scrub.c 113.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41
/*
42 43
 * The following three values only influence the performance.
 *
44
 * The last one configures the number of parallel and outstanding I/O
45
 * operations. The first one configures an upper limit for the number
46 47
 * of (dynamically allocated) pages that are added to a bio.
 */
48 49
#define SCRUB_PAGES_PER_BIO	32	/* 128KiB per bio for x86 */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for x86 */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_PAGES_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

A
Arne Jansen 已提交
63
struct scrub_page {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90
	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
91
	int			page_count;
A
Arne Jansen 已提交
92 93 94 95
	int			next_free;
	struct btrfs_work	work;
};

96
struct scrub_block {
97
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
98 99
	int			page_count;
	atomic_t		outstanding_pages;
100
	refcount_t		refs; /* free mem on transition to zero */
101
	struct scrub_ctx	*sctx;
102
	struct scrub_parity	*sparity;
103 104 105 106
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
107
		unsigned int	generation_error:1; /* also sets header_error */
108 109 110 111

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
112
	};
113
	struct btrfs_work	work;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

128
	u32			stripe_len;
129

130
	refcount_t		refs;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

146
	unsigned long		bitmap[];
147 148
};

149
struct scrub_ctx {
150
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
151
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
152 153
	int			first_free;
	int			curr;
154 155
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
156 157 158 159
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
160
	int			readonly;
161
	int			pages_per_bio;
162

163 164 165 166
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

167
	int			is_dev_replace;
168
	u64			write_pointer;
169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191 192 193 194
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
195
	u64			physical;
196 197 198 199
	u64			logical;
	struct btrfs_device	*dev;
};

200 201 202 203 204 205 206
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

207
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
208
				     struct scrub_block *sblocks_for_recheck);
209
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
210 211
				struct scrub_block *sblock,
				int retry_failed_mirror);
212
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
213
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
214
					     struct scrub_block *sblock_good);
215 216 217
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
218 219 220
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
221 222 223 224
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
225 226
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
227 228
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
229
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
230
		       u64 physical, struct btrfs_device *dev, u64 flags,
231
		       u64 gen, int mirror_num, u8 *csum,
232
		       u64 physical_for_dev_replace);
233
static void scrub_bio_end_io(struct bio *bio);
234 235
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
236
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237
			       u64 extent_logical, u32 extent_len,
238 239 240 241 242 243
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
244
static void scrub_wr_bio_end_io(struct bio *bio);
245
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
247

248
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
249
{
250
	return spage->recover &&
251
	       (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
252
}
S
Stefan Behrens 已提交
253

254 255
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
256
	refcount_inc(&sctx->refs);
257 258 259 260 261 262 263
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
264
	scrub_put_ctx(sctx);
265 266
}

267
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
268 269 270 271 272 273 274 275 276
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

277
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
278 279 280
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
281
}
282

283 284
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
285 286 287 288 289 290 291 292
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

293 294 295 296 297 298
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

318
	lockdep_assert_held(&locks_root->lock);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

334 335 336
	/*
	 * Insert new lock.
	 */
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

362
	lockdep_assert_held(&locks_root->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
382
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
383 384 385 386 387 388 389 390 391 392 393 394 395
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
396 397
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
415
	struct btrfs_block_group *bg_cache;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
462
	struct btrfs_block_group *bg_cache;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

516
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
517
{
518
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
519
		struct btrfs_ordered_sum *sum;
520
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
521 522 523 524 525 526
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

527
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528 529 530
{
	int i;

531
	if (!sctx)
A
Arne Jansen 已提交
532 533
		return;

534
	/* this can happen when scrub is cancelled */
535 536
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
537 538

		for (i = 0; i < sbio->page_count; i++) {
539
			WARN_ON(!sbio->pagev[i]->page);
540 541 542 543 544
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

545
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
546
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
547 548 549 550 551 552

		if (!sbio)
			break;
		kfree(sbio);
	}

553
	kfree(sctx->wr_curr_bio);
554 555
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
556 557
}

558 559
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
560
	if (refcount_dec_and_test(&sctx->refs))
561 562 563
		scrub_free_ctx(sctx);
}

564 565
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
566
{
567
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
568 569
	int		i;

570
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
571
	if (!sctx)
A
Arne Jansen 已提交
572
		goto nomem;
573
	refcount_set(&sctx->refs, 1);
574
	sctx->is_dev_replace = is_dev_replace;
575
	sctx->pages_per_bio = SCRUB_PAGES_PER_BIO;
576
	sctx->curr = -1;
577
	sctx->fs_info = fs_info;
578
	INIT_LIST_HEAD(&sctx->csum_list);
579
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
580 581
		struct scrub_bio *sbio;

582
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
583 584
		if (!sbio)
			goto nomem;
585
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
586 587

		sbio->index = i;
588
		sbio->sctx = sctx;
589
		sbio->page_count = 0;
590 591
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
592

593
		if (i != SCRUB_BIOS_PER_SCTX - 1)
594
			sctx->bios[i]->next_free = i + 1;
595
		else
596 597 598
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
599 600
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
601 602 603 604 605
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
606
	sctx->throttle_deadline = 0;
607

608 609 610
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
611
	if (is_dev_replace) {
612 613
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
614
		sctx->flush_all_writes = false;
615
	}
616

617
	return sctx;
A
Arne Jansen 已提交
618 619

nomem:
620
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
621 622 623
	return ERR_PTR(-ENOMEM);
}

624 625
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
626 627 628 629
{
	u32 nlink;
	int ret;
	int i;
630
	unsigned nofs_flag;
631 632
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
633
	struct scrub_warning *swarn = warn_ctx;
634
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
635 636
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
637
	struct btrfs_key key;
638

D
David Sterba 已提交
639
	local_root = btrfs_get_fs_root(fs_info, root, true);
640 641 642 643 644
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

645 646 647
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
648 649 650 651 652
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
653
	if (ret) {
654
		btrfs_put_root(local_root);
655 656 657 658 659 660 661 662 663 664
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

665 666 667 668 669 670
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
671
	ipath = init_ipath(4096, local_root, swarn->path);
672
	memalloc_nofs_restore(nofs_flag);
673
	if (IS_ERR(ipath)) {
674
		btrfs_put_root(local_root);
675 676 677 678
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
679 680 681 682 683 684 685 686 687 688
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
689
		btrfs_warn_in_rcu(fs_info,
690
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
691 692
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
693
				  swarn->physical,
J
Jeff Mahoney 已提交
694
				  root, inum, offset,
695
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
696
				  (char *)(unsigned long)ipath->fspath->val[i]);
697

698
	btrfs_put_root(local_root);
699 700 701 702
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
703
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
704
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
705 706
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
707
			  swarn->physical,
J
Jeff Mahoney 已提交
708
			  root, inum, offset, ret);
709 710 711 712 713

	free_ipath(ipath);
	return 0;
}

714
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
715
{
716 717
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
718 719 720 721 722
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
723 724 725
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
726
	u64 ref_root;
727
	u32 item_size;
728
	u8 ref_level = 0;
729
	int ret;
730

731
	WARN_ON(sblock->page_count < 1);
732
	dev = sblock->pagev[0]->dev;
733
	fs_info = sblock->sctx->fs_info;
734

735
	path = btrfs_alloc_path();
736 737
	if (!path)
		return;
738

D
David Sterba 已提交
739
	swarn.physical = sblock->pagev[0]->physical;
740
	swarn.logical = sblock->pagev[0]->logical;
741
	swarn.errstr = errstr;
742
	swarn.dev = NULL;
743

744 745
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
746 747 748
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
749
	extent_item_pos = swarn.logical - found_key.objectid;
750 751 752 753
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
754
	item_size = btrfs_item_size(eb, path->slots[0]);
755

