scrub.c 109.6 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		ref_count;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114 115
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195 196 197
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

198
struct scrub_fixup_nodatasum {
199
	struct scrub_ctx	*sctx;
200
	struct btrfs_device	*dev;
201 202 203 204 205 206
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

207 208 209 210 211 212 213
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

214 215 216 217 218 219
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
220
	struct list_head	inodes;
221 222 223
	struct btrfs_work	work;
};

224 225 226 227 228 229 230 231 232
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
239
				     struct btrfs_fs_info *fs_info,
240
				     struct scrub_block *original_sblock,
241
				     u64 length, u64 logical,
242
				     struct scrub_block *sblocks_for_recheck);
243 244 245
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
246
				u16 csum_size, int retry_failed_mirror);
247 248 249 250 251 252
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
253
					     struct scrub_block *sblock_good);
254 255 256
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
257 258 259
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
260 261 262 263 264
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
265 266
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
267 268
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
269 270
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
271
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
272
		       u64 physical, struct btrfs_device *dev, u64 flags,
273 274
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
275
static void scrub_bio_end_io(struct bio *bio, int err);
276 277
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
297
				      struct scrub_copy_nocow_ctx *ctx);
298 299 300
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
301
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
303 304


305 306 307 308 309 310 311 312 313 314 315
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

316
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
317 318 319 320 321 322 323 324 325
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

326 327 328 329 330 331 332 333 334 335 336 337 338
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
360 361 362 363 364 365 366 367 368 369

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

391
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
392
{
393
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
394
		struct btrfs_ordered_sum *sum;
395
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
396 397 398 399 400 401
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

402
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
403 404 405
{
	int i;

406
	if (!sctx)
A
Arne Jansen 已提交
407 408
		return;

409 410
	scrub_free_wr_ctx(&sctx->wr_ctx);

411
	/* this can happen when scrub is cancelled */
412 413
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
414 415

		for (i = 0; i < sbio->page_count; i++) {
416
			WARN_ON(!sbio->pagev[i]->page);
417 418 419 420 421
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

422
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
423
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
424 425 426 427 428 429

		if (!sbio)
			break;
		kfree(sbio);
	}

430 431
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
432 433 434
}

static noinline_for_stack
435
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
436
{
437
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
438 439
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
440 441
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
442

443 444 445 446 447 448 449 450 451 452 453 454
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
455 456
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
457
		goto nomem;
458
	sctx->is_dev_replace = is_dev_replace;
459
	sctx->pages_per_rd_bio = pages_per_rd_bio;
460
	sctx->curr = -1;
461
	sctx->dev_root = dev->dev_root;
462
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
463 464 465 466 467
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
468
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
469 470

		sbio->index = i;
471
		sbio->sctx = sctx;
472
		sbio->page_count = 0;
473 474
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
475

476
		if (i != SCRUB_BIOS_PER_SCTX - 1)
477
			sctx->bios[i]->next_free = i + 1;
478
		else
479 480 481 482 483
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
484 485
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
486 487 488 489 490 491 492
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
493 494 495 496 497 498 499

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
500
	return sctx;
A
Arne Jansen 已提交
501 502

nomem:
503
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
504 505 506
	return ERR_PTR(-ENOMEM);
}

507 508
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
509 510 511 512 513 514 515
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
516
	struct scrub_warning *swarn = warn_ctx;
517 518 519 520
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
521
	struct btrfs_key key;
522 523 524 525 526 527 528 529 530 531

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

532 533 534
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
535 536 537 538 539
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
540 541 542 543 544 545 546 547 548 549 550 551 552
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
553 554 555 556 557
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
558 559 560 561 562 563 564 565 566 567
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
568
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
569 570
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
571
			swarn->logical, rcu_str_deref(swarn->dev->name),
572 573
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
574
			(char *)(unsigned long)ipath->fspath->val[i]);
575 576 577 578 579

	free_ipath(ipath);
	return 0;

err:
580
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
581 582
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
583
		swarn->logical, rcu_str_deref(swarn->dev->name),
584 585 586 587 588 589
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

590
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
591
{
592 593
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
594 595 596 597 598
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
599 600 601
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
602
	u64 ref_root;
603
	u32 item_size;
604
	u8 ref_level;
605
	int ret;
606

607
	WARN_ON(sblock->page_count < 1);
608
	dev = sblock->pagev[0]->dev;
609 610
	fs_info = sblock->sctx->dev_root->fs_info;

611
	path = btrfs_alloc_path();
612 613
	if (!path)
		return;
614

615 616
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
617
	swarn.errstr = errstr;
618
	swarn.dev = NULL;
619

620 621
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
622 623 624
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
625
	extent_item_pos = swarn.logical - found_key.objectid;
626 627 628 629 630 631
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

