scrub.c 114.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51 52 53 54 55

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
56
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
57

58
struct scrub_recover {
59
	refcount_t		refs;
60 61 62 63
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
64
struct scrub_page {
65 66
	struct scrub_block	*sblock;
	struct page		*page;
67
	struct btrfs_device	*dev;
68
	struct list_head	list;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		refs;
75 76 77
	u8			mirror_num;
	int			have_csum:1;
	int			io_error:1;
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u32			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

151
	unsigned long		bitmap[];
152 153
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167

168 169 170 171
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

172
	int			is_dev_replace;
173
	u64			write_pointer;
174 175 176 177 178

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
179
	bool                    flush_all_writes;
180

A
Arne Jansen 已提交
181 182 183 184 185
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
186 187 188 189 190 191 192 193

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
194
	refcount_t              refs;
A
Arne Jansen 已提交
195 196
};

197 198 199 200
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
201
	u64			physical;
202 203 204 205
	u64			logical;
	struct btrfs_device	*dev;
};

206 207 208 209 210 211 212
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

213
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214
				     struct scrub_block *sblocks_for_recheck);
215
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 217
				struct scrub_block *sblock,
				int retry_failed_mirror);
218
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220
					     struct scrub_block *sblock_good);
221 222 223
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
224 225 226
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
227 228 229 230
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
231 232
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
233 234
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
235
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
236
		       u64 physical, struct btrfs_device *dev, u64 flags,
237
		       u64 gen, int mirror_num, u8 *csum,
238
		       u64 physical_for_dev_replace);
239
static void scrub_bio_end_io(struct bio *bio);
240 241
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
242
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243
			       u64 extent_logical, u32 extent_len,
244 245 246 247 248 249
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
250
static void scrub_wr_bio_end_io(struct bio *bio);
251
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
253

254
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
255
{
256 257
	return spage->recover &&
	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
258
}
S
Stefan Behrens 已提交
259

260 261
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
262
	refcount_inc(&sctx->refs);
263 264 265 266 267 268 269
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
270
	scrub_put_ctx(sctx);
271 272
}

273
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274 275 276 277 278 279 280 281 282
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

283
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
284 285 286
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
287
}
288

289 290
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
291 292 293 294 295 296 297 298
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

299 300 301 302 303 304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

324
	lockdep_assert_held(&locks_root->lock);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

340 341 342
	/*
	 * Insert new lock.
	 */
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

368
	lockdep_assert_held(&locks_root->lock);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
388
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
389 390 391 392 393 394 395 396 397 398 399 400 401
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
402 403
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
421
	struct btrfs_block_group *bg_cache;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
468
	struct btrfs_block_group *bg_cache;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

522
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
523
{
524
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
525
		struct btrfs_ordered_sum *sum;
526
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
527 528 529 530 531 532
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

533
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
534 535 536
{
	int i;

537
	if (!sctx)
A
Arne Jansen 已提交
538 539
		return;

540
	/* this can happen when scrub is cancelled */
541 542
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
543 544

		for (i = 0; i < sbio->page_count; i++) {
545
			WARN_ON(!sbio->pagev[i]->page);
546 547 548 549 550
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

551
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
552
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
553 554 555 556 557 558

		if (!sbio)
			break;
		kfree(sbio);
	}

559
	kfree(sctx->wr_curr_bio);
560 561
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
562 563
}

564 565
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
566
	if (refcount_dec_and_test(&sctx->refs))
567 568 569
		scrub_free_ctx(sctx);
}

570 571
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
572
{
573
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
574 575
	int		i;

576
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
577
	if (!sctx)
A
Arne Jansen 已提交
578
		goto nomem;
579
	refcount_set(&sctx->refs, 1);
580
	sctx->is_dev_replace = is_dev_replace;
581
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
582
	sctx->curr = -1;
583
	sctx->fs_info = fs_info;
584
	INIT_LIST_HEAD(&sctx->csum_list);
585
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
586 587
		struct scrub_bio *sbio;

588
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
589 590
		if (!sbio)
			goto nomem;
591
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
592 593

		sbio->index = i;
594
		sbio->sctx = sctx;
595
		sbio->page_count = 0;
596 597
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
598

599
		if (i != SCRUB_BIOS_PER_SCTX - 1)
600
			sctx->bios[i]->next_free = i + 1;
601
		else
602 603 604
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
605 606
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
607 608 609 610 611
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
612
	sctx->throttle_deadline = 0;
613

614 615 616
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
617
	if (is_dev_replace) {
618
		WARN_ON(!fs_info->dev_replace.tgtdev);
619
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
620
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
621
		sctx->flush_all_writes = false;
622
	}
623

624
	return sctx;
A
Arne Jansen 已提交
625 626

nomem:
627
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
628 629 630
	return ERR_PTR(-ENOMEM);
}

631 632
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
633 634 635 636
{
	u32 nlink;
	int ret;
	int i;
637
	unsigned nofs_flag;
638 639
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
640
	struct scrub_warning *swarn = warn_ctx;
641
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
642 643
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
644
	struct btrfs_key key;
645

D
David Sterba 已提交
646
	local_root = btrfs_get_fs_root(fs_info, root, true);
647 648 649 650 651
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

652 653 654
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
655 656 657 658 659
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
660
	if (ret) {
661
		btrfs_put_root(local_root);
662 663 664 665 666 667 668 669 670 671
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

672 673 674 675 676 677
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
678
	ipath = init_ipath(4096, local_root, swarn->path);
679
	memalloc_nofs_restore(nofs_flag);
680
	if (IS_ERR(ipath)) {
681
		btrfs_put_root(local_root);
682 683 684 685
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
686 687 688 689 690 691 692 693 694 695
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
696
		btrfs_warn_in_rcu(fs_info,
697
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
698 699
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
700
				  swarn->physical,
J
Jeff Mahoney 已提交
701
				  root, inum, offset,
702
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
703
				  (char *)(unsigned long)ipath->fspath->val[i]);
704

705
	btrfs_put_root(local_root);
706 707 708 709
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
710
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
711
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
712 713
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
714
			  swarn->physical,
J
Jeff Mahoney 已提交
715
			  root, inum, offset, ret);
716 717 718 719 720

	free_ipath(ipath);
	return 0;
}

721
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
722
{
723 724
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
725 726 727 728 729
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
730 731 732
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
733
	u64 ref_root;
734
	u32 item_size;
735
	u8 ref_level = 0;
736
	int ret;
737

738
	WARN_ON(sblock->page_count < 1);
739
	dev = sblock->pagev[0]->dev;
740
	fs_info = sblock->sctx->fs_info;
741

742
	path = btrfs_alloc_path();
743 744
	if (!path)
		return;
745

D
David Sterba 已提交
746
	swarn.physical = sblock->pagev[0]->physical;
747
	swarn.logical = sblock->pagev[0]->logical;
748
	swarn.errstr = errstr;
749
	swarn.dev = NULL;
750

751 752
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
753 754 755
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
756
	extent_item_pos = swarn.logical - found_key.objectid;
757 758 759 760 761 762
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