756
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
757
		do {
758 759 760
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
761
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
762
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
763
				errstr, swarn.logical,
764
				rcu_str_deref(dev->name),
D
David Sterba 已提交
765
				swarn.physical,
766 767 768 769
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
770
		btrfs_release_path(path);
771
	} else {
772
		btrfs_release_path(path);
773
		swarn.path = path;
774
		swarn.dev = dev;
775 776
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
777
					scrub_print_warning_inode, &swarn, false);
778 779 780 781 782 783
	}

out:
	btrfs_free_path(path);
}

784 785
static inline void scrub_get_recover(struct scrub_recover *recover)
{
786
	refcount_inc(&recover->refs);
787 788
}

789 790
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
791
{
792
	if (refcount_dec_and_test(&recover->refs)) {
793
		btrfs_bio_counter_dec(fs_info);
794
		btrfs_put_bioc(recover->bioc);
795 796 797 798
		kfree(recover);
	}
}

A
Arne Jansen 已提交
799
/*
800 801 802 803 804 805
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
806
 */
807
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
808
{
809
	struct scrub_ctx *sctx = sblock_to_check->sctx;
810
	struct btrfs_device *dev;
811 812 813 814 815 816 817 818 819 820 821
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
822
	bool full_stripe_locked;
823
	unsigned int nofs_flag;
824
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
825 826 827
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
828
	fs_info = sctx->fs_info;
829 830 831 832 833 834 835 836 837 838 839
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
840 841 842 843
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
844
			BTRFS_EXTENT_FLAG_DATA);
845 846
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
847

848 849
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
850

851 852 853 854 855 856 857 858 859 860
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
861 862 863 864 865 866 867 868 869
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
870
		memalloc_nofs_restore(nofs_flag);
871 872 873 874 875 876 877 878 879
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

880 881 882 883
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
884
	 * sector by sector this time in order to know which sectors
885 886 887 888
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
889 890 891 892 893 894 895 896 897 898
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
899 900 901
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
902
	 * Only if this is not possible, the sectors are picked from
903 904 905 906 907 908
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

909
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
910
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
911
	if (!sblocks_for_recheck) {
912 913 914 915 916
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
917
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918
		goto out;
A
Arne Jansen 已提交
919 920
	}

921
	/* setup the context, map the logical blocks and alloc the pages */
922
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
923
	if (ret) {
924 925 926 927
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
928
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929 930 931 932
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
933

934
	/* build and submit the bios for the failed mirror, check checksums */
935
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
936

937 938 939 940 941 942 943 944 945 946
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
947 948
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
949
		sblock_to_check->data_corrected = 1;
950
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
951

952 953
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
954
		goto out;
A
Arne Jansen 已提交
955 956
	}

957
	if (!sblock_bad->no_io_error_seen) {
958 959 960
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
961
		if (__ratelimit(&rs))
962
			scrub_print_warning("i/o error", sblock_to_check);
963
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964
	} else if (sblock_bad->checksum_error) {
965 966 967
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
968
		if (__ratelimit(&rs))
969
			scrub_print_warning("checksum error", sblock_to_check);
970
		btrfs_dev_stat_inc_and_print(dev,
971
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
972
	} else if (sblock_bad->header_error) {
973 974 975
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
976
		if (__ratelimit(&rs))
977 978
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
979
		if (sblock_bad->generation_error)
980
			btrfs_dev_stat_inc_and_print(dev,
981 982
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
983
			btrfs_dev_stat_inc_and_print(dev,
984
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
985
	}
A
Arne Jansen 已提交
986

987 988 989 990
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
991

992 993
	/*
	 * now build and submit the bios for the other mirrors, check
994 995
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1007
	for (mirror_index = 0; ;mirror_index++) {
1008
		struct scrub_block *sblock_other;
1009

1010 1011
		if (mirror_index == failed_mirror_index)
			continue;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1023
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1034 1035

		/* build and submit the bios, check checksums */
1036
		scrub_recheck_block(fs_info, sblock_other, 0);
1037 1038

		if (!sblock_other->header_error &&
1039 1040
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1041 1042
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1043
				goto corrected_error;
1044 1045
			} else {
				ret = scrub_repair_block_from_good_copy(
1046 1047 1048
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1049
			}
1050 1051
		}
	}
A
Arne Jansen 已提交
1052

1053 1054
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1055 1056 1057

	/*
	 * In case of I/O errors in the area that is supposed to be
1058 1059
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1060 1061 1062 1063 1064
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1065
	 * all possible combinations of sectors from the different mirrors
1066
	 * until the checksum verification succeeds. For example, when
1067
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1068
	 * of mirror #2 is readable but the final checksum test fails,
1069
	 * then the 2nd sector of mirror #3 could be tried, whether now
1070
	 * the final checksum succeeds. But this would be a rare
1071 1072 1073 1074
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1075
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1076
	 * mirror could be repaired by taking 512 byte of a different
1077
	 * mirror, even if other 512 byte sectors in the same sectorsize
1078
	 * area are unreadable.
A
Arne Jansen 已提交
1079
	 */
1080
	success = 1;
1081 1082
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1083
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1084
		struct scrub_block *sblock_other = NULL;
1085

1086
		/* skip no-io-error page in scrub */
1087
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1088
			continue;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1099
		} else if (spage_bad->io_error) {
1100
			/* try to find no-io-error page in mirrors */
1101 1102 1103 1104 1105 1106 1107 1108 1109
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1110 1111
				}
			}
1112 1113
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1114
		}
A
Arne Jansen 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1129
				atomic64_inc(
1130
					&fs_info->dev_replace.num_write_errors);
1131 1132 1133 1134 1135 1136 1137
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1138
				spage_bad->io_error = 0;
1139 1140
			else
				success = 0;
1141
		}
A
Arne Jansen 已提交
1142 1143
	}

1144
	if (success && !sctx->is_dev_replace) {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1155
			scrub_recheck_block(fs_info, sblock_bad, 1);
1156
			if (!sblock_bad->header_error &&
1157 1158 1159 1160 1161 1162 1163
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1164 1165
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1166
			sblock_to_check->data_corrected = 1;
1167
			spin_unlock(&sctx->stat_lock);
1168 1169
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1170
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1171
		}
1172 1173
	} else {
did_not_correct_error:
1174 1175 1176
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1177 1178
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1179
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1180
	}
A
Arne Jansen 已提交
1181

1182 1183 1184 1185 1186 1187
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1188
			struct scrub_recover *recover;
1189 1190
			int page_index;

1191 1192 1193
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1194 1195
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1196
					scrub_put_recover(fs_info, recover);
1197 1198 1199
					sblock->pagev[page_index]->recover =
									NULL;
				}
1200 1201
				scrub_page_put(sblock->pagev[page_index]);
			}
1202 1203 1204
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1205

1206
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1207
	memalloc_nofs_restore(nofs_flag);
1208 1209
	if (ret < 0)
		return ret;
1210 1211
	return 0;
}
A
Arne Jansen 已提交
1212

1213
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1214
{
1215
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1216
		return 2;
1217
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1218 1219
		return 3;
	else
1220
		return (int)bioc->num_stripes;
1221 1222
}

Z
Zhao Lei 已提交
1223 1224
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1225 1226 1227 1228 1229 1230 1231
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1232
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1253
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1254 1255
				     struct scrub_block *sblocks_for_recheck)
{
1256
	struct scrub_ctx *sctx = original_sblock->sctx;
1257
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1258
	u64 length = original_sblock->page_count * fs_info->sectorsize;
1259
	u64 logical = original_sblock->pagev[0]->logical;
1260 1261 1262
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1263
	struct scrub_recover *recover;
1264
	struct btrfs_io_context *bioc;
1265 1266 1267 1268
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1269
	int page_index = 0;
1270
	int mirror_index;
1271
	int nmirrors;
1272 1273 1274
	int ret;

