1600
	struct scrub_sector *sector = sblock->sectors[sector_num];
1601

1602 1603 1604
	BUG_ON(sector->page == NULL);
	if (sector->io_error)
		clear_page(page_address(sector->page));
1605

1606
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1617 1618 1619
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1631 1632
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1633 1634 1635
{
	struct scrub_bio *sbio;
	int ret;
1636
	const u32 sectorsize = sctx->fs_info->sectorsize;
1637

1638
	mutex_lock(&sctx->wr_lock);
1639
again:
1640 1641
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1642
					      GFP_KERNEL);
1643 1644
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1645 1646
			return -ENOMEM;
		}
1647
		sctx->wr_curr_bio->sctx = sctx;
1648
		sctx->wr_curr_bio->sector_count = 0;
1649
	}
1650
	sbio = sctx->wr_curr_bio;
1651
	if (sbio->sector_count == 0) {
1652 1653
		struct bio *bio;

1654
		ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace);
1655 1656 1657 1658 1659
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1660 1661
		sbio->physical = sector->physical_for_dev_replace;
		sbio->logical = sector->logical;
1662
		sbio->dev = sctx->wr_tgtdev;
1663 1664
		bio = sbio->bio;
		if (!bio) {
1665
			bio = btrfs_bio_alloc(sctx->sectors_per_bio);
1666 1667 1668 1669 1670
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1671
		bio_set_dev(bio, sbio->dev->bdev);
1672
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1673
		bio->bi_opf = REQ_OP_WRITE;
1674
		sbio->status = 0;
1675
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1676
		   sector->physical_for_dev_replace ||
1677
		   sbio->logical + sbio->sector_count * sectorsize !=
1678
		   sector->logical) {
1679 1680 1681 1682
		scrub_wr_submit(sctx);
		goto again;
	}

1683
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
1684
	if (ret != sectorsize) {
1685
		if (sbio->sector_count < 1) {
1686 1687
			bio_put(sbio->bio);
			sbio->bio = NULL;
1688
			mutex_unlock(&sctx->wr_lock);
1689 1690 1691 1692 1693 1694
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1695
	sbio->sectors[sbio->sector_count] = sector;
1696
	scrub_sector_get(sector);
1697 1698
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1699
		scrub_wr_submit(sctx);
1700
	mutex_unlock(&sctx->wr_lock);
1701 1702 1703 1704 1705 1706 1707 1708

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1709
	if (!sctx->wr_curr_bio)
1710 1711
		return;

1712 1713
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1714
	WARN_ON(!sbio->bio->bi_bdev);
1715 1716 1717 1718 1719
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1720 1721
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1722 1723

	if (btrfs_is_zoned(sctx->fs_info))
1724
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1725
			sctx->fs_info->sectorsize;
1726 1727
}

1728
static void scrub_wr_bio_end_io(struct bio *bio)
1729 1730
{
	struct scrub_bio *sbio = bio->bi_private;
1731
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1732

1733
	sbio->status = bio->bi_status;
1734 1735
	sbio->bio = bio;

1736
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1737
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1738 1739 1740 1741 1742 1743 1744 1745
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1746
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1747
	if (sbio->status) {
1748
		struct btrfs_dev_replace *dev_replace =
1749
			&sbio->sctx->fs_info->dev_replace;
1750

1751 1752
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1753

1754
			sector->io_error = 1;
1755
			atomic64_inc(&dev_replace->num_write_errors);
1756 1757 1758
		}
	}

1759 1760
	for (i = 0; i < sbio->sector_count; i++)
		scrub_sector_put(sbio->sectors[i]);
1761 1762 1763 1764 1765 1766 1767

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1768 1769 1770 1771
{
	u64 flags;
	int ret;

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1784 1785
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1797 1798

	return ret;
A
Arne Jansen 已提交
1799 1800
}

1801
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1802
{
1803
	struct scrub_ctx *sctx = sblock->sctx;
1804 1805
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1806
	u8 csum[BTRFS_CSUM_SIZE];
1807
	struct scrub_sector *sector;
1808
	char *kaddr;
A
Arne Jansen 已提交
1809

1810
	BUG_ON(sblock->sector_count < 1);
1811 1812
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
1813 1814
		return 0;

1815
	kaddr = page_address(sector->page);
1816

1817 1818
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1819

1820
	/*
1821
	 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector
1822 1823 1824
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1825

1826
	if (memcmp(csum, sector->csum, fs_info->csum_size))
1827
		sblock->checksum_error = 1;
1828
	return sblock->checksum_error;
A
Arne Jansen 已提交
1829 1830
}

1831
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1832
{
1833
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1834
	struct btrfs_header *h;
1835
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1836
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1837 1838
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1839 1840 1841 1842 1843 1844 1845
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1846
	int i;
1847
	struct scrub_sector *sector;
1848
	char *kaddr;
1849

1850
	BUG_ON(sblock->sector_count < 1);
1851

1852
	/* Each member in sectors is just one sector */
1853
	ASSERT(sblock->sector_count == num_sectors);
1854

1855 1856
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1857
	h = (struct btrfs_header *)kaddr;
1858
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1859 1860 1861 1862 1863 1864

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1865
	if (sector->logical != btrfs_stack_header_bytenr(h))
1866
		sblock->header_error = 1;
A
Arne Jansen 已提交
1867

1868
	if (sector->generation != btrfs_stack_header_generation(h)) {
1869 1870 1871
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1872

1873
	if (!scrub_check_fsid(h->fsid, sector))
1874
		sblock->header_error = 1;
A
Arne Jansen 已提交
1875 1876 1877