763
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
764
		do {
765 766 767
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
768
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
769
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
770
				errstr, swarn.logical,
771
				rcu_str_deref(dev->name),
D
David Sterba 已提交
772
				swarn.physical,
773 774 775 776
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
777
		btrfs_release_path(path);
778
	} else {
779
		btrfs_release_path(path);
780
		swarn.path = path;
781
		swarn.dev = dev;
782 783
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
784
					scrub_print_warning_inode, &swarn, false);
785 786 787 788 789 790
	}

out:
	btrfs_free_path(path);
}

791 792
static inline void scrub_get_recover(struct scrub_recover *recover)
{
793
	refcount_inc(&recover->refs);
794 795
}

796 797
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
798
{
799
	if (refcount_dec_and_test(&recover->refs)) {
800
		btrfs_bio_counter_dec(fs_info);
801
		btrfs_put_bbio(recover->bbio);
802 803 804 805
		kfree(recover);
	}
}

A
Arne Jansen 已提交
806
/*
807 808 809 810 811 812
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
813
 */
814
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
815
{
816
	struct scrub_ctx *sctx = sblock_to_check->sctx;
817
	struct btrfs_device *dev;
818 819 820 821 822 823 824 825 826 827 828
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
829
	bool full_stripe_locked;
830
	unsigned int nofs_flag;
831
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
832 833 834
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
835
	fs_info = sctx->fs_info;
836 837 838 839 840 841 842 843 844 845 846
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
847 848 849 850
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
851
			BTRFS_EXTENT_FLAG_DATA);
852 853
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
854

855 856 857
	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
		return btrfs_repair_one_zone(fs_info, logical);

858 859 860 861 862 863 864 865 866 867
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
868 869 870 871 872 873 874 875 876
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
877
		memalloc_nofs_restore(nofs_flag);
878 879 880 881 882 883 884 885 886
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

887 888 889 890
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
891
	 * sector by sector this time in order to know which sectors
892 893 894 895
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
896 897 898 899 900 901 902 903 904 905
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
906 907 908
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
909
	 * Only if this is not possible, the sectors are picked from
910 911 912 913 914 915
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

916
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
917
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
918
	if (!sblocks_for_recheck) {
919 920 921 922 923
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
924
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
925
		goto out;
A
Arne Jansen 已提交
926 927
	}

928
	/* setup the context, map the logical blocks and alloc the pages */
929
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
930
	if (ret) {
931 932 933 934
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
935
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
936 937 938 939
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
940

941
	/* build and submit the bios for the failed mirror, check checksums */
942
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
943

944 945 946 947 948 949 950 951 952 953
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
954 955
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
956
		sblock_to_check->data_corrected = 1;
957
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
958

959 960
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
961
		goto out;
A
Arne Jansen 已提交
962 963
	}

964
	if (!sblock_bad->no_io_error_seen) {
965 966 967
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
968
		if (__ratelimit(&rs))
969
			scrub_print_warning("i/o error", sblock_to_check);
970
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
971
	} else if (sblock_bad->checksum_error) {
972 973 974
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
975
		if (__ratelimit(&rs))
976
			scrub_print_warning("checksum error", sblock_to_check);
977
		btrfs_dev_stat_inc_and_print(dev,
978
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
979
	} else if (sblock_bad->header_error) {
980 981 982
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
983
		if (__ratelimit(&rs))
984 985
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
986
		if (sblock_bad->generation_error)
987
			btrfs_dev_stat_inc_and_print(dev,
988 989
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
990
			btrfs_dev_stat_inc_and_print(dev,
991
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
992
	}
A
Arne Jansen 已提交
993

994 995 996 997
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
998

999 1000
	/*
	 * now build and submit the bios for the other mirrors, check
1001 1002
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1014
	for (mirror_index = 0; ;mirror_index++) {
1015
		struct scrub_block *sblock_other;
1016

1017 1018
		if (mirror_index == failed_mirror_index)
			continue;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1042 1043

		/* build and submit the bios, check checksums */
1044
		scrub_recheck_block(fs_info, sblock_other, 0);
1045 1046

		if (!sblock_other->header_error &&
1047 1048
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1049 1050
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1051
				goto corrected_error;
1052 1053
			} else {
				ret = scrub_repair_block_from_good_copy(
1054 1055 1056
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1057
			}
1058 1059
		}
	}
A
Arne Jansen 已提交
1060

1061 1062
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1063 1064 1065

	/*
	 * In case of I/O errors in the area that is supposed to be
1066 1067
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1068 1069 1070 1071 1072
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1073
	 * all possible combinations of sectors from the different mirrors
1074
	 * until the checksum verification succeeds. For example, when
1075
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1076
	 * of mirror #2 is readable but the final checksum test fails,
1077
	 * then the 2nd sector of mirror #3 could be tried, whether now
1078
	 * the final checksum succeeds. But this would be a rare
1079 1080 1081 1082
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1083
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1084
	 * mirror could be repaired by taking 512 byte of a different
1085
	 * mirror, even if other 512 byte sectors in the same sectorsize
1086
	 * area are unreadable.
A
Arne Jansen 已提交
1087
	 */
1088
	success = 1;
1089 1090
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1091
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1092
		struct scrub_block *sblock_other = NULL;
1093

1094
		/* skip no-io-error page in scrub */
1095
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1096
			continue;
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1107
		} else if (spage_bad->io_error) {
1108
			/* try to find no-io-error page in mirrors */
1109 1110 1111 1112 1113 1114 1115 1116 1117
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1118 1119
				}
			}
1120 1121
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1122
		}
A
Arne Jansen 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1137
				atomic64_inc(
1138
					&fs_info->dev_replace.num_write_errors);
1139 1140 1141 1142 1143 1144 1145
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1146
				spage_bad->io_error = 0;
1147 1148
			else
				success = 0;
1149
		}
A
Arne Jansen 已提交
1150 1151
	}

1152
	if (success && !sctx->is_dev_replace) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1163
			scrub_recheck_block(fs_info, sblock_bad, 1);
1164
			if (!sblock_bad->header_error &&
1165 1166 1167 1168 1169 1170 1171
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1172 1173
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1174
			sblock_to_check->data_corrected = 1;
1175
			spin_unlock(&sctx->stat_lock);
1176 1177
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1178
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1179
		}
1180 1181
	} else {
did_not_correct_error:
1182 1183 1184
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1185 1186
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1187
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1188
	}
A
Arne Jansen 已提交
1189

1190 1191 1192 1193 1194 1195
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1196
			struct scrub_recover *recover;
1197 1198
			int page_index;

1199 1200 1201
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1202 1203
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1204
					scrub_put_recover(fs_info, recover);
1205 1206 1207
					sblock->pagev[page_index]->recover =
									NULL;
				}
1208 1209
				scrub_page_put(sblock->pagev[page_index]);
			}
1210 1211 1212
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1213

1214
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1215
	memalloc_nofs_restore(nofs_flag);
1216 1217
	if (ret < 0)
		return ret;
1218 1219
	return 0;
}
A
Arne Jansen 已提交
1220

