scrub.c 90.5 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65 66

struct scrub_page {
67 68
	struct scrub_block	*sblock;
	struct page		*page;
69
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
70 71
	u64			flags;  /* extent flags */
	u64			generation;
72 73
	u64			logical;
	u64			physical;
74
	u64			physical_for_dev_replace;
75
	atomic_t		ref_count;
76 77 78 79 80
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
81 82 83 84 85
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88 89 90 91
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105 106
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115
	};
};

116 117 118 119 120 121 122 123
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

124
struct scrub_ctx {
125
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
127 128
	int			first_free;
	int			curr;
129 130
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
131 132 133 134 135
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
136
	int			readonly;
137
	int			pages_per_rd_bio;
138 139 140
	u32			sectorsize;
	u32			nodesize;
	u32			leafsize;
141 142

	int			is_dev_replace;
143
	struct scrub_wr_ctx	wr_ctx;
144

A
Arne Jansen 已提交
145 146 147 148 149 150 151
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

152
struct scrub_fixup_nodatasum {
153
	struct scrub_ctx	*sctx;
154
	struct btrfs_device	*dev;
155 156 157 158 159 160
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

161 162 163 164 165 166 167
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

168 169 170 171 172 173
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
174
	struct list_head	inodes;
175 176 177
	struct btrfs_work	work;
};

178 179 180 181 182 183 184 185 186 187 188 189 190
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	char			*scratch_buf;
	char			*msg_buf;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
	int			msg_bufsize;
	int			scratch_bufsize;
};

191

192 193 194 195
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198
				     struct btrfs_fs_info *fs_info,
199
				     struct scrub_block *original_sblock,
200
				     u64 length, u64 logical,
201
				     struct scrub_block *sblocks_for_recheck);
202 203 204 205
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size);
206 207 208 209 210 211 212 213 214 215 216
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
217 218 219
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
220 221 222 223 224
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
225 226
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
227 228
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
229
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230
		       u64 physical, struct btrfs_device *dev, u64 flags,
231 232
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
233
static void scrub_bio_end_io(struct bio *bio, int err);
234 235
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255
				      struct scrub_copy_nocow_ctx *ctx);
256 257 258
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
259
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
260 261


262 263 264 265 266 267 268 269 270 271 272
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

273 274 275 276 277 278 279 280 281 282
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

325
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
326
{
327
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
328
		struct btrfs_ordered_sum *sum;
329
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
330 331 332 333 334 335
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

336
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
337 338 339
{
	int i;

340
	if (!sctx)
A
Arne Jansen 已提交
341 342
		return;

343 344
	scrub_free_wr_ctx(&sctx->wr_ctx);

345
	/* this can happen when scrub is cancelled */
346 347
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
348 349

		for (i = 0; i < sbio->page_count; i++) {
350
			WARN_ON(!sbio->pagev[i]->page);
351 352 353 354 355
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

356
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
357
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
358 359 360 361 362 363

		if (!sbio)
			break;
		kfree(sbio);
	}

364 365
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
366 367 368
}

static noinline_for_stack
369
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
370
{
371
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
372 373
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
374 375
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
376

377 378 379 380 381 382 383 384 385 386 387 388
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
389 390
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
391
		goto nomem;
392
	sctx->is_dev_replace = is_dev_replace;
393
	sctx->pages_per_rd_bio = pages_per_rd_bio;
394
	sctx->curr = -1;
395
	sctx->dev_root = dev->dev_root;
396
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
397 398 399 400 401
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
402
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
403 404

		sbio->index = i;
405
		sbio->sctx = sctx;
406 407
		sbio->page_count = 0;
		sbio->work.func = scrub_bio_end_io_worker;
A
Arne Jansen 已提交
408

409
		if (i != SCRUB_BIOS_PER_SCTX - 1)
410
			sctx->bios[i]->next_free = i + 1;
411
		else
412 413 414 415 416 417
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->leafsize = dev->dev_root->leafsize;
	sctx->sectorsize = dev->dev_root->sectorsize;
418 419
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
420 421 422 423 424 425 426
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
427 428 429 430 431 432 433

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
434
	return sctx;
A
Arne Jansen 已提交
435 436

nomem:
437
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
438 439 440
	return ERR_PTR(-ENOMEM);
}

441 442
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
443 444 445 446 447 448 449
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
450
	struct scrub_warning *swarn = warn_ctx;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
479 480 481 482 483
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
484 485 486 487 488 489 490 491 492 493
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
494
		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
495 496
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
497
			swarn->logical, rcu_str_deref(swarn->dev->name),
498 499
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
500
			(char *)(unsigned long)ipath->fspath->val[i]);
501 502 503 504 505

	free_ipath(ipath);
	return 0;

err:
506
	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
507 508
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
509
		swarn->logical, rcu_str_deref(swarn->dev->name),
510 511 512 513 514 515
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

516
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
517
{
518 519
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
520 521 522 523 524
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
525 526 527
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
528
	u64 ref_root;
529
	u32 item_size;
530 531
	u8 ref_level;
	const int bufsize = 4096;
532
	int ret;
533

