scrub.c 125.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
22
#include "zoned.h"
23
#include "fs.h"
24
#include "accessors.h"
25
#include "file-item.h"
26
#include "scrub.h"
A
Arne Jansen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

41
struct scrub_block;
42
struct scrub_ctx;
A
Arne Jansen 已提交
43

44
/*
45 46
 * The following three values only influence the performance.
 *
47
 * The last one configures the number of parallel and outstanding I/O
48
 * operations. The first one configures an upper limit for the number
49 50
 * of (dynamically allocated) pages that are added to a bio.
 */
51 52
#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
53 54

/*
55
 * The following value times PAGE_SIZE needs to be large enough to match the
56 57
 * largest node/leaf/sector size that shall be supported.
 */
58
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
59

60 61
#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))

62 63 64 65 66 67 68 69 70 71 72
/*
 * Maximum number of mirrors that can be available for all profiles counting
 * the target device of dev-replace as one. During an active device replace
 * procedure, the target device of the copy operation is a mirror for the
 * filesystem data as well that can be used to read data in order to repair
 * read errors on other disks.
 *
 * Current value is derived from RAID1C4 with 4 copies.
 */
#define BTRFS_MAX_MIRRORS (4 + 1)

73
struct scrub_recover {
74
	refcount_t		refs;
75
	struct btrfs_io_context	*bioc;
76 77 78
	u64			map_length;
};

79
struct scrub_sector {
80
	struct scrub_block	*sblock;
81
	struct list_head	list;
A
Arne Jansen 已提交
82 83
	u64			flags;  /* extent flags */
	u64			generation;
84 85
	/* Offset in bytes to @sblock. */
	u32			offset;
86
	atomic_t		refs;
87 88
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98
	struct bio		*bio;
99
	blk_status_t		status;
A
Arne Jansen 已提交
100 101
	u64			logical;
	u64			physical;
102 103
	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
	int			sector_count;
A
Arne Jansen 已提交
104
	int			next_free;
105
	struct work_struct	work;
A
Arne Jansen 已提交
106 107
};

108
struct scrub_block {
109 110 111 112 113
	/*
	 * Each page will have its page::private used to record the logical
	 * bytenr.
	 */
	struct page		*pages[SCRUB_MAX_PAGES];
114
	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
115
	struct btrfs_device	*dev;
116 117
	/* Logical bytenr of the sblock */
	u64			logical;
118 119
	u64			physical;
	u64			physical_for_dev_replace;
120 121
	/* Length of sblock in bytes */
	u32			len;
122
	int			sector_count;
123
	int			mirror_num;
124

125
	atomic_t		outstanding_sectors;
126
	refcount_t		refs; /* free mem on transition to zero */
127
	struct scrub_ctx	*sctx;
128
	struct scrub_parity	*sparity;
129 130 131 132
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
133
		unsigned int	generation_error:1; /* also sets header_error */
134 135 136 137

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
138
	};
139
	struct work_struct	work;
140 141
};

142 143 144 145 146 147 148 149 150 151 152 153
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

154
	u32			stripe_len;
155

156
	refcount_t		refs;
157

158
	struct list_head	sectors_list;
159 160

	/* Work of parity check and repair */
161
	struct work_struct	work;
162 163

	/* Mark the parity blocks which have data */
164
	unsigned long		dbitmap;
165 166 167 168 169

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
170
	unsigned long		ebitmap;
171 172
};

173
struct scrub_ctx {
174
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
175
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
176 177
	int			first_free;
	int			curr;
178 179
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			sectors_per_bio;
186

187 188 189 190
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

191
	int			is_dev_replace;
192
	u64			write_pointer;
193 194 195 196

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
197
	bool                    flush_all_writes;
198

A
Arne Jansen 已提交
199 200 201 202 203
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
204 205 206 207 208 209 210 211

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
212
	refcount_t              refs;
A
Arne Jansen 已提交
213 214
};

215 216 217 218
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
219
	u64			physical;
220 221 222 223
	u64			logical;
	struct btrfs_device	*dev;
};

224 225 226 227 228 229 230
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

231
#ifndef CONFIG_64BIT
232
/* This structure is for architectures whose (void *) is smaller than u64 */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct scrub_page_private {
	u64 logical;
};
#endif

static int attach_scrub_page_private(struct page *page, u64 logical)
{
#ifdef CONFIG_64BIT
	attach_page_private(page, (void *)logical);
	return 0;
#else
	struct scrub_page_private *spp;

	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
	if (!spp)
		return -ENOMEM;
	spp->logical = logical;
	attach_page_private(page, (void *)spp);
	return 0;
#endif
}

static void detach_scrub_page_private(struct page *page)
{
#ifdef CONFIG_64BIT
	detach_page_private(page);
	return;
#else
	struct scrub_page_private *spp;

	spp = detach_page_private(page);
	kfree(spp);
	return;
#endif
}

269 270 271 272 273
static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
					     struct btrfs_device *dev,
					     u64 logical, u64 physical,
					     u64 physical_for_dev_replace,
					     int mirror_num)
274 275 276 277 278 279 280 281
{
	struct scrub_block *sblock;

	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
	if (!sblock)
		return NULL;
	refcount_set(&sblock->refs, 1);
	sblock->sctx = sctx;
282
	sblock->logical = logical;
283 284 285 286
	sblock->physical = physical;
	sblock->physical_for_dev_replace = physical_for_dev_replace;
	sblock->dev = dev;
	sblock->mirror_num = mirror_num;
287
	sblock->no_io_error_seen = 1;
288 289 290 291
	/*
	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
	 * the corresponding page is not allocated.
	 */
292 293 294
	return sblock;
}

295 296 297 298 299 300
/*
 * Allocate a new scrub sector and attach it to @sblock.
 *
 * Will also allocate new pages for @sblock if needed.
 */
static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
301
					       u64 logical)
302
{
303
	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
304 305
	struct scrub_sector *ssector;

306 307 308
	/* We must never have scrub_block exceed U32_MAX in size. */
	ASSERT(logical - sblock->logical < U32_MAX);

309
	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
310 311
	if (!ssector)
		return NULL;
312 313 314 315 316

	/* Allocate a new page if the slot is not allocated */
	if (!sblock->pages[page_index]) {
		int ret;

317
		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
318 319 320 321 322 323 324 325 326 327 328 329
		if (!sblock->pages[page_index]) {
			kfree(ssector);
			return NULL;
		}
		ret = attach_scrub_page_private(sblock->pages[page_index],
				sblock->logical + (page_index << PAGE_SHIFT));
		if (ret < 0) {
			kfree(ssector);
			__free_page(sblock->pages[page_index]);
			sblock->pages[page_index] = NULL;
			return NULL;
		}
330
	}
331

332 333 334 335
	atomic_set(&ssector->refs, 1);
	ssector->sblock = sblock;
	/* The sector to be added should not be used */
	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
336
	ssector->offset = logical - sblock->logical;
337

338 339 340 341 342
	/* The sector count must be smaller than the limit */
	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);

	sblock->sectors[sblock->sector_count] = ssector;
	sblock->sector_count++;
343
	sblock->len += sblock->sctx->fs_info->sectorsize;
344 345 346 347

	return ssector;
}

348 349 350
static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;
351
	pgoff_t index;
352 353 354 355 356 357 358
	/*
	 * When calling this function, ssector must be alreaday attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
359
	ASSERT(ssector->offset < sblock->len);
360

361
	index = ssector->offset >> PAGE_SHIFT;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	ASSERT(index < SCRUB_MAX_PAGES);
	ASSERT(sblock->pages[index]);
	ASSERT(PagePrivate(sblock->pages[index]));
	return sblock->pages[index];
}

static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
{
	struct scrub_block *sblock = ssector->sblock;

	/*
	 * When calling this function, ssector must be already attached to the
	 * parent sblock.
	 */
	ASSERT(sblock);

	/* The range should be inside the sblock range */
379
	ASSERT(ssector->offset < sblock->len);
380

381
	return offset_in_page(ssector->offset);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}

static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
{
	return page_address(scrub_sector_get_page(ssector)) +
	       scrub_sector_get_page_offset(ssector);
}

static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
				unsigned int len)
{
	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
			    scrub_sector_get_page_offset(ssector));
}

397
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
398
				     struct scrub_block *sblocks_for_recheck[]);
399
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
400 401
				struct scrub_block *sblock,
				int retry_failed_mirror);
402
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
403
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
404
					     struct scrub_block *sblock_good);
405
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
406
					    struct scrub_block *sblock_good,
407
					    int sector_num, int force_write);
408
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
409 410
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
					     int sector_num);
411 412 413 414
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
415 416
static void scrub_sector_get(struct scrub_sector *sector);
static void scrub_sector_put(struct scrub_sector *sector);
417 418
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
419 420 421 422
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
			 u64 physical, struct btrfs_device *dev, u64 flags,
			 u64 gen, int mirror_num, u8 *csum,
			 u64 physical_for_dev_replace);
423
static void scrub_bio_end_io(struct bio *bio);
424
static void scrub_bio_end_io_worker(struct work_struct *work);
425
static void scrub_block_complete(struct scrub_block *sblock);
426 427 428 429 430
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num);
431 432
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector);
433
static void scrub_wr_submit(struct scrub_ctx *sctx);
434
static void scrub_wr_bio_end_io(struct bio *bio);
435
static void scrub_wr_bio_end_io_worker(struct work_struct *work);
436
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
437

438
static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
439
{
440 441
	return sector->recover &&
	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
442
}
S
Stefan Behrens 已提交
443

444 445
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
446
	refcount_inc(&sctx->refs);
447 448 449 450 451 452 453
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
454
	scrub_put_ctx(sctx);
455 456
}

457
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
458 459 460 461 462 463 464 465 466
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

467
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
468 469 470
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
471
}
472

473 474
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
475 476 477 478 479 480 481 482
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

483 484 485 486 487 488
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

508
	lockdep_assert_held(&locks_root->lock);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

524 525 526
	/*
	 * Insert new lock.
	 */
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