632
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
633
		do {
634 635 636
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
637
			printk_in_rcu(KERN_WARNING
638
				"BTRFS: %s at logical %llu on dev %s, "
639
				"sector %llu: metadata %s (level %d) in tree "
640 641
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
642 643 644 645 646
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
647
		btrfs_release_path(path);
648
	} else {
649
		btrfs_release_path(path);
650
		swarn.path = path;
651
		swarn.dev = dev;
652 653
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
654 655 656 657 658 659 660
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

661
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
662
{
663
	struct page *page = NULL;
664
	unsigned long index;
665
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
666
	int ret;
667
	int corrected = 0;
668
	struct btrfs_key key;
669
	struct inode *inode = NULL;
670
	struct btrfs_fs_info *fs_info;
671 672
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
673
	int srcu_index;
674 675 676 677

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
678 679 680 681 682 683 684

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
685
		return PTR_ERR(local_root);
686
	}
687 688 689 690

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
691 692
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
693 694 695 696 697 698
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
725
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
726
					fixup->logical, page,
727
					offset - page_offset(page),
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
762 763

	iput(inode);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
783
	struct scrub_ctx *sctx;
784 785 786 787 788
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
789
	sctx = fixup->sctx;
790 791 792

	path = btrfs_alloc_path();
	if (!path) {
793 794 795
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

824 825 826
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
827 828 829 830 831

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
832 833 834
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
835 836 837
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
838 839
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
840
			fixup->logical, rcu_str_deref(fixup->dev->name));
841 842 843 844 845
	}

	btrfs_free_path(path);
	kfree(fixup);

846
	scrub_pending_trans_workers_dec(sctx);
847 848
}

849 850 851 852 853 854 855 856
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
857
		btrfs_put_bbio(recover->bbio);
858 859 860 861
		kfree(recover);
	}
}

A
Arne Jansen 已提交
862
/*
863 864 865 866 867 868
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
869
 */
870
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
871
{
872
	struct scrub_ctx *sctx = sblock_to_check->sctx;
873
	struct btrfs_device *dev;
874 875 876 877 878 879 880 881 882 883 884 885 886 887
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
888
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
889 890 891
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
892
	fs_info = sctx->dev_root->fs_info;
893 894 895 896 897 898 899 900 901 902 903
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
904
	length = sblock_to_check->page_count * PAGE_SIZE;
905 906 907 908 909
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
910
			BTRFS_EXTENT_FLAG_DATA);
911 912 913
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
914

915 916 917 918 919
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
953 954 955 956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
958
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
959
		goto out;
A
Arne Jansen 已提交
960 961
	}

962
	/* setup the context, map the logical blocks and alloc the pages */
963
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
964 965
					logical, sblocks_for_recheck);
	if (ret) {
966 967 968 969
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
970
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971 972 973 974
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
975

976
	/* build and submit the bios for the failed mirror, check checksums */
977
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
978
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
979

980 981 982 983 984 985 986 987 988 989
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
990 991
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
992
		sblock_to_check->data_corrected = 1;
993
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
994

995 996
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
997
		goto out;
A
Arne Jansen 已提交
998 999
	}

1000
	if (!sblock_bad->no_io_error_seen) {
1001 1002 1003
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1004 1005
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1006
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1007
	} else if (sblock_bad->checksum_error) {
1008 1009 1010
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1011 1012
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1013
		btrfs_dev_stat_inc_and_print(dev,
1014
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1015
	} else if (sblock_bad->header_error) {
1016 1017 1018
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1019 1020 1021
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1022
		if (sblock_bad->generation_error)
1023
			btrfs_dev_stat_inc_and_print(dev,
1024 1025
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1026
			btrfs_dev_stat_inc_and_print(dev,
1027
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1028
	}
A
Arne Jansen 已提交
1029

1030 1031 1032 1033
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1034

1035 1036
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1037

1038 1039
		WARN_ON(sctx->is_dev_replace);

1040 1041
nodatasum_case:

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1052
		fixup_nodatasum->sctx = sctx;
1053
		fixup_nodatasum->dev = dev;
1054 1055 1056
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1057
		scrub_pending_trans_workers_inc(sctx);
1058 1059
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1060 1061
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1062
		goto out;
A
Arne Jansen 已提交
1063 1064
	}

1065 1066
	/*
	 * now build and submit the bios for the other mirrors, check
1067 1068
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1084
		struct scrub_block *sblock_other;
1085

1086 1087 1088 1089 1090
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1091 1092
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1093
				    sctx->csum_size, 0);
1094 1095

		if (!sblock_other->header_error &&
1096 1097
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1098 1099
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1100
				goto corrected_error;
1101 1102
			} else {
				ret = scrub_repair_block_from_good_copy(
1103 1104 1105
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1106
			}
1107 1108
		}
	}
A
Arne Jansen 已提交
1109

1110 1111
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1112 1113 1114

	/*
	 * In case of I/O errors in the area that is supposed to be
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1136
	 */
1137
	success = 1;
1138 1139
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1140
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1141
		struct scrub_block *sblock_other = NULL;
1142