	/*
1275
	 * note: the two members refs and outstanding_pages
1276 1277 1278 1279 1280
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1281
		sublen = min_t(u64, length, fs_info->sectorsize);
1282
		mapped_length = sublen;
1283
		bioc = NULL;
A
Arne Jansen 已提交
1284

1285
		/*
1286 1287
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1288
		 */
1289
		btrfs_bio_counter_inc_blocked(fs_info);
1290
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1291 1292 1293
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1294
			btrfs_bio_counter_dec(fs_info);
1295 1296
			return -EIO;
		}
A
Arne Jansen 已提交
1297

1298 1299
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1300
			btrfs_put_bioc(bioc);
1301
			btrfs_bio_counter_dec(fs_info);
1302 1303 1304
			return -ENOMEM;
		}

1305
		refcount_set(&recover->refs, 1);
1306
		recover->bioc = bioc;
1307 1308
		recover->map_length = mapped_length;

1309
		ASSERT(page_index < SCRUB_MAX_PAGES_PER_BLOCK);
1310

1311
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1312

1313
		for (mirror_index = 0; mirror_index < nmirrors;
1314 1315
		     mirror_index++) {
			struct scrub_block *sblock;
1316
			struct scrub_page *spage;
1317 1318

			sblock = sblocks_for_recheck + mirror_index;
1319
			sblock->sctx = sctx;
1320

1321 1322
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1323
leave_nomem:
1324 1325 1326
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1327
				scrub_put_recover(fs_info, recover);
1328 1329
				return -ENOMEM;
			}
1330 1331 1332 1333 1334 1335 1336
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1337
			if (have_csum)
1338
				memcpy(spage->csum,
1339
				       original_sblock->pagev[0]->csum,
1340
				       sctx->fs_info->csum_size);
1341

Z
Zhao Lei 已提交
1342
			scrub_stripe_index_and_offset(logical,
1343 1344
						      bioc->map_type,
						      bioc->raid_map,
1345
						      mapped_length,
1346 1347
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1348 1349 1350
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1351
			spage->physical = bioc->stripes[stripe_index].physical +
1352
					 stripe_offset;
1353
			spage->dev = bioc->stripes[stripe_index].dev;
1354

1355
			BUG_ON(page_index >= original_sblock->page_count);
1356
			spage->physical_for_dev_replace =
1357 1358
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1359
			/* for missing devices, dev->bdev is NULL */
1360
			spage->mirror_num = mirror_index + 1;
1361
			sblock->page_count++;
1362 1363
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1364
				goto leave_nomem;
1365 1366

			scrub_get_recover(recover);
1367
			spage->recover = recover;
1368
		}
1369
		scrub_put_recover(fs_info, recover);
1370 1371 1372 1373 1374 1375
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1376 1377
}

1378
static void scrub_bio_wait_endio(struct bio *bio)
1379
{
1380
	complete(bio->bi_private);
1381 1382 1383 1384
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1385
					struct scrub_page *spage)
1386
{
1387
	DECLARE_COMPLETION_ONSTACK(done);
1388
	int ret;
1389
	int mirror_num;
1390

1391
	bio->bi_iter.bi_sector = spage->logical >> 9;
1392 1393 1394
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1395
	mirror_num = spage->sblock->pagev[0]->mirror_num;
1396
	ret = raid56_parity_recover(bio, spage->recover->bioc,
1397
				    spage->recover->map_length,
1398
				    mirror_num, 0);
1399 1400 1401
	if (ret)
		return ret;

1402 1403
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1404 1405
}

L
Liu Bo 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

1418
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
L
Liu Bo 已提交
1419 1420 1421
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1422
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1423

1424 1425
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1445 1446 1447 1448 1449 1450 1451
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1452
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1453 1454
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1455
{
1456
	int page_num;
I
Ilya Dryomov 已提交
1457

1458
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1459

L
Liu Bo 已提交
1460 1461 1462 1463
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1464 1465
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1466
		struct scrub_page *spage = sblock->pagev[page_num];
1467

1468 1469
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1470 1471 1472 1473
			sblock->no_io_error_seen = 0;
			continue;
		}

1474
		WARN_ON(!spage->page);
1475
		bio = btrfs_bio_alloc(1);
1476
		bio_set_dev(bio, spage->dev->bdev);
1477

1478
		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1479
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1480
		bio->bi_opf = REQ_OP_READ;
1481

L
Liu Bo 已提交
1482
		if (btrfsic_submit_bio_wait(bio)) {
1483
			spage->io_error = 1;
L
Liu Bo 已提交
1484
			sblock->no_io_error_seen = 0;
1485
		}
1486

1487 1488
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1489

1490
	if (sblock->no_io_error_seen)
1491
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1492 1493
}

M
Miao Xie 已提交
1494 1495 1496 1497 1498 1499
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1500
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1501 1502 1503
	return !ret;
}

1504
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1505
{
1506 1507 1508
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1509

1510 1511 1512 1513
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1514 1515
}

1516
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1517
					     struct scrub_block *sblock_good)
1518 1519 1520
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1521

1522 1523
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1524

1525 1526
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1527
							   page_num, 1);
1528 1529
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1530
	}
1531 1532 1533 1534 1535 1536 1537 1538

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1539 1540
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1541
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1542
	const u32 sectorsize = fs_info->sectorsize;
1543

1544 1545
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1546
	if (force_write || sblock_bad->header_error ||
1547
	    sblock_bad->checksum_error || spage_bad->io_error) {
1548 1549 1550
		struct bio *bio;
		int ret;

1551
		if (!spage_bad->dev->bdev) {
1552
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1553
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1554 1555 1556
			return -EIO;
		}

1557
		bio = btrfs_bio_alloc(1);
1558 1559
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1560
		bio->bi_opf = REQ_OP_WRITE;
1561

1562 1563
		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
		if (ret != sectorsize) {
1564 1565
			bio_put(bio);
			return -EIO;
1566
		}
1567

1568
		if (btrfsic_submit_bio_wait(bio)) {
1569
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1570
				BTRFS_DEV_STAT_WRITE_ERRS);
1571
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1572 1573 1574
			bio_put(bio);
			return -EIO;
		}
1575
		bio_put(bio);
A
Arne Jansen 已提交
1576 1577
	}

1578 1579 1580
	return 0;
}

1581 1582
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1583
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1584 1585
	int page_num;

1586 1587 1588 1589 1590 1591 1592
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1593 1594 1595 1596 1597
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1598
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1599 1600 1601 1602 1603 1604 1605 1606 1607
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1608 1609
	if (spage->io_error)
		clear_page(page_address(spage->page));
1610 1611 1612 1613

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1614 1615 1616 1617 1618 1619 1620 1621
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1622 1623 1624
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1636 1637 1638 1639 1640
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;
1641
	const u32 sectorsize = sctx->fs_info->sectorsize;
1642

1643
	mutex_lock(&sctx->wr_lock);
1644
again:
1645 1646
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1647
					      GFP_KERNEL);
1648 1649
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1650 1651
			return -ENOMEM;
		}
1652 1653
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1654
	}
1655
	sbio = sctx->wr_curr_bio;
1656 1657 1658
	if (sbio->page_count == 0) {
		struct bio *bio;

1659 1660 1661 1662 1663 1664 1665
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1666 1667
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1668
		sbio->dev = sctx->wr_tgtdev;
1669 1670
		bio = sbio->bio;
		if (!bio) {
1671
			bio = btrfs_bio_alloc(sctx->pages_per_bio);
1672 1673 1674 1675 1676
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1677
		bio_set_dev(bio, sbio->dev->bdev);
1678
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1679
		bio->bi_opf = REQ_OP_WRITE;
1680
		sbio->status = 0;
1681
	} else if (sbio->physical + sbio->page_count * sectorsize !=
1682
		   spage->physical_for_dev_replace ||
1683
		   sbio->logical + sbio->page_count * sectorsize !=
1684 1685 1686 1687 1688
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