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1878
		sblock->header_error = 1;
A
Arne Jansen 已提交
1879

1880 1881 1882
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1883
			    sectorsize - BTRFS_CSUM_SIZE);
1884

1885
	for (i = 1; i < num_sectors; i++) {
1886
		kaddr = page_address(sblock->sectors[i]->page);
1887
		crypto_shash_update(shash, kaddr, sectorsize);
1888 1889
	}

1890
	crypto_shash_final(shash, calculated_csum);
1891
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1892
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1893

1894
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1895 1896
}

1897
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1898 1899
{
	struct btrfs_super_block *s;
1900
	struct scrub_ctx *sctx = sblock->sctx;
1901 1902
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1903
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1904
	struct scrub_sector *sector;
1905
	char *kaddr;
1906 1907
	int fail_gen = 0;
	int fail_cor = 0;
1908

1909
	BUG_ON(sblock->sector_count < 1);
1910 1911
	sector = sblock->sectors[0];
	kaddr = page_address(sector->page);
1912
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1913

1914
	if (sector->logical != btrfs_super_bytenr(s))
1915
		++fail_cor;
A
Arne Jansen 已提交
1916

1917
	if (sector->generation != btrfs_super_generation(s))
1918
		++fail_gen;
A
Arne Jansen 已提交
1919

1920
	if (!scrub_check_fsid(s->fsid, sector))
1921
		++fail_cor;
A
Arne Jansen 已提交
1922

1923 1924 1925 1926
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1927

1928
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1929
		++fail_cor;
A
Arne Jansen 已提交
1930

1931
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1932 1933 1934 1935 1936
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1937 1938 1939
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1940
		if (fail_cor)
1941
			btrfs_dev_stat_inc_and_print(sector->dev,
1942 1943
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1944
			btrfs_dev_stat_inc_and_print(sector->dev,
1945
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1946 1947
	}

1948
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1949 1950
}

1951 1952
static void scrub_block_get(struct scrub_block *sblock)
{
1953
	refcount_inc(&sblock->refs);
1954 1955 1956 1957
}

static void scrub_block_put(struct scrub_block *sblock)
{
1958
	if (refcount_dec_and_test(&sblock->refs)) {
1959 1960
		int i;

1961 1962 1963
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1964
		for (i = 0; i < sblock->sector_count; i++)
1965
			scrub_sector_put(sblock->sectors[i]);
1966 1967 1968 1969
		kfree(sblock);
	}
}

1970
static void scrub_sector_get(struct scrub_sector *sector)
1971
{
1972
	atomic_inc(&sector->refs);
1973 1974
}

1975
static void scrub_sector_put(struct scrub_sector *sector)
1976
{
1977 1978 1979 1980
	if (atomic_dec_and_test(&sector->refs)) {
		if (sector->page)
			__free_page(sector->page);
		kfree(sector);
1981 1982 1983
	}
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2043
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2044 2045 2046
{
	struct scrub_bio *sbio;

2047
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2048
		return;
A
Arne Jansen 已提交
2049

2050 2051
	scrub_throttle(sctx);

2052 2053
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2054
	scrub_pending_bio_inc(sctx);
2055 2056
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2057 2058
}

2059 2060
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2061
{
2062
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2063
	struct scrub_bio *sbio;
2064
	const u32 sectorsize = sctx->fs_info->sectorsize;
2065
	int ret;
A
Arne Jansen 已提交
2066 2067 2068 2069 2070

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2071 2072 2073 2074 2075 2076
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2077
			sctx->bios[sctx->curr]->sector_count = 0;
2078
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2079
		} else {
2080 2081
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2082 2083
		}
	}
2084
	sbio = sctx->bios[sctx->curr];
2085
	if (sbio->sector_count == 0) {
2086 2087
		struct bio *bio;

2088 2089 2090
		sbio->physical = sector->physical;
		sbio->logical = sector->logical;
		sbio->dev = sector->dev;
2091 2092
		bio = sbio->bio;
		if (!bio) {
2093
			bio = btrfs_bio_alloc(sctx->sectors_per_bio);
2094 2095
			sbio->bio = bio;
		}
2096 2097 2098

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2099
		bio_set_dev(bio, sbio->dev->bdev);
2100
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2101
		bio->bi_opf = REQ_OP_READ;
2102
		sbio->status = 0;
2103
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2104
		   sector->physical ||
2105
		   sbio->logical + sbio->sector_count * sectorsize !=
2106 2107
		   sector->logical ||
		   sbio->dev != sector->dev) {
2108
		scrub_submit(sctx);
A
Arne Jansen 已提交
2109 2110
		goto again;
	}
2111

2112
	sbio->sectors[sbio->sector_count] = sector;
2113
	ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0);
2114
	if (ret != sectorsize) {
2115
		if (sbio->sector_count < 1) {
2116 2117 2118 2119
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2120
		scrub_submit(sctx);
2121 2122 2123
		goto again;
	}

2124
	scrub_block_get(sblock); /* one for the page added to the bio */
2125
	atomic_inc(&sblock->outstanding_sectors);
2126 2127
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2128
		scrub_submit(sctx);
2129 2130 2131 2132

	return 0;
}

2133
static void scrub_missing_raid56_end_io(struct bio *bio)
2134 2135
{
	struct scrub_block *sblock = bio->bi_private;
2136
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2137

2138
	if (bio->bi_status)
2139 2140
		sblock->no_io_error_seen = 0;

2141 2142
	bio_put(bio);

2143 2144 2145 2146 2147 2148 2149
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2150
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2151 2152 2153
	u64 logical;
	struct btrfs_device *dev;