534
	WARN_ON(sblock->page_count < 1);
535
	dev = sblock->pagev[0]->dev;
536 537
	fs_info = sblock->sctx->dev_root->fs_info;

538 539 540 541
	path = btrfs_alloc_path();

	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
542 543
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
544
	swarn.errstr = errstr;
545
	swarn.dev = NULL;
546 547 548 549 550 551
	swarn.msg_bufsize = bufsize;
	swarn.scratch_bufsize = bufsize;

	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
		goto out;

552 553
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
554 555 556
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
557
	extent_item_pos = swarn.logical - found_key.objectid;
558 559 560 561 562 563
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

564
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
565 566 567
		do {
			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
							&ref_root, &ref_level);
568
			printk_in_rcu(KERN_WARNING
S
Stefan Behrens 已提交
569
				"btrfs: %s at logical %llu on dev %s, "
570
				"sector %llu: metadata %s (level %d) in tree "
571 572
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
573 574 575 576 577
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
578
		btrfs_release_path(path);
579
	} else {
580
		btrfs_release_path(path);
581
		swarn.path = path;
582
		swarn.dev = dev;
583 584
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
585 586 587 588 589 590 591 592 593
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
	kfree(swarn.scratch_buf);
	kfree(swarn.msg_buf);
}

594
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
595
{
596
	struct page *page = NULL;
597
	unsigned long index;
598
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
599
	int ret;
600
	int corrected = 0;
601
	struct btrfs_key key;
602
	struct inode *inode = NULL;
603
	struct btrfs_fs_info *fs_info;
604 605
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
606
	int srcu_index;
607 608 609 610

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
611 612 613 614 615 616 617

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
618
		return PTR_ERR(local_root);
619
	}
620 621 622 623

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
624 625
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
626 627 628 629 630 631
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
658 659
		fs_info = BTRFS_I(inode)->root->fs_info;
		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
					fixup->logical, page,
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
	if (inode)
		iput(inode);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
716
	struct scrub_ctx *sctx;
717 718 719 720 721
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
722
	sctx = fixup->sctx;
723 724 725

	path = btrfs_alloc_path();
	if (!path) {
726 727 728
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

757 758 759
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
760 761 762 763 764

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
765 766 767
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
768 769 770
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
771
		printk_ratelimited_in_rcu(KERN_ERR
772
			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
773
			fixup->logical, rcu_str_deref(fixup->dev->name));
774 775 776 777 778
	}

	btrfs_free_path(path);
	kfree(fixup);

779
	scrub_pending_trans_workers_dec(sctx);
780 781
}

A
Arne Jansen 已提交
782
/*
783 784 785 786 787 788
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
789
 */
790
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
791
{
792
	struct scrub_ctx *sctx = sblock_to_check->sctx;
793
	struct btrfs_device *dev;
794 795 796 797 798 799 800 801 802 803 804 805 806 807
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
808
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
809 810 811
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
812
	fs_info = sctx->dev_root->fs_info;
813 814 815 816 817 818 819 820 821 822 823
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
824
	length = sblock_to_check->page_count * PAGE_SIZE;
825 826 827 828 829
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
830
			BTRFS_EXTENT_FLAG_DATA);
831 832 833
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
834

835 836 837 838 839
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
873 874 875 876 877
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
878
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
879
		goto out;
A
Arne Jansen 已提交
880 881
	}

882
	/* setup the context, map the logical blocks and alloc the pages */
883
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
884 885
					logical, sblocks_for_recheck);
	if (ret) {
886 887 888 889
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
890
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
891 892 893 894
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
895

896
	/* build and submit the bios for the failed mirror, check checksums */
897 898
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
			    csum, generation, sctx->csum_size);
A
Arne Jansen 已提交
899

900 901 902 903 904 905 906 907 908 909
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
910 911 912
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
913

914 915
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
916
		goto out;
A
Arne Jansen 已提交
917 918
	}

919
	if (!sblock_bad->no_io_error_seen) {
920 921 922
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
923 924
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
925
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926
	} else if (sblock_bad->checksum_error) {
927 928 929
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
930 931
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
932
		btrfs_dev_stat_inc_and_print(dev,
933
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
934
	} else if (sblock_bad->header_error) {
935 936 937
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
938 939 940
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
941
		if (sblock_bad->generation_error)
942
			btrfs_dev_stat_inc_and_print(dev,
943 944
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
945
			btrfs_dev_stat_inc_and_print(dev,
946
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
947
	}
A
Arne Jansen 已提交
948

949 950 951 952
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
953

954 955
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
956

957 958 959
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

960 961 962 963 964 965 966 967 968 969
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
970
		fixup_nodatasum->sctx = sctx;
971
		fixup_nodatasum->dev = dev;
972 973 974
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
975
		scrub_pending_trans_workers_inc(sctx);
976 977 978 979
		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
		btrfs_queue_worker(&fs_info->scrub_workers,
				   &fixup_nodatasum->work);
		goto out;
A
Arne Jansen 已提交
980 981
	}

982 983
	/*
	 * now build and submit the bios for the other mirrors, check
984 985
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1001
		struct scrub_block *sblock_other;
1002