1689 1690
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
1691 1692 1693
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1694
			mutex_unlock(&sctx->wr_lock);
1695 1696 1697 1698 1699 1700 1701 1702 1703
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1704
	if (sbio->page_count == sctx->pages_per_bio)
1705
		scrub_wr_submit(sctx);
1706
	mutex_unlock(&sctx->wr_lock);
1707 1708 1709 1710 1711 1712 1713 1714

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1715
	if (!sctx->wr_curr_bio)
1716 1717
		return;

1718 1719
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1720
	WARN_ON(!sbio->bio->bi_bdev);
1721 1722 1723 1724 1725
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1726
	btrfsic_submit_bio(sbio->bio);
1727 1728

	if (btrfs_is_zoned(sctx->fs_info))
1729 1730
		sctx->write_pointer = sbio->physical + sbio->page_count *
			sctx->fs_info->sectorsize;
1731 1732
}

1733
static void scrub_wr_bio_end_io(struct bio *bio)
1734 1735
{
	struct scrub_bio *sbio = bio->bi_private;
1736
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1737

1738
	sbio->status = bio->bi_status;
1739 1740
	sbio->bio = bio;

1741
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1742
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1743 1744 1745 1746 1747 1748 1749 1750
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1751
	ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
1752
	if (sbio->status) {
1753
		struct btrfs_dev_replace *dev_replace =
1754
			&sbio->sctx->fs_info->dev_replace;
1755 1756 1757 1758 1759

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1760
			atomic64_inc(&dev_replace->num_write_errors);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1773 1774 1775 1776
{
	u64 flags;
	int ret;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1789 1790
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1802 1803

	return ret;
A
Arne Jansen 已提交
1804 1805
}

1806
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1807
{
1808
	struct scrub_ctx *sctx = sblock->sctx;
1809 1810
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1811
	u8 csum[BTRFS_CSUM_SIZE];
1812
	struct scrub_page *spage;
1813
	char *kaddr;
A
Arne Jansen 已提交
1814

1815
	BUG_ON(sblock->page_count < 1);
1816 1817
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1818 1819
		return 0;

1820
	kaddr = page_address(spage->page);
1821

1822 1823
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1824

1825 1826 1827 1828 1829
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1830

1831 1832
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1833
	return sblock->checksum_error;
A
Arne Jansen 已提交
1834 1835
}

1836
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1837
{
1838
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1839
	struct btrfs_header *h;
1840
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1841
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1842 1843
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1844 1845 1846 1847 1848 1849 1850
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1851
	int i;
1852
	struct scrub_page *spage;
1853
	char *kaddr;
1854

1855
	BUG_ON(sblock->page_count < 1);
1856 1857 1858 1859

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1860 1861
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1862
	h = (struct btrfs_header *)kaddr;
1863
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1864 1865 1866 1867 1868 1869

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1870
	if (spage->logical != btrfs_stack_header_bytenr(h))
1871
		sblock->header_error = 1;
A
Arne Jansen 已提交
1872

1873
	if (spage->generation != btrfs_stack_header_generation(h)) {
1874 1875 1876
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1877

1878
	if (!scrub_check_fsid(h->fsid, spage))
1879
		sblock->header_error = 1;
A
Arne Jansen 已提交
1880 1881 1882

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1883
		sblock->header_error = 1;
A
Arne Jansen 已提交
1884

1885 1886 1887
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1888
			    sectorsize - BTRFS_CSUM_SIZE);
1889

1890
	for (i = 1; i < num_sectors; i++) {
1891
		kaddr = page_address(sblock->pagev[i]->page);
1892
		crypto_shash_update(shash, kaddr, sectorsize);
1893 1894
	}

1895
	crypto_shash_final(shash, calculated_csum);
1896
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1897
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1898

1899
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1900 1901
}

1902
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1903 1904
{
	struct btrfs_super_block *s;
1905
	struct scrub_ctx *sctx = sblock->sctx;
1906 1907
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1908
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1909
	struct scrub_page *spage;
1910
	char *kaddr;
1911 1912
	int fail_gen = 0;
	int fail_cor = 0;
1913

1914
	BUG_ON(sblock->page_count < 1);
1915 1916
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1917
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1918

1919
	if (spage->logical != btrfs_super_bytenr(s))
1920
		++fail_cor;
A
Arne Jansen 已提交
1921

1922
	if (spage->generation != btrfs_super_generation(s))
1923
		++fail_gen;
A
Arne Jansen 已提交
1924

1925
	if (!scrub_check_fsid(s->fsid, spage))
1926
		++fail_cor;
A
Arne Jansen 已提交
1927

1928 1929 1930 1931
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1932

1933
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1934
		++fail_cor;
A
Arne Jansen 已提交
1935

1936
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1937 1938 1939 1940 1941
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1942 1943 1944
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1945
		if (fail_cor)
1946
			btrfs_dev_stat_inc_and_print(spage->dev,
1947 1948
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1949
			btrfs_dev_stat_inc_and_print(spage->dev,
1950
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1951 1952
	}

1953
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1954 1955
}

1956 1957
static void scrub_block_get(struct scrub_block *sblock)
{
1958
	refcount_inc(&sblock->refs);
1959 1960 1961 1962
}

static void scrub_block_put(struct scrub_block *sblock)
{
1963
	if (refcount_dec_and_test(&sblock->refs)) {
1964 1965
		int i;

1966 1967 1968
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1969
		for (i = 0; i < sblock->page_count; i++)
1970
			scrub_page_put(sblock->pagev[i]);
1971 1972 1973 1974
		kfree(sblock);
	}
}

1975 1976
static void scrub_page_get(struct scrub_page *spage)
{
1977
	atomic_inc(&spage->refs);
1978 1979 1980 1981
}

static void scrub_page_put(struct scrub_page *spage)
{
1982
	if (atomic_dec_and_test(&spage->refs)) {
1983 1984 1985 1986 1987 1988
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2048
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2049 2050 2051
{
	struct scrub_bio *sbio;

2052
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2053
		return;
A
Arne Jansen 已提交
2054

2055 2056
	scrub_throttle(sctx);

2057 2058
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2059
	scrub_pending_bio_inc(sctx);
2060
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2061 2062
}

2063 2064
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2065
{
2066
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2067
	struct scrub_bio *sbio;
2068
	const u32 sectorsize = sctx->fs_info->sectorsize;
2069
	int ret;
A
Arne Jansen 已提交
2070 2071 2072 2073 2074

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2075 2076 2077 2078 2079 2080 2081 2082
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2083
		} else {
2084 2085
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2086 2087
		}
	}
2088
	sbio = sctx->bios[sctx->curr];
2089
	if (sbio->page_count == 0) {
2090 2091
		struct bio *bio;

2092 2093
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2094
		sbio->dev = spage->dev;
2095 2096
		bio = sbio->bio;
		if (!bio) {
2097
			bio = btrfs_bio_alloc(sctx->pages_per_bio);
2098 2099
			sbio->bio = bio;
		}
2100 2101 2102

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2103
		bio_set_dev(bio, sbio->dev->bdev);
2104
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2105
		bio->bi_opf = REQ_OP_READ;
2106
		sbio->status = 0;
2107
	} else if (sbio->physical + sbio->page_count * sectorsize !=
2108
		   spage->physical ||
2109
		   sbio->logical + sbio->page_count * sectorsize !=
2110 2111
		   spage->logical ||
		   sbio->dev != spage->dev) {
2112
		scrub_submit(sctx);
A
Arne Jansen 已提交
2113 2114
		goto again;
	}
2115

2116
	sbio->pagev[sbio->page_count] = spage;
2117 2118
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
2119 2120 2121 2122 2123
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2124
		scrub_submit(sctx);
2125 2126 2127
		goto again;
	}