1143 1144
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1145
			continue;
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1158 1159
				}
			}
1160 1161
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1162
		}
A
Arne Jansen 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1191
		}
A
Arne Jansen 已提交
1192 1193
	}

1194
	if (success && !sctx->is_dev_replace) {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1205 1206
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1207
					    generation, sctx->csum_size, 1);
1208
			if (!sblock_bad->header_error &&
1209 1210 1211 1212 1213 1214 1215
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1216 1217
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1218
			sblock_to_check->data_corrected = 1;
1219
			spin_unlock(&sctx->stat_lock);
1220
			printk_ratelimited_in_rcu(KERN_ERR
1221
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1222
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1223
		}
1224 1225
	} else {
did_not_correct_error:
1226 1227 1228
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1229
		printk_ratelimited_in_rcu(KERN_ERR
1230
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1231
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1232
	}
A
Arne Jansen 已提交
1233

1234 1235 1236 1237 1238 1239
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1240
			struct scrub_recover *recover;
1241 1242
			int page_index;

1243 1244 1245
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1246 1247 1248 1249 1250 1251
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1252 1253
				scrub_page_put(sblock->pagev[page_index]);
			}
1254 1255 1256
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1257

1258 1259
	return 0;
}
A
Arne Jansen 已提交
1260

1261
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1262
{
1263
	if (bbio->raid_map) {
1264 1265
		int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;

1266
		if (bbio->raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			return 3;
		else
			return 2;
	} else {
		return (int)bbio->num_stripes;
	}
}

static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

	if (raid_map) {
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1304
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1305
				     struct btrfs_fs_info *fs_info,
1306
				     struct scrub_block *original_sblock,
1307 1308 1309
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
1310 1311 1312 1313 1314 1315
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1316 1317
	int page_index;
	int mirror_index;
1318
	int nmirrors;
1319 1320 1321
	int ret;

	/*
1322
	 * note: the two members ref_count and outstanding_pages
1323 1324 1325 1326 1327 1328
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
1329 1330 1331
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1332

1333 1334 1335 1336
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1337
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1338
				       &mapped_length, &bbio, 0, 1);
1339
		if (ret || !bbio || mapped_length < sublen) {
1340
			btrfs_put_bbio(bbio);
1341 1342
			return -EIO;
		}
A
Arne Jansen 已提交
1343

1344 1345
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1346
			btrfs_put_bbio(bbio);
1347 1348 1349 1350 1351 1352 1353
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1354
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1355

1356
		nmirrors = scrub_nr_raid_mirrors(bbio);
1357
		for (mirror_index = 0; mirror_index < nmirrors;
1358 1359 1360 1361 1362
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
1363
				break;
1364 1365

			sblock = sblocks_for_recheck + mirror_index;
1366 1367 1368 1369
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1370 1371 1372
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1373
				scrub_put_recover(recover);
1374 1375
				return -ENOMEM;
			}
1376 1377 1378
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1379

1380
			scrub_stripe_index_and_offset(logical, bbio->raid_map,
1381
						      mapped_length,
1382 1383
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1384 1385 1386 1387 1388 1389 1390
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1391 1392 1393 1394
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1395 1396
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1397
			sblock->page_count++;
1398 1399 1400
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1401 1402 1403

			scrub_get_recover(recover);
			page->recover = recover;
1404
		}
1405
		scrub_put_recover(recover);
1406 1407 1408 1409 1410 1411
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
1429
	return page->recover && page->recover->bbio->raid_map;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1447
				    page->mirror_num, 0);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1458 1459 1460 1461 1462 1463 1464
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1465 1466 1467
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1468
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1469
{
1470
	int page_num;
I
Ilya Dryomov 已提交
1471

1472 1473 1474
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1475

1476 1477
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1478
		struct scrub_page *page = sblock->pagev[page_num];
1479

1480
		if (page->dev->bdev == NULL) {
1481 1482 1483 1484 1485
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1486
		WARN_ON(!page->page);
1487
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1488 1489 1490 1491 1492
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1493
		bio->bi_bdev = page->dev->bdev;
1494

1495
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1496 1497 1498 1499 1500 1501 1502 1503 1504
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1505

1506 1507
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1508

1509 1510 1511 1512 1513
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1514
	return;
A
Arne Jansen 已提交
1515 1516
}

M
Miao Xie 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1527 1528 1529 1530 1531
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1532
{
1533 1534 1535 1536 1537
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1538
	WARN_ON(!sblock->pagev[0]->page);
1539 1540 1541
	if (is_metadata) {
		struct btrfs_header *h;

1542
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1543 1544
		h = (struct btrfs_header *)mapped_buffer;

1545
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1546
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1547
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1548
			   BTRFS_UUID_SIZE)) {
1549
			sblock->header_error = 1;
1550
		} else if (generation != btrfs_stack_header_generation(h)) {
1551 1552 1553
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1554 1555 1556 1557
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1558

1559
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1560
	}
A
Arne Jansen 已提交
1561