1003 1004 1005 1006 1007
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1008 1009 1010 1011 1012
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
				    sctx->csum_size);

		if (!sblock_other->header_error &&
1013 1014
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1015 1016 1017 1018 1019 1020 1021 1022 1023
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1024 1025 1026 1027
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1028 1029

	/*
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1109 1110
	 */

1111 1112 1113 1114 1115 1116
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1117
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1118 1119

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1120
			continue;
1121 1122 1123 1124 1125 1126 1127

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1128 1129
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1130 1131 1132 1133 1134 1135 1136 1137 1138

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1139
		}
A
Arne Jansen 已提交
1140

1141 1142 1143 1144
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1145 1146
	}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1158 1159 1160 1161
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
					    generation, sctx->csum_size);
			if (!sblock_bad->header_error &&
1162 1163 1164 1165 1166 1167 1168
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1169 1170 1171
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
			spin_unlock(&sctx->stat_lock);
1172
			printk_ratelimited_in_rcu(KERN_ERR
1173
				"btrfs: fixed up error at logical %llu on dev %s\n",
1174
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1175
		}
1176 1177
	} else {
did_not_correct_error:
1178 1179 1180
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1181
		printk_ratelimited_in_rcu(KERN_ERR
1182
			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1183
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1184
	}
A
Arne Jansen 已提交
1185

1186 1187 1188 1189 1190 1191 1192 1193
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

1194 1195 1196 1197 1198
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
				scrub_page_put(sblock->pagev[page_index]);
			}
1199 1200 1201
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1202

1203 1204
	return 0;
}
A
Arne Jansen 已提交
1205

1206
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1207
				     struct btrfs_fs_info *fs_info,
1208
				     struct scrub_block *original_sblock,
1209 1210 1211 1212 1213 1214 1215 1216
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
1217
	 * note: the two members ref_count and outstanding_pages
1218 1219 1220 1221 1222 1223 1224 1225 1226
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;
A
Arne Jansen 已提交
1227

1228 1229 1230 1231
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1232 1233
		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
				      &mapped_length, &bbio, 0);
1234 1235 1236 1237
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}
A
Arne Jansen 已提交
1238

1239
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1240 1241 1242 1243 1244 1245 1246 1247 1248
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1249 1250 1251 1252
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1253 1254 1255
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1256
				kfree(bbio);
1257 1258
				return -ENOMEM;
			}
1259 1260 1261 1262
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
1263 1264 1265 1266
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1267 1268 1269
			/* for missing devices, dev->bdev is NULL */
			page->dev = bbio->stripes[mirror_index].dev;
			page->mirror_num = mirror_index + 1;
1270
			sblock->page_count++;
1271 1272 1273
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1274 1275 1276 1277 1278 1279 1280 1281
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1282 1283
}

1284 1285 1286 1287 1288 1289 1290
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1291 1292 1293 1294
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size)
I
Ilya Dryomov 已提交
1295
{
1296
	int page_num;
I
Ilya Dryomov 已提交
1297

1298 1299 1300
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1301

1302 1303
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1304
		struct scrub_page *page = sblock->pagev[page_num];
1305

1306
		if (page->dev->bdev == NULL) {
1307 1308 1309 1310 1311
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1312
		WARN_ON(!page->page);
1313
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1314 1315 1316 1317 1318
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1319
		bio->bi_bdev = page->dev->bdev;
1320 1321
		bio->bi_sector = page->physical >> 9;

1322
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1323
		if (btrfsic_submit_bio_wait(READ, bio))
1324
			sblock->no_io_error_seen = 0;
1325

1326 1327
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1328

1329 1330 1331 1332 1333
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1334
	return;
A
Arne Jansen 已提交
1335 1336
}

1337 1338 1339 1340 1341
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1342
{
1343 1344 1345 1346 1347
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1348
	WARN_ON(!sblock->pagev[0]->page);
1349 1350 1351
	if (is_metadata) {
		struct btrfs_header *h;

1352
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1353 1354
		h = (struct btrfs_header *)mapped_buffer;

1355
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1356 1357
		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1358
			   BTRFS_UUID_SIZE)) {
1359
			sblock->header_error = 1;
1360
		} else if (generation != btrfs_stack_header_generation(h)) {
1361 1362 1363
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1364 1365 1366 1367
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1368

1369
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1370
	}
A
Arne Jansen 已提交
1371

1372 1373
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1374
			crc = btrfs_csum_data(
1375 1376 1377
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1378
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1379

1380
		kunmap_atomic(mapped_buffer);
1381 1382 1383
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1384
		WARN_ON(!sblock->pagev[page_num]->page);
1385

1386
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1387 1388 1389 1390 1391
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1392 1393
}

1394 1395 1396 1397 1398 1399
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1400

1401 1402
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1403

1404 1405 1406 1407 1408 1409
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1410
	}
1411 1412 1413 1414 1415 1416 1417 1418

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1419 1420
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1421

1422 1423
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1424 1425 1426 1427 1428
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1429 1430 1431 1432 1433 1434
		if (!page_bad->dev->bdev) {
			printk_ratelimited(KERN_WARNING
				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
			return -EIO;
		}