2128
	scrub_block_get(sblock); /* one for the page added to the bio */
2129 2130
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2131
	if (sbio->page_count == sctx->pages_per_bio)
2132
		scrub_submit(sctx);
2133 2134 2135 2136

	return 0;
}

2137
static void scrub_missing_raid56_end_io(struct bio *bio)
2138 2139
{
	struct scrub_block *sblock = bio->bi_private;
2140
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2141

2142
	if (bio->bi_status)
2143 2144
		sblock->no_io_error_seen = 0;

2145 2146
	bio_put(bio);

2147 2148 2149 2150 2151 2152 2153
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2154
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2155 2156 2157 2158 2159 2160
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2161
	if (sblock->no_io_error_seen)
2162
		scrub_recheck_block_checksum(sblock);
2163 2164 2165 2166 2167

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2168
		btrfs_err_rl_in_rcu(fs_info,
2169
			"IO error rebuilding logical %llu for dev %s",
2170 2171 2172 2173 2174
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2175
		btrfs_err_rl_in_rcu(fs_info,
2176
			"failed to rebuild valid logical %llu for dev %s",
2177 2178 2179 2180 2181
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2182
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2183
		mutex_lock(&sctx->wr_lock);
2184
		scrub_wr_submit(sctx);
2185
		mutex_unlock(&sctx->wr_lock);
2186 2187
	}

2188
	scrub_block_put(sblock);
2189 2190 2191 2192 2193 2194
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2195
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2196 2197
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2198
	struct btrfs_io_context *bioc = NULL;
2199 2200 2201 2202 2203
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2204
	btrfs_bio_counter_inc_blocked(fs_info);
2205
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2206 2207 2208
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2209 2210

	if (WARN_ON(!sctx->is_dev_replace ||
2211
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2212 2213 2214 2215 2216 2217
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
2218
		goto bioc_out;
2219 2220
	}

2221
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2222 2223 2224 2225
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2226
	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2227 2228 2229 2230 2231 2232 2233 2234 2235
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2236
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2237 2238 2239 2240 2241 2242 2243
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2244
bioc_out:
2245
	btrfs_bio_counter_dec(fs_info);
2246
	btrfs_put_bioc(bioc);
2247 2248 2249 2250 2251
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2252
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2253
		       u64 physical, struct btrfs_device *dev, u64 flags,
2254
		       u64 gen, int mirror_num, u8 *csum,
2255
		       u64 physical_for_dev_replace)
2256 2257
{
	struct scrub_block *sblock;
2258
	const u32 sectorsize = sctx->fs_info->sectorsize;
2259 2260
	int index;

2261
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2262
	if (!sblock) {
2263 2264 2265
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2266
		return -ENOMEM;
A
Arne Jansen 已提交
2267
	}
2268

2269 2270
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2271
	refcount_set(&sblock->refs, 1);
2272
	sblock->sctx = sctx;
2273 2274 2275
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2276
		struct scrub_page *spage;
2277 2278 2279 2280 2281 2282
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2283

2284
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2285 2286
		if (!spage) {
leave_nomem:
2287 2288 2289
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2290
			scrub_block_put(sblock);
2291 2292
			return -ENOMEM;
		}
2293
		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2294 2295
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2296
		spage->sblock = sblock;
2297
		spage->dev = dev;
2298 2299 2300 2301
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2302
		spage->physical_for_dev_replace = physical_for_dev_replace;
2303 2304 2305
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2306
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2307 2308 2309 2310
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2311
		spage->page = alloc_page(GFP_KERNEL);
2312 2313
		if (!spage->page)
			goto leave_nomem;
2314 2315 2316
		len -= l;
		logical += l;
		physical += l;
2317
		physical_for_dev_replace += l;
2318 2319
	}

2320
	WARN_ON(sblock->page_count == 0);
2321
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2322 2323 2324 2325 2326 2327 2328 2329 2330
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2331

2332 2333 2334 2335 2336
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2337
		}
A
Arne Jansen 已提交
2338

2339
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2340 2341
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2342

2343 2344
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2345 2346 2347
	return 0;
}

2348
static void scrub_bio_end_io(struct bio *bio)
2349 2350
{
	struct scrub_bio *sbio = bio->bi_private;
2351
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2352

2353
	sbio->status = bio->bi_status;
2354 2355
	sbio->bio = bio;

2356
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2357 2358 2359 2360 2361
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2362
	struct scrub_ctx *sctx = sbio->sctx;
2363 2364
	int i;

2365
	ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
2366
	if (sbio->status) {
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2387 2388 2389 2390
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2391

2392
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2393
		mutex_lock(&sctx->wr_lock);
2394
		scrub_wr_submit(sctx);
2395
		mutex_unlock(&sctx->wr_lock);
2396 2397
	}

2398
	scrub_pending_bio_dec(sctx);
2399 2400
}

2401 2402
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2403
				       u64 start, u32 len)
2404
{
2405
	u64 offset;
2406
	u32 nsectors;
2407
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2408 2409 2410 2411 2412 2413 2414

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2415
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2416
	offset = offset >> sectorsize_bits;
2417
	nsectors = len >> sectorsize_bits;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2429
						   u64 start, u32 len)
2430 2431 2432 2433 2434
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2435
						  u64 start, u32 len)
2436 2437 2438 2439
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2440 2441
static void scrub_block_complete(struct scrub_block *sblock)
{
2442 2443
	int corrupted = 0;

2444
	if (!sblock->no_io_error_seen) {
2445
		corrupted = 1;
2446
		scrub_handle_errored_block(sblock);
2447 2448 2449 2450 2451 2452
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2453 2454
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2455 2456
			scrub_write_block_to_dev_replace(sblock);
	}
2457 2458 2459 2460

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2461
			  sblock->sctx->fs_info->sectorsize;
2462

2463
		ASSERT(end - start <= U32_MAX);
2464 2465 2466
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2467 2468
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2481
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2482 2483 2484 2485 2486
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2487
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2488
{
2489
	bool found = false;
A
Arne Jansen 已提交
2490

2491
	while (!list_empty(&sctx->csum_list)) {
2492 2493 2494 2495
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2496
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2497
				       struct btrfs_ordered_sum, list);
2498
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2499 2500 2501
		if (sum->bytenr > logical)
			break;

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2512

2513 2514 2515 2516
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2517

2518 2519 2520 2521 2522 2523 2524
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2525
	}
2526 2527
	if (!found)
		return 0;
2528
	return 1;
A
Arne Jansen 已提交
2529 2530 2531
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2532
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2533
			u64 logical, u32 len,
2534
			u64 physical, struct btrfs_device *dev, u64 flags,
2535
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2536 2537 2538
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2539 2540 2541
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2542 2543 2544 2545
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2546 2547 2548 2549
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2550
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2551 2552 2553 2554
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2555 2556 2557 2558
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2559
	} else {
2560
		blocksize = sctx->fs_info->sectorsize;
2561
		WARN_ON(1);
2562
	}
A
Arne Jansen 已提交
2563 2564

	while (len) {
2565
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2566 2567 2568 2569
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2570
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2571
			if (have_csum == 0)
2572
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2573
		}
2574
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2575
				  mirror_num, have_csum ? csum : NULL,
2576
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2577 2578 2579 2580 2581
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2582
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2583 2584 2585 2586
	}
	return 0;
}

2587
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2588
				  u64 logical, u32 len,
2589 2590 2591 2592 2593
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2594
	const u32 sectorsize = sctx->fs_info->sectorsize;
2595 2596
	int index;

2597 2598
	ASSERT(IS_ALIGNED(len, sectorsize));

2599
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2600 2601 2602 2603 2604 2605 2606 2607 2608
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2609
	refcount_set(&sblock->refs, 1);
2610 2611 2612 2613 2614 2615 2616 2617
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2618
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2619 2620 2621 2622 2623 2624 2625 2626
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2627
		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2643
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2644 2645 2646 2647
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2648
		spage->page = alloc_page(GFP_KERNEL);
2649 2650
		if (!spage->page)
			goto leave_nomem;
2651 2652 2653 2654 2655 2656