1562 1563
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1564
			crc = btrfs_csum_data(
1565 1566 1567
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1568
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1569

1570
		kunmap_atomic(mapped_buffer);
1571 1572 1573
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1574
		WARN_ON(!sblock->pagev[page_num]->page);
1575

1576
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1577 1578 1579 1580 1581
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1582 1583
}

1584
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1585
					     struct scrub_block *sblock_good)
1586 1587 1588
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1589

1590 1591
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1592

1593 1594
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1595
							   page_num, 1);
1596 1597
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1598
	}
1599 1600 1601 1602 1603 1604 1605 1606

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1607 1608
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1609

1610 1611
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1612 1613 1614 1615 1616
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1617
		if (!page_bad->dev->bdev) {
1618 1619 1620
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1621 1622 1623
			return -EIO;
		}

1624
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1625 1626
		if (!bio)
			return -EIO;
1627
		bio->bi_bdev = page_bad->dev->bdev;
1628
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1629 1630 1631 1632 1633

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1634
		}
1635

1636
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1637 1638
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1639 1640 1641
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1642 1643 1644
			bio_put(bio);
			return -EIO;
		}
1645
		bio_put(bio);
A
Arne Jansen 已提交
1646 1647
	}

1648 1649 1650
	return 0;
}

1651 1652 1653 1654
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1655 1656 1657 1658 1659 1660 1661
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1717
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1728
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1787 1788
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1789
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1821 1822 1823 1824
{
	u64 flags;
	int ret;

1825 1826
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1838 1839

	return ret;
A
Arne Jansen 已提交
1840 1841
}

1842
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1843
{
1844
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1845
	u8 csum[BTRFS_CSUM_SIZE];
1846 1847 1848
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1849 1850
	u32 crc = ~(u32)0;
	int fail = 0;
1851 1852
	u64 len;
	int index;
A
Arne Jansen 已提交
1853

1854
	BUG_ON(sblock->page_count < 1);
1855
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1856 1857
		return 0;

1858 1859
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1860
	buffer = kmap_atomic(page);
1861

1862
	len = sctx->sectorsize;
1863 1864 1865 1866
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1867
		crc = btrfs_csum_data(buffer, crc, l);
1868
		kunmap_atomic(buffer);
1869 1870 1871 1872 1873
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1874 1875
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1876
		buffer = kmap_atomic(page);
1877 1878
	}

A
Arne Jansen 已提交
1879
	btrfs_csum_final(crc, csum);
1880
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1881 1882 1883 1884 1885
		fail = 1;

	return fail;
}

1886
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1887
{
1888
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1889
	struct btrfs_header *h;
1890
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1891
	struct btrfs_fs_info *fs_info = root->fs_info;
1892 1893 1894 1895 1896 1897
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1898 1899 1900
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1901 1902 1903 1904
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1905
	page = sblock->pagev[0]->page;
1906
	mapped_buffer = kmap_atomic(page);
1907
	h = (struct btrfs_header *)mapped_buffer;
1908
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1909 1910 1911 1912 1913 1914 1915

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1916
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1917 1918
		++fail;

1919
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1920 1921
		++fail;

M
Miao Xie 已提交
1922
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1923 1924 1925 1926 1927 1928
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1929
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1930 1931 1932 1933 1934 1935
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1936
		crc = btrfs_csum_data(p, crc, l);
1937
		kunmap_atomic(mapped_buffer);
1938 1939 1940 1941 1942
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1943 1944
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1945
		mapped_buffer = kmap_atomic(page);
1946 1947 1948 1949 1950
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1951
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1952 1953 1954 1955 1956
		++crc_fail;

	return fail || crc_fail;
}

1957
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1958 1959
{
	struct btrfs_super_block *s;
1960
	struct scrub_ctx *sctx = sblock->sctx;
1961 1962 1963 1964 1965 1966
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1967
	u32 crc = ~(u32)0;
1968 1969
	int fail_gen = 0;
	int fail_cor = 0;
1970 1971
	u64 len;
	int index;
A
Arne Jansen 已提交
1972

1973
	BUG_ON(sblock->page_count < 1);
1974
	page = sblock->pagev[0]->page;
1975
	mapped_buffer = kmap_atomic(page);
1976
	s = (struct btrfs_super_block *)mapped_buffer;
1977
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1978

1979
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1980
		++fail_cor;
A
Arne Jansen 已提交
1981

1982
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1983
		++fail_gen;
A
Arne Jansen 已提交
1984

M
Miao Xie 已提交
1985
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1986
		++fail_cor;
A
Arne Jansen 已提交
1987

1988 1989 1990 1991 1992 1993 1994
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1995
		crc = btrfs_csum_data(p, crc, l);
1996
		kunmap_atomic(mapped_buffer);
1997 1998 1999 2000 2001
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2002 2003
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2004
		mapped_buffer = kmap_atomic(page);
2005 2006 2007 2008 2009
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2010
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2011
		++fail_cor;
A
Arne Jansen 已提交
2012