2154 2155
	logical = sblock->sectors[0]->logical;
	dev = sblock->sectors[0]->dev;
2156

2157
	if (sblock->no_io_error_seen)
2158
		scrub_recheck_block_checksum(sblock);
2159 2160 2161 2162 2163

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2164
		btrfs_err_rl_in_rcu(fs_info,
2165
			"IO error rebuilding logical %llu for dev %s",
2166 2167 2168 2169 2170
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2171
		btrfs_err_rl_in_rcu(fs_info,
2172
			"failed to rebuild valid logical %llu for dev %s",
2173 2174 2175 2176 2177
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2178
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2179
		mutex_lock(&sctx->wr_lock);
2180
		scrub_wr_submit(sctx);
2181
		mutex_unlock(&sctx->wr_lock);
2182 2183
	}

2184
	scrub_block_put(sblock);
2185 2186 2187 2188 2189 2190
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2191
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2192 2193
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
	u64 logical = sblock->sectors[0]->logical;
2194
	struct btrfs_io_context *bioc = NULL;
2195 2196 2197 2198 2199
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2200
	btrfs_bio_counter_inc_blocked(fs_info);
2201
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2202 2203 2204
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2205 2206

	if (WARN_ON(!sctx->is_dev_replace ||
2207
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2208 2209 2210 2211 2212 2213
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
2214
		goto bioc_out;
2215 2216
	}

2217
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2218 2219 2220 2221
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2222
	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2223 2224 2225
	if (!rbio)
		goto rbio_out;

2226
	for (i = 0; i < sblock->sector_count; i++) {
2227
		struct scrub_sector *sector = sblock->sectors[i];
2228

2229
		raid56_add_scrub_pages(rbio, sector->page, sector->logical);
2230 2231
	}

2232
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2233 2234 2235 2236 2237 2238 2239
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2240
bioc_out:
2241
	btrfs_bio_counter_dec(fs_info);
2242
	btrfs_put_bioc(bioc);
2243 2244 2245 2246 2247
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2248
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2249
		       u64 physical, struct btrfs_device *dev, u64 flags,
2250
		       u64 gen, int mirror_num, u8 *csum,
2251
		       u64 physical_for_dev_replace)
2252 2253
{
	struct scrub_block *sblock;
2254
	const u32 sectorsize = sctx->fs_info->sectorsize;
2255 2256
	int index;

2257
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2258
	if (!sblock) {
2259 2260 2261
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2262
		return -ENOMEM;
A
Arne Jansen 已提交
2263
	}
2264

2265 2266
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2267
	refcount_set(&sblock->refs, 1);
2268
	sblock->sctx = sctx;
2269 2270 2271
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2272
		struct scrub_sector *sector;
2273 2274 2275 2276 2277 2278
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2279

2280 2281
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2282
leave_nomem:
2283 2284 2285
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2286
			scrub_block_put(sblock);
2287 2288
			return -ENOMEM;
		}
2289
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->physical_for_dev_replace = physical_for_dev_replace;
		sector->mirror_num = mirror_num;
2300
		if (csum) {
2301 2302
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2303
		} else {
2304
			sector->have_csum = 0;
2305
		}
2306
		sblock->sector_count++;
2307 2308
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2309
			goto leave_nomem;
2310 2311 2312
		len -= l;
		logical += l;
		physical += l;
2313
		physical_for_dev_replace += l;
2314 2315
	}

2316
	WARN_ON(sblock->sector_count == 0);
2317
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2318 2319 2320 2321 2322 2323
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2324
		for (index = 0; index < sblock->sector_count; index++) {
2325
			struct scrub_sector *sector = sblock->sectors[index];
2326
			int ret;
2327

2328
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2329 2330 2331 2332
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2333
		}
A
Arne Jansen 已提交
2334

2335
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2336 2337
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2338

2339 2340
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2341 2342 2343
	return 0;
}

2344
static void scrub_bio_end_io(struct bio *bio)
2345 2346
{
	struct scrub_bio *sbio = bio->bi_private;
2347
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2348

2349
	sbio->status = bio->bi_status;
2350 2351
	sbio->bio = bio;

2352
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2353 2354 2355 2356 2357
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2358
	struct scrub_ctx *sctx = sbio->sctx;
2359 2360
	int i;

2361
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2362
	if (sbio->status) {
2363 2364
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2365

2366 2367
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2368 2369 2370
		}
	}

2371
	/* Now complete the scrub_block items that have all pages completed */
2372 2373
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2374
		struct scrub_block *sblock = sector->sblock;
2375

2376
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2377 2378 2379 2380 2381 2382
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2383 2384 2385 2386
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2387

2388
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2389
		mutex_lock(&sctx->wr_lock);
2390
		scrub_wr_submit(sctx);
2391
		mutex_unlock(&sctx->wr_lock);
2392 2393
	}

2394
	scrub_pending_bio_dec(sctx);
2395 2396
}

2397 2398
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2399
				       u64 start, u32 len)
2400
{
2401
	u64 offset;
2402
	u32 nsectors;
2403
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2404 2405 2406 2407 2408 2409 2410

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2411
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2412
	offset = offset >> sectorsize_bits;
2413
	nsectors = len >> sectorsize_bits;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2425
						   u64 start, u32 len)
2426 2427 2428 2429 2430
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2431
						  u64 start, u32 len)
2432 2433 2434 2435
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2436 2437
static void scrub_block_complete(struct scrub_block *sblock)
{
2438 2439
	int corrupted = 0;