1221
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1222
{
Z
Zhao Lei 已提交
1223 1224 1225 1226 1227
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1228 1229 1230
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1231 1232
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1233 1234 1235 1236 1237 1238 1239
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1240
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1261
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1262 1263
				     struct scrub_block *sblocks_for_recheck)
{
1264
	struct scrub_ctx *sctx = original_sblock->sctx;
1265
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1266
	u64 length = original_sblock->page_count * fs_info->sectorsize;
1267
	u64 logical = original_sblock->pagev[0]->logical;
1268 1269 1270
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1271 1272 1273 1274 1275 1276
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1277
	int page_index = 0;
1278
	int mirror_index;
1279
	int nmirrors;
1280 1281 1282
	int ret;

	/*
1283
	 * note: the two members refs and outstanding_pages
1284 1285 1286 1287 1288
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1289
		sublen = min_t(u64, length, fs_info->sectorsize);
1290 1291
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1292

1293
		/*
1294 1295
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1296
		 */
1297
		btrfs_bio_counter_inc_blocked(fs_info);
1298
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1299
				logical, &mapped_length, &bbio);
1300
		if (ret || !bbio || mapped_length < sublen) {
1301
			btrfs_put_bbio(bbio);
1302
			btrfs_bio_counter_dec(fs_info);
1303 1304
			return -EIO;
		}
A
Arne Jansen 已提交
1305

1306 1307
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1308
			btrfs_put_bbio(bbio);
1309
			btrfs_bio_counter_dec(fs_info);
1310 1311 1312
			return -ENOMEM;
		}

1313
		refcount_set(&recover->refs, 1);
1314 1315 1316
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1317
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1318

1319
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1320

1321
		for (mirror_index = 0; mirror_index < nmirrors;
1322 1323
		     mirror_index++) {
			struct scrub_block *sblock;
1324
			struct scrub_page *spage;
1325 1326

			sblock = sblocks_for_recheck + mirror_index;
1327
			sblock->sctx = sctx;
1328

1329 1330
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1331
leave_nomem:
1332 1333 1334
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1335
				scrub_put_recover(fs_info, recover);
1336 1337
				return -ENOMEM;
			}
1338 1339 1340 1341 1342 1343 1344
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1345
			if (have_csum)
1346
				memcpy(spage->csum,
1347
				       original_sblock->pagev[0]->csum,
1348
				       sctx->fs_info->csum_size);
1349

Z
Zhao Lei 已提交
1350 1351 1352
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1353
						      mapped_length,
1354 1355
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1356 1357 1358
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1359
			spage->physical = bbio->stripes[stripe_index].physical +
1360
					 stripe_offset;
1361
			spage->dev = bbio->stripes[stripe_index].dev;
1362

1363
			BUG_ON(page_index >= original_sblock->page_count);
1364
			spage->physical_for_dev_replace =
1365 1366
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1367
			/* for missing devices, dev->bdev is NULL */
1368
			spage->mirror_num = mirror_index + 1;
1369
			sblock->page_count++;
1370 1371
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1372
				goto leave_nomem;
1373 1374

			scrub_get_recover(recover);
1375
			spage->recover = recover;
1376
		}
1377
		scrub_put_recover(fs_info, recover);
1378 1379 1380 1381 1382 1383
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1384 1385
}

1386
static void scrub_bio_wait_endio(struct bio *bio)
1387
{
1388
	complete(bio->bi_private);
1389 1390 1391 1392
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1393
					struct scrub_page *spage)
1394
{
1395
	DECLARE_COMPLETION_ONSTACK(done);
1396
	int ret;
1397
	int mirror_num;
1398

1399
	bio->bi_iter.bi_sector = spage->logical >> 9;
1400 1401 1402
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1403 1404 1405
	mirror_num = spage->sblock->pagev[0]->mirror_num;
	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
				    spage->recover->map_length,
1406
				    mirror_num, 0);
1407 1408 1409
	if (ret)
		return ret;

1410 1411
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1412 1413
}

L
Liu Bo 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

1426
	bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
L
Liu Bo 已提交
1427 1428 1429
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1430
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1431

1432 1433
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1453 1454 1455 1456 1457 1458 1459
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1460
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1461 1462
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1463
{
1464
	int page_num;
I
Ilya Dryomov 已提交
1465

1466
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1467

L
Liu Bo 已提交
1468 1469 1470 1471
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1472 1473
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1474
		struct scrub_page *spage = sblock->pagev[page_num];
1475

1476 1477
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1478 1479 1480 1481
			sblock->no_io_error_seen = 0;
			continue;
		}

1482
		WARN_ON(!spage->page);
1483
		bio = btrfs_io_bio_alloc(1);
1484
		bio_set_dev(bio, spage->dev->bdev);
1485

1486
		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1487
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1488
		bio->bi_opf = REQ_OP_READ;
1489

L
Liu Bo 已提交
1490
		if (btrfsic_submit_bio_wait(bio)) {
1491
			spage->io_error = 1;
L
Liu Bo 已提交
1492
			sblock->no_io_error_seen = 0;
1493
		}
1494

1495 1496
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1497

1498
	if (sblock->no_io_error_seen)
1499
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1500 1501
}

M
Miao Xie 已提交
1502 1503 1504 1505 1506 1507
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1508
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1509 1510 1511
	return !ret;
}

1512
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1513
{
1514 1515 1516
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1517

1518 1519 1520 1521
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1522 1523
}

1524
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1525
					     struct scrub_block *sblock_good)
1526 1527 1528
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1529

1530 1531
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1532

1533 1534
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1535
							   page_num, 1);
1536 1537
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1538
	}
1539 1540 1541 1542 1543 1544 1545 1546

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1547 1548
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1549
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1550
	const u32 sectorsize = fs_info->sectorsize;
1551

1552 1553
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1554
	if (force_write || sblock_bad->header_error ||
1555
	    sblock_bad->checksum_error || spage_bad->io_error) {
1556 1557 1558
		struct bio *bio;
		int ret;

1559
		if (!spage_bad->dev->bdev) {
1560
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1561
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562 1563 1564
			return -EIO;
		}

1565
		bio = btrfs_io_bio_alloc(1);
1566 1567
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1568
		bio->bi_opf = REQ_OP_WRITE;
1569

1570 1571
		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
		if (ret != sectorsize) {
1572 1573
			bio_put(bio);
			return -EIO;
1574
		}
1575

1576
		if (btrfsic_submit_bio_wait(bio)) {
1577
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578
				BTRFS_DEV_STAT_WRITE_ERRS);
1579
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1580 1581 1582
			bio_put(bio);
			return -EIO;
		}
1583
		bio_put(bio);
A
Arne Jansen 已提交
1584 1585
	}

1586 1587 1588
	return 0;
}

1589 1590
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1591
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592 1593
	int page_num;

1594 1595 1596 1597 1598 1599 1600
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1601 1602 1603 1604 1605
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1606
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1607 1608 1609 1610 1611 1612 1613 1614 1615
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1616 1617
	if (spage->io_error)
		clear_page(page_address(spage->page));
1618 1619 1620 1621

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1622 1623 1624 1625 1626 1627 1628 1629
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1630 1631 1632
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1644 1645 1646 1647 1648
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;
1649
	const u32 sectorsize = sctx->fs_info->sectorsize;
1650

1651
	mutex_lock(&sctx->wr_lock);
1652
again:
1653 1654
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655
					      GFP_KERNEL);
1656 1657
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1658 1659
			return -ENOMEM;
		}
1660 1661
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1662
	}
1663
	sbio = sctx->wr_curr_bio;
1664 1665 1666
	if (sbio->page_count == 0) {
		struct bio *bio;