1435
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1436 1437
		if (!bio)
			return -EIO;
1438
		bio->bi_bdev = page_bad->dev->bdev;
1439 1440 1441 1442 1443 1444
		bio->bi_sector = page_bad->physical >> 9;

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1445
		}
1446

1447
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1448 1449
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1450 1451 1452
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1453 1454 1455
			bio_put(bio);
			return -EIO;
		}
1456
		bio_put(bio);
A
Arne Jansen 已提交
1457 1458
	}

1459 1460 1461
	return 0;
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1521
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
		bio->bi_sector = sbio->physical >> 9;
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

	sbio->work.func = scrub_wr_bio_end_io_worker;
	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1624 1625 1626 1627
{
	u64 flags;
	int ret;

1628 1629
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1641 1642

	return ret;
A
Arne Jansen 已提交
1643 1644
}

1645
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1646
{
1647
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1648
	u8 csum[BTRFS_CSUM_SIZE];
1649 1650 1651
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1652 1653
	u32 crc = ~(u32)0;
	int fail = 0;
1654 1655
	u64 len;
	int index;
A
Arne Jansen 已提交
1656

1657
	BUG_ON(sblock->page_count < 1);
1658
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1659 1660
		return 0;

1661 1662
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1663
	buffer = kmap_atomic(page);
1664

1665
	len = sctx->sectorsize;
1666 1667 1668 1669
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1670
		crc = btrfs_csum_data(buffer, crc, l);
1671
		kunmap_atomic(buffer);
1672 1673 1674 1675 1676
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1677 1678
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1679
		buffer = kmap_atomic(page);
1680 1681
	}

A
Arne Jansen 已提交
1682
	btrfs_csum_final(crc, csum);
1683
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1684 1685 1686 1687 1688
		fail = 1;

	return fail;
}

1689
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1690
{
1691
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1692
	struct btrfs_header *h;
1693
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1694
	struct btrfs_fs_info *fs_info = root->fs_info;
1695 1696 1697 1698 1699 1700
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1701 1702 1703
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1704 1705 1706 1707
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1708
	page = sblock->pagev[0]->page;
1709
	mapped_buffer = kmap_atomic(page);
1710
	h = (struct btrfs_header *)mapped_buffer;
1711
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1712 1713 1714 1715 1716 1717 1718

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1719
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1720 1721
		++fail;

1722
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731
		++fail;

	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1732
	WARN_ON(sctx->nodesize != sctx->leafsize);
1733
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1734 1735 1736 1737 1738 1739
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1740
		crc = btrfs_csum_data(p, crc, l);
1741
		kunmap_atomic(mapped_buffer);
1742 1743 1744 1745 1746
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1747 1748
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1749
		mapped_buffer = kmap_atomic(page);
1750 1751 1752 1753 1754
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1755
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1756 1757 1758 1759 1760
		++crc_fail;

	return fail || crc_fail;
}

1761
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1762 1763
{
	struct btrfs_super_block *s;
1764
	struct scrub_ctx *sctx = sblock->sctx;
1765
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1766
	struct btrfs_fs_info *fs_info = root->fs_info;
1767 1768 1769 1770 1771 1772
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1773
	u32 crc = ~(u32)0;
1774 1775
	int fail_gen = 0;
	int fail_cor = 0;
1776 1777
	u64 len;
	int index;
A
Arne Jansen 已提交
1778

1779
	BUG_ON(sblock->page_count < 1);
1780
	page = sblock->pagev[0]->page;
1781
	mapped_buffer = kmap_atomic(page);
1782
	s = (struct btrfs_super_block *)mapped_buffer;
1783
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1784

1785
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1786
		++fail_cor;
A
Arne Jansen 已提交
1787

1788
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1789
		++fail_gen;
A
Arne Jansen 已提交
1790 1791

	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1792
		++fail_cor;
A
Arne Jansen 已提交
1793

1794 1795 1796 1797 1798 1799 1800
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1801
		crc = btrfs_csum_data(p, crc, l);
1802
		kunmap_atomic(mapped_buffer);
1803 1804 1805 1806 1807
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1808 1809
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1810
		mapped_buffer = kmap_atomic(page);
1811 1812 1813 1814 1815
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1816
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1817
		++fail_cor;
A
Arne Jansen 已提交
1818

1819
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1820 1821 1822 1823 1824
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1825 1826 1827
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1828
		if (fail_cor)
1829
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1830 1831
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1832
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1833
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1834 1835
	}

1836
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1837 1838
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
1850
			scrub_page_put(sblock->pagev[i]);
1851 1852 1853 1854
		kfree(sblock);
	}
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1869
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1870 1871 1872
{
	struct scrub_bio *sbio;

1873
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1874
		return;
A
Arne Jansen 已提交
1875

1876 1877
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1878
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
1894 1895
}

1896 1897
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1898
{
1899
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1900
	struct scrub_bio *sbio;
1901
	int ret;
A
Arne Jansen 已提交
1902 1903 1904 1905 1906