552
	lockdep_assert_held(&locks_root->lock);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
572
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
573 574 575 576 577 578 579 580 581 582 583 584 585
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
586 587
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
605
	struct btrfs_block_group *bg_cache;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
652
	struct btrfs_block_group *bg_cache;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

706
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
707
{
708
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
709
		struct btrfs_ordered_sum *sum;
710
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
711 712 713 714 715 716
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

717
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
718 719 720
{
	int i;

721
	if (!sctx)
A
Arne Jansen 已提交
722 723
		return;

724
	/* this can happen when scrub is cancelled */
725 726
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
727

728
		for (i = 0; i < sbio->sector_count; i++)
729
			scrub_block_put(sbio->sectors[i]->sblock);
730 731 732
		bio_put(sbio->bio);
	}

733
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
734
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
735 736 737 738 739 740

		if (!sbio)
			break;
		kfree(sbio);
	}

741
	kfree(sctx->wr_curr_bio);
742 743
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
744 745
}

746 747
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
748
	if (refcount_dec_and_test(&sctx->refs))
749 750 751
		scrub_free_ctx(sctx);
}

752 753
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
754
{
755
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
756 757
	int		i;

758
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
759
	if (!sctx)
A
Arne Jansen 已提交
760
		goto nomem;
761
	refcount_set(&sctx->refs, 1);
762
	sctx->is_dev_replace = is_dev_replace;
763
	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
764
	sctx->curr = -1;
765
	sctx->fs_info = fs_info;
766
	INIT_LIST_HEAD(&sctx->csum_list);
767
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
768 769
		struct scrub_bio *sbio;

770
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
771 772
		if (!sbio)
			goto nomem;
773
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
774 775

		sbio->index = i;
776
		sbio->sctx = sctx;
777
		sbio->sector_count = 0;
778
		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
A
Arne Jansen 已提交
779

780
		if (i != SCRUB_BIOS_PER_SCTX - 1)
781
			sctx->bios[i]->next_free = i + 1;
782
		else
783 784 785
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
786 787
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
788 789 790 791 792
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
793
	sctx->throttle_deadline = 0;
794

795 796 797
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
798
	if (is_dev_replace) {
799 800
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
801
		sctx->flush_all_writes = false;
802
	}
803

804
	return sctx;
A
Arne Jansen 已提交
805 806

nomem:
807
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
808 809 810
	return ERR_PTR(-ENOMEM);
}

811 812
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
				     u64 root, void *warn_ctx)
813 814 815 816
{
	u32 nlink;
	int ret;
	int i;
817
	unsigned nofs_flag;
818 819
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
820
	struct scrub_warning *swarn = warn_ctx;
821
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
822 823
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
824
	struct btrfs_key key;
825

D
David Sterba 已提交
826
	local_root = btrfs_get_fs_root(fs_info, root, true);
827 828 829 830 831
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

832 833 834
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
835 836 837 838 839
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
840
	if (ret) {
841
		btrfs_put_root(local_root);
842 843 844 845 846 847 848 849 850 851
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

852 853 854 855 856 857
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
858
	ipath = init_ipath(4096, local_root, swarn->path);
859
	memalloc_nofs_restore(nofs_flag);
860
	if (IS_ERR(ipath)) {
861
		btrfs_put_root(local_root);
862 863 864 865
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
866 867 868 869 870 871 872 873 874 875
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
876
		btrfs_warn_in_rcu(fs_info,
877
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
878
				  swarn->errstr, swarn->logical,
879
				  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
880
				  swarn->physical,
J
Jeff Mahoney 已提交
881
				  root, inum, offset,
882
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
883
				  (char *)(unsigned long)ipath->fspath->val[i]);
884

885
	btrfs_put_root(local_root);
886 887 888 889
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
890
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
891
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
892
			  swarn->errstr, swarn->logical,
893
			  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
894
			  swarn->physical,
J
Jeff Mahoney 已提交
895
			  root, inum, offset, ret);
896 897 898 899 900

	free_ipath(ipath);
	return 0;
}

901
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
902
{
903 904
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
905 906 907 908 909
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
910 911
	unsigned long ptr = 0;
	u64 flags = 0;
912
	u64 ref_root;
913
	u32 item_size;
914
	u8 ref_level = 0;
915
	int ret;
916

917
	WARN_ON(sblock->sector_count < 1);
918
	dev = sblock->dev;
919
	fs_info = sblock->sctx->fs_info;
920

921 922 923
	/* Super block error, no need to search extent tree. */
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
924
			errstr, btrfs_dev_name(dev), sblock->physical);
925 926
		return;
	}
927
	path = btrfs_alloc_path();
928 929
	if (!path)
		return;
930

931 932
	swarn.physical = sblock->physical;
	swarn.logical = sblock->logical;
933
	swarn.errstr = errstr;
934
	swarn.dev = NULL;
935

936 937
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
938 939 940 941 942 943 944
	if (ret < 0)
		goto out;

	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
945
	item_size = btrfs_item_size(eb, path->slots[0]);
946

947
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
948
		do {
949 950 951
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
952
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
953
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
954
				errstr, swarn.logical,
955
				btrfs_dev_name(dev),
D
David Sterba 已提交
956
				swarn.physical,
957 958 959 960
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
961
		btrfs_release_path(path);
962
	} else {
963 964
		struct btrfs_backref_walk_ctx ctx = { 0 };

965
		btrfs_release_path(path);
966 967 968 969 970

		ctx.bytenr = found_key.objectid;
		ctx.extent_item_pos = swarn.logical - found_key.objectid;
		ctx.fs_info = fs_info;

971
		swarn.path = path;
972
		swarn.dev = dev;
973 974

		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
975 976 977 978 979 980
	}

out:
	btrfs_free_path(path);
}

981 982
static inline void scrub_get_recover(struct scrub_recover *recover)
{
983
	refcount_inc(&recover->refs);
984 985
}

986 987
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
988
{
989
	if (refcount_dec_and_test(&recover->refs)) {
990
		btrfs_bio_counter_dec(fs_info);
991
		btrfs_put_bioc(recover->bioc);
992 993 994 995
		kfree(recover);
	}
}

A
Arne Jansen 已提交
996
/*
997
 * scrub_handle_errored_block gets called when either verification of the
998 999
 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all sectors in the bio, even though only one
1000 1001 1002
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1003
 */
1004
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1005
{
1006
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1007
	struct btrfs_device *dev = sblock_to_check->dev;
1008 1009 1010 1011 1012
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
1013 1014
	/* One scrub_block for each mirror */
	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1015 1016 1017
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
1018
	int sector_num;
1019
	int success;
1020
	bool full_stripe_locked;
1021
	unsigned int nofs_flag;
1022
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1023 1024
				      DEFAULT_RATELIMIT_BURST);

1025
	BUG_ON(sblock_to_check->sector_count < 1);
1026
	fs_info = sctx->fs_info;
1027
	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1028
		/*
1029
		 * If we find an error in a super block, we just report it.
1030 1031 1032
		 * They will get written with the next transaction commit
		 * anyway
		 */
1033
		scrub_print_warning("super block error", sblock_to_check);
1034 1035 1036
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1037
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1038 1039
		return 0;
	}
1040 1041 1042
	logical = sblock_to_check->logical;
	ASSERT(sblock_to_check->mirror_num);
	failed_mirror_index = sblock_to_check->mirror_num - 1;
1043
	is_metadata = !(sblock_to_check->sectors[0]->flags &
1044
			BTRFS_EXTENT_FLAG_DATA);
1045
	have_csum = sblock_to_check->sectors[0]->have_csum;
1046

1047 1048
	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
		return 0;
1049

1050 1051 1052 1053 1054 1055
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
1056
	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1057 1058 1059
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
1069
		memalloc_nofs_restore(nofs_flag);
1070 1071 1072 1073 1074 1075 1076 1077 1078
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1079 1080 1081 1082
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
1083
	 * sector by sector this time in order to know which sectors
1084 1085 1086 1087
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
1098 1099 1100
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
1101
	 * Only if this is not possible, the sectors are picked from
1102 1103 1104 1105 1106
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */
1107
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1108 1109 1110 1111 1112 1113
		/*
		 * Note: the two members refs and outstanding_sectors are not
		 * used in the blocks that are used for the recheck procedure.
		 *
		 * But alloc_scrub_block() will initialize sblock::ref anyway,
		 * so we can use scrub_block_put() to clean them up.
1114 1115 1116
		 *
		 * And here we don't setup the physical/dev for the sblock yet,
		 * they will be correctly initialized in scrub_setup_recheck_block().
1117
		 */
1118 1119
		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
							logical, 0, 0, mirror_index);
1120 1121 1122 1123 1124 1125 1126 1127 1128
		if (!sblocks_for_recheck[mirror_index]) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			sctx->stat.read_errors++;
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
			goto out;
		}
A
Arne Jansen 已提交
1129 1130
	}

1131
	/* Setup the context, map the logical blocks and alloc the sectors */
1132
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1133
	if (ret) {
1134 1135 1136 1137
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1138
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1139 1140 1141
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1142
	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1143

1144
	/* build and submit the bios for the failed mirror, check checksums */
1145
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1146

1147 1148 1149
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
1150
		 * The error disappeared after reading sector by sector, or
1151 1152 1153 1154 1155 1156
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1157 1158
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1159
		sblock_to_check->data_corrected = 1;
1160
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1161

1162 1163
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1164
		goto out;
A
Arne Jansen 已提交
1165 1166
	}

1167
	if (!sblock_bad->no_io_error_seen) {
1168 1169 1170
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1171
		if (__ratelimit(&rs))
1172
			scrub_print_warning("i/o error", sblock_to_check);
1173
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1174
	} else if (sblock_bad->checksum_error) {
1175 1176 1177
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1178
		if (__ratelimit(&rs))
1179
			scrub_print_warning("checksum error", sblock_to_check);
1180
		btrfs_dev_stat_inc_and_print(dev,
1181
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1182
	} else if (sblock_bad->header_error) {
1183 1184 1185
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1186
		if (__ratelimit(&rs))
1187 1188
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1189
		if (sblock_bad->generation_error)
1190
			btrfs_dev_stat_inc_and_print(dev,
1191 1192
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1193
			btrfs_dev_stat_inc_and_print(dev,
1194
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1195
	}
A
Arne Jansen 已提交
1196