1667 1668 1669 1670 1671 1672 1673
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1674 1675
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1676
		sbio->dev = sctx->wr_tgtdev;
1677 1678
		bio = sbio->bio;
		if (!bio) {
1679
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680 1681 1682 1683 1684
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1685
		bio_set_dev(bio, sbio->dev->bdev);
1686
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1687
		bio->bi_opf = REQ_OP_WRITE;
1688
		sbio->status = 0;
1689
	} else if (sbio->physical + sbio->page_count * sectorsize !=
1690
		   spage->physical_for_dev_replace ||
1691
		   sbio->logical + sbio->page_count * sectorsize !=
1692 1693 1694 1695 1696
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

1697 1698
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
1699 1700 1701
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1702
			mutex_unlock(&sctx->wr_lock);
1703 1704 1705 1706 1707 1708 1709 1710 1711
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1712
	if (sbio->page_count == sctx->pages_per_wr_bio)
1713
		scrub_wr_submit(sctx);
1714
	mutex_unlock(&sctx->wr_lock);
1715 1716 1717 1718 1719 1720 1721 1722

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1723
	if (!sctx->wr_curr_bio)
1724 1725
		return;

1726 1727
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1728
	WARN_ON(!sbio->bio->bi_bdev);
1729 1730 1731 1732 1733
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1734
	btrfsic_submit_bio(sbio->bio);
1735 1736

	if (btrfs_is_zoned(sctx->fs_info))
1737 1738
		sctx->write_pointer = sbio->physical + sbio->page_count *
			sctx->fs_info->sectorsize;
1739 1740
}

1741
static void scrub_wr_bio_end_io(struct bio *bio)
1742 1743
{
	struct scrub_bio *sbio = bio->bi_private;
1744
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1745

1746
	sbio->status = bio->bi_status;
1747 1748
	sbio->bio = bio;

1749
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1750
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1751 1752 1753 1754 1755 1756 1757 1758 1759
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1760
	if (sbio->status) {
1761
		struct btrfs_dev_replace *dev_replace =
1762
			&sbio->sctx->fs_info->dev_replace;
1763 1764 1765 1766 1767

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1768
			atomic64_inc(&dev_replace->num_write_errors);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1781 1782 1783 1784
{
	u64 flags;
	int ret;

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1797 1798
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1810 1811

	return ret;
A
Arne Jansen 已提交
1812 1813
}

1814
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1815
{
1816
	struct scrub_ctx *sctx = sblock->sctx;
1817 1818
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1819
	u8 csum[BTRFS_CSUM_SIZE];
1820
	struct scrub_page *spage;
1821
	char *kaddr;
A
Arne Jansen 已提交
1822

1823
	BUG_ON(sblock->page_count < 1);
1824 1825
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1826 1827
		return 0;

1828
	kaddr = page_address(spage->page);
1829

1830 1831
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1832

1833 1834 1835 1836 1837
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1838

1839 1840
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1841
	return sblock->checksum_error;
A
Arne Jansen 已提交
1842 1843
}

1844
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1845
{
1846
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1847
	struct btrfs_header *h;
1848
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1849
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1850 1851
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1852 1853 1854 1855 1856 1857 1858
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1859
	int i;
1860
	struct scrub_page *spage;
1861
	char *kaddr;
1862

1863
	BUG_ON(sblock->page_count < 1);
1864 1865 1866 1867

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1868 1869
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1870
	h = (struct btrfs_header *)kaddr;
1871
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1872 1873 1874 1875 1876 1877

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1878
	if (spage->logical != btrfs_stack_header_bytenr(h))
1879
		sblock->header_error = 1;
A
Arne Jansen 已提交
1880

1881
	if (spage->generation != btrfs_stack_header_generation(h)) {
1882 1883 1884
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1885

1886
	if (!scrub_check_fsid(h->fsid, spage))
1887
		sblock->header_error = 1;
A
Arne Jansen 已提交
1888 1889 1890

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1891
		sblock->header_error = 1;
A
Arne Jansen 已提交
1892

1893 1894 1895
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1896
			    sectorsize - BTRFS_CSUM_SIZE);
1897

1898
	for (i = 1; i < num_sectors; i++) {
1899
		kaddr = page_address(sblock->pagev[i]->page);
1900
		crypto_shash_update(shash, kaddr, sectorsize);
1901 1902
	}

1903
	crypto_shash_final(shash, calculated_csum);
1904
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1905
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1906

1907
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1908 1909
}

1910
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1911 1912
{
	struct btrfs_super_block *s;
1913
	struct scrub_ctx *sctx = sblock->sctx;
1914 1915
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1916
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1917
	struct scrub_page *spage;
1918
	char *kaddr;
1919 1920
	int fail_gen = 0;
	int fail_cor = 0;
1921

1922
	BUG_ON(sblock->page_count < 1);
1923 1924
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1925
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1926

1927
	if (spage->logical != btrfs_super_bytenr(s))
1928
		++fail_cor;
A
Arne Jansen 已提交
1929

1930
	if (spage->generation != btrfs_super_generation(s))
1931
		++fail_gen;
A
Arne Jansen 已提交
1932

1933
	if (!scrub_check_fsid(s->fsid, spage))
1934
		++fail_cor;
A
Arne Jansen 已提交
1935

1936 1937 1938 1939
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1940

1941
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1942
		++fail_cor;
A
Arne Jansen 已提交
1943

1944
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1945 1946 1947 1948 1949
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1950 1951 1952
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1953
		if (fail_cor)
1954
			btrfs_dev_stat_inc_and_print(spage->dev,
1955 1956
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1957
			btrfs_dev_stat_inc_and_print(spage->dev,
1958
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1959 1960
	}

1961
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1962 1963
}

1964 1965
static void scrub_block_get(struct scrub_block *sblock)
{
1966
	refcount_inc(&sblock->refs);
1967 1968 1969 1970
}

static void scrub_block_put(struct scrub_block *sblock)
{
1971
	if (refcount_dec_and_test(&sblock->refs)) {
1972 1973
		int i;

1974 1975 1976
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1977
		for (i = 0; i < sblock->page_count; i++)
1978
			scrub_page_put(sblock->pagev[i]);
1979 1980 1981 1982
		kfree(sblock);
	}
}

1983 1984
static void scrub_page_get(struct scrub_page *spage)
{
1985
	atomic_inc(&spage->refs);
1986 1987 1988 1989
}

static void scrub_page_put(struct scrub_page *spage)
{
1990
	if (atomic_dec_and_test(&spage->refs)) {
1991 1992 1993 1994 1995 1996
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2056
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2057 2058 2059
{
	struct scrub_bio *sbio;

2060
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2061
		return;
A
Arne Jansen 已提交
2062

2063 2064
	scrub_throttle(sctx);

2065 2066
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2067
	scrub_pending_bio_inc(sctx);
2068
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2069 2070
}

2071 2072
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2073
{
2074
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2075
	struct scrub_bio *sbio;
2076
	const u32 sectorsize = sctx->fs_info->sectorsize;
2077
	int ret;
A
Arne Jansen 已提交
2078 2079 2080 2081 2082