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1907 1908 1909 1910 1911 1912 1913 1914
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1915
		} else {
1916 1917
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1918 1919
		}
	}
1920
	sbio = sctx->bios[sctx->curr];
1921
	if (sbio->page_count == 0) {
1922 1923
		struct bio *bio;

1924 1925
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1926
		sbio->dev = spage->dev;
1927 1928
		bio = sbio->bio;
		if (!bio) {
1929
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1930 1931 1932 1933
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
1934 1935 1936

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
1937 1938
		bio->bi_bdev = sbio->dev->bdev;
		bio->bi_sector = sbio->physical >> 9;
1939
		sbio->err = 0;
1940 1941 1942
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1943 1944
		   spage->logical ||
		   sbio->dev != spage->dev) {
1945
		scrub_submit(sctx);
A
Arne Jansen 已提交
1946 1947
		goto again;
	}
1948

1949 1950 1951 1952 1953 1954 1955 1956
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
1957
		scrub_submit(sctx);
1958 1959 1960
		goto again;
	}

1961
	scrub_block_get(sblock); /* one for the page added to the bio */
1962 1963
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
1964
	if (sbio->page_count == sctx->pages_per_rd_bio)
1965
		scrub_submit(sctx);
1966 1967 1968 1969

	return 0;
}

1970
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1971
		       u64 physical, struct btrfs_device *dev, u64 flags,
1972 1973
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
1974 1975 1976 1977 1978 1979
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
1980 1981 1982
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
1983
		return -ENOMEM;
A
Arne Jansen 已提交
1984
	}
1985

1986 1987
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
1988
	atomic_set(&sblock->ref_count, 1);
1989
	sblock->sctx = sctx;
1990 1991 1992
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
1993
		struct scrub_page *spage;
1994 1995
		u64 l = min_t(u64, len, PAGE_SIZE);

1996 1997 1998
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
1999 2000 2001
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2002
			scrub_block_put(sblock);
2003 2004
			return -ENOMEM;
		}
2005 2006 2007
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2008
		spage->sblock = sblock;
2009
		spage->dev = dev;
2010 2011 2012 2013
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2014
		spage->physical_for_dev_replace = physical_for_dev_replace;
2015 2016 2017
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2018
			memcpy(spage->csum, csum, sctx->csum_size);
2019 2020 2021 2022
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2023 2024 2025
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2026 2027 2028
		len -= l;
		logical += l;
		physical += l;
2029
		physical_for_dev_replace += l;
2030 2031
	}

2032
	WARN_ON(sblock->page_count == 0);
2033
	for (index = 0; index < sblock->page_count; index++) {
2034
		struct scrub_page *spage = sblock->pagev[index];
2035 2036
		int ret;

2037
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2038 2039
		if (ret) {
			scrub_block_put(sblock);
2040
			return ret;
2041
		}
2042
	}
A
Arne Jansen 已提交
2043

2044
	if (force)
2045
		scrub_submit(sctx);
A
Arne Jansen 已提交
2046

2047 2048
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2049 2050 2051
	return 0;
}

2052 2053 2054
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2055
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

	sbio->err = err;
	sbio->bio = bio;

	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2066
	struct scrub_ctx *sctx = sbio->sctx;
2067 2068
	int i;

2069
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2091 2092 2093 2094
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2095 2096 2097 2098 2099 2100 2101 2102

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2103
	scrub_pending_bio_dec(sctx);
2104 2105 2106 2107
}

static void scrub_block_complete(struct scrub_block *sblock)
{
2108
	if (!sblock->no_io_error_seen) {
2109
		scrub_handle_errored_block(sblock);
2110 2111 2112 2113 2114 2115 2116 2117 2118
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock);
	}
2119 2120
}

2121
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2122 2123 2124
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2125
	unsigned long index;
A
Arne Jansen 已提交
2126 2127
	unsigned long num_sectors;

2128 2129
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2130 2131 2132 2133 2134 2135
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2136
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2137 2138 2139 2140 2141 2142 2143
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2144
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2145
	num_sectors = sum->len / sctx->sectorsize;
2146 2147
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2148 2149 2150
		list_del(&sum->list);
		kfree(sum);
	}
2151
	return 1;
A
Arne Jansen 已提交
2152 2153 2154
}

/* scrub extent tries to collect up to 64 kB for each bio */
2155
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2156
			u64 physical, struct btrfs_device *dev, u64 flags,
2157
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2158 2159 2160
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2161 2162 2163
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2164 2165 2166 2167 2168
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2169
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2170
		WARN_ON(sctx->nodesize != sctx->leafsize);
2171 2172 2173 2174 2175
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2176
	} else {
2177
		blocksize = sctx->sectorsize;
2178
		WARN_ON(1);
2179
	}
A
Arne Jansen 已提交
2180 2181

	while (len) {
2182
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2183 2184 2185 2186
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2187
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2188
			if (have_csum == 0)
2189
				++sctx->stat.no_csum;
2190 2191 2192 2193 2194 2195
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2196
		}
2197
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2198 2199 2200
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2201 2202 2203 2204 2205
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2206
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2207 2208 2209 2210
	}
	return 0;
}