2440
	if (!sblock->no_io_error_seen) {
2441
		corrupted = 1;
2442
		scrub_handle_errored_block(sblock);
2443 2444 2445 2446 2447 2448
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2449 2450
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2451 2452
			scrub_write_block_to_dev_replace(sblock);
	}
2453 2454

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2455 2456
		u64 start = sblock->sectors[0]->logical;
		u64 end = sblock->sectors[sblock->sector_count - 1]->logical +
2457
			  sblock->sctx->fs_info->sectorsize;
2458

2459
		ASSERT(end - start <= U32_MAX);
2460 2461 2462
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2463 2464
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2477
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2478 2479 2480 2481 2482
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2483
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2484
{
2485
	bool found = false;
A
Arne Jansen 已提交
2486

2487
	while (!list_empty(&sctx->csum_list)) {
2488 2489 2490 2491
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2492
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2493
				       struct btrfs_ordered_sum, list);
2494
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2495 2496 2497
		if (sum->bytenr > logical)
			break;

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2508

2509 2510 2511 2512
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2513

2514 2515 2516 2517 2518 2519 2520
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2521
	}
2522 2523
	if (!found)
		return 0;
2524
	return 1;
A
Arne Jansen 已提交
2525 2526 2527
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2528
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2529
			u64 logical, u32 len,
2530
			u64 physical, struct btrfs_device *dev, u64 flags,
2531
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2532 2533 2534
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2535 2536 2537
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2538 2539 2540 2541
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2542 2543 2544 2545
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2546
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2547 2548 2549 2550
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2551 2552 2553 2554
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2555
	} else {
2556
		blocksize = sctx->fs_info->sectorsize;
2557
		WARN_ON(1);
2558
	}
A
Arne Jansen 已提交
2559 2560

	while (len) {
2561
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2562 2563 2564 2565
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2566
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2567
			if (have_csum == 0)
2568
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2569
		}
2570
		ret = scrub_sectors(sctx, logical, l, physical, dev, flags, gen,
2571
				  mirror_num, have_csum ? csum : NULL,
2572
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2573 2574 2575 2576 2577
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2578
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2579 2580 2581 2582
	}
	return 0;
}

2583
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2584
				  u64 logical, u32 len,
2585 2586 2587 2588 2589
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2590
	const u32 sectorsize = sctx->fs_info->sectorsize;
2591 2592
	int index;

2593 2594
	ASSERT(IS_ALIGNED(len, sectorsize));

2595
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2596 2597 2598 2599 2600 2601 2602 2603 2604
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2605
	refcount_set(&sblock->refs, 1);
2606 2607 2608 2609 2610 2611
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2612
		struct scrub_sector *sector;
2613

2614 2615
		sector = kzalloc(sizeof(*sector), GFP_KERNEL);
		if (!sector) {
2616 2617 2618 2619 2620 2621 2622
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2623
		ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK);
2624
		/* For scrub block */
2625 2626
		scrub_sector_get(sector);
		sblock->sectors[index] = sector;
2627
		/* For scrub parity */
2628 2629 2630 2631 2632 2633 2634 2635 2636
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->sblock = sblock;
		sector->dev = dev;
		sector->flags = flags;
		sector->generation = gen;
		sector->logical = logical;
		sector->physical = physical;
		sector->mirror_num = mirror_num;
2637
		if (csum) {
2638 2639
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2640
		} else {
2641
			sector->have_csum = 0;
2642
		}
2643
		sblock->sector_count++;
2644 2645
		sector->page = alloc_page(GFP_KERNEL);
		if (!sector->page)
2646
			goto leave_nomem;
2647 2648 2649 2650 2651 2652


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2653 2654
	}

2655 2656
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2657
		struct scrub_sector *sector = sblock->sectors[index];
2658 2659
		int ret;

2660
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2661 2662 2663 2664 2665 2666
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2667
	/* Last one frees, either here or in bio completion for last sector */
2668 2669 2670 2671 2672
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2673
				   u64 logical, u32 len,
2674 2675 2676 2677 2678 2679 2680 2681
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2682
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2683 2684 2685 2686
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2687
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2688
		blocksize = sparity->stripe_len;
2689
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2690
		blocksize = sparity->stripe_len;
2691
	} else {
2692
		blocksize = sctx->fs_info->sectorsize;
2693 2694 2695 2696
		WARN_ON(1);
	}

	while (len) {
2697
		u32 l = min(len, blocksize);
2698 2699 2700 2701
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2702
			have_csum = scrub_find_csum(sctx, logical, csum);
2703 2704 2705
			if (have_csum == 0)
				goto skip;
		}
2706
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2707 2708 2709 2710
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2711
skip:
2712 2713 2714 2715 2716 2717 2718
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2719 2720 2721 2722 2723 2724 2725 2726
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2727 2728
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2729 2730 2731 2732 2733
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2734 2735
	u32 stripe_index;
	u32 rot;
2736
	const int data_stripes = nr_data_stripes(map);
2737

2738
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2739 2740 2741
	if (stripe_start)
		*stripe_start = last_offset;

2742
	*offset = last_offset;
2743
	for (i = 0; i < data_stripes; i++) {
2744 2745
		*offset = last_offset + i * map->stripe_len;

2746
		stripe_nr = div64_u64(*offset, map->stripe_len);
2747
		stripe_nr = div_u64(stripe_nr, data_stripes);
2748 2749