2013
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2014 2015 2016 2017 2018
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2019 2020 2021
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2022
		if (fail_cor)
2023
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2024 2025
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2026
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2027
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2028 2029
	}

2030
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2043 2044 2045
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2046
		for (i = 0; i < sblock->page_count; i++)
2047
			scrub_page_put(sblock->pagev[i]);
2048 2049 2050 2051
		kfree(sblock);
	}
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2066
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2067 2068 2069
{
	struct scrub_bio *sbio;

2070
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2071
		return;
A
Arne Jansen 已提交
2072

2073 2074
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2075
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2086
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2087 2088 2089 2090
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2091 2092
}

2093 2094
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2095
{
2096
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2097
	struct scrub_bio *sbio;
2098
	int ret;
A
Arne Jansen 已提交
2099 2100 2101 2102 2103

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2104 2105 2106 2107 2108 2109 2110 2111
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2112
		} else {
2113 2114
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2115 2116
		}
	}
2117
	sbio = sctx->bios[sctx->curr];
2118
	if (sbio->page_count == 0) {
2119 2120
		struct bio *bio;

2121 2122
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2123
		sbio->dev = spage->dev;
2124 2125
		bio = sbio->bio;
		if (!bio) {
2126
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2127 2128 2129 2130
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2131 2132 2133

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2134
		bio->bi_bdev = sbio->dev->bdev;
2135
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2136
		sbio->err = 0;
2137 2138 2139
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2140 2141
		   spage->logical ||
		   sbio->dev != spage->dev) {
2142
		scrub_submit(sctx);
A
Arne Jansen 已提交
2143 2144
		goto again;
	}
2145

2146 2147 2148 2149 2150 2151 2152 2153
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2154
		scrub_submit(sctx);
2155 2156 2157
		goto again;
	}

2158
	scrub_block_get(sblock); /* one for the page added to the bio */
2159 2160
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2161
	if (sbio->page_count == sctx->pages_per_rd_bio)
2162
		scrub_submit(sctx);
2163 2164 2165 2166

	return 0;
}

2167
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2168
		       u64 physical, struct btrfs_device *dev, u64 flags,
2169 2170
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2171 2172 2173 2174 2175 2176
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2177 2178 2179
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2180
		return -ENOMEM;
A
Arne Jansen 已提交
2181
	}
2182

2183 2184
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2185
	atomic_set(&sblock->ref_count, 1);
2186
	sblock->sctx = sctx;
2187 2188 2189
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2190
		struct scrub_page *spage;
2191 2192
		u64 l = min_t(u64, len, PAGE_SIZE);

2193 2194 2195
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2196 2197 2198
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2199
			scrub_block_put(sblock);
2200 2201
			return -ENOMEM;
		}
2202 2203 2204
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2205
		spage->sblock = sblock;
2206
		spage->dev = dev;
2207 2208 2209 2210
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2211
		spage->physical_for_dev_replace = physical_for_dev_replace;
2212 2213 2214
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2215
			memcpy(spage->csum, csum, sctx->csum_size);
2216 2217 2218 2219
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2220 2221 2222
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2223 2224 2225
		len -= l;
		logical += l;
		physical += l;
2226
		physical_for_dev_replace += l;
2227 2228
	}

2229
	WARN_ON(sblock->page_count == 0);
2230
	for (index = 0; index < sblock->page_count; index++) {
2231
		struct scrub_page *spage = sblock->pagev[index];
2232 2233
		int ret;

2234
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2235 2236
		if (ret) {
			scrub_block_put(sblock);
2237
			return ret;
2238
		}
2239
	}
A
Arne Jansen 已提交
2240

2241
	if (force)
2242
		scrub_submit(sctx);
A
Arne Jansen 已提交
2243

2244 2245
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2246 2247 2248
	return 0;
}

2249 2250 2251
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2252
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2253 2254 2255 2256

	sbio->err = err;
	sbio->bio = bio;

2257
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2258 2259 2260 2261 2262
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2263
	struct scrub_ctx *sctx = sbio->sctx;
2264 2265
	int i;

2266
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2288 2289 2290 2291
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2292 2293 2294 2295 2296 2297 2298 2299

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2300
	scrub_pending_bio_dec(sctx);
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2342 2343
static void scrub_block_complete(struct scrub_block *sblock)
{
2344 2345
	int corrupted = 0;

2346
	if (!sblock->no_io_error_seen) {
2347
		corrupted = 1;
2348
		scrub_handle_errored_block(sblock);
2349 2350 2351 2352 2353 2354
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2355 2356
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2357 2358
			scrub_write_block_to_dev_replace(sblock);
	}
2359 2360 2361 2362 2363 2364 2365 2366 2367

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2368 2369
}

2370
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2371 2372 2373
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2374
	unsigned long index;
A
Arne Jansen 已提交
2375 2376
	unsigned long num_sectors;