1197 1198 1199 1200
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1201

1202 1203
	/*
	 * now build and submit the bios for the other mirrors, check
1204 1205
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1206 1207 1208 1209 1210
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
1211
	 * checksum is present, only those sectors are rewritten that had
1212
	 * an I/O error in the block to be repaired, since it cannot be
1213 1214
	 * determined, which copy of the other sectors is better (and it
	 * could happen otherwise that a correct sector would be
1215 1216
	 * overwritten by a bad one).
	 */
1217
	for (mirror_index = 0; ;mirror_index++) {
1218
		struct scrub_block *sblock_other;
1219

1220 1221
		if (mirror_index == failed_mirror_index)
			continue;
1222 1223

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1224
		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1225 1226
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
1227
			if (!sblocks_for_recheck[mirror_index]->sector_count)
1228 1229
				break;

1230
			sblock_other = sblocks_for_recheck[mirror_index];
1231
		} else {
1232
			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1233
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1234 1235 1236

			if (mirror_index >= max_allowed)
				break;
1237
			if (!sblocks_for_recheck[1]->sector_count)
1238 1239 1240
				break;

			ASSERT(failed_mirror_index == 0);
1241
			sblock_other = sblocks_for_recheck[1];
1242
			sblock_other->mirror_num = 1 + mirror_index;
1243
		}
1244 1245

		/* build and submit the bios, check checksums */
1246
		scrub_recheck_block(fs_info, sblock_other, 0);
1247 1248

		if (!sblock_other->header_error &&
1249 1250
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1251 1252
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1253
				goto corrected_error;
1254 1255
			} else {
				ret = scrub_repair_block_from_good_copy(
1256 1257 1258
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1259
			}
1260 1261
		}
	}
A
Arne Jansen 已提交
1262

1263 1264
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1265 1266 1267

	/*
	 * In case of I/O errors in the area that is supposed to be
1268 1269
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1270 1271 1272 1273 1274
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1275
	 * all possible combinations of sectors from the different mirrors
1276
	 * until the checksum verification succeeds. For example, when
1277
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1278
	 * of mirror #2 is readable but the final checksum test fails,
1279
	 * then the 2nd sector of mirror #3 could be tried, whether now
1280
	 * the final checksum succeeds. But this would be a rare
1281 1282 1283 1284
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1285
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1286
	 * mirror could be repaired by taking 512 byte of a different
1287
	 * mirror, even if other 512 byte sectors in the same sectorsize
1288
	 * area are unreadable.
A
Arne Jansen 已提交
1289
	 */
1290
	success = 1;
1291 1292
	for (sector_num = 0; sector_num < sblock_bad->sector_count;
	     sector_num++) {
1293
		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1294
		struct scrub_block *sblock_other = NULL;
1295

1296 1297
		/* Skip no-io-error sectors in scrub */
		if (!sector_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1298
			continue;
1299

1300
		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1301 1302 1303 1304 1305 1306 1307 1308
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1309 1310
		} else if (sector_bad->io_error) {
			/* Try to find no-io-error sector in mirrors */
1311 1312
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
1313
			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1314
			     mirror_index++) {
1315
				if (!sblocks_for_recheck[mirror_index]->
1316
				    sectors[sector_num]->io_error) {
1317
					sblock_other = sblocks_for_recheck[mirror_index];
1318
					break;
1319 1320
				}
			}
1321 1322
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1323
		}
A
Arne Jansen 已提交
1324

1325 1326
		if (sctx->is_dev_replace) {
			/*
1327 1328 1329 1330
			 * Did not find a mirror to fetch the sector from.
			 * scrub_write_sector_to_dev_replace() handles this
			 * case (sector->io_error), by filling the block with
			 * zeros before submitting the write request
1331 1332 1333 1334
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

1335 1336
			if (scrub_write_sector_to_dev_replace(sblock_other,
							      sector_num) != 0) {
1337
				atomic64_inc(
1338
					&fs_info->dev_replace.num_write_errors);
1339 1340 1341
				success = 0;
			}
		} else if (sblock_other) {
1342 1343 1344
			ret = scrub_repair_sector_from_good_copy(sblock_bad,
								 sblock_other,
								 sector_num, 0);
1345
			if (0 == ret)
1346
				sector_bad->io_error = 0;
1347 1348
			else
				success = 0;
1349
		}
A
Arne Jansen 已提交
1350 1351
	}

1352
	if (success && !sctx->is_dev_replace) {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1363
			scrub_recheck_block(fs_info, sblock_bad, 1);
1364
			if (!sblock_bad->header_error &&
1365 1366 1367 1368 1369 1370 1371
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1372 1373
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1374
			sblock_to_check->data_corrected = 1;
1375
			spin_unlock(&sctx->stat_lock);
1376 1377
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1378
				logical, btrfs_dev_name(dev));
A
Arne Jansen 已提交
1379
		}
1380 1381
	} else {
did_not_correct_error:
1382 1383 1384
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1385 1386
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1387
			logical, btrfs_dev_name(dev));
I
Ilya Dryomov 已提交
1388
	}
A
Arne Jansen 已提交
1389

1390
out:
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
		struct scrub_recover *recover;
		int sector_index;

		/* Not allocated, continue checking the next mirror */
		if (!sblock)
			continue;

		for (sector_index = 0; sector_index < sblock->sector_count;
		     sector_index++) {
			/*
			 * Here we just cleanup the recover, each sector will be
			 * properly cleaned up by later scrub_block_put()
			 */
			recover = sblock->sectors[sector_index]->recover;
			if (recover) {
				scrub_put_recover(fs_info, recover);
				sblock->sectors[sector_index]->recover = NULL;
1410
			}
1411
		}
1412
		scrub_block_put(sblock);
1413
	}
A
Arne Jansen 已提交
1414

1415
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1416
	memalloc_nofs_restore(nofs_flag);
1417 1418
	if (ret < 0)
		return ret;
1419 1420
	return 0;
}
A
Arne Jansen 已提交
1421

1422
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1423
{
1424
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1425
		return 2;
1426
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1427 1428
		return 3;
	else
1429
		return (int)bioc->num_stripes;
1430 1431
}

Z
Zhao Lei 已提交
1432 1433
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1434 1435 1436 1437 1438 1439
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1440
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1441 1442 1443 1444 1445 1446 1447
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
1448
			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1461
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1462
				     struct scrub_block *sblocks_for_recheck[])
1463
{
1464
	struct scrub_ctx *sctx = original_sblock->sctx;
1465
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1466
	u64 logical = original_sblock->logical;
1467 1468 1469 1470
	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
	u64 generation = original_sblock->sectors[0]->generation;
	u64 flags = original_sblock->sectors[0]->flags;
	u64 have_csum = original_sblock->sectors[0]->have_csum;
1471
	struct scrub_recover *recover;
1472
	struct btrfs_io_context *bioc;
1473 1474 1475 1476
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1477
	int sector_index = 0;
1478
	int mirror_index;
1479
	int nmirrors;
1480 1481 1482
	int ret;

	while (length > 0) {
1483
		sublen = min_t(u64, length, fs_info->sectorsize);
1484
		mapped_length = sublen;
1485
		bioc = NULL;
A
Arne Jansen 已提交
1486

1487
		/*
1488 1489
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1490
		 */
1491
		btrfs_bio_counter_inc_blocked(fs_info);
1492
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1493 1494 1495
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1496
			btrfs_bio_counter_dec(fs_info);
1497 1498
			return -EIO;
		}
A
Arne Jansen 已提交
1499

1500
		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1501
		if (!recover) {
1502
			btrfs_put_bioc(bioc);
1503
			btrfs_bio_counter_dec(fs_info);
1504 1505 1506
			return -ENOMEM;
		}

1507
		refcount_set(&recover->refs, 1);
1508
		recover->bioc = bioc;
1509 1510
		recover->map_length = mapped_length;

1511
		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1512

1513
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1514

1515
		for (mirror_index = 0; mirror_index < nmirrors;
1516 1517
		     mirror_index++) {
			struct scrub_block *sblock;
1518
			struct scrub_sector *sector;
1519

1520
			sblock = sblocks_for_recheck[mirror_index];
1521
			sblock->sctx = sctx;
1522

1523
			sector = alloc_scrub_sector(sblock, logical);
1524
			if (!sector) {
1525 1526 1527
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1528
				scrub_put_recover(fs_info, recover);
1529 1530
				return -ENOMEM;
			}
1531 1532 1533
			sector->flags = flags;
			sector->generation = generation;
			sector->have_csum = have_csum;
1534
			if (have_csum)
1535
				memcpy(sector->csum,
1536
				       original_sblock->sectors[0]->csum,
1537
				       sctx->fs_info->csum_size);
1538

Z
Zhao Lei 已提交
1539
			scrub_stripe_index_and_offset(logical,
1540 1541 1542 1543
						      bioc->map_type,
						      bioc->raid_map,
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1544 1545 1546
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
			/*
			 * We're at the first sector, also populate @sblock
			 * physical and dev.
			 */
			if (sector_index == 0) {
				sblock->physical =
					bioc->stripes[stripe_index].physical +
					stripe_offset;
				sblock->dev = bioc->stripes[stripe_index].dev;
				sblock->physical_for_dev_replace =
					original_sblock->physical_for_dev_replace;
			}
1559

1560
			BUG_ON(sector_index >= original_sblock->sector_count);
1561
			scrub_get_recover(recover);
1562
			sector->recover = recover;
1563
		}
1564
		scrub_put_recover(fs_info, recover);
1565 1566
		length -= sublen;
		logical += sublen;
1567
		sector_index++;
1568 1569 1570
	}

	return 0;
I
Ilya Dryomov 已提交
1571 1572
}

1573
static void scrub_bio_wait_endio(struct bio *bio)
1574
{
1575
	complete(bio->bi_private);
1576 1577 1578 1579
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1580
					struct scrub_sector *sector)
1581
{
1582
	DECLARE_COMPLETION_ONSTACK(done);
1583