		/* Work out the disk rotation on this stripe-set */
2750
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2751 2752
		/* calculate which stripe this data locates */
		rot += i;
2753
		stripe_index = rot % map->num_stripes;
2754 2755 2756 2757 2758 2759 2760 2761 2762
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2763 2764 2765
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2766
	struct scrub_sector *curr, *next;
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2777
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2778
		list_del_init(&curr->list);
2779
		scrub_sector_put(curr);
2780 2781 2782 2783 2784
	}

	kfree(sparity);
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2795
static void scrub_parity_bio_endio(struct bio *bio)
2796
{
Y
Yu Zhe 已提交
2797
	struct scrub_parity *sparity = bio->bi_private;
2798
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2799

2800
	if (bio->bi_status)
2801 2802 2803 2804
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2805

2806 2807
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2808
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2809 2810 2811 2812 2813
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2814
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2815 2816
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2817
	struct btrfs_io_context *bioc = NULL;
2818 2819 2820 2821 2822 2823 2824
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2825
	length = sparity->logic_end - sparity->logic_start;
2826 2827

	btrfs_bio_counter_inc_blocked(fs_info);
2828
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2829 2830 2831
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2832

2833
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2834 2835 2836 2837
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2838 2839
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
					      sparity->scrub_dev,
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2851
bioc_out:
2852
	btrfs_bio_counter_dec(fs_info);
2853
	btrfs_put_bioc(bioc);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2865
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2866 2867 2868 2869
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2870
	refcount_inc(&sparity->refs);
2871 2872 2873 2874
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2875
	if (!refcount_dec_and_test(&sparity->refs))
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
2887
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2888
	struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
2889
	struct btrfs_root *csum_root;
2890
	struct btrfs_extent_item *extent;
2891
	struct btrfs_io_context *bioc = NULL;
2892
	struct btrfs_path *path;
2893 2894 2895 2896 2897 2898 2899 2900
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2901 2902
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2903
	u64 mapped_length;
2904 2905 2906 2907 2908 2909 2910
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

2921
	ASSERT(map->stripe_len <= U32_MAX);
2922
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2923 2924 2925 2926 2927 2928 2929
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2930
		btrfs_free_path(path);
2931 2932 2933
		return -ENOMEM;
	}

2934
	ASSERT(map->stripe_len <= U32_MAX);
2935 2936 2937 2938 2939 2940
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2941
	refcount_set(&sparity->refs, 1);
2942
	INIT_LIST_HEAD(&sparity->sectors_list);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2990 2991 2992 2993
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2994
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2995
				bytes = fs_info->nodesize;
2996 2997 2998 2999 3000 3001
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3002
			if (key.objectid >= logic_end) {
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3015 3016 3017 3018
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3019 3020
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3021
					  key.objectid, logic_start);
3022 3023 3024
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3025 3026 3027 3028
				goto next;
			}
again:
			extent_logical = key.objectid;
3029
			ASSERT(bytes <= U32_MAX);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3045
			mapped_length = extent_len;
3046
			bioc = NULL;
3047
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3048
					extent_logical, &mapped_length, &bioc,
3049
					0);
3050
			if (!ret) {
3051
				if (!bioc || mapped_length < extent_len)
3052 3053 3054
					ret = -EIO;
			}
			if (ret) {
3055
				btrfs_put_bioc(bioc);
3056 3057
				goto out;
			}
3058 3059 3060 3061
			extent_physical = bioc->stripes[0].physical;
			extent_mirror_num = bioc->mirror_num;
			extent_dev = bioc->stripes[0].dev;
			btrfs_put_bioc(bioc);
3062

3063
			csum_root = btrfs_csum_root(fs_info, extent_logical);
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3077 3078 3079

			scrub_free_csums(sctx);

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3109 3110
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3111
		scrub_parity_mark_sectors_error(sparity, logic_start,
3112
						logic_end - logic_start);
3113
	}
3114 3115
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3116
	mutex_lock(&sctx->wr_lock);
3117
	scrub_wr_submit(sctx);
3118
	mutex_unlock(&sctx->wr_lock);
3119

3120
	btrfs_free_path(path);
3121 3122 3123
	return ret < 0 ? ret : 0;
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3164
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3165
					   struct btrfs_block_group *bg,
3166 3167
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3168
					   int stripe_index, u64 dev_extent_len)
A
Arne Jansen 已提交
3169
{
3170
	struct btrfs_path *path;
3171
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3172
	struct btrfs_root *root;
3173
	struct btrfs_root *csum_root;
A
Arne Jansen 已提交
3174
	struct btrfs_extent_item *extent;
3175
	struct blk_plug plug;
3176
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3177 3178 3179 3180 3181 3182 3183
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3184
	u64 logic_end;
3185
	u64 physical_end;
A
Arne Jansen 已提交
3186
	u64 generation;
3187
	int mirror_num;
3188
	struct btrfs_key key;
3189
	u64 increment;
A
Arne Jansen 已提交
3190
	u64 offset;
3191 3192
	u64 extent_logical;
	u64 extent_physical;
3193 3194 3195 3196 3197
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3198 3199
	u64 stripe_logical;
	u64 stripe_end;
3200 3201
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3202
	int stop_loop = 0;
D
David Woodhouse 已提交
3203