2377 2378
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2379 2380 2381 2382 2383 2384
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2385
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2386 2387 2388 2389 2390 2391 2392
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2393
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2394
	num_sectors = sum->len / sctx->sectorsize;
2395 2396
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2397 2398 2399
		list_del(&sum->list);
		kfree(sum);
	}
2400
	return 1;
A
Arne Jansen 已提交
2401 2402 2403
}

/* scrub extent tries to collect up to 64 kB for each bio */
2404
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2405
			u64 physical, struct btrfs_device *dev, u64 flags,
2406
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2407 2408 2409
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2410 2411 2412
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2413 2414 2415 2416 2417
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2418
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2419 2420 2421 2422 2423
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2424
	} else {
2425
		blocksize = sctx->sectorsize;
2426
		WARN_ON(1);
2427
	}
A
Arne Jansen 已提交
2428 2429

	while (len) {
2430
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2431 2432 2433 2434
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2435
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2436
			if (have_csum == 0)
2437
				++sctx->stat.no_csum;
2438 2439 2440 2441 2442 2443
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2444
		}
2445
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2446 2447 2448
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2449 2450 2451 2452 2453
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2454
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2455 2456 2457 2458
	}
	return 0;
}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2577
skip:
2578 2579 2580 2581 2582 2583 2584
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2585 2586 2587 2588 2589 2590 2591 2592
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2593 2594
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2605 2606 2607
	if (stripe_start)
		*stripe_start = last_offset;

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2620
		stripe_index = rot % map->num_stripes;
2621 2622 2623 2624 2625 2626 2627 2628 2629
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2681
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2682
			       sparity->logic_start,
2683 2684
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2696
					      length, sparity->scrub_dev,
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2713
	btrfs_put_bbio(bbio);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2944
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2945 2946
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2947 2948
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2949
{
2950
	struct btrfs_path *path, *ppath;
2951
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2952 2953 2954
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2955
	struct blk_plug plug;
A
Arne Jansen 已提交
2956 2957 2958 2959 2960 2961 2962 2963
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2964
	u64 logic_end;
2965
	u64 physical_end;
A
Arne Jansen 已提交
2966
	u64 generation;
2967
	int mirror_num;
A
Arne Jansen 已提交
2968 2969 2970 2971
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2972 2973
	u64 increment = map->stripe_len;
	u64 offset;
2974 2975 2976
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2977 2978
	u64 stripe_logical;
	u64 stripe_end;
2979 2980
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2981
	int stop_loop = 0;
D
David Woodhouse 已提交
2982

A
Arne Jansen 已提交
2983
	nstripes = length;
2984
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2985 2986 2987 2988 2989
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2990
		mirror_num = 1;
A
Arne Jansen 已提交
2991 2992 2993 2994
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2995
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2996 2997
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2998
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2999 3000
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3001
		mirror_num = num % map->num_stripes + 1;
3002 3003
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
3004
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3005 3006
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3007 3008
	} else {
		increment = map->stripe_len;
3009
		mirror_num = 1;
A
Arne Jansen 已提交
3010 3011 3012 3013 3014 3015
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3016 3017 3018 3019 3020 3021
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3022 3023 3024 3025 3026
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3027 3028 3029 3030
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3031 3032 3033
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3034 3035
	 */
	logical = base + offset;
3036 3037 3038 3039
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3040
					map, &logic_end, NULL);
3041 3042 3043 3044
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3045
	wait_event(sctx->list_wait,
3046
		   atomic_read(&sctx->bios_in_flight) == 0);
3047
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3048 3049 3050 3051 3052

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3053
	key_end.objectid = logic_end;
3054 3055
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3056 3057 3058 3059 3060 3061 3062
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3063
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3064 3065 3066 3067 3068 3069 3070
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3071 3072 3073 3074 3075

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3076
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3077 3078 3079 3080 3081

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3082 3083 3084 3085 3086
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3087
					map, &logical, &stripe_logical);
3088
			logical += base;
3089 3090 3091 3092 3093 3094 3095 3096
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3097
				goto skip;
3098
			}
3099
		}
A
Arne Jansen 已提交
3100 3101 3102 3103
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3104
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3105 3106 3107 3108 3109 3110 3111 3112
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3113
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3114
			scrub_submit(sctx);
3115 3116 3117
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3118
			wait_event(sctx->list_wait,
3119
				   atomic_read(&sctx->bios_in_flight) == 0);
3120
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3121
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3122 3123
		}

3124 3125 3126 3127
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3128
		key.objectid = logical;
L
Liu Bo 已提交
3129
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3130 3131 3132 3133

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3134

3135
		if (ret > 0) {
3136
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3137 3138
			if (ret < 0)
				goto out;
3139 3140 3141 3142 3143 3144 3145 3146 3147
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3148 3149
		}

L
Liu Bo 已提交
3150
		stop_loop = 0;
A
Arne Jansen 已提交
3151
		while (1) {
3152 3153
			u64 bytes;