1584 1585
	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
				 SECTOR_SHIFT;
1586 1587
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;
1588
	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1589

1590 1591
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1592 1593
}

L
Liu Bo 已提交
1594 1595 1596
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
1597
	struct scrub_sector *first_sector = sblock->sectors[0];
L
Liu Bo 已提交
1598
	struct bio *bio;
1599
	int i;
L
Liu Bo 已提交
1600

1601
	/* All sectors in sblock belong to the same stripe on the same device. */
1602 1603
	ASSERT(sblock->dev);
	if (!sblock->dev->bdev)
L
Liu Bo 已提交
1604 1605
		goto out;

1606
	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
L
Liu Bo 已提交
1607

1608
	for (i = 0; i < sblock->sector_count; i++) {
1609
		struct scrub_sector *sector = sblock->sectors[i];
L
Liu Bo 已提交
1610

1611
		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
L
Liu Bo 已提交
1612 1613
	}

1614
	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
L
Liu Bo 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
1625 1626
	for (i = 0; i < sblock->sector_count; i++)
		sblock->sectors[i]->io_error = 1;
L
Liu Bo 已提交
1627 1628 1629 1630

	sblock->no_io_error_seen = 0;
}

1631
/*
1632 1633 1634 1635 1636
 * This function will check the on disk data for checksum errors, header errors
 * and read I/O errors. If any I/O errors happen, the exact sectors which are
 * errored are marked as being bad. The goal is to enable scrub to take those
 * sectors that are not errored from all the mirrors so that the sectors that
 * are errored in the just handled mirror can be repaired.
1637
 */
1638
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1639 1640
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1641
{
1642
	int i;
I
Ilya Dryomov 已提交
1643

1644
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1645

L
Liu Bo 已提交
1646
	/* short cut for raid56 */
1647
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
L
Liu Bo 已提交
1648 1649
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1650
	for (i = 0; i < sblock->sector_count; i++) {
1651
		struct scrub_sector *sector = sblock->sectors[i];
1652 1653
		struct bio bio;
		struct bio_vec bvec;
1654

1655
		if (sblock->dev->bdev == NULL) {
1656
			sector->io_error = 1;
1657 1658 1659 1660
			sblock->no_io_error_seen = 0;
			continue;
		}

1661
		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1662
		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1663 1664
		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
					SECTOR_SHIFT;
1665

1666 1667
		btrfsic_check_bio(&bio);
		if (submit_bio_wait(&bio)) {
1668
			sector->io_error = 1;
L
Liu Bo 已提交
1669
			sblock->no_io_error_seen = 0;
1670
		}
1671

1672
		bio_uninit(&bio);
1673
	}
I
Ilya Dryomov 已提交
1674

1675
	if (sblock->no_io_error_seen)
1676
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1677 1678
}

1679
static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
M
Miao Xie 已提交
1680
{
1681
	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
M
Miao Xie 已提交
1682 1683
	int ret;

1684
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1685 1686 1687
	return !ret;
}

1688
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1689
{
1690 1691 1692
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1693

1694
	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1695 1696 1697
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1698 1699
}

1700
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1701
					     struct scrub_block *sblock_good)
1702
{
1703
	int i;
1704
	int ret = 0;
I
Ilya Dryomov 已提交
1705

1706
	for (i = 0; i < sblock_bad->sector_count; i++) {
1707
		int ret_sub;
I
Ilya Dryomov 已提交
1708

1709 1710
		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
							     sblock_good, i, 1);
1711 1712
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1713
	}
1714 1715 1716 1717

	return ret;
}

1718 1719 1720
static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
					      struct scrub_block *sblock_good,
					      int sector_num, int force_write)
1721
{
1722 1723
	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1724
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1725
	const u32 sectorsize = fs_info->sectorsize;
1726 1727

	if (force_write || sblock_bad->header_error ||
1728
	    sblock_bad->checksum_error || sector_bad->io_error) {
1729 1730
		struct bio bio;
		struct bio_vec bvec;
1731 1732
		int ret;

1733
		if (!sblock_bad->dev->bdev) {
1734
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1735
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1736 1737 1738
			return -EIO;
		}

1739 1740 1741
		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
		bio.bi_iter.bi_sector = (sblock_bad->physical +
					 sector_bad->offset) >> SECTOR_SHIFT;
1742
		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1743

1744 1745 1746
		btrfsic_check_bio(&bio);
		ret = submit_bio_wait(&bio);
		bio_uninit(&bio);
1747

1748
		if (ret) {
1749
			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1750
				BTRFS_DEV_STAT_WRITE_ERRS);
1751
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1752 1753
			return -EIO;
		}
A
Arne Jansen 已提交
1754 1755
	}

1756 1757 1758
	return 0;
}

1759 1760
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1761
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1762
	int i;
1763

1764 1765 1766 1767 1768 1769 1770
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1771
	for (i = 0; i < sblock->sector_count; i++) {
1772 1773
		int ret;

1774
		ret = scrub_write_sector_to_dev_replace(sblock, i);
1775
		if (ret)
1776
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1777 1778 1779
	}
}

1780
static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1781
{
1782
	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1783
	struct scrub_sector *sector = sblock->sectors[sector_num];
1784

1785
	if (sector->io_error)
1786
		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1787

1788
	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1789 1790
}

1791 1792 1793 1794 1795 1796 1797 1798
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1799 1800 1801
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1813 1814 1815 1816 1817
static void scrub_block_get(struct scrub_block *sblock)
{
	refcount_inc(&sblock->refs);
}

1818 1819
static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
1820
{
1821
	struct scrub_block *sblock = sector->sblock;
1822 1823
	struct scrub_bio *sbio;
	int ret;
1824
	const u32 sectorsize = sctx->fs_info->sectorsize;
1825

1826
	mutex_lock(&sctx->wr_lock);
1827
again:
1828 1829
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1830
					      GFP_KERNEL);
1831 1832
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1833 1834
			return -ENOMEM;
		}
1835
		sctx->wr_curr_bio->sctx = sctx;
1836
		sctx->wr_curr_bio->sector_count = 0;
1837
	}
1838
	sbio = sctx->wr_curr_bio;
1839
	if (sbio->sector_count == 0) {
1840 1841
		ret = fill_writer_pointer_gap(sctx, sector->offset +
					      sblock->physical_for_dev_replace);
1842 1843 1844 1845 1846
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1847 1848
		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
1849
		sbio->dev = sctx->wr_tgtdev;
1850 1851 1852
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_WRITE, GFP_NOFS);
1853
		}
1854 1855 1856
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1857
		sbio->status = 0;
1858
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1859
		   sblock->physical_for_dev_replace + sector->offset ||
1860
		   sbio->logical + sbio->sector_count * sectorsize !=
1861
		   sblock->logical + sector->offset) {
1862 1863 1864 1865
		scrub_wr_submit(sctx);
		goto again;
	}

1866
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1867
	if (ret != sectorsize) {
1868
		if (sbio->sector_count < 1) {
1869 1870
			bio_put(sbio->bio);
			sbio->bio = NULL;
1871
			mutex_unlock(&sctx->wr_lock);
1872 1873 1874 1875 1876 1877
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

1878
	sbio->sectors[sbio->sector_count] = sector;
1879
	scrub_sector_get(sector);
1880 1881 1882 1883 1884 1885 1886
	/*
	 * Since ssector no longer holds a page, but uses sblock::pages, we
	 * have to ensure the sblock had not been freed before our write bio
	 * finished.
	 */
	scrub_block_get(sector->sblock);

1887 1888
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
1889
		scrub_wr_submit(sctx);
1890
	mutex_unlock(&sctx->wr_lock);
1891 1892 1893 1894 1895 1896 1897 1898

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1899
	if (!sctx->wr_curr_bio)
1900 1901
		return;

1902 1903
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1904 1905 1906 1907 1908
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1909 1910
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
1911 1912

	if (btrfs_is_zoned(sctx->fs_info))
1913
		sctx->write_pointer = sbio->physical + sbio->sector_count *
1914
			sctx->fs_info->sectorsize;
1915 1916
}

1917
static void scrub_wr_bio_end_io(struct bio *bio)
1918 1919
{
	struct scrub_bio *sbio = bio->bi_private;
1920
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1921

1922
	sbio->status = bio->bi_status;
1923 1924
	sbio->bio = bio;

1925 1926
	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1927 1928
}

1929
static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1930 1931 1932 1933 1934
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

1935
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1936
	if (sbio->status) {
1937
		struct btrfs_dev_replace *dev_replace =
1938
			&sbio->sctx->fs_info->dev_replace;
1939

1940 1941
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
1942

1943
			sector->io_error = 1;
1944
			atomic64_inc(&dev_replace->num_write_errors);
1945 1946 1947
		}
	}

1948 1949 1950 1951 1952 1953
	/*
	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
	 * endio we should put the sblock.
	 */
	for (i = 0; i < sbio->sector_count; i++) {
		scrub_block_put(sbio->sectors[i]->sblock);
1954
		scrub_sector_put(sbio->sectors[i]);
1955
	}
1956 1957 1958 1959 1960 1961 1962

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1963 1964 1965 1966
{
	u64 flags;
	int ret;

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1979 1980
	WARN_ON(sblock->sector_count < 1);
	flags = sblock->sectors[0]->flags;
1981 1982 1983 1984 1985 1986
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1987
		ret = scrub_checksum_super(sblock);
1988 1989 1990 1991
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1992 1993

	return ret;
A
Arne Jansen 已提交
1994 1995
}

1996
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1997
{
1998
	struct scrub_ctx *sctx = sblock->sctx;
1999 2000
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
2001
	u8 csum[BTRFS_CSUM_SIZE];
2002
	struct scrub_sector *sector;
2003
	char *kaddr;
A
Arne Jansen 已提交
2004

2005
	BUG_ON(sblock->sector_count < 1);
2006 2007
	sector = sblock->sectors[0];
	if (!sector->have_csum)
A
Arne Jansen 已提交
2008 2009
		return 0;

2010
	kaddr = scrub_sector_get_kaddr(sector);
2011

2012 2013
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
2014

2015
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
2016

2017
	if (memcmp(csum, sector->csum, fs_info->csum_size))
2018
		sblock->checksum_error = 1;
2019
	return sblock->checksum_error;
A
Arne Jansen 已提交
2020 2021
}