3204
	physical = map->stripes[stripe_index].physical;
A
Arne Jansen 已提交
3205
	offset = 0;
3206
	nstripes = div64_u64(dev_extent_len, map->stripe_len);
3207 3208
	mirror_num = 1;
	increment = map->stripe_len;
A
Arne Jansen 已提交
3209
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3210
		offset = map->stripe_len * stripe_index;
A
Arne Jansen 已提交
3211 3212 3213
		increment = map->stripe_len * map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
3214
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
A
Arne Jansen 已提交
3215
		increment = map->stripe_len * factor;
3216
		mirror_num = stripe_index % map->sub_stripes + 1;
3217
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3218
		mirror_num = stripe_index % map->num_stripes + 1;
A
Arne Jansen 已提交
3219
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3220
		mirror_num = stripe_index % map->num_stripes + 1;
3221
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3222 3223
		get_raid56_logic_offset(physical, stripe_index, map, &offset,
					NULL);
3224
		increment = map->stripe_len * nr_data_stripes(map);
A
Arne Jansen 已提交
3225 3226 3227 3228 3229 3230
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3231 3232 3233 3234 3235
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3236 3237
	path->search_commit_root = 1;
	path->skip_locking = 1;
3238
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3239

3240
	logical = chunk_logical + offset;
3241
	physical_end = physical + nstripes * map->stripe_len;
3242
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3243
		get_raid56_logic_offset(physical_end, stripe_index,
3244
					map, &logic_end, NULL);
3245
		logic_end += chunk_logical;
3246 3247 3248
	} else {
		logic_end = logical + increment * nstripes;
	}
3249
	wait_event(sctx->list_wait,
3250
		   atomic_read(&sctx->bios_in_flight) == 0);
3251
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3252

3253
	root = btrfs_extent_root(fs_info, logical);
3254 3255
	csum_root = btrfs_csum_root(fs_info, logical);

A
Arne Jansen 已提交
3256 3257 3258 3259
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3260
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3261

3262 3263 3264 3265 3266 3267 3268 3269
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3270 3271 3272 3273
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3274
	while (physical < physical_end) {
A
Arne Jansen 已提交
3275 3276 3277 3278
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3279
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3280 3281 3282 3283 3284 3285 3286 3287
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3288
			sctx->flush_all_writes = true;
3289
			scrub_submit(sctx);
3290
			mutex_lock(&sctx->wr_lock);
3291
			scrub_wr_submit(sctx);
3292
			mutex_unlock(&sctx->wr_lock);
3293
			wait_event(sctx->list_wait,
3294
				   atomic_read(&sctx->bios_in_flight) == 0);
3295
			sctx->flush_all_writes = false;
3296
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3297 3298
		}

3299
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3300 3301
			ret = get_raid56_logic_offset(physical, stripe_index,
						      map, &logical,
3302
						      &stripe_logical);
3303
			logical += chunk_logical;
3304
			if (ret) {
3305
				/* it is parity strip */
3306
				stripe_logical += chunk_logical;
3307
				stripe_end = stripe_logical + increment;
3308
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3309
							  stripe_logical,
3310 3311 3312 3313 3314 3315 3316
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3317 3318 3319 3320
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3321
		key.objectid = logical;
L
Liu Bo 已提交
3322
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3323 3324 3325 3326

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3327

3328
		if (ret > 0) {
3329
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3330 3331
			if (ret < 0)
				goto out;
3332 3333 3334 3335 3336 3337 3338 3339 3340
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3341 3342
		}

L
Liu Bo 已提交
3343
		stop_loop = 0;
A
Arne Jansen 已提交
3344
		while (1) {
3345 3346
			u64 bytes;

A
Arne Jansen 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3356
				stop_loop = 1;
A
Arne Jansen 已提交
3357 3358 3359 3360
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3361 3362 3363 3364
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3365
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3366
				bytes = fs_info->nodesize;
3367 3368 3369 3370
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3371 3372
				goto next;

L
Liu Bo 已提交
3373 3374 3375 3376 3377 3378
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3379

3380 3381 3382 3383 3384 3385
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
3386 3387 3388
			spin_lock(&bg->lock);
			if (bg->removed) {
				spin_unlock(&bg->lock);
3389 3390 3391
				ret = 0;
				goto out;
			}
3392
			spin_unlock(&bg->lock);
3393

A
Arne Jansen 已提交
3394 3395 3396 3397 3398
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3399 3400 3401 3402
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3403
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3404
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3405
				       key.objectid, logical);
3406 3407 3408
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3409 3410 3411
				goto next;
			}

L
Liu Bo 已提交
3412 3413
again:
			extent_logical = key.objectid;
3414
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3415 3416
			extent_len = bytes;

A
Arne Jansen 已提交
3417 3418 3419
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3420 3421 3422
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3423
			}
L
Liu Bo 已提交
3424
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3425
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3426 3427
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3428 3429
			}

L
Liu Bo 已提交
3430
			extent_physical = extent_logical - logical + physical;
3431 3432
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3433
			if (sctx->is_dev_replace)
3434 3435 3436 3437
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3438

3439 3440 3441 3442 3443 3444 3445 3446
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3447

L
Liu Bo 已提交
3448
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3449 3450
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3451
					   extent_logical - logical + physical);
3452 3453 3454

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3455 3456 3457
			if (ret)
				goto out;

3458 3459 3460
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3461 3462
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3463
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3464 3465 3466 3467
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3468 3469 3470
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
3471 3472 3473
							stripe_index, map,
							&logical, &stripe_logical);
					logical += chunk_logical;
3474 3475

					if (ret && physical < physical_end) {
3476
						stripe_logical += chunk_logical;
3477
						stripe_end = stripe_logical +
3478
								increment;
3479
						ret = scrub_raid56_parity(sctx,
3480
							map, scrub_dev,
3481 3482 3483 3484 3485 3486
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3487 3488 3489 3490
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3491 3492 3493 3494 3495
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3496
				if (physical >= physical_end) {
L
Liu Bo 已提交
3497 3498 3499 3500
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3501 3502 3503
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3504
		btrfs_release_path(path);
3505
skip:
A
Arne Jansen 已提交
3506 3507
		logical += increment;
		physical += map->stripe_len;
3508
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3509
		if (stop_loop)
3510 3511
			sctx->stat.last_physical = map->stripes[stripe_index].physical +
						   dev_extent_len;
L
Liu Bo 已提交
3512 3513
		else
			sctx->stat.last_physical = physical;
3514
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3515 3516
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3517
	}
3518
out:
A
Arne Jansen 已提交
3519
	/* push queued extents */
3520
	scrub_submit(sctx);
3521
	mutex_lock(&sctx->wr_lock);
3522
	scrub_wr_submit(sctx);
3523
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3524