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2677
				   u64 logical, u32 len,
2678 2679 2680 2681 2682 2683 2684 2685
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2686
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2687 2688 2689 2690
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2691
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2692
		blocksize = sparity->stripe_len;
2693
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2694
		blocksize = sparity->stripe_len;
2695
	} else {
2696
		blocksize = sctx->fs_info->sectorsize;
2697 2698 2699 2700
		WARN_ON(1);
	}

	while (len) {
2701
		u32 l = min(len, blocksize);
2702 2703 2704 2705
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2706
			have_csum = scrub_find_csum(sctx, logical, csum);
2707 2708 2709 2710 2711 2712 2713 2714
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2715
skip:
2716 2717 2718 2719 2720 2721 2722
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2723 2724 2725 2726 2727 2728 2729 2730
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2731 2732
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2733 2734 2735 2736 2737
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2738 2739
	u32 stripe_index;
	u32 rot;
2740
	const int data_stripes = nr_data_stripes(map);
2741

2742
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2743 2744 2745
	if (stripe_start)
		*stripe_start = last_offset;

2746
	*offset = last_offset;
2747
	for (i = 0; i < data_stripes; i++) {
2748 2749
		*offset = last_offset + i * map->stripe_len;

2750
		stripe_nr = div64_u64(*offset, map->stripe_len);
2751
		stripe_nr = div_u64(stripe_nr, data_stripes);
2752 2753

		/* Work out the disk rotation on this stripe-set */
2754
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2755 2756
		/* calculate which stripe this data locates */
		rot += i;
2757
		stripe_index = rot % map->num_stripes;
2758 2759 2760 2761 2762 2763 2764 2765 2766
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2799
static void scrub_parity_bio_endio(struct bio *bio)
2800 2801
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2802
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2803

2804
	if (bio->bi_status)
2805 2806 2807 2808
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2809

2810 2811
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2812
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2813 2814 2815 2816 2817
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2818
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2819 2820
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2821
	struct btrfs_io_context *bioc = NULL;
2822 2823 2824 2825 2826 2827 2828
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2829
	length = sparity->logic_end - sparity->logic_start;
2830 2831

	btrfs_bio_counter_inc_blocked(fs_info);
2832
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2833 2834 2835
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2836

2837
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2838 2839 2840 2841
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2842 2843
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
					      sparity->scrub_dev,
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2855
bioc_out:
2856
	btrfs_bio_counter_dec(fs_info);
2857
	btrfs_put_bioc(bioc);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2869
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2870 2871 2872 2873
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2874
	refcount_inc(&sparity->refs);
2875 2876 2877 2878
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2879
	if (!refcount_dec_and_test(&sparity->refs))
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
2891
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2892
	struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
2893
	struct btrfs_root *csum_root;
2894
	struct btrfs_extent_item *extent;
2895
	struct btrfs_io_context *bioc = NULL;
2896
	struct btrfs_path *path;
2897 2898 2899 2900 2901 2902 2903 2904
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2905 2906
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2907
	u64 mapped_length;
2908 2909 2910 2911 2912 2913 2914
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

2925
	ASSERT(map->stripe_len <= U32_MAX);
2926
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2927 2928 2929 2930 2931 2932 2933
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2934
		btrfs_free_path(path);
2935 2936 2937
		return -ENOMEM;
	}

2938
	ASSERT(map->stripe_len <= U32_MAX);
2939 2940 2941 2942 2943 2944
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2945
	refcount_set(&sparity->refs, 1);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2994 2995 2996 2997
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2998
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2999
				bytes = fs_info->nodesize;
3000 3001 3002 3003 3004 3005
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3006
			if (key.objectid >= logic_end) {
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3019 3020 3021 3022
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3023 3024
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3025
					  key.objectid, logic_start);
3026 3027 3028
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3029 3030 3031 3032
				goto next;
			}
again:
			extent_logical = key.objectid;
3033
			ASSERT(bytes <= U32_MAX);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3049
			mapped_length = extent_len;
3050
			bioc = NULL;
3051
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3052
					extent_logical, &mapped_length, &bioc,
3053
					0);
3054
			if (!ret) {
3055
				if (!bioc || mapped_length < extent_len)
3056 3057 3058
					ret = -EIO;
			}
			if (ret) {
3059
				btrfs_put_bioc(bioc);
3060 3061
				goto out;
			}
3062 3063 3064 3065
			extent_physical = bioc->stripes[0].physical;
			extent_mirror_num = bioc->mirror_num;
			extent_dev = bioc->stripes[0].dev;
			btrfs_put_bioc(bioc);
3066

3067
			csum_root = btrfs_csum_root(fs_info, extent_logical);
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3081 3082 3083

			scrub_free_csums(sctx);

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3113 3114
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3115
		scrub_parity_mark_sectors_error(sparity, logic_start,
3116
						logic_end - logic_start);
3117
	}
3118 3119
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3120
	mutex_lock(&sctx->wr_lock);
3121
	scrub_wr_submit(sctx);
3122
	mutex_unlock(&sctx->wr_lock);
3123

3124
	btrfs_free_path(path);
3125 3126 3127
	return ret < 0 ? ret : 0;
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3168
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3169
					   struct btrfs_block_group *bg,
3170 3171
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3172
					   int stripe_index, u64 dev_extent_len)
A
Arne Jansen 已提交
3173
{
3174
	struct btrfs_path *path;
3175
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3176
	struct btrfs_root *root;
3177
	struct btrfs_root *csum_root;
A
Arne Jansen 已提交
3178
	struct btrfs_extent_item *extent;
3179
	struct blk_plug plug;
3180
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3181 3182 3183 3184 3185 3186 3187
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3188
	u64 logic_end;
3189
	u64 physical_end;
A
Arne Jansen 已提交
3190
	u64 generation;
3191
	int mirror_num;
3192
	struct btrfs_key key;
3193
	u64 increment;
A
Arne Jansen 已提交
3194
	u64 offset;
3195 3196
	u64 extent_logical;
	u64 extent_physical;
3197 3198 3199 3200 3201
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3202 3203
	u64 stripe_logical;
	u64 stripe_end;
3204 3205
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3206
	int stop_loop = 0;
D
David Woodhouse 已提交
3207

3208
	physical = map->stripes[stripe_index].physical;
A
Arne Jansen 已提交
3209
	offset = 0;
3210
	nstripes = div64_u64(dev_extent_len, map->stripe_len);
3211 3212
	mirror_num = 1;
	increment = map->stripe_len;
A
Arne Jansen 已提交
3213
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3214
		offset = map->stripe_len * stripe_index;
A
Arne Jansen 已提交
3215 3216 3217
		increment = map->stripe_len * map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
3218
		offset = map->stripe_len * (stripe_index / map->sub_stripes);
A
Arne Jansen 已提交
3219
		increment = map->stripe_len * factor;
3220
		mirror_num = stripe_index % map->sub_stripes + 1;
3221
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3222
		mirror_num = stripe_index % map->num_stripes + 1;
A
Arne Jansen 已提交
3223
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3224
		mirror_num = stripe_index % map->num_stripes + 1;
3225
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3226 3227
		get_raid56_logic_offset(physical, stripe_index, map, &offset,
					NULL);
3228
		increment = map->stripe_len * nr_data_stripes(map);
A
Arne Jansen 已提交
3229 3230 3231 3232 3233 3234
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3235 3236 3237 3238 3239
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3240 3241
	path->search_commit_root = 1;
	path->skip_locking = 1;
3242
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3243

3244
	logical = chunk_logical + offset;
3245
	physical_end = physical + nstripes * map->stripe_len;
3246
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3247
		get_raid56_logic_offset(physical_end, stripe_index,
3248
					map, &logic_end, NULL);
3249
		logic_end += chunk_logical;
3250 3251 3252
	} else {
		logic_end = logical + increment * nstripes;
	}
3253
	wait_event(sctx->list_wait,
3254
		   atomic_read(&sctx->bios_in_flight) == 0);
3255
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3256