2022
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2023
{
2024
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2025
	struct btrfs_header *h;
2026
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2027
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2028 2029
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2030 2031 2032 2033 2034 2035 2036
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2037
	int i;
2038
	struct scrub_sector *sector;
2039
	char *kaddr;
2040

2041
	BUG_ON(sblock->sector_count < 1);
2042

2043
	/* Each member in sectors is just one sector */
2044
	ASSERT(sblock->sector_count == num_sectors);
2045

2046
	sector = sblock->sectors[0];
2047
	kaddr = scrub_sector_get_kaddr(sector);
2048
	h = (struct btrfs_header *)kaddr;
2049
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
2050 2051 2052 2053 2054 2055

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2056
	if (sblock->logical != btrfs_stack_header_bytenr(h)) {
2057
		sblock->header_error = 1;
2058 2059 2060 2061 2062 2063
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_bytenr(h),
			      sblock->logical);
		goto out;
2064
	}
A
Arne Jansen 已提交
2065

2066
	if (!scrub_check_fsid(h->fsid, sector)) {
2067
		sblock->header_error = 1;
2068 2069 2070 2071 2072 2073
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->fsid, sblock->dev->fs_devices->fsid);
		goto out;
	}
A
Arne Jansen 已提交
2074

2075
	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) {
2076
		sblock->header_error = 1;
2077 2078 2079 2080 2081 2082
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      sblock->logical, sblock->mirror_num,
			      h->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		goto out;
	}
A
Arne Jansen 已提交
2083

2084 2085 2086
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2087
			    sectorsize - BTRFS_CSUM_SIZE);
2088

2089
	for (i = 1; i < num_sectors; i++) {
2090
		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2091
		crypto_shash_update(shash, kaddr, sectorsize);
2092 2093
	}

2094
	crypto_shash_final(shash, calculated_csum);
2095
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) {
2096
		sblock->checksum_error = 1;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      sblock->logical, sblock->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		goto out;
	}

	if (sector->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      sblock->logical, sblock->mirror_num,
			      btrfs_stack_header_generation(h),
			      sector->generation);
	}
A
Arne Jansen 已提交
2114

2115
out:
2116
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2117 2118
}

2119
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2120 2121
{
	struct btrfs_super_block *s;
2122
	struct scrub_ctx *sctx = sblock->sctx;
2123 2124
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2125
	u8 calculated_csum[BTRFS_CSUM_SIZE];
2126
	struct scrub_sector *sector;
2127
	char *kaddr;
2128 2129
	int fail_gen = 0;
	int fail_cor = 0;
2130

2131
	BUG_ON(sblock->sector_count < 1);
2132
	sector = sblock->sectors[0];
2133
	kaddr = scrub_sector_get_kaddr(sector);
2134
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
2135

2136
	if (sblock->logical != btrfs_super_bytenr(s))
2137
		++fail_cor;
A
Arne Jansen 已提交
2138

2139
	if (sector->generation != btrfs_super_generation(s))
2140
		++fail_gen;
A
Arne Jansen 已提交
2141

2142
	if (!scrub_check_fsid(s->fsid, sector))
2143
		++fail_cor;
A
Arne Jansen 已提交
2144

2145 2146 2147 2148
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2149

2150
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2151
		++fail_cor;
A
Arne Jansen 已提交
2152

2153
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2154 2155
}

2156 2157
static void scrub_block_put(struct scrub_block *sblock)
{
2158
	if (refcount_dec_and_test(&sblock->refs)) {
2159 2160
		int i;

2161 2162 2163
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2164
		for (i = 0; i < sblock->sector_count; i++)
2165
			scrub_sector_put(sblock->sectors[i]);
2166 2167 2168 2169 2170 2171
		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
			if (sblock->pages[i]) {
				detach_scrub_page_private(sblock->pages[i]);
				__free_page(sblock->pages[i]);
			}
		}
2172 2173 2174 2175
		kfree(sblock);
	}
}

2176
static void scrub_sector_get(struct scrub_sector *sector)
2177
{
2178
	atomic_inc(&sector->refs);
2179 2180
}

2181
static void scrub_sector_put(struct scrub_sector *sector)
2182
{
2183
	if (atomic_dec_and_test(&sector->refs))
2184
		kfree(sector);
2185 2186
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2246
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2247 2248 2249
{
	struct scrub_bio *sbio;

2250
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2251
		return;
A
Arne Jansen 已提交
2252

2253 2254
	scrub_throttle(sctx);

2255 2256
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2257
	scrub_pending_bio_inc(sctx);
2258 2259
	btrfsic_check_bio(sbio->bio);
	submit_bio(sbio->bio);
A
Arne Jansen 已提交
2260 2261
}

2262 2263
static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
				      struct scrub_sector *sector)
A
Arne Jansen 已提交
2264
{
2265
	struct scrub_block *sblock = sector->sblock;
A
Arne Jansen 已提交
2266
	struct scrub_bio *sbio;
2267
	const u32 sectorsize = sctx->fs_info->sectorsize;
2268
	int ret;
A
Arne Jansen 已提交
2269 2270 2271 2272 2273

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2274 2275 2276 2277 2278 2279
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
2280
			sctx->bios[sctx->curr]->sector_count = 0;
2281
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2282
		} else {
2283 2284
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2285 2286
		}
	}
2287
	sbio = sctx->bios[sctx->curr];
2288
	if (sbio->sector_count == 0) {
2289 2290 2291
		sbio->physical = sblock->physical + sector->offset;
		sbio->logical = sblock->logical + sector->offset;
		sbio->dev = sblock->dev;
2292 2293 2294
		if (!sbio->bio) {
			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
					      REQ_OP_READ, GFP_NOFS);
2295
		}
2296 2297 2298
		sbio->bio->bi_private = sbio;
		sbio->bio->bi_end_io = scrub_bio_end_io;
		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2299
		sbio->status = 0;
2300
	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2301
		   sblock->physical + sector->offset ||
2302
		   sbio->logical + sbio->sector_count * sectorsize !=
2303 2304
		   sblock->logical + sector->offset ||
		   sbio->dev != sblock->dev) {
2305
		scrub_submit(sctx);
A
Arne Jansen 已提交
2306 2307
		goto again;
	}
2308

2309
	sbio->sectors[sbio->sector_count] = sector;
2310
	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2311
	if (ret != sectorsize) {
2312
		if (sbio->sector_count < 1) {
2313 2314 2315 2316
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2317
		scrub_submit(sctx);
2318 2319 2320
		goto again;
	}

2321
	scrub_block_get(sblock); /* one for the page added to the bio */
2322
	atomic_inc(&sblock->outstanding_sectors);
2323 2324
	sbio->sector_count++;
	if (sbio->sector_count == sctx->sectors_per_bio)
2325
		scrub_submit(sctx);
2326 2327 2328 2329

	return 0;
}

2330
static void scrub_missing_raid56_end_io(struct bio *bio)
2331 2332
{
	struct scrub_block *sblock = bio->bi_private;
2333
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2334

2335
	btrfs_bio_counter_dec(fs_info);
2336
	if (bio->bi_status)
2337 2338
		sblock->no_io_error_seen = 0;

2339 2340
	bio_put(bio);

2341
	queue_work(fs_info->scrub_workers, &sblock->work);
2342 2343
}

2344
static void scrub_missing_raid56_worker(struct work_struct *work)
2345 2346 2347
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2348
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2349 2350 2351
	u64 logical;
	struct btrfs_device *dev;

2352 2353
	logical = sblock->logical;
	dev = sblock->dev;
2354

2355
	if (sblock->no_io_error_seen)
2356
		scrub_recheck_block_checksum(sblock);
2357 2358 2359 2360 2361

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2362
		btrfs_err_rl_in_rcu(fs_info,
2363
			"IO error rebuilding logical %llu for dev %s",
2364
			logical, btrfs_dev_name(dev));
2365 2366 2367 2368
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2369
		btrfs_err_rl_in_rcu(fs_info,
2370
			"failed to rebuild valid logical %llu for dev %s",
2371
			logical, btrfs_dev_name(dev));
2372 2373 2374 2375
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2376
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2377
		mutex_lock(&sctx->wr_lock);
2378
		scrub_wr_submit(sctx);
2379
		mutex_unlock(&sctx->wr_lock);
2380 2381
	}

2382
	scrub_block_put(sblock);
2383 2384 2385 2386 2387 2388
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2389
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2390
	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2391
	u64 logical = sblock->logical;
2392
	struct btrfs_io_context *bioc = NULL;
2393 2394 2395 2396 2397
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2398
	btrfs_bio_counter_inc_blocked(fs_info);
2399
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2400 2401 2402
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2403 2404

	if (WARN_ON(!sctx->is_dev_replace ||
2405
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2406 2407 2408 2409
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
2410
		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2411
		 */
2412
		goto bioc_out;
2413 2414
	}

2415
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2416 2417 2418 2419
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2420
	rbio = raid56_alloc_missing_rbio(bio, bioc);
2421 2422 2423
	if (!rbio)
		goto rbio_out;

2424
	for (i = 0; i < sblock->sector_count; i++) {
2425
		struct scrub_sector *sector = sblock->sectors[i];
2426

2427 2428
		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
				       scrub_sector_get_page_offset(sector),
2429
				       sector->offset + sector->sblock->logical);
2430 2431
	}

2432
	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2433 2434 2435
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
2436
	btrfs_put_bioc(bioc);
2437 2438 2439 2440
	return;

rbio_out:
	bio_put(bio);
2441
bioc_out:
2442
	btrfs_bio_counter_dec(fs_info);
2443
	btrfs_put_bioc(bioc);
2444 2445 2446 2447 2448
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2449
static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2450
		       u64 physical, struct btrfs_device *dev, u64 flags,
2451
		       u64 gen, int mirror_num, u8 *csum,
2452
		       u64 physical_for_dev_replace)
2453 2454
{
	struct scrub_block *sblock;
2455
	const u32 sectorsize = sctx->fs_info->sectorsize;
2456 2457
	int index;