A
Arne Jansen 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3163
				stop_loop = 1;
A
Arne Jansen 已提交
3164 3165 3166 3167
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3168
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3169
				bytes = root->nodesize;
3170 3171 3172 3173
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3174 3175
				goto next;

L
Liu Bo 已提交
3176 3177 3178
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3179

L
Liu Bo 已提交
3180 3181 3182 3183 3184 3185
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3186 3187 3188 3189 3190 3191 3192 3193

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3194 3195 3196
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3197
				       key.objectid, logical);
A
Arne Jansen 已提交
3198 3199 3200
				goto next;
			}

L
Liu Bo 已提交
3201 3202 3203 3204
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3205 3206 3207
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3208 3209 3210
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3211
			}
L
Liu Bo 已提交
3212
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3213
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3214 3215
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3216 3217
			}

L
Liu Bo 已提交
3218
			extent_physical = extent_logical - logical + physical;
3219 3220 3221 3222 3223 3224 3225
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3226 3227 3228 3229 3230 3231 3232

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3233 3234 3235
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3236
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3237 3238 3239
			if (ret)
				goto out;

3240
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3241 3242
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3243 3244 3245 3246 3247 3248
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3268 3269 3270 3271
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3272 3273 3274 3275 3276
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3277
				if (physical >= physical_end) {
L
Liu Bo 已提交
3278 3279 3280 3281
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3282 3283 3284
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3285
		btrfs_release_path(path);
3286
skip:
A
Arne Jansen 已提交
3287 3288
		logical += increment;
		physical += map->stripe_len;
3289
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3290 3291 3292 3293 3294
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3295
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3296 3297
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3298
	}
3299
out:
A
Arne Jansen 已提交
3300
	/* push queued extents */
3301
	scrub_submit(sctx);
3302 3303 3304
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3305

3306
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3307
	btrfs_free_path(path);
3308
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3309 3310 3311
	return ret < 0 ? ret : 0;
}

3312
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3313 3314 3315
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3316
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3317 3318
{
	struct btrfs_mapping_tree *map_tree =
3319
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3320 3321 3322
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3323
	int ret = 0;
A
Arne Jansen 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3340
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3341
		    map->stripes[i].physical == dev_offset) {
3342
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3343 3344
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3356
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3357 3358
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3359 3360 3361
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3362
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3374
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3384
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3385 3386 3387 3388 3389 3390
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3391 3392 3393 3394 3395 3396 3397 3398 3399
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3400 3401 3402 3403 3404 3405

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3406
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3407 3408
			break;

3409
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3421 3422
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3433 3434 3435 3436 3437 3438

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3439 3440 3441
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3442
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3464 3465 3466 3467 3468 3469 3470 3471
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3472 3473
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3474 3475 3476 3477 3478 3479 3480
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3481

A
Arne Jansen 已提交
3482 3483 3484
		btrfs_put_block_group(cache);
		if (ret)
			break;
3485 3486
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3487 3488 3489 3490 3491 3492 3493
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3494

3495 3496
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3497
skip:
A
Arne Jansen 已提交
3498
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3499
		btrfs_release_path(path);
A
Arne Jansen 已提交
3500 3501 3502
	}

	btrfs_free_path(path);
3503 3504 3505 3506 3507 3508

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3509 3510
}

3511 3512
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3513 3514 3515 3516 3517
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3518
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3519

3520
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3521 3522
		return -EIO;

3523 3524 3525 3526 3527
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3528 3529 3530

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3531 3532
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3533 3534
			break;

3535
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3536
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3537
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3538 3539 3540
		if (ret)
			return ret;
	}
3541
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3542 3543 3544 3545 3546 3547 3548

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3549 3550
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3551
{
3552
	int ret = 0;
3553 3554
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3555

A
Arne Jansen 已提交
3556
	if (fs_info->scrub_workers_refcnt == 0) {
3557
		if (is_dev_replace)
3558 3559 3560
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3561
		else
3562 3563 3564 3565 3566
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3567
			goto out;
3568 3569 3570 3571 3572 3573
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3574
			goto out;
3575 3576 3577 3578 3579
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3580
			goto out;
3581
		}
A
Arne Jansen 已提交
3582
	}
A
Arne Jansen 已提交
3583
	++fs_info->scrub_workers_refcnt;
3584 3585
out:
	return ret;
A
Arne Jansen 已提交
3586 3587
}

3588
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3589
{
3590
	if (--fs_info->scrub_workers_refcnt == 0) {
3591 3592 3593
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3594
	}
A
Arne Jansen 已提交
3595 3596 3597
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3598 3599
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3600
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3601
{
3602
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3603 3604
	int ret;
	struct btrfs_device *dev;
3605
	struct rcu_string *name;
A
Arne Jansen 已提交
3606

3607
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3608 3609
		return -EINVAL;

3610
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3611 3612 3613 3614 3615
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3616 3617
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3618
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3619 3620 3621
		return -EINVAL;
	}