3257
	root = btrfs_extent_root(fs_info, logical);
3258 3259
	csum_root = btrfs_csum_root(fs_info, logical);

A
Arne Jansen 已提交
3260 3261 3262 3263
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3264
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3265

3266 3267 3268 3269 3270 3271 3272 3273
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3274 3275 3276 3277
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3278
	while (physical < physical_end) {
A
Arne Jansen 已提交
3279 3280 3281 3282
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3283
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3284 3285 3286 3287 3288 3289 3290 3291
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3292
			sctx->flush_all_writes = true;
3293
			scrub_submit(sctx);
3294
			mutex_lock(&sctx->wr_lock);
3295
			scrub_wr_submit(sctx);
3296
			mutex_unlock(&sctx->wr_lock);
3297
			wait_event(sctx->list_wait,
3298
				   atomic_read(&sctx->bios_in_flight) == 0);
3299
			sctx->flush_all_writes = false;
3300
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3301 3302
		}

3303
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3304 3305
			ret = get_raid56_logic_offset(physical, stripe_index,
						      map, &logical,
3306
						      &stripe_logical);
3307
			logical += chunk_logical;
3308
			if (ret) {
3309
				/* it is parity strip */
3310
				stripe_logical += chunk_logical;
3311
				stripe_end = stripe_logical + increment;
3312
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3313
							  stripe_logical,
3314 3315 3316 3317 3318 3319 3320
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3321 3322 3323 3324
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3325
		key.objectid = logical;
L
Liu Bo 已提交
3326
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3327 3328 3329 3330

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3331

3332
		if (ret > 0) {
3333
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3334 3335
			if (ret < 0)
				goto out;
3336 3337 3338 3339 3340 3341 3342 3343 3344
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3345 3346
		}

L
Liu Bo 已提交
3347
		stop_loop = 0;
A
Arne Jansen 已提交
3348
		while (1) {
3349 3350
			u64 bytes;

A
Arne Jansen 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3360
				stop_loop = 1;
A
Arne Jansen 已提交
3361 3362 3363 3364
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3365 3366 3367 3368
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3369
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3370
				bytes = fs_info->nodesize;
3371 3372 3373 3374
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3375 3376
				goto next;

L
Liu Bo 已提交
3377 3378 3379 3380 3381 3382
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3383

3384 3385 3386 3387 3388 3389
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
3390 3391 3392
			spin_lock(&bg->lock);
			if (bg->removed) {
				spin_unlock(&bg->lock);
3393 3394 3395
				ret = 0;
				goto out;
			}
3396
			spin_unlock(&bg->lock);
3397

A
Arne Jansen 已提交
3398 3399 3400 3401 3402
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3403 3404 3405 3406
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3407
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3408
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3409
				       key.objectid, logical);
3410 3411 3412
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3413 3414 3415
				goto next;
			}

L
Liu Bo 已提交
3416 3417
again:
			extent_logical = key.objectid;
3418
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3419 3420
			extent_len = bytes;

A
Arne Jansen 已提交
3421 3422 3423
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3424 3425 3426
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3427
			}
L
Liu Bo 已提交
3428
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3429
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3430 3431
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3432 3433
			}

L
Liu Bo 已提交
3434
			extent_physical = extent_logical - logical + physical;
3435 3436
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3437
			if (sctx->is_dev_replace)
3438 3439 3440 3441
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3442

3443 3444 3445 3446 3447 3448 3449 3450
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3451

L
Liu Bo 已提交
3452
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3453 3454
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3455
					   extent_logical - logical + physical);
3456 3457 3458

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3459 3460 3461
			if (ret)
				goto out;

3462 3463 3464
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3465 3466
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3467
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3468 3469 3470 3471
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3472 3473 3474
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
3475 3476 3477
							stripe_index, map,
							&logical, &stripe_logical);
					logical += chunk_logical;
3478 3479

					if (ret && physical < physical_end) {
3480
						stripe_logical += chunk_logical;
3481
						stripe_end = stripe_logical +
3482
								increment;
3483
						ret = scrub_raid56_parity(sctx,
3484
							map, scrub_dev,
3485 3486 3487 3488 3489 3490
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3491 3492 3493 3494
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3495 3496 3497 3498 3499
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3500
				if (physical >= physical_end) {
L
Liu Bo 已提交
3501 3502 3503 3504
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3505 3506 3507
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3508
		btrfs_release_path(path);
3509
skip:
A
Arne Jansen 已提交
3510 3511
		logical += increment;
		physical += map->stripe_len;
3512
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3513
		if (stop_loop)
3514 3515
			sctx->stat.last_physical = map->stripes[stripe_index].physical +
						   dev_extent_len;
L
Liu Bo 已提交
3516 3517
		else
			sctx->stat.last_physical = physical;
3518
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3519 3520
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3521
	}
3522
out:
A
Arne Jansen 已提交
3523
	/* push queued extents */
3524
	scrub_submit(sctx);
3525
	mutex_lock(&sctx->wr_lock);
3526
	scrub_wr_submit(sctx);
3527
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3528

3529
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3530
	btrfs_free_path(path);
3531 3532 3533 3534

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3535 3536 3537 3538
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3539 3540 3541 3542
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3543 3544 3545
	return ret < 0 ? ret : 0;
}

3546
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3547
					  struct btrfs_block_group *bg,
3548
					  struct btrfs_device *scrub_dev,
3549
					  u64 dev_offset,
3550
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3551
{
3552
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3553
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3554 3555 3556
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3557
	int ret = 0;
A
Arne Jansen 已提交
3558

3559
	read_lock(&map_tree->lock);
3560
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3561
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3562

3563 3564 3565 3566 3567
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3568 3569
		spin_lock(&bg->lock);
		if (!bg->removed)
3570
			ret = -EINVAL;
3571
		spin_unlock(&bg->lock);
3572 3573 3574

		return ret;
	}
3575
	if (em->start != bg->start)
A
Arne Jansen 已提交
3576
		goto out;
3577
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3578 3579
		goto out;

3580
	map = em->map_lookup;
A
Arne Jansen 已提交
3581
	for (i = 0; i < map->num_stripes; ++i) {
3582
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3583
		    map->stripes[i].physical == dev_offset) {
3584 3585
			ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
					   dev_extent_len);
A
Arne Jansen 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3615
static noinline_for_stack
3616
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3617
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3618 3619 3620
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3621 3622
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3623
	u64 chunk_offset;
3624
	int ret = 0;
3625
	int ro_set;
A
Arne Jansen 已提交
3626 3627 3628 3629
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3630
	struct btrfs_block_group *cache;
3631
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3632 3633 3634 3635 3636

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3637
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3638 3639 3640
	path->search_commit_root = 1;
	path->skip_locking = 1;

3641
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3642 3643 3644 3645
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3646 3647
		u64 dev_extent_len;

A
Arne Jansen 已提交
3648 3649
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3650 3651 3652 3653 3654
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3655 3656 3657 3658
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3659
					break;
3660 3661 3662
				}
			} else {
				ret = 0;
3663 3664
			}
		}
A
Arne Jansen 已提交
3665 3666 3667 3668 3669 3670

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3671
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3672 3673
			break;

3674
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3684
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3685

3686
		if (found_key.offset + dev_extent_len <= start)
3687
			goto skip;
A
Arne Jansen 已提交
3688 3689 3690 3691 3692 3693 3694 3695

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3696 3697 3698 3699 3700 3701

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3702 3703 3704 3705
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3706 3707
				btrfs_put_block_group(cache);
				goto skip;
3708 3709 3710 3711
			}
			spin_unlock(&cache->lock);
		}

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3726
		btrfs_freeze_block_group(cache);
3727 3728
		spin_unlock(&cache->lock);