2458 2459
	sblock = alloc_scrub_block(sctx, dev, logical, physical,
				   physical_for_dev_replace, mirror_num);
2460
	if (!sblock) {
2461 2462 2463
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2464
		return -ENOMEM;
A
Arne Jansen 已提交
2465
	}
2466 2467

	for (index = 0; len > 0; index++) {
2468
		struct scrub_sector *sector;
2469 2470 2471 2472 2473 2474
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2475

2476
		sector = alloc_scrub_sector(sblock, logical);
2477
		if (!sector) {
2478 2479 2480
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2481
			scrub_block_put(sblock);
2482 2483
			return -ENOMEM;
		}
2484 2485
		sector->flags = flags;
		sector->generation = gen;
2486
		if (csum) {
2487 2488
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2489
		} else {
2490
			sector->have_csum = 0;
2491 2492 2493 2494
		}
		len -= l;
		logical += l;
		physical += l;
2495
		physical_for_dev_replace += l;
2496 2497
	}

2498
	WARN_ON(sblock->sector_count == 0);
2499
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2500 2501 2502 2503 2504 2505
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
2506
		for (index = 0; index < sblock->sector_count; index++) {
2507
			struct scrub_sector *sector = sblock->sectors[index];
2508
			int ret;
2509

2510
			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2511 2512 2513 2514
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2515
		}
A
Arne Jansen 已提交
2516

2517
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2518 2519
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2520

2521 2522
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2523 2524 2525
	return 0;
}

2526
static void scrub_bio_end_io(struct bio *bio)
2527 2528
{
	struct scrub_bio *sbio = bio->bi_private;
2529
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2530

2531
	sbio->status = bio->bi_status;
2532 2533
	sbio->bio = bio;

2534
	queue_work(fs_info->scrub_workers, &sbio->work);
2535 2536
}

2537
static void scrub_bio_end_io_worker(struct work_struct *work)
2538 2539
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2540
	struct scrub_ctx *sctx = sbio->sctx;
2541 2542
	int i;

2543
	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2544
	if (sbio->status) {
2545 2546
		for (i = 0; i < sbio->sector_count; i++) {
			struct scrub_sector *sector = sbio->sectors[i];
2547

2548 2549
			sector->io_error = 1;
			sector->sblock->no_io_error_seen = 0;
2550 2551 2552
		}
	}

2553
	/* Now complete the scrub_block items that have all pages completed */
2554 2555
	for (i = 0; i < sbio->sector_count; i++) {
		struct scrub_sector *sector = sbio->sectors[i];
2556
		struct scrub_block *sblock = sector->sblock;
2557

2558
		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2559 2560 2561 2562 2563 2564
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2565 2566 2567 2568
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2569

2570
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2571
		mutex_lock(&sctx->wr_lock);
2572
		scrub_wr_submit(sctx);
2573
		mutex_unlock(&sctx->wr_lock);
2574 2575
	}

2576
	scrub_pending_bio_dec(sctx);
2577 2578
}

2579 2580
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2581
				       u64 start, u32 len)
2582
{
2583
	u64 offset;
2584
	u32 nsectors;
2585
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2586 2587 2588 2589 2590 2591 2592

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2593
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2594
	offset = offset >> sectorsize_bits;
2595
	nsectors = len >> sectorsize_bits;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2607
						   u64 start, u32 len)
2608
{
2609
	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2610 2611 2612
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2613
						  u64 start, u32 len)
2614
{
2615
	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2616 2617
}

2618 2619
static void scrub_block_complete(struct scrub_block *sblock)
{
2620 2621
	int corrupted = 0;

2622
	if (!sblock->no_io_error_seen) {
2623
		corrupted = 1;
2624
		scrub_handle_errored_block(sblock);
2625 2626 2627 2628 2629 2630
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2631 2632
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2633 2634
			scrub_write_block_to_dev_replace(sblock);
	}
2635 2636

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2637 2638 2639
		u64 start = sblock->logical;
		u64 end = sblock->logical +
			  sblock->sectors[sblock->sector_count - 1]->offset +
2640
			  sblock->sctx->fs_info->sectorsize;
2641

2642
		ASSERT(end - start <= U32_MAX);
2643 2644 2645
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2646 2647
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2660
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2661 2662 2663 2664 2665
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2666
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2667
{
2668
	bool found = false;
A
Arne Jansen 已提交
2669

2670
	while (!list_empty(&sctx->csum_list)) {
2671 2672 2673 2674
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2675
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2676
				       struct btrfs_ordered_sum, list);
2677
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2678 2679 2680
		if (sum->bytenr > logical)
			break;

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2691

2692 2693 2694 2695
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2696

2697 2698 2699 2700 2701 2702 2703
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2704
	}
2705 2706
	if (!found)
		return 0;
2707
	return 1;
A
Arne Jansen 已提交
2708 2709 2710
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2711
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2712
			u64 logical, u32 len,
2713
			u64 physical, struct btrfs_device *dev, u64 flags,
2714
			u64 gen, int mirror_num)
A
Arne Jansen 已提交
2715
{
2716 2717 2718
	struct btrfs_device *src_dev = dev;
	u64 src_physical = physical;
	int src_mirror = mirror_num;
A
Arne Jansen 已提交
2719 2720
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2721 2722 2723
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2724
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2725
			blocksize = BTRFS_STRIPE_LEN;
L
Liu Bo 已提交
2726
		else
2727
			blocksize = sctx->fs_info->sectorsize;
2728 2729 2730 2731
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2732
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2733
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2734
			blocksize = BTRFS_STRIPE_LEN;
L
Liu Bo 已提交
2735 2736
		else
			blocksize = sctx->fs_info->nodesize;
2737 2738 2739 2740
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2741
	} else {
2742
		blocksize = sctx->fs_info->sectorsize;
2743
		WARN_ON(1);
2744
	}
A
Arne Jansen 已提交
2745

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	/*
	 * For dev-replace case, we can have @dev being a missing device.
	 * Regular scrub will avoid its execution on missing device at all,
	 * as that would trigger tons of read error.
	 *
	 * Reading from missing device will cause read error counts to
	 * increase unnecessarily.
	 * So here we change the read source to a good mirror.
	 */
	if (sctx->is_dev_replace && !dev->bdev)
		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
				     &src_dev, &src_mirror);
A
Arne Jansen 已提交
2758
	while (len) {
2759
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2760 2761 2762 2763
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2764
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2765
			if (have_csum == 0)
2766
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2767
		}
2768 2769 2770
		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
				    flags, gen, src_mirror,
				    have_csum ? csum : NULL, physical);
A
Arne Jansen 已提交
2771 2772 2773 2774 2775
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2776
		src_physical += l;
A
Arne Jansen 已提交
2777 2778 2779 2780
	}
	return 0;
}

2781
static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2782
				  u64 logical, u32 len,
2783 2784 2785 2786 2787
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2788
	const u32 sectorsize = sctx->fs_info->sectorsize;
2789 2790
	int index;

2791 2792
	ASSERT(IS_ALIGNED(len, sectorsize));

2793
	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
2805
		struct scrub_sector *sector;
2806

2807
		sector = alloc_scrub_sector(sblock, logical);
2808
		if (!sector) {
2809 2810 2811 2812 2813 2814
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2815
		sblock->sectors[index] = sector;
2816
		/* For scrub parity */
2817 2818 2819 2820
		scrub_sector_get(sector);
		list_add_tail(&sector->list, &sparity->sectors_list);
		sector->flags = flags;
		sector->generation = gen;
2821
		if (csum) {
2822 2823
			sector->have_csum = 1;
			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2824
		} else {
2825
			sector->have_csum = 0;
2826
		}
2827 2828 2829 2830 2831

		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2832 2833
	}

2834 2835
	WARN_ON(sblock->sector_count == 0);
	for (index = 0; index < sblock->sector_count; index++) {
2836
		struct scrub_sector *sector = sblock->sectors[index];
2837 2838
		int ret;

2839
		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2840 2841 2842 2843 2844 2845
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

2846
	/* Last one frees, either here or in bio completion for last sector */
2847 2848 2849 2850 2851
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2852
				   u64 logical, u32 len,
2853 2854 2855 2856 2857 2858 2859 2860
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2861
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2862 2863 2864 2865
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2866
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2867
		blocksize = sparity->stripe_len;
2868
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2869
		blocksize = sparity->stripe_len;
2870
	} else {
2871
		blocksize = sctx->fs_info->sectorsize;
2872 2873 2874 2875
		WARN_ON(1);
	}

	while (len) {
2876
		u32 l = min(len, blocksize);
2877 2878 2879 2880
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2881
			have_csum = scrub_find_csum(sctx, logical, csum);
2882 2883 2884
			if (have_csum == 0)
				goto skip;
		}
2885
		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2886 2887 2888 2889
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2890
skip:
2891 2892 2893 2894 2895 2896 2897
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2898 2899 2900 2901 2902 2903 2904 2905
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2906 2907
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2908 2909 2910 2911 2912
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2913 2914
	u32 stripe_index;
	u32 rot;
2915
	const int data_stripes = nr_data_stripes(map);
2916

2917
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2918 2919 2920
	if (stripe_start)
		*stripe_start = last_offset;

2921
	*offset = last_offset;
2922
	for (i = 0; i < data_stripes; i++) {
2923
		*offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT);
2924

2925
		stripe_nr = *offset >> BTRFS_STRIPE_LEN_SHIFT;
2926
		stripe_nr = div_u64(stripe_nr, data_stripes);
2927 2928

		/* Work out the disk rotation on this stripe-set */
2929
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2930 2931
		/* calculate which stripe this data locates */
		rot += i;
2932
		stripe_index = rot % map->num_stripes;
2933 2934 2935 2936 2937
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
2938
	*offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT);
2939 2940 2941
	return 1;
}

2942 2943 2944
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2945
	struct scrub_sector *curr, *next;
2946 2947
	int nbits;

2948
	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2949 2950 2951 2952 2953 2954 2955
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