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2083 2084 2085 2086 2087 2088 2089 2090
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2091
		} else {
2092 2093
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2094 2095
		}
	}
2096
	sbio = sctx->bios[sctx->curr];
2097
	if (sbio->page_count == 0) {
2098 2099
		struct bio *bio;

2100 2101
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2102
		sbio->dev = spage->dev;
2103 2104
		bio = sbio->bio;
		if (!bio) {
2105
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2106 2107
			sbio->bio = bio;
		}
2108 2109 2110

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2111
		bio_set_dev(bio, sbio->dev->bdev);
2112
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2113
		bio->bi_opf = REQ_OP_READ;
2114
		sbio->status = 0;
2115
	} else if (sbio->physical + sbio->page_count * sectorsize !=
2116
		   spage->physical ||
2117
		   sbio->logical + sbio->page_count * sectorsize !=
2118 2119
		   spage->logical ||
		   sbio->dev != spage->dev) {
2120
		scrub_submit(sctx);
A
Arne Jansen 已提交
2121 2122
		goto again;
	}
2123

2124
	sbio->pagev[sbio->page_count] = spage;
2125 2126
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
2127 2128 2129 2130 2131
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2132
		scrub_submit(sctx);
2133 2134 2135
		goto again;
	}

2136
	scrub_block_get(sblock); /* one for the page added to the bio */
2137 2138
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2139
	if (sbio->page_count == sctx->pages_per_rd_bio)
2140
		scrub_submit(sctx);
2141 2142 2143 2144

	return 0;
}

2145
static void scrub_missing_raid56_end_io(struct bio *bio)
2146 2147
{
	struct scrub_block *sblock = bio->bi_private;
2148
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2149

2150
	if (bio->bi_status)
2151 2152
		sblock->no_io_error_seen = 0;

2153 2154
	bio_put(bio);

2155 2156 2157 2158 2159 2160 2161
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2162
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2163 2164 2165 2166 2167 2168
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2169
	if (sblock->no_io_error_seen)
2170
		scrub_recheck_block_checksum(sblock);
2171 2172 2173 2174 2175

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2176
		btrfs_err_rl_in_rcu(fs_info,
2177
			"IO error rebuilding logical %llu for dev %s",
2178 2179 2180 2181 2182
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2183
		btrfs_err_rl_in_rcu(fs_info,
2184
			"failed to rebuild valid logical %llu for dev %s",
2185 2186 2187 2188 2189
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2190
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2191
		mutex_lock(&sctx->wr_lock);
2192
		scrub_wr_submit(sctx);
2193
		mutex_unlock(&sctx->wr_lock);
2194 2195
	}

2196
	scrub_block_put(sblock);
2197 2198 2199 2200 2201 2202
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2203
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2204 2205
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2206
	struct btrfs_bio *bbio = NULL;
2207 2208 2209 2210 2211
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2212
	btrfs_bio_counter_inc_blocked(fs_info);
2213
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2214
			&length, &bbio);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2229
	bio = btrfs_io_bio_alloc(0);
2230 2231 2232 2233
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2234
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2235 2236 2237 2238 2239 2240 2241 2242 2243
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2244
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2245 2246 2247 2248 2249 2250 2251 2252
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2253
	btrfs_bio_counter_dec(fs_info);
2254 2255 2256 2257 2258 2259
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2260
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2261
		       u64 physical, struct btrfs_device *dev, u64 flags,
2262
		       u64 gen, int mirror_num, u8 *csum,
2263
		       u64 physical_for_dev_replace)
2264 2265
{
	struct scrub_block *sblock;
2266
	const u32 sectorsize = sctx->fs_info->sectorsize;
2267 2268
	int index;

2269
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2270
	if (!sblock) {
2271 2272 2273
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2274
		return -ENOMEM;
A
Arne Jansen 已提交
2275
	}
2276

2277 2278
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2279
	refcount_set(&sblock->refs, 1);
2280
	sblock->sctx = sctx;
2281 2282 2283
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2284
		struct scrub_page *spage;
2285 2286 2287 2288 2289 2290
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2291

2292
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2293 2294
		if (!spage) {
leave_nomem:
2295 2296 2297
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2298
			scrub_block_put(sblock);
2299 2300
			return -ENOMEM;
		}
2301 2302 2303
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2304
		spage->sblock = sblock;
2305
		spage->dev = dev;
2306 2307 2308 2309
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2310
		spage->physical_for_dev_replace = physical_for_dev_replace;
2311 2312 2313
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2314
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2315 2316 2317 2318
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2319
		spage->page = alloc_page(GFP_KERNEL);
2320 2321
		if (!spage->page)
			goto leave_nomem;
2322 2323 2324
		len -= l;
		logical += l;
		physical += l;
2325
		physical_for_dev_replace += l;
2326 2327
	}

2328
	WARN_ON(sblock->page_count == 0);
2329
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2330 2331 2332 2333 2334 2335 2336 2337 2338
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2339

2340 2341 2342 2343 2344
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2345
		}
A
Arne Jansen 已提交
2346

2347
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2348 2349
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2350

2351 2352
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2353 2354 2355
	return 0;
}

2356
static void scrub_bio_end_io(struct bio *bio)
2357 2358
{
	struct scrub_bio *sbio = bio->bi_private;
2359
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2360

2361
	sbio->status = bio->bi_status;
2362 2363
	sbio->bio = bio;

2364
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2365 2366 2367 2368 2369
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2370
	struct scrub_ctx *sctx = sbio->sctx;
2371 2372
	int i;

2373
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2374
	if (sbio->status) {
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2395 2396 2397 2398
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2399

2400
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2401
		mutex_lock(&sctx->wr_lock);
2402
		scrub_wr_submit(sctx);
2403
		mutex_unlock(&sctx->wr_lock);
2404 2405
	}

2406
	scrub_pending_bio_dec(sctx);
2407 2408
}

2409 2410
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2411
				       u64 start, u32 len)
2412
{
2413
	u64 offset;
2414
	u32 nsectors;
2415
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2416 2417 2418 2419 2420 2421 2422

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2423
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2424
	offset = offset >> sectorsize_bits;
2425
	nsectors = len >> sectorsize_bits;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2437
						   u64 start, u32 len)
2438 2439 2440 2441 2442
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2443
						  u64 start, u32 len)
2444 2445 2446 2447
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2448 2449
static void scrub_block_complete(struct scrub_block *sblock)
{
2450 2451
	int corrupted = 0;

2452
	if (!sblock->no_io_error_seen) {
2453
		corrupted = 1;
2454
		scrub_handle_errored_block(sblock);
2455 2456 2457 2458 2459 2460
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2461 2462
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2463 2464
			scrub_write_block_to_dev_replace(sblock);
	}
2465 2466 2467 2468

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2469
			  sblock->sctx->fs_info->sectorsize;
2470

2471
		ASSERT(end - start <= U32_MAX);
2472 2473 2474
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2475 2476
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
 * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2495
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2496
{
2497
	bool found = false;
A
Arne Jansen 已提交
2498

2499
	while (!list_empty(&sctx->csum_list)) {
2500 2501 2502 2503
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2504
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2505
				       struct btrfs_ordered_sum, list);
2506
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2507 2508 2509
		if (sum->bytenr > logical)
			break;