3525
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3526
	btrfs_free_path(path);
3527 3528 3529 3530

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3531 3532 3533 3534
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3535 3536 3537 3538
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3539 3540 3541
	return ret < 0 ? ret : 0;
}

3542
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3543
					  struct btrfs_block_group *bg,
3544
					  struct btrfs_device *scrub_dev,
3545
					  u64 dev_offset,
3546
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3547
{
3548
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3549
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3550 3551 3552
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3553
	int ret = 0;
A
Arne Jansen 已提交
3554

3555
	read_lock(&map_tree->lock);
3556
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3557
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3558

3559 3560 3561 3562 3563
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3564 3565
		spin_lock(&bg->lock);
		if (!bg->removed)
3566
			ret = -EINVAL;
3567
		spin_unlock(&bg->lock);
3568 3569 3570

		return ret;
	}
3571
	if (em->start != bg->start)
A
Arne Jansen 已提交
3572
		goto out;
3573
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3574 3575
		goto out;

3576
	map = em->map_lookup;
A
Arne Jansen 已提交
3577
	for (i = 0; i < map->num_stripes; ++i) {
3578
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3579
		    map->stripes[i].physical == dev_offset) {
3580 3581
			ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
					   dev_extent_len);
A
Arne Jansen 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3611
static noinline_for_stack
3612
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3613
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3614 3615 3616
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3617 3618
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3619
	u64 chunk_offset;
3620
	int ret = 0;
3621
	int ro_set;
A
Arne Jansen 已提交
3622 3623 3624 3625
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3626
	struct btrfs_block_group *cache;
3627
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3628 3629 3630 3631 3632

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3633
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3634 3635 3636
	path->search_commit_root = 1;
	path->skip_locking = 1;

3637
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3638 3639 3640 3641
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3642 3643
		u64 dev_extent_len;

A
Arne Jansen 已提交
3644 3645
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3646 3647 3648 3649 3650
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3651 3652 3653 3654
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3655
					break;
3656 3657 3658
				}
			} else {
				ret = 0;
3659 3660
			}
		}
A
Arne Jansen 已提交
3661 3662 3663 3664 3665 3666

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3667
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3668 3669
			break;

3670
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3680
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3681

3682
		if (found_key.offset + dev_extent_len <= start)
3683
			goto skip;
A
Arne Jansen 已提交
3684 3685 3686 3687 3688 3689 3690 3691

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3692 3693 3694 3695 3696 3697

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3723 3724 3725 3726
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3727 3728
				btrfs_put_block_group(cache);
				goto skip;
3729 3730 3731 3732
			}
			spin_unlock(&cache->lock);
		}

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3747
		btrfs_freeze_block_group(cache);
3748 3749
		spin_unlock(&cache->lock);

3750 3751 3752 3753 3754 3755 3756 3757 3758
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3789
		 */
3790
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3801 3802
		if (ret == 0) {
			ro_set = 1;
3803
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3804 3805 3806
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3807
			 * It is not a problem for scrub, because
3808 3809 3810 3811
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3812 3813 3814 3815 3816 3817 3818
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3819
		} else {
J
Jeff Mahoney 已提交
3820
			btrfs_warn(fs_info,
3821
				   "failed setting block group ro: %d", ret);
3822
			btrfs_unfreeze_block_group(cache);
3823
			btrfs_put_block_group(cache);
3824
			scrub_pause_off(fs_info);
3825 3826 3827
			break;
		}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3840
		down_write(&dev_replace->rwsem);
3841
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3842 3843
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3844 3845
		up_write(&dev_replace->rwsem);

3846 3847
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3859
		sctx->flush_all_writes = true;
3860
		scrub_submit(sctx);
3861
		mutex_lock(&sctx->wr_lock);
3862
		scrub_wr_submit(sctx);
3863
		mutex_unlock(&sctx->wr_lock);
3864 3865 3866

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3867 3868

		scrub_pause_on(fs_info);
3869 3870 3871 3872 3873 3874

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3875 3876
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3877
		sctx->flush_all_writes = false;
3878

3879
		scrub_pause_off(fs_info);
3880

3881 3882 3883 3884 3885
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3886
		down_write(&dev_replace->rwsem);
3887 3888
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3889
		up_write(&dev_replace->rwsem);
3890

3891
		if (ro_set)
3892
			btrfs_dec_block_group_ro(cache);
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3903
		    cache->used == 0) {
3904
			spin_unlock(&cache->lock);
3905 3906 3907 3908 3909
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3910 3911 3912
		} else {
			spin_unlock(&cache->lock);
		}
3913
skip_unfreeze:
3914
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3915 3916 3917
		btrfs_put_block_group(cache);
		if (ret)
			break;
3918
		if (sctx->is_dev_replace &&
3919
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3920 3921 3922 3923 3924 3925 3926
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3927
skip:
3928
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
3929
		btrfs_release_path(path);
A
Arne Jansen 已提交
3930 3931 3932
	}

	btrfs_free_path(path);
3933

3934
	return ret;
A
Arne Jansen 已提交
3935 3936
}

3937 3938
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3939 3940 3941 3942 3943
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3944
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3945