2211
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2212 2213
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2214 2215
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2216 2217
{
	struct btrfs_path *path;
2218
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2219 2220 2221
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2222
	struct blk_plug plug;
A
Arne Jansen 已提交
2223 2224 2225 2226 2227 2228 2229 2230
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2231
	u64 logic_end;
A
Arne Jansen 已提交
2232
	u64 generation;
2233
	int mirror_num;
A
Arne Jansen 已提交
2234 2235 2236 2237
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2238 2239
	u64 increment = map->stripe_len;
	u64 offset;
2240 2241 2242 2243 2244
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
L
Liu Bo 已提交
2245
	int stop_loop;
A
Arne Jansen 已提交
2246

D
David Woodhouse 已提交
2247 2248 2249 2250 2251 2252 2253
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		if (num >= nr_data_stripes(map)) {
			return 0;
		}
	}

A
Arne Jansen 已提交
2254 2255 2256 2257 2258 2259
	nstripes = length;
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2260
		mirror_num = 1;
A
Arne Jansen 已提交
2261 2262 2263 2264
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2265
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2266 2267
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2268
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2269 2270
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2271
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2272 2273
	} else {
		increment = map->stripe_len;
2274
		mirror_num = 1;
A
Arne Jansen 已提交
2275 2276 2277 2278 2279 2280
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2281 2282 2283 2284 2285
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
2286 2287 2288 2289
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
2290 2291 2292
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
2293 2294 2295
	 */
	logical = base + offset;

2296
	wait_event(sctx->list_wait,
2297
		   atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2298 2299 2300 2301 2302 2303 2304 2305
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
	key_end.objectid = base + offset + nstripes * increment;
2306 2307
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
	key_end.offset = base + offset + nstripes * increment;
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

	mutex_lock(&fs_info->scrub_lock);
2324
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2325 2326
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
2327

A
Arne Jansen 已提交
2328
	wake_up(&fs_info->scrub_pause_wait);
A
Arne Jansen 已提交
2329 2330 2331 2332 2333

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
2334
	blk_start_plug(&plug);
A
Arne Jansen 已提交
2335 2336 2337 2338

	/*
	 * now find all extents for each stripe and scrub them
	 */
A
Arne Jansen 已提交
2339 2340
	logical = base + offset;
	physical = map->stripes[num].physical;
L
Liu Bo 已提交
2341
	logic_end = logical + increment * nstripes;
A
Arne Jansen 已提交
2342
	ret = 0;
L
Liu Bo 已提交
2343
	while (logical < logic_end) {
A
Arne Jansen 已提交
2344 2345 2346 2347
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
2348
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
2349 2350 2351 2352 2353 2354 2355 2356
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
2357
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2358
			scrub_submit(sctx);
2359 2360 2361
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
2362
			wait_event(sctx->list_wait,
2363
				   atomic_read(&sctx->bios_in_flight) == 0);
2364
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
A
Arne Jansen 已提交
2365 2366
			atomic_inc(&fs_info->scrubs_paused);
			wake_up(&fs_info->scrub_pause_wait);
2367

A
Arne Jansen 已提交
2368
			mutex_lock(&fs_info->scrub_lock);
2369
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2370 2371
			atomic_dec(&fs_info->scrubs_paused);
			mutex_unlock(&fs_info->scrub_lock);
2372

A
Arne Jansen 已提交
2373 2374 2375 2376 2377
			wake_up(&fs_info->scrub_pause_wait);
		}

		key.objectid = logical;
		key.type = BTRFS_EXTENT_ITEM_KEY;
L
Liu Bo 已提交
2378
		key.offset = (u64)-1;
A
Arne Jansen 已提交
2379 2380 2381 2382

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
2383

2384
		if (ret > 0) {
A
Arne Jansen 已提交
2385 2386 2387 2388
			ret = btrfs_previous_item(root, path, 0,
						  BTRFS_EXTENT_ITEM_KEY);
			if (ret < 0)
				goto out;
2389 2390 2391 2392 2393 2394 2395 2396 2397
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
2398 2399
		}

L
Liu Bo 已提交
2400
		stop_loop = 0;
A
Arne Jansen 已提交
2401
		while (1) {
2402 2403
			u64 bytes;

A
Arne Jansen 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
2413
				stop_loop = 1;
A
Arne Jansen 已提交
2414 2415 2416 2417
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2418 2419 2420 2421 2422 2423
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->leafsize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
2424 2425
				goto next;

L
Liu Bo 已提交
2426 2427 2428
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
2429

L
Liu Bo 已提交
2430 2431 2432 2433 2434 2435
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				printk(KERN_ERR
				       "btrfs scrub: tree block %llu spanning "
				       "stripes, ignored. logical=%llu\n",
2447
				       key.objectid, logical);
A
Arne Jansen 已提交
2448 2449 2450
				goto next;
			}

L
Liu Bo 已提交
2451 2452 2453 2454
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
2455 2456 2457
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
2458 2459 2460
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
2461
			}
L
Liu Bo 已提交
2462
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
2463
			    logical + map->stripe_len) {
L
Liu Bo 已提交
2464 2465
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
2466 2467
			}