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2520

2521 2522 2523 2524
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2525

2526 2527 2528 2529 2530 2531 2532
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2533
	}
2534 2535
	if (!found)
		return 0;
2536
	return 1;
A
Arne Jansen 已提交
2537 2538 2539
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2540
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2541
			u64 logical, u32 len,
2542
			u64 physical, struct btrfs_device *dev, u64 flags,
2543
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2544 2545 2546
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2547 2548 2549
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2550 2551 2552 2553
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2554 2555 2556 2557
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2558
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2559 2560 2561 2562
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2563 2564 2565 2566
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2567
	} else {
2568
		blocksize = sctx->fs_info->sectorsize;
2569
		WARN_ON(1);
2570
	}
A
Arne Jansen 已提交
2571 2572

	while (len) {
2573
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2574 2575 2576 2577
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2578
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2579
			if (have_csum == 0)
2580
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2581
		}
2582
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2583
				  mirror_num, have_csum ? csum : NULL,
2584
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2585 2586 2587 2588 2589
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2590
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2591 2592 2593 2594
	}
	return 0;
}

2595
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2596
				  u64 logical, u32 len,
2597 2598 2599 2600 2601
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2602
	const u32 sectorsize = sctx->fs_info->sectorsize;
2603 2604
	int index;

2605 2606
	ASSERT(IS_ALIGNED(len, sectorsize));

2607
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2617
	refcount_set(&sblock->refs, 1);
2618 2619 2620 2621 2622 2623 2624 2625
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2626
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2651
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2652 2653 2654 2655
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2656
		spage->page = alloc_page(GFP_KERNEL);
2657 2658
		if (!spage->page)
			goto leave_nomem;
2659 2660 2661 2662 2663 2664


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2685
				   u64 logical, u32 len,
2686 2687 2688 2689 2690 2691 2692 2693
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2694
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2695 2696 2697 2698
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2699
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2700
		blocksize = sparity->stripe_len;
2701
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2702
		blocksize = sparity->stripe_len;
2703
	} else {
2704
		blocksize = sctx->fs_info->sectorsize;
2705 2706 2707 2708
		WARN_ON(1);
	}

	while (len) {
2709
		u32 l = min(len, blocksize);
2710 2711 2712 2713
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2714
			have_csum = scrub_find_csum(sctx, logical, csum);
2715 2716 2717 2718 2719 2720 2721 2722
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2723
skip:
2724 2725 2726 2727 2728 2729 2730
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2731 2732 2733 2734 2735 2736 2737 2738
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2739 2740
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2741 2742 2743 2744 2745
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2746 2747
	u32 stripe_index;
	u32 rot;
2748
	const int data_stripes = nr_data_stripes(map);
2749

2750
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2751 2752 2753
	if (stripe_start)
		*stripe_start = last_offset;

2754
	*offset = last_offset;
2755
	for (i = 0; i < data_stripes; i++) {
2756 2757
		*offset = last_offset + i * map->stripe_len;

2758
		stripe_nr = div64_u64(*offset, map->stripe_len);
2759
		stripe_nr = div_u64(stripe_nr, data_stripes);
2760 2761

		/* Work out the disk rotation on this stripe-set */
2762
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2763 2764
		/* calculate which stripe this data locates */
		rot += i;
2765
		stripe_index = rot % map->num_stripes;
2766 2767 2768 2769 2770 2771 2772 2773 2774
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2807
static void scrub_parity_bio_endio(struct bio *bio)
2808 2809
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2810
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2811

2812
	if (bio->bi_status)
2813 2814 2815 2816
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2817

2818 2819
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2820
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2821 2822 2823 2824 2825
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2826
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2837
	length = sparity->logic_end - sparity->logic_start;
2838 2839

	btrfs_bio_counter_inc_blocked(fs_info);
2840
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2841
			       &length, &bbio);
2842
	if (ret || !bbio || !bbio->raid_map)
2843 2844
		goto bbio_out;

2845
	bio = btrfs_io_bio_alloc(0);
2846 2847 2848 2849
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2850
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2851
					      length, sparity->scrub_dev,
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2864
	btrfs_bio_counter_dec(fs_info);
2865
	btrfs_put_bbio(bbio);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2877
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2878 2879 2880 2881
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2882
	refcount_inc(&sparity->refs);
2883 2884 2885 2886
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2887
	if (!refcount_dec_and_test(&sparity->refs))
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2900
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2901 2902 2903
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2904
	struct btrfs_bio *bbio = NULL;
2905 2906 2907 2908 2909 2910 2911 2912
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2913 2914
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2915
	u64 mapped_length;
2916 2917 2918 2919 2920 2921 2922
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2923
	ASSERT(map->stripe_len <= U32_MAX);
2924
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2935
	ASSERT(map->stripe_len <= U32_MAX);
2936 2937 2938 2939 2940 2941
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2942
	refcount_set(&sparity->refs, 1);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2991 2992 2993 2994
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2995
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2996
				bytes = fs_info->nodesize;
2997 2998 2999 3000 3001 3002
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3003
			if (key.objectid >= logic_end) {
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3016 3017 3018 3019
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3020 3021
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3022
					  key.objectid, logic_start);
3023 3024 3025
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3026 3027 3028 3029
				goto next;
			}
again:
			extent_logical = key.objectid;
3030
			ASSERT(bytes <= U32_MAX);
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3046
			mapped_length = extent_len;
3047
			bbio = NULL;
3048 3049 3050
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3077 3078 3079

			scrub_free_csums(sctx);

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3109 3110
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3111
		scrub_parity_mark_sectors_error(sparity, logic_start,
3112
						logic_end - logic_start);
3113
	}
3114 3115
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3116
	mutex_lock(&sctx->wr_lock);
3117
	scrub_wr_submit(sctx);
3118
	mutex_unlock(&sctx->wr_lock);
3119 3120 3121 3122 3123

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3164
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3165 3166
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3167 3168
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3169
{
3170
	struct btrfs_path *path, *ppath;
3171
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3172 3173 3174
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3175
	struct blk_plug plug;
A
Arne Jansen 已提交
3176 3177 3178 3179 3180 3181 3182
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3183
	u64 logic_end;
3184
	u64 physical_end;
A
Arne Jansen 已提交
3185
	u64 generation;
3186
	int mirror_num;
A
Arne Jansen 已提交
3187 3188
	struct reada_control *reada1;
	struct reada_control *reada2;
3189
	struct btrfs_key key;
A
Arne Jansen 已提交
3190
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3191 3192
	u64 increment = map->stripe_len;
	u64 offset;
3193 3194
	u64 extent_logical;
	u64 extent_physical;
3195 3196 3197 3198 3199
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3200 3201
	u64 stripe_logical;
	u64 stripe_end;
3202 3203
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3204
	int stop_loop = 0;
D
David Woodhouse 已提交
3205