2956
	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2957
		list_del_init(&curr->list);
2958
		scrub_sector_put(curr);
2959 2960 2961 2962 2963
	}

	kfree(sparity);
}

2964
static void scrub_parity_bio_endio_worker(struct work_struct *work)
2965 2966 2967 2968 2969
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

2970
	btrfs_bio_counter_dec(sctx->fs_info);
2971 2972 2973 2974
	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2975
static void scrub_parity_bio_endio(struct bio *bio)
2976
{
Y
Yu Zhe 已提交
2977
	struct scrub_parity *sparity = bio->bi_private;
2978
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2979

2980
	if (bio->bi_status)
2981 2982
		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
			  &sparity->dbitmap, sparity->nsectors);
2983 2984

	bio_put(bio);
2985

2986 2987
	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2988 2989 2990 2991 2992
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2993
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2994 2995
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2996
	struct btrfs_io_context *bioc = NULL;
2997 2998 2999
	u64 length;
	int ret;

3000 3001
	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
			   &sparity->ebitmap, sparity->nsectors))
3002 3003
		goto out;

3004
	length = sparity->logic_end - sparity->logic_start;
3005 3006

	btrfs_bio_counter_inc_blocked(fs_info);
3007
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3008 3009 3010
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
3011

3012
	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
3013 3014 3015 3016
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3017
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
3018
					      sparity->scrub_dev,
3019
					      &sparity->dbitmap,
3020
					      sparity->nsectors);
3021
	btrfs_put_bioc(bioc);
3022 3023 3024 3025 3026 3027 3028 3029 3030
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
3031
bioc_out:
3032
	btrfs_bio_counter_dec(fs_info);
3033
	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3044
	refcount_inc(&sparity->refs);
3045 3046 3047 3048
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3049
	if (!refcount_dec_and_test(&sparity->refs))
3050 3051 3052 3053 3054
		return;

	scrub_parity_check_and_repair(sparity);
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

3181 3182 3183 3184 3185 3186 3187 3188 3189
static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
				      u64 boundary_start, u64 boudary_len)
{
	return (extent_start < boundary_start &&
		extent_start + extent_len > boundary_start) ||
	       (extent_start < boundary_start + boudary_len &&
		extent_start + extent_len > boundary_start + boudary_len);
}

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
					       struct scrub_parity *sparity,
					       struct map_lookup *map,
					       struct btrfs_device *sdev,
					       struct btrfs_path *path,
					       u64 logical)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3200
	u64 cur_logical = logical;
3201 3202 3203 3204 3205 3206 3207
	int ret;

	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);

	/* Path must not be populated */
	ASSERT(!path->nodes[0]);

3208
	while (cur_logical < logical + BTRFS_STRIPE_LEN) {
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		struct btrfs_io_context *bioc = NULL;
		struct btrfs_device *extent_dev;
		u64 extent_start;
		u64 extent_size;
		u64 mapped_length;
		u64 extent_flags;
		u64 extent_gen;
		u64 extent_physical;
		u64 extent_mirror_num;

3219
		ret = find_first_extent_item(extent_root, path, cur_logical,
3220
					     logical + BTRFS_STRIPE_LEN - cur_logical);
3221 3222 3223
		/* No more extent item in this data stripe */
		if (ret > 0) {
			ret = 0;
3224 3225
			break;
		}
3226
		if (ret < 0)
3227
			break;
3228 3229
		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
				&extent_gen);
3230

3231
		/* Metadata should not cross stripe boundaries */
3232
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3233
		    does_range_cross_boundary(extent_start, extent_size,
3234
					      logical, BTRFS_STRIPE_LEN)) {
3235
			btrfs_err(fs_info,
3236 3237
	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
				  extent_start, logical);
3238 3239 3240
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
3241 3242
			cur_logical += extent_size;
			continue;
3243 3244
		}

3245 3246
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);
3247

3248 3249
		/* Truncate the range inside this data stripe */
		extent_size = min(extent_start + extent_size,
3250
				  logical + BTRFS_STRIPE_LEN) - cur_logical;
3251 3252
		extent_start = cur_logical;
		ASSERT(extent_size <= U32_MAX);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);

		mapped_length = extent_size;
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
				      &mapped_length, &bioc, 0);
		if (!ret && (!bioc || mapped_length < extent_size))
			ret = -EIO;
		if (ret) {
			btrfs_put_bioc(bioc);
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}
		extent_physical = bioc->stripes[0].physical;
		extent_mirror_num = bioc->mirror_num;
		extent_dev = bioc->stripes[0].dev;
		btrfs_put_bioc(bioc);

3272 3273 3274
		ret = btrfs_lookup_csums_list(csum_root, extent_start,
					      extent_start + extent_size - 1,
					      &sctx->csum_list, 1, false);
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		ret = scrub_extent_for_parity(sparity, extent_start,
					      extent_size, extent_physical,
					      extent_dev, extent_flags,
					      extent_gen, extent_mirror_num);
		scrub_free_csums(sctx);

		if (ret) {
			scrub_parity_mark_sectors_error(sparity, extent_start,
							extent_size);
			break;
		}

		cond_resched();
3294
		cur_logical += extent_size;
3295 3296 3297 3298 3299
	}
	btrfs_release_path(path);
	return ret;
}

3300 3301 3302 3303 3304 3305
static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  u64 logic_start,
						  u64 logic_end)
{
3306
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3307
	struct btrfs_path *path;
3308
	u64 cur_logical;
3309 3310 3311 3312
	int ret;
	struct scrub_parity *sparity;
	int nsectors;

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	path->search_commit_root = 1;
	path->skip_locking = 1;

3323
	nsectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
3324 3325
	ASSERT(nsectors <= BITS_PER_LONG);
	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3326 3327 3328 3329
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
3330
		btrfs_free_path(path);
3331 3332 3333
		return -ENOMEM;
	}

3334
	sparity->stripe_len = BTRFS_STRIPE_LEN;
3335 3336 3337 3338 3339
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3340
	refcount_set(&sparity->refs, 1);
3341
	INIT_LIST_HEAD(&sparity->sectors_list);
3342 3343

	ret = 0;
3344
	for (cur_logical = logic_start; cur_logical < logic_end;
3345
	     cur_logical += BTRFS_STRIPE_LEN) {
3346 3347
		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
							  sdev, path, cur_logical);
3348 3349
		if (ret < 0)
			break;
3350
	}
3351

3352 3353
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3354
	mutex_lock(&sctx->wr_lock);
3355
	scrub_wr_submit(sctx);
3356
	mutex_unlock(&sctx->wr_lock);
3357

3358
	btrfs_free_path(path);
3359 3360 3361
	return ret < 0 ? ret : 0;
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	const u32 max_length = SZ_64K;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 extent_start;
		u64 extent_len;
		u64 extent_flags;
		u64 extent_gen;
		u64 scrub_len;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			sctx->flush_all_writes = true;
			scrub_submit(sctx);
			mutex_lock(&sctx->wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_lock);
			wait_event(sctx->list_wait,
				   atomic_read(&sctx->bios_in_flight) == 0);
			sctx->flush_all_writes = false;
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
3461
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     logical_end - cur_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		/* Skip hole range which doesn't have any extent */
		cur_logical = max(extent_start, cur_logical);

		/*
		 * Scrub len has three limits:
		 * - Extent size limit
		 * - Scrub range limit
		 *   This is especially imporatant for RAID0/RAID10 to reuse
		 *   this function
		 * - Max scrub size limit
		 */
		scrub_len = min(min(extent_start + extent_len,
				    logical_end), cur_logical + max_length) -
			    cur_logical;

		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3496
			ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3497
					cur_logical + scrub_len - 1,
3498
					&sctx->csum_list, 1, false);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
			if (ret)
				break;
		}
		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
		    does_range_cross_boundary(extent_start, extent_len,
					      logical_start, logical_length)) {
			btrfs_err(fs_info,
"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
				  extent_start, logical_start, logical_end);
			spin_lock(&sctx->stat_lock);
			sctx->stat.uncorrectable_errors++;
			spin_unlock(&sctx->stat_lock);
			cur_logical += scrub_len;
			continue;
		}
3514 3515 3516 3517
		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
				   cur_logical - logical_start + physical,
				   device, extent_flags, extent_gen,
				   mirror_num);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		scrub_free_csums(sctx);
		if (ret)
			break;
		if (sctx->is_dev_replace)
			sync_replace_for_zoned(sctx);
		cur_logical += scrub_len;
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

3531 3532 3533 3534 3535 3536
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

3537
	return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
3553 3554
	return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) +
	       bg->start;
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_root *extent_root,
			       struct btrfs_root *csum_root,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3591
					  cur_logical, BTRFS_STRIPE_LEN, device,
3592 3593 3594 3595 3596 3597
					  cur_physical, mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
3598
		cur_physical += BTRFS_STRIPE_LEN;
3599 3600 3601 3602
	}
	return ret;
}

3603
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3604
					   struct btrfs_block_group *bg,
3605
					   struct extent_map *em,
3606
					   struct btrfs_device *scrub_dev,
3607
					   int stripe_index)
A
Arne Jansen 已提交
3608
{
3609
	struct btrfs_path *path;
3610
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3611
	struct btrfs_root *root;
3612
	struct btrfs_root *csum_root;
3613
	struct blk_plug plug;
3614
	struct map_lookup *map = em->map_lookup;
3615
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3616
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
3617
	int ret;
3618
	u64 physical = map->stripes[stripe_index].physical;
3619 3620
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
3621
	u64 logical;
L
Liu Bo 已提交
3622
	u64 logic_end;
3623
	/* The logical increment after finishing one stripe */
3624
	u64 increment;
3625
	/* Offset inside the chunk */
A
Arne Jansen 已提交
3626
	u64 offset;
3627 3628
	u64 stripe_logical;
	u64 stripe_end;
3629
	int stop_loop = 0;
D
David Woodhouse 已提交
3630

A
Arne Jansen 已提交
3631 3632 3633 3634
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3635 3636 3637 3638 3639
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3640 3641
	path->search_commit_root = 1;
	path->skip_locking = 1;
3642
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3643

3644
	wait_event(sctx->list_wait,
3645
		   atomic_read(&sctx->bios_in_flight) == 0);
3646
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3647