J
Josef Bacik 已提交
3946
	if (BTRFS_FS_ERROR(fs_info))
3947
		return -EROFS;
3948

3949
	/* Seed devices of a new filesystem has their own generation. */
3950
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3951 3952
		gen = scrub_dev->generation;
	else
3953
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3954 3955 3956

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3957 3958
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3959
			break;
3960 3961
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3962

3963 3964 3965
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
3966 3967 3968
		if (ret)
			return ret;
	}
3969
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3970 3971 3972 3973

	return 0;
}

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
3997 3998 3999
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4000 4001
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4002
{
4003 4004 4005
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
4006
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4007
	int max_active = fs_info->thread_pool_size;
4008
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4009

4010 4011
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4012

4013 4014 4015 4016
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
4017

4018
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4019
					      max_active, 2);
4020 4021
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4022

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4036
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4037 4038
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4039
	}
4040 4041 4042
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4043

4044 4045
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
4046
fail_scrub_parity_workers:
4047
	btrfs_destroy_workqueue(scrub_wr_comp);
4048
fail_scrub_wr_completion_workers:
4049
	btrfs_destroy_workqueue(scrub_workers);
4050
fail_scrub_workers:
4051
	return ret;
A
Arne Jansen 已提交
4052 4053
}

4054 4055
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4056
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4057
{
4058
	struct btrfs_dev_lookup_args args = { .devid = devid };
4059
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4060 4061
	int ret;
	struct btrfs_device *dev;
4062
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4063

4064
	if (btrfs_fs_closing(fs_info))
4065
		return -EAGAIN;
A
Arne Jansen 已提交
4066

4067
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4068 4069 4070 4071 4072
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4073 4074
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4075 4076
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4077 4078 4079
		return -EINVAL;
	}

4080
	if (fs_info->nodesize >
4081 4082
	    SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits ||
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) {
4083
		/*
4084
		 * Would exhaust the array bounds of sectorv member in
4085 4086
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4087
		btrfs_err(fs_info,
4088 4089 4090
"scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails",
		       fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK,
		       fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK);
4091 4092 4093
		return -EINVAL;
	}

4094 4095 4096 4097
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4098

4099 4100 4101 4102
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4103
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4104
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4105 4106
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4107
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4108
		ret = -ENODEV;
4109
		goto out;
A
Arne Jansen 已提交
4110 4111
	}

4112 4113
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4114
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4115 4116 4117
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4118
		ret = -EROFS;
4119
		goto out;
4120 4121
	}

4122
	mutex_lock(&fs_info->scrub_lock);
4123
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4124
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4125
		mutex_unlock(&fs_info->scrub_lock);
4126
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4127
		ret = -EIO;
4128
		goto out;
A
Arne Jansen 已提交
4129 4130
	}

4131
	down_read(&fs_info->dev_replace.rwsem);
4132
	if (dev->scrub_ctx ||
4133 4134
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4135
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4136
		mutex_unlock(&fs_info->scrub_lock);
4137
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4138
		ret = -EINPROGRESS;
4139
		goto out;
A
Arne Jansen 已提交
4140
	}
4141
	up_read(&fs_info->dev_replace.rwsem);
4142

4143
	sctx->readonly = readonly;
4144
	dev->scrub_ctx = sctx;
4145
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4146

4147 4148 4149 4150
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4151
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4152 4153 4154
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4155 4156 4157
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4158
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4159 4160 4161 4162 4163 4164
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4165
	if (!is_dev_replace) {
4166
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4167 4168 4169 4170
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4171
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4172
		ret = scrub_supers(sctx, dev);
4173
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4174
	}
A
Arne Jansen 已提交
4175 4176

	if (!ret)
4177
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4178
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4179

4180
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4181 4182 4183
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4184
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4185

A
Arne Jansen 已提交
4186
	if (progress)
4187
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4188

4189 4190 4191 4192
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4193
	mutex_lock(&fs_info->scrub_lock);
4194
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4195 4196
	mutex_unlock(&fs_info->scrub_lock);

4197
	scrub_workers_put(fs_info);
4198
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4199

4200
	return ret;
4201 4202
out:
	scrub_workers_put(fs_info);
4203 4204 4205
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4206 4207 4208
	return ret;
}

4209
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4224
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4225 4226 4227 4228 4229
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4230
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4251
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4252
{
4253
	struct btrfs_fs_info *fs_info = dev->fs_info;
4254
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4255 4256

	mutex_lock(&fs_info->scrub_lock);
4257
	sctx = dev->scrub_ctx;
4258
	if (!sctx) {
A
Arne Jansen 已提交
4259 4260 4261
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4262
	atomic_inc(&sctx->cancel_req);
4263
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4264 4265
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4266
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4267 4268 4269 4270 4271 4272
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4273

4274
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4275 4276
			 struct btrfs_scrub_progress *progress)
{
4277
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4278
	struct btrfs_device *dev;
4279
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4280

4281
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4282
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4283
	if (dev)
4284
		sctx = dev->scrub_ctx;
4285 4286
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4287
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4288

4289
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4290
}
4291 4292

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4293
			       u64 extent_logical, u32 extent_len,
4294 4295 4296 4297 4298
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
4299
	struct btrfs_io_context *bioc = NULL;
4300 4301 4302
	int ret;

	mapped_length = extent_len;
4303
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4304 4305 4306 4307
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4308 4309 4310
		return;
	}

4311 4312 4313 4314
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4315
}