3206
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3207
	offset = 0;
3208
	nstripes = div64_u64(length, map->stripe_len);
3209 3210
	mirror_num = 1;
	increment = map->stripe_len;
A
Arne Jansen 已提交
3211 3212 3213 3214 3215 3216 3217
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3218
		mirror_num = num % map->sub_stripes + 1;
3219
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3220
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3221
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3222
		mirror_num = num % map->num_stripes + 1;
3223
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3224
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3225
		increment = map->stripe_len * nr_data_stripes(map);
A
Arne Jansen 已提交
3226 3227 3228 3229 3230 3231
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3232 3233
	ppath = btrfs_alloc_path();
	if (!ppath) {
3234
		btrfs_free_path(path);
3235 3236 3237
		return -ENOMEM;
	}

3238 3239 3240 3241 3242
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3243 3244 3245
	path->search_commit_root = 1;
	path->skip_locking = 1;

3246 3247
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3248
	/*
A
Arne Jansen 已提交
3249 3250 3251
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3252 3253
	 */
	logical = base + offset;
3254
	physical_end = physical + nstripes * map->stripe_len;
3255
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3256
		get_raid56_logic_offset(physical_end, num,
3257
					map, &logic_end, NULL);
3258 3259 3260 3261
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3262
	wait_event(sctx->list_wait,
3263
		   atomic_read(&sctx->bios_in_flight) == 0);
3264
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3265 3266

	/* FIXME it might be better to start readahead at commit root */
3267 3268 3269
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3270
	key_end.objectid = logic_end;
3271 3272
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3273
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3274

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3286 3287 3288

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3289
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3290 3291
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3292 3293 3294 3295 3296

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3297
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3298

3299 3300 3301 3302 3303 3304 3305 3306
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3307 3308 3309 3310
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3311
	while (physical < physical_end) {
A
Arne Jansen 已提交
3312 3313 3314 3315
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3316
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3317 3318 3319 3320 3321 3322 3323 3324
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3325
			sctx->flush_all_writes = true;
3326
			scrub_submit(sctx);
3327
			mutex_lock(&sctx->wr_lock);
3328
			scrub_wr_submit(sctx);
3329
			mutex_unlock(&sctx->wr_lock);
3330
			wait_event(sctx->list_wait,
3331
				   atomic_read(&sctx->bios_in_flight) == 0);
3332
			sctx->flush_all_writes = false;
3333
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3334 3335
		}

3336 3337 3338 3339 3340 3341
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3342
				/* it is parity strip */
3343
				stripe_logical += base;
3344
				stripe_end = stripe_logical + increment;
3345 3346 3347 3348 3349 3350 3351 3352 3353
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3354 3355 3356 3357
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3358
		key.objectid = logical;
L
Liu Bo 已提交
3359
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3360 3361 3362 3363

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3364

3365
		if (ret > 0) {
3366
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3367 3368
			if (ret < 0)
				goto out;
3369 3370 3371 3372 3373 3374 3375 3376 3377
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3378 3379
		}

L
Liu Bo 已提交
3380
		stop_loop = 0;
A
Arne Jansen 已提交
3381
		while (1) {
3382 3383
			u64 bytes;

A
Arne Jansen 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3393
				stop_loop = 1;
A
Arne Jansen 已提交
3394 3395 3396 3397
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3398 3399 3400 3401
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3402
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3403
				bytes = fs_info->nodesize;
3404 3405 3406 3407
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3408 3409
				goto next;

L
Liu Bo 已提交
3410 3411 3412 3413 3414 3415
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3416

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3431 3432 3433 3434 3435
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3436 3437 3438 3439
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3440
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3441
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3442
				       key.objectid, logical);
3443 3444 3445
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3446 3447 3448
				goto next;
			}

L
Liu Bo 已提交
3449 3450
again:
			extent_logical = key.objectid;
3451
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3452 3453
			extent_len = bytes;

A
Arne Jansen 已提交
3454 3455 3456
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3457 3458 3459
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3460
			}
L
Liu Bo 已提交
3461
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3462
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3463 3464
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3465 3466
			}

L
Liu Bo 已提交
3467
			extent_physical = extent_logical - logical + physical;
3468 3469
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3470
			if (sctx->is_dev_replace)
3471 3472 3473 3474
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3484

L
Liu Bo 已提交
3485
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3486 3487
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3488
					   extent_logical - logical + physical);
3489 3490 3491

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3492 3493 3494
			if (ret)
				goto out;

3495 3496 3497
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3498 3499
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3500
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3501 3502 3503 3504
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3515
								increment;
3516 3517 3518 3519 3520 3521 3522 3523
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3524 3525 3526 3527
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3528 3529 3530 3531 3532
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3533
				if (physical >= physical_end) {
L
Liu Bo 已提交
3534 3535 3536 3537
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3538 3539 3540
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3541
		btrfs_release_path(path);
3542
skip:
A
Arne Jansen 已提交
3543 3544
		logical += increment;
		physical += map->stripe_len;
3545
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3546 3547 3548 3549 3550
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3551
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3552 3553
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3554
	}
3555
out:
A
Arne Jansen 已提交
3556
	/* push queued extents */
3557
	scrub_submit(sctx);
3558
	mutex_lock(&sctx->wr_lock);
3559
	scrub_wr_submit(sctx);
3560
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3561

3562
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3563
	btrfs_free_path(path);
3564
	btrfs_free_path(ppath);
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3576 3577 3578
	return ret < 0 ? ret : 0;
}

3579
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3580 3581
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3582
					  u64 dev_offset,
3583
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3584
{
3585
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3586
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3587 3588 3589
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3590
	int ret = 0;
A
Arne Jansen 已提交
3591

3592 3593 3594
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3608

3609
	map = em->map_lookup;
A
Arne Jansen 已提交
3610 3611 3612 3613 3614 3615 3616
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3617
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3618
		    map->stripes[i].physical == dev_offset) {
3619
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3620
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3650
static noinline_for_stack
3651
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3652
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3653 3654 3655
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3656 3657
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3658 3659
	u64 length;
	u64 chunk_offset;
3660
	int ret = 0;
3661
	int ro_set;
A
Arne Jansen 已提交
3662 3663 3664 3665
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3666
	struct btrfs_block_group *cache;
3667
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3668 3669 3670 3671 3672

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3673
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3674 3675 3676
	path->search_commit_root = 1;
	path->skip_locking = 1;

3677
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3678 3679 3680 3681 3682 3683
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3684 3685 3686 3687 3688
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3689 3690 3691 3692
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3693
					break;
3694 3695 3696
				}
			} else {
				ret = 0;
3697 3698
			}
		}
A
Arne Jansen 已提交
3699 3700 3701 3702 3703 3704

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3705
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3706 3707
			break;

3708
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3720 3721
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3722 3723 3724 3725 3726 3727 3728 3729

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3730 3731 3732 3733 3734 3735

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3736 3737 3738 3739
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3740 3741
				btrfs_put_block_group(cache);
				goto skip;
3742 3743 3744 3745
			}
			spin_unlock(&cache->lock);
		}

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3760
		btrfs_freeze_block_group(cache);
3761 3762
		spin_unlock(&cache->lock);

3763 3764 3765 3766 3767 3768 3769 3770 3771
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3802
		 */
3803
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3814 3815
		if (ret == 0) {
			ro_set = 1;
3816
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3817 3818 3819
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3820
			 * It is not a problem for scrub, because
3821 3822 3823 3824
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3825 3826 3827 3828 3829 3830 3831
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3832
		} else {
J
Jeff Mahoney 已提交
3833
			btrfs_warn(fs_info,
3834
				   "failed setting block group ro: %d", ret);
3835
			btrfs_unfreeze_block_group(cache);
3836
			btrfs_put_block_group(cache);
3837
			scrub_pause_off(fs_info);
3838 3839 3840
			break;
		}