3622
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3623
		/* not supported for data w/o checksums */
3624 3625 3626
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3627
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3628 3629 3630
		return -EINVAL;
	}

3631 3632 3633 3634 3635 3636 3637 3638
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3639 3640
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3641 3642 3643 3644 3645 3646 3647
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3648

3649 3650
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3651
	if (!dev || (dev->missing && !is_dev_replace)) {
3652
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3653 3654 3655
		return -ENODEV;
	}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3666
	mutex_lock(&fs_info->scrub_lock);
3667
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3668
		mutex_unlock(&fs_info->scrub_lock);
3669 3670
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3671 3672
	}

3673 3674 3675 3676 3677
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3678
		mutex_unlock(&fs_info->scrub_lock);
3679
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3680 3681
		return -EINPROGRESS;
	}
3682
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3683 3684 3685 3686 3687 3688 3689 3690

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3691
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3692
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3693
		mutex_unlock(&fs_info->scrub_lock);
3694 3695
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3696
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3697
	}
3698 3699
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3700
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3701

3702 3703 3704 3705
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3706
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3707 3708 3709
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3710
	if (!is_dev_replace) {
3711 3712 3713 3714
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3715
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3716
		ret = scrub_supers(sctx, dev);
3717
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3718
	}
A
Arne Jansen 已提交
3719 3720

	if (!ret)
3721 3722
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3723

3724
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3725 3726 3727
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3728
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3729

A
Arne Jansen 已提交
3730
	if (progress)
3731
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3732 3733 3734

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3735
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3736 3737
	mutex_unlock(&fs_info->scrub_lock);

3738
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3739 3740 3741 3742

	return ret;
}

3743
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3760
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3761 3762 3763 3764 3765 3766 3767
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3768
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3789 3790
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3791
{
3792
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3793 3794

	mutex_lock(&fs_info->scrub_lock);
3795 3796
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3797 3798 3799
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3800
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3811

A
Arne Jansen 已提交
3812 3813 3814 3815
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3816
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3817 3818

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3819
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3820
	if (dev)
3821 3822 3823
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3824 3825
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3826
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3827
}
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3844
		btrfs_put_bbio(bbio);
3845 3846 3847 3848 3849 3850
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3851
	btrfs_put_bbio(bbio);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3904 3905
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3906
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3907 3908
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3909 3910 3911 3912

	return 0;
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3965
					  record_inode_for_nocow, nocow_ctx);
3966
	if (ret != 0 && ret != -ENOENT) {
3967 3968
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3969 3970
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3971 3972 3973 3974
		not_written = 1;
		goto out;
	}

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3993
out:
3994 3995 3996 3997 3998 3999 4000 4001
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4058 4059
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4060
{
4061
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4062
	struct btrfs_key key;
4063 4064
	struct inode *inode;
	struct page *page;
4065
	struct btrfs_root *local_root;
4066
	struct extent_io_tree *io_tree;
4067
	u64 physical_for_dev_replace;
4068
	u64 nocow_ctx_logical;
4069
	u64 len = nocow_ctx->len;
4070
	unsigned long index;
4071
	int srcu_index;
4072 4073
	int ret = 0;
	int err = 0;
4074 4075 4076 4077

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4078 4079 4080

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4081
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4082 4083
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4084
		return PTR_ERR(local_root);
4085
	}
4086 4087 4088 4089 4090

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4091
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4092 4093 4094
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4095 4096 4097 4098
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4099
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4100
	io_tree = &BTRFS_I(inode)->io_tree;
4101
	nocow_ctx_logical = nocow_ctx->logical;
4102

4103 4104 4105 4106
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4107 4108
	}

4109 4110
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4111
again:
4112 4113
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4114
			btrfs_err(fs_info, "find_or_create_page() failed");
4115
			ret = -ENOMEM;
4116
			goto out;
4117 4118 4119 4120 4121 4122 4123
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4124
			err = extent_read_full_page(io_tree, page,
4125 4126
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4127 4128
			if (err) {
				ret = err;
4129 4130
				goto next_page;
			}
4131

4132
			lock_page(page);
4133 4134 4135 4136 4137 4138 4139
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4140
				unlock_page(page);
4141 4142 4143
				page_cache_release(page);
				goto again;
			}
4144 4145 4146 4147 4148
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4149 4150 4151 4152 4153 4154 4155 4156

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4157 4158 4159 4160
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4161
next_page:
4162 4163 4164 4165 4166 4167
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4168 4169
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4170
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4171 4172
		len -= PAGE_CACHE_SIZE;
	}
4173
	ret = COPY_COMPLETE;
4174
out:
4175
	mutex_unlock(&inode->i_mutex);
4176
	iput(inode);
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4192
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4193 4194
		return -EIO;
	}
4195
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4196 4197 4198 4199 4200 4201
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4202 4203
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4204 4205 4206 4207 4208 4209 4210 4211 4212
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4213
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4214 4215 4216 4217 4218
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}