L
Liu Bo 已提交
2468
			extent_physical = extent_logical - logical + physical;
2469 2470 2471 2472 2473 2474 2475
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
2476 2477 2478 2479 2480 2481 2482

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

2483 2484 2485
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
2486
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
2487 2488 2489
			if (ret)
				goto out;

2490
			scrub_free_csums(sctx);
L
Liu Bo 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logical += increment;
				physical += map->stripe_len;

				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

				if (logical >= logic_end) {
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
2506 2507 2508
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
2509
		btrfs_release_path(path);
A
Arne Jansen 已提交
2510 2511
		logical += increment;
		physical += map->stripe_len;
2512
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
2513 2514 2515 2516 2517
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
2518
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
2519 2520
		if (stop_loop)
			break;
A
Arne Jansen 已提交
2521
	}
2522
out:
A
Arne Jansen 已提交
2523
	/* push queued extents */
2524
	scrub_submit(sctx);
2525 2526 2527
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
2528

2529
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
2530 2531 2532 2533
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

2534
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2535 2536 2537
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
2538
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
2539 2540
{
	struct btrfs_mapping_tree *map_tree =
2541
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
2542 2543 2544
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2545
	int ret = 0;
A
Arne Jansen 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
2562
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2563
		    map->stripes[i].physical == dev_offset) {
2564
			ret = scrub_stripe(sctx, map, scrub_dev, i,
2565 2566
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
2578
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2579 2580
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
2581 2582 2583
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2584
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
2596
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

2606
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2607 2608 2609 2610 2611 2612
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2613 2614 2615 2616 2617 2618 2619 2620 2621
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
2622 2623 2624 2625 2626 2627

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2628
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2629 2630
			break;

2631
		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (found_key.offset + length <= start) {
			key.offset = found_key.offset + length;
C
Chris Mason 已提交
2645
			btrfs_release_path(path);
A
Arne Jansen 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
			continue;
		}

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
		if (!cache) {
			ret = -ENOENT;
2660
			break;
A
Arne Jansen 已提交
2661
		}
2662 2663 2664
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2665
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);

		mutex_lock(&fs_info->scrub_lock);
2694
		scrub_blocked_if_needed(fs_info);
2695 2696
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
2697

2698 2699
		wake_up(&fs_info->scrub_pause_wait);

A
Arne Jansen 已提交
2700 2701 2702
		btrfs_put_block_group(cache);
		if (ret)
			break;
2703 2704
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2705 2706 2707 2708 2709 2710 2711
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
2712

2713 2714 2715
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;

A
Arne Jansen 已提交
2716
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
2717
		btrfs_release_path(path);
A
Arne Jansen 已提交
2718 2719 2720
	}

	btrfs_free_path(path);
2721 2722 2723 2724 2725 2726

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
2727 2728
}

2729 2730
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2731 2732 2733 2734 2735
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
2736
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2737

2738
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2739 2740
		return -EIO;

A
Arne Jansen 已提交
2741 2742 2743 2744
	gen = root->fs_info->last_trans_committed;

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2745
		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
A
Arne Jansen 已提交
2746 2747
			break;

2748
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2749
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2750
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
2751 2752 2753
		if (ret)
			return ret;
	}
2754
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2755 2756 2757 2758 2759 2760 2761

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2762 2763
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2764
{
2765
	int ret = 0;
A
Arne Jansen 已提交
2766

A
Arne Jansen 已提交
2767
	if (fs_info->scrub_workers_refcnt == 0) {
2768 2769 2770 2771 2772 2773 2774
		if (is_dev_replace)
			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
					&fs_info->generic_worker);
		else
			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
					fs_info->thread_pool_size,
					&fs_info->generic_worker);
A
Arne Jansen 已提交
2775
		fs_info->scrub_workers.idle_thresh = 4;
2776 2777 2778
		ret = btrfs_start_workers(&fs_info->scrub_workers);
		if (ret)
			goto out;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
				   "scrubwrc",
				   fs_info->thread_pool_size,
				   &fs_info->generic_worker);
		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
		ret = btrfs_start_workers(
				&fs_info->scrub_wr_completion_workers);
		if (ret)
			goto out;
		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
				   &fs_info->generic_worker);
		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
		if (ret)
			goto out;
A
Arne Jansen 已提交
2793
	}
A
Arne Jansen 已提交
2794
	++fs_info->scrub_workers_refcnt;
2795 2796
out:
	return ret;
A
Arne Jansen 已提交
2797 2798
}

2799
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2800
{
2801
	if (--fs_info->scrub_workers_refcnt == 0) {
A
Arne Jansen 已提交
2802
		btrfs_stop_workers(&fs_info->scrub_workers);
2803 2804 2805
		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
	}
A
Arne Jansen 已提交
2806 2807 2808
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

2809 2810
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2811
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2812
{
2813
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2814 2815 2816
	int ret;
	struct btrfs_device *dev;

2817
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
2818 2819 2820 2821 2822
		return -EINVAL;

	/*
	 * check some assumptions
	 */
2823
	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2824 2825
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2826 2827
		       fs_info->chunk_root->nodesize,
		       fs_info->chunk_root->leafsize);
2828 2829 2830
		return -EINVAL;
	}