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3853
		down_write(&dev_replace->rwsem);
3854 3855 3856
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3857 3858
		up_write(&dev_replace->rwsem);

3859
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3860
				  found_key.offset, cache);
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3872
		sctx->flush_all_writes = true;
3873
		scrub_submit(sctx);
3874
		mutex_lock(&sctx->wr_lock);
3875
		scrub_wr_submit(sctx);
3876
		mutex_unlock(&sctx->wr_lock);
3877 3878 3879

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3880 3881

		scrub_pause_on(fs_info);
3882 3883 3884 3885 3886 3887

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3888 3889
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3890
		sctx->flush_all_writes = false;
3891

3892
		scrub_pause_off(fs_info);
3893

3894 3895 3896 3897 3898
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3899
		down_write(&dev_replace->rwsem);
3900 3901
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3902
		up_write(&dev_replace->rwsem);
3903

3904
		if (ro_set)
3905
			btrfs_dec_block_group_ro(cache);
3906

3907 3908 3909 3910 3911 3912 3913 3914 3915
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3916
		    cache->used == 0) {
3917
			spin_unlock(&cache->lock);
3918 3919 3920 3921 3922
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3923 3924 3925
		} else {
			spin_unlock(&cache->lock);
		}
3926
skip_unfreeze:
3927
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3928 3929 3930
		btrfs_put_block_group(cache);
		if (ret)
			break;
3931
		if (sctx->is_dev_replace &&
3932
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3933 3934 3935 3936 3937 3938 3939
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3940
skip:
A
Arne Jansen 已提交
3941
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3942
		btrfs_release_path(path);
A
Arne Jansen 已提交
3943 3944 3945
	}

	btrfs_free_path(path);
3946

3947
	return ret;
A
Arne Jansen 已提交
3948 3949
}

3950 3951
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3952 3953 3954 3955 3956
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3957
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3958

3959
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3960
		return -EROFS;
3961

3962
	/* Seed devices of a new filesystem has their own generation. */
3963
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3964 3965
		gen = scrub_dev->generation;
	else
3966
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3967 3968 3969

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3970 3971
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3972
			break;
3973 3974
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3975

3976
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3977
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3978
				  NULL, bytenr);
A
Arne Jansen 已提交
3979 3980 3981
		if (ret)
			return ret;
	}
3982
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3983 3984 3985 3986

	return 0;
}

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
4010 4011 4012
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4013 4014
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4015
{
4016 4017 4018
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
4019
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4020
	int max_active = fs_info->thread_pool_size;
4021
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4022

4023 4024
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4025

4026 4027 4028 4029
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
4030

4031
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4032
					      max_active, 2);
4033 4034
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4049
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4050 4051
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4052
	}
4053 4054 4055
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4056

4057 4058
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
4059
fail_scrub_parity_workers:
4060
	btrfs_destroy_workqueue(scrub_wr_comp);
4061
fail_scrub_wr_completion_workers:
4062
	btrfs_destroy_workqueue(scrub_workers);
4063
fail_scrub_workers:
4064
	return ret;
A
Arne Jansen 已提交
4065 4066
}

4067 4068
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4069
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4070
{
4071
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4072 4073
	int ret;
	struct btrfs_device *dev;
4074
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4075

4076
	if (btrfs_fs_closing(fs_info))
4077
		return -EAGAIN;
A
Arne Jansen 已提交
4078

4079
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4080 4081 4082 4083 4084
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4085 4086
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4087 4088
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4089 4090 4091
		return -EINVAL;
	}

4092
	if (fs_info->nodesize >
4093
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4094
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4095 4096 4097 4098
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4099 4100
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4101
		       fs_info->nodesize,
4102
		       SCRUB_MAX_PAGES_PER_BLOCK,
4103
		       fs_info->sectorsize,
4104 4105 4106 4107
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4108 4109 4110 4111
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4112

4113 4114 4115 4116
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4117
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4118
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4119 4120
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4121
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122
		ret = -ENODEV;
4123
		goto out;
A
Arne Jansen 已提交
4124 4125
	}

4126 4127
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4128
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4129 4130 4131
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4132
		ret = -EROFS;
4133
		goto out;
4134 4135
	}

4136
	mutex_lock(&fs_info->scrub_lock);
4137
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4138
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4139
		mutex_unlock(&fs_info->scrub_lock);
4140
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4141
		ret = -EIO;
4142
		goto out;
A
Arne Jansen 已提交
4143 4144
	}

4145
	down_read(&fs_info->dev_replace.rwsem);
4146
	if (dev->scrub_ctx ||
4147 4148
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4149
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4150
		mutex_unlock(&fs_info->scrub_lock);
4151
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152
		ret = -EINPROGRESS;
4153
		goto out;
A
Arne Jansen 已提交
4154
	}
4155
	up_read(&fs_info->dev_replace.rwsem);
4156

4157
	sctx->readonly = readonly;
4158
	dev->scrub_ctx = sctx;
4159
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4160

4161 4162 4163 4164
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4165
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4166 4167 4168
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4179
	if (!is_dev_replace) {
4180
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4181 4182 4183 4184
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4185
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186
		ret = scrub_supers(sctx, dev);
4187
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188
	}
A
Arne Jansen 已提交
4189 4190

	if (!ret)
4191
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4192
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4193

4194
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4195 4196 4197
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4198
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199

A
Arne Jansen 已提交
4200
	if (progress)
4201
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4202

4203 4204 4205 4206
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4207
	mutex_lock(&fs_info->scrub_lock);
4208
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4209 4210
	mutex_unlock(&fs_info->scrub_lock);

4211
	scrub_workers_put(fs_info);
4212
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4213

4214
	return ret;
4215 4216
out:
	scrub_workers_put(fs_info);
4217 4218 4219
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4220 4221 4222
	return ret;
}

4223
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4238
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4239 4240 4241 4242 4243
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4244
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4265
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4266
{
4267
	struct btrfs_fs_info *fs_info = dev->fs_info;
4268
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4269 4270

	mutex_lock(&fs_info->scrub_lock);
4271
	sctx = dev->scrub_ctx;
4272
	if (!sctx) {
A
Arne Jansen 已提交
4273 4274 4275
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4276
	atomic_inc(&sctx->cancel_req);
4277
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4278 4279
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4280
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4281 4282 4283 4284 4285 4286
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4287

4288
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4289 4290 4291
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4292
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4293

4294
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4295
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
A
Arne Jansen 已提交
4296
	if (dev)
4297
		sctx = dev->scrub_ctx;
4298 4299
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4300
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4301

4302
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4303
}
4304 4305

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4306
			       u64 extent_logical, u32 extent_len,
4307 4308 4309 4310 4311 4312 4313 4314 4315
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4316
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4317 4318 4319
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4320
		btrfs_put_bbio(bbio);
4321 4322 4323 4324 4325 4326
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4327
	btrfs_put_bbio(bbio);
4328
}