3729 3730 3731 3732 3733 3734 3735 3736 3737
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3768
		 */
3769
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3780 3781
		if (ret == 0) {
			ro_set = 1;
3782
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3783 3784 3785
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3786
			 * It is not a problem for scrub, because
3787 3788 3789 3790
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3791 3792 3793 3794 3795 3796 3797
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3798
		} else {
J
Jeff Mahoney 已提交
3799
			btrfs_warn(fs_info,
3800
				   "failed setting block group ro: %d", ret);
3801
			btrfs_unfreeze_block_group(cache);
3802
			btrfs_put_block_group(cache);
3803
			scrub_pause_off(fs_info);
3804 3805 3806
			break;
		}

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3819
		down_write(&dev_replace->rwsem);
3820
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
3821 3822
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3823 3824
		up_write(&dev_replace->rwsem);

3825 3826 3827
		ASSERT(cache->start == chunk_offset);
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3839
		sctx->flush_all_writes = true;
3840
		scrub_submit(sctx);
3841
		mutex_lock(&sctx->wr_lock);
3842
		scrub_wr_submit(sctx);
3843
		mutex_unlock(&sctx->wr_lock);
3844 3845 3846

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3847 3848

		scrub_pause_on(fs_info);
3849 3850 3851 3852 3853 3854

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3855 3856
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3857
		sctx->flush_all_writes = false;
3858

3859
		scrub_pause_off(fs_info);
3860

3861 3862 3863 3864 3865
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3866
		down_write(&dev_replace->rwsem);
3867 3868
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3869
		up_write(&dev_replace->rwsem);
3870

3871
		if (ro_set)
3872
			btrfs_dec_block_group_ro(cache);
3873

3874 3875 3876 3877 3878 3879 3880 3881 3882
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3883
		    cache->used == 0) {
3884
			spin_unlock(&cache->lock);
3885 3886 3887 3888 3889
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3890 3891 3892
		} else {
			spin_unlock(&cache->lock);
		}
3893
skip_unfreeze:
3894
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3895 3896 3897
		btrfs_put_block_group(cache);
		if (ret)
			break;
3898
		if (sctx->is_dev_replace &&
3899
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3900 3901 3902 3903 3904 3905 3906
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3907
skip:
3908
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
3909
		btrfs_release_path(path);
A
Arne Jansen 已提交
3910 3911 3912
	}

	btrfs_free_path(path);
3913

3914
	return ret;
A
Arne Jansen 已提交
3915 3916
}

3917 3918
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3919 3920 3921 3922 3923
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3924
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3925

J
Josef Bacik 已提交
3926
	if (BTRFS_FS_ERROR(fs_info))
3927
		return -EROFS;
3928

3929
	/* Seed devices of a new filesystem has their own generation. */
3930
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3931 3932
		gen = scrub_dev->generation;
	else
3933
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3934 3935 3936

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3937 3938
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3939
			break;
3940 3941
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3942

3943
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3944
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3945
				  NULL, bytenr);
A
Arne Jansen 已提交
3946 3947 3948
		if (ret)
			return ret;
	}
3949
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3950 3951 3952 3953

	return 0;
}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
3977 3978 3979
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3980 3981
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3982
{
3983 3984 3985
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
3986
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3987
	int max_active = fs_info->thread_pool_size;
3988
	int ret = -ENOMEM;
A
Arne Jansen 已提交
3989

3990 3991
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
3992

3993 3994 3995 3996
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
3997

3998
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3999
					      max_active, 2);
4000 4001
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4002

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4016
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4017 4018
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4019
	}
4020 4021 4022
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4023

4024 4025
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
4026
fail_scrub_parity_workers:
4027
	btrfs_destroy_workqueue(scrub_wr_comp);
4028
fail_scrub_wr_completion_workers:
4029
	btrfs_destroy_workqueue(scrub_workers);
4030
fail_scrub_workers:
4031
	return ret;
A
Arne Jansen 已提交
4032 4033
}

4034 4035
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4036
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4037
{
4038
	struct btrfs_dev_lookup_args args = { .devid = devid };
4039
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4040 4041
	int ret;
	struct btrfs_device *dev;
4042
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4043

4044
	if (btrfs_fs_closing(fs_info))
4045
		return -EAGAIN;
A
Arne Jansen 已提交
4046

4047
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4048 4049 4050 4051 4052
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4053 4054
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4055 4056
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4057 4058 4059
		return -EINVAL;
	}

4060
	if (fs_info->nodesize >
4061
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4062
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4063 4064 4065 4066
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4067 4068
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4069
		       fs_info->nodesize,
4070
		       SCRUB_MAX_PAGES_PER_BLOCK,
4071
		       fs_info->sectorsize,
4072 4073 4074 4075
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4076 4077 4078 4079
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4080

4081 4082 4083 4084
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4085
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4086
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4087 4088
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4089
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090
		ret = -ENODEV;
4091
		goto out;
A
Arne Jansen 已提交
4092 4093
	}

4094 4095
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4096
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4097 4098 4099
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4100
		ret = -EROFS;
4101
		goto out;
4102 4103
	}

4104
	mutex_lock(&fs_info->scrub_lock);
4105
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4106
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4107
		mutex_unlock(&fs_info->scrub_lock);
4108
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4109
		ret = -EIO;
4110
		goto out;
A
Arne Jansen 已提交
4111 4112
	}

4113
	down_read(&fs_info->dev_replace.rwsem);
4114
	if (dev->scrub_ctx ||
4115 4116
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4117
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4118
		mutex_unlock(&fs_info->scrub_lock);
4119
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4120
		ret = -EINPROGRESS;
4121
		goto out;
A
Arne Jansen 已提交
4122
	}
4123
	up_read(&fs_info->dev_replace.rwsem);
4124

4125
	sctx->readonly = readonly;
4126
	dev->scrub_ctx = sctx;
4127
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4128

4129 4130 4131 4132
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4133
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4134 4135 4136
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4147
	if (!is_dev_replace) {
4148
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4149 4150 4151 4152
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4153
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4154
		ret = scrub_supers(sctx, dev);
4155
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4156
	}
A
Arne Jansen 已提交
4157 4158

	if (!ret)
4159
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4160
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4161

4162
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4163 4164 4165
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4166
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4167

A
Arne Jansen 已提交
4168
	if (progress)
4169
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4170

4171 4172 4173 4174
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4175
	mutex_lock(&fs_info->scrub_lock);
4176
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4177 4178
	mutex_unlock(&fs_info->scrub_lock);

4179
	scrub_workers_put(fs_info);
4180
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4181

4182
	return ret;
4183 4184
out:
	scrub_workers_put(fs_info);
4185 4186 4187
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4188 4189 4190
	return ret;
}

4191
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4206
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4207 4208 4209 4210 4211
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4212
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4233
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4234
{
4235
	struct btrfs_fs_info *fs_info = dev->fs_info;
4236
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4237 4238

	mutex_lock(&fs_info->scrub_lock);
4239
	sctx = dev->scrub_ctx;
4240
	if (!sctx) {
A
Arne Jansen 已提交
4241 4242 4243
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4244
	atomic_inc(&sctx->cancel_req);
4245
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4246 4247
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4248
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4249 4250 4251 4252 4253 4254
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4255

4256
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4257 4258
			 struct btrfs_scrub_progress *progress)
{
4259
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4260
	struct btrfs_device *dev;
4261
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4262

4263
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4264
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4265
	if (dev)
4266
		sctx = dev->scrub_ctx;
4267 4268
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4269
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4270

4271
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4272
}
4273 4274

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4275
			       u64 extent_logical, u32 extent_len,
4276 4277 4278 4279 4280
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
4281
	struct btrfs_io_context *bioc = NULL;
4282 4283 4284
	int ret;

	mapped_length = extent_len;
4285
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4286 4287 4288 4289
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4290 4291 4292
		return;
	}

4293 4294 4295 4296
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4297
}