2831
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2832 2833 2834 2835 2836 2837 2838
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2839
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2840 2841 2842
		return -EINVAL;
	}

2843
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2844 2845
		/* not supported for data w/o checksums */
		printk(KERN_ERR
2846 2847
		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
2848 2849 2850
		return -EINVAL;
	}

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
2867

2868 2869
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2870
	if (!dev || (dev->missing && !is_dev_replace)) {
2871
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2872 2873 2874
		return -ENODEV;
	}

2875
	mutex_lock(&fs_info->scrub_lock);
2876
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
2877
		mutex_unlock(&fs_info->scrub_lock);
2878 2879
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
2880 2881
	}

2882 2883 2884 2885 2886
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
2887
		mutex_unlock(&fs_info->scrub_lock);
2888
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2889 2890
		return -EINPROGRESS;
	}
2891
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2892 2893 2894 2895 2896 2897 2898 2899

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

2900
	sctx = scrub_setup_ctx(dev, is_dev_replace);
2901
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
2902
		mutex_unlock(&fs_info->scrub_lock);
2903 2904
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
2905
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
2906
	}
2907 2908
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
2909
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2910

2911 2912 2913 2914 2915
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2916 2917 2918
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

2919
	if (!is_dev_replace) {
2920 2921 2922 2923
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
2924
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2925
		ret = scrub_supers(sctx, dev);
2926
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2927
	}
A
Arne Jansen 已提交
2928 2929

	if (!ret)
2930 2931
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
2932

2933
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2934 2935 2936
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

2937
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2938

A
Arne Jansen 已提交
2939
	if (progress)
2940
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
2941 2942 2943

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
2944
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
2945 2946
	mutex_unlock(&fs_info->scrub_lock);

2947
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
2948 2949 2950 2951

	return ret;
}

2952
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

2969
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
2970 2971 2972 2973 2974 2975 2976
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

2977
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

2998 2999
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3000
{
3001
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3002 3003

	mutex_lock(&fs_info->scrub_lock);
3004 3005
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3006 3007 3008
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3009
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3020

A
Arne Jansen 已提交
3021 3022 3023 3024
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3025
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3026 3027

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3028
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3029
	if (dev)
3030 3031 3032
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3033 3034
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3035
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3036
}
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
	nocow_ctx->work.func = copy_nocow_pages_worker;
3114
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3115 3116 3117 3118 3119 3120
	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
			   &nocow_ctx->work);

	return 0;
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3173
					  record_inode_for_nocow, nocow_ctx);
3174
	if (ret != 0 && ret != -ENOENT) {
3175 3176 3177
		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3178 3179 3180 3181
		not_written = 1;
		goto out;
	}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3200
out:
3201 3202 3203 3204 3205 3206 3207 3208
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

3221 3222
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
3223
{
3224
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3225
	struct btrfs_key key;
3226 3227
	struct inode *inode;
	struct page *page;
3228
	struct btrfs_root *local_root;
3229 3230 3231 3232
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	struct extent_state *cached_state = NULL;
	struct extent_io_tree *io_tree;
3233
	u64 physical_for_dev_replace;
3234 3235
	u64 len = nocow_ctx->len;
	u64 lockstart = offset, lockend = offset + len - 1;
3236
	unsigned long index;
3237
	int srcu_index;
3238 3239
	int ret = 0;
	int err = 0;
3240 3241 3242 3243

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
3244 3245 3246

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

3247
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3248 3249
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3250
		return PTR_ERR(local_root);
3251
	}
3252 3253 3254 3255 3256

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3257
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3258 3259 3260
	if (IS_ERR(inode))
		return PTR_ERR(inode);

3261 3262 3263 3264
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

3265
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > nocow_ctx->logical ||
	    em->block_start + em->block_len < nocow_ctx->logical + len) {
		free_extent_map(em);
		goto out_unlock;
	}
	free_extent_map(em);

3292 3293
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
3294
again:
3295 3296 3297 3298
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
			pr_err("find_or_create_page() failed\n");
			ret = -ENOMEM;
3299
			goto out;
3300 3301 3302 3303 3304 3305 3306
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
3307 3308 3309
			err = extent_read_full_page_nolock(io_tree, page,
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
3310 3311
			if (err) {
				ret = err;
3312 3313
				goto next_page;
			}
3314

3315
			lock_page(page);
3316 3317 3318 3319 3320 3321 3322
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
3323
				unlock_page(page);
3324 3325 3326
				page_cache_release(page);
				goto again;
			}
3327 3328 3329 3330 3331
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
3332 3333 3334 3335
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
3336
next_page:
3337 3338 3339 3340 3341 3342
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

3343 3344 3345 3346
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}
3347 3348 3349 3350
	ret = COPY_COMPLETE;
out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
3351
out:
3352
	mutex_unlock(&inode->i_mutex);
3353
	iput(inode);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
		return -EIO;
	}
3372
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	bio->bi_size = 0;
	bio->bi_sector = physical_for_dev_replace >> 9;
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

3390
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3391 3392 3393 3394 3395
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}