3648 3649
	root = btrfs_extent_root(fs_info, bg->start);
	csum_root = btrfs_csum_root(fs_info, bg->start);
3650

A
Arne Jansen 已提交
3651 3652 3653 3654
	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3655
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3656

3657 3658 3659 3660 3661 3662 3663 3664
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
				bg->start, bg->length, scrub_dev,
				map->stripes[stripe_index].physical,
				stripe_index + 1);
3686
		offset = 0;
3687 3688
		goto out;
	}
3689 3690 3691
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
					  scrub_dev, stripe_index);
3692
		offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
3693 3694 3695 3696 3697
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
3698
	ret = 0;
3699 3700 3701 3702 3703 3704 3705 3706

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3707
	increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
3708

3709 3710 3711 3712
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
3713
	while (physical < physical_end) {
3714 3715
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			stripe_end = stripe_logical + increment;
			ret = scrub_raid56_parity(sctx, map, scrub_dev,
						  stripe_logical,
						  stripe_end);
			if (ret)
				goto out;
3726
			goto next;
3727 3728
		}

3729 3730 3731 3732 3733 3734 3735 3736 3737
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3738
					  logical, BTRFS_STRIPE_LEN,
3739
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
3740 3741 3742 3743
		if (ret < 0)
			goto out;
next:
		logical += increment;
3744
		physical += BTRFS_STRIPE_LEN;
3745
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3746
		if (stop_loop)
3747 3748
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
3749 3750
		else
			sctx->stat.last_physical = physical;
3751
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3752 3753
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3754
	}
3755
out:
A
Arne Jansen 已提交
3756
	/* push queued extents */
3757
	scrub_submit(sctx);
3758
	mutex_lock(&sctx->wr_lock);
3759
	scrub_wr_submit(sctx);
3760
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3761

3762
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3763
	btrfs_free_path(path);
3764 3765 3766 3767

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

3768 3769 3770 3771
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
3772 3773 3774 3775
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3776 3777 3778
	return ret < 0 ? ret : 0;
}

3779
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3780
					  struct btrfs_block_group *bg,
3781
					  struct btrfs_device *scrub_dev,
3782
					  u64 dev_offset,
3783
					  u64 dev_extent_len)
A
Arne Jansen 已提交
3784
{
3785
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3786
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3787 3788 3789
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3790
	int ret = 0;
A
Arne Jansen 已提交
3791

3792
	read_lock(&map_tree->lock);
3793
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3794
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3795

3796 3797 3798 3799 3800
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
3801
		spin_lock(&bg->lock);
3802
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3803
			ret = -EINVAL;
3804
		spin_unlock(&bg->lock);
3805 3806 3807

		return ret;
	}
3808
	if (em->start != bg->start)
A
Arne Jansen 已提交
3809
		goto out;
3810
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
3811 3812
		goto out;

3813
	map = em->map_lookup;
A
Arne Jansen 已提交
3814
	for (i = 0; i < map->num_stripes; ++i) {
3815
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3816
		    map->stripes[i].physical == dev_offset) {
3817
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3847
static noinline_for_stack
3848
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3849
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3850 3851 3852
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3853 3854
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3855
	u64 chunk_offset;
3856
	int ret = 0;
3857
	int ro_set;
A
Arne Jansen 已提交
3858 3859 3860 3861
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3862
	struct btrfs_block_group *cache;
3863
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3864 3865 3866 3867 3868

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3869
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3870 3871 3872
	path->search_commit_root = 1;
	path->skip_locking = 1;

3873
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3874 3875 3876 3877
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
3878 3879
		u64 dev_extent_len;

A
Arne Jansen 已提交
3880 3881
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3882 3883 3884 3885 3886
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3887 3888 3889 3890
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3891
					break;
3892 3893 3894
				}
			} else {
				ret = 0;
3895 3896
			}
		}
A
Arne Jansen 已提交
3897 3898 3899 3900 3901 3902

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3903
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3904 3905
			break;

3906
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3916
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
3917

3918
		if (found_key.offset + dev_extent_len <= start)
3919
			goto skip;
A
Arne Jansen 已提交
3920 3921 3922 3923 3924 3925 3926 3927

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3928 3929 3930 3931 3932 3933

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

3959
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3960
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3961 3962
				btrfs_put_block_group(cache);
				goto skip;
3963 3964 3965
			}
		}

3966 3967 3968 3969 3970 3971 3972 3973 3974
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
3975
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3976 3977 3978 3979
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3980
		btrfs_freeze_block_group(cache);
3981 3982
		spin_unlock(&cache->lock);

3983 3984 3985 3986 3987 3988 3989 3990 3991
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
4022
		 */
4023
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

4034 4035
		if (ret == 0) {
			ro_set = 1;
4036
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4037 4038 4039
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
4040
			 * It is not a problem for scrub, because
4041 4042 4043 4044
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
4045 4046 4047 4048 4049 4050 4051
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
4052
		} else {
J
Jeff Mahoney 已提交
4053
			btrfs_warn(fs_info,
4054
				   "failed setting block group ro: %d", ret);
4055
			btrfs_unfreeze_block_group(cache);
4056
			btrfs_put_block_group(cache);
4057
			scrub_pause_off(fs_info);
4058 4059 4060
			break;
		}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
4073
		down_write(&dev_replace->rwsem);
4074
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4075 4076
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
4077 4078
		up_write(&dev_replace->rwsem);

4079 4080
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
4092
		sctx->flush_all_writes = true;
4093
		scrub_submit(sctx);
4094
		mutex_lock(&sctx->wr_lock);
4095
		scrub_wr_submit(sctx);
4096
		mutex_unlock(&sctx->wr_lock);
4097 4098 4099

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
4100 4101

		scrub_pause_on(fs_info);
4102 4103 4104 4105 4106 4107

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
4108 4109
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
4110
		sctx->flush_all_writes = false;
4111

4112
		scrub_pause_off(fs_info);
4113

4114 4115 4116 4117 4118
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

4119
		down_write(&dev_replace->rwsem);
4120 4121
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
4122
		up_write(&dev_replace->rwsem);
4123

4124
		if (ro_set)
4125
			btrfs_dec_block_group_ro(cache);
4126

4127 4128 4129 4130 4131 4132 4133 4134
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
4135 4136
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4137
			spin_unlock(&cache->lock);
4138 4139 4140 4141 4142
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
4143 4144 4145
		} else {
			spin_unlock(&cache->lock);
		}
4146
skip_unfreeze:
4147
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
4148 4149 4150
		btrfs_put_block_group(cache);
		if (ret)
			break;
4151
		if (sctx->is_dev_replace &&
4152
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4153 4154 4155 4156 4157 4158 4159
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4160
skip:
4161
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
4162
		btrfs_release_path(path);
A
Arne Jansen 已提交
4163 4164 4165
	}

	btrfs_free_path(path);
4166

4167
	return ret;
A
Arne Jansen 已提交
4168 4169
}

4170 4171
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4172 4173 4174 4175 4176
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4177
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4178

J
Josef Bacik 已提交
4179
	if (BTRFS_FS_ERROR(fs_info))
4180
		return -EROFS;
4181

4182
	/* Seed devices of a new filesystem has their own generation. */
4183
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4184 4185
		gen = scrub_dev->generation;
	else
4186
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4187 4188 4189

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4190 4191
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4192
			break;
4193 4194
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
4195

4196 4197 4198
		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
				    NULL, bytenr);
A
Arne Jansen 已提交
4199 4200 4201
		if (ret)
			return ret;
	}
4202
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4203 4204 4205 4206

	return 0;
}

4207 4208 4209 4210
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
4211 4212 4213 4214 4215
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
		struct workqueue_struct *scrub_parity =
						fs_info->scrub_parity_workers;
4216 4217 4218 4219 4220 4221

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

4222 4223 4224 4225 4226 4227
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
		if (scrub_parity)
			destroy_workqueue(scrub_parity);
4228 4229 4230
	}
}

A
Arne Jansen 已提交
4231 4232 4233
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4234 4235
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4236
{
4237 4238 4239
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
	struct workqueue_struct *scrub_parity = NULL;
4240
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4241
	int max_active = fs_info->thread_pool_size;
4242
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4243

4244 4245
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4246

4247 4248
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
4249 4250
	if (!scrub_workers)
		goto fail_scrub_workers;
4251

4252
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4253 4254
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4255

4256
	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4268
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4269 4270
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4271
	}
4272 4273 4274
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4275

4276
	ret = 0;
4277
	destroy_workqueue(scrub_parity);
4278
fail_scrub_parity_workers:
4279
	destroy_workqueue(scrub_wr_comp);
4280
fail_scrub_wr_completion_workers:
4281
	destroy_workqueue(scrub_workers);
4282
fail_scrub_workers:
4283
	return ret;
A
Arne Jansen 已提交
4284 4285
}

4286 4287
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4288
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4289
{
4290
	struct btrfs_dev_lookup_args args = { .devid = devid };
4291
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4292 4293
	int ret;
	struct btrfs_device *dev;
4294
	unsigned int nofs_flag;
4295
	bool need_commit = false;
A
Arne Jansen 已提交
4296

4297
	if (btrfs_fs_closing(fs_info))
4298
		return -EAGAIN;
A
Arne Jansen 已提交
4299

4300 4301
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4302

4303 4304 4305 4306 4307 4308 4309
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4310

4311 4312 4313 4314
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4315

4316 4317 4318 4319
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4320
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4321
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4322 4323
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4324
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325
		ret = -ENODEV;
4326
		goto out;
A
Arne Jansen 已提交
4327 4328
	}

4329 4330
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4331
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4332 4333
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
4334
				 devid, btrfs_dev_name(dev));
4335
		ret = -EROFS;
4336
		goto out;
4337 4338
	}

4339
	mutex_lock(&fs_info->scrub_lock);
4340
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4341
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4342
		mutex_unlock(&fs_info->scrub_lock);
4343
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4344
		ret = -EIO;
4345
		goto out;
A
Arne Jansen 已提交
4346 4347
	}

4348
	down_read(&fs_info->dev_replace.rwsem);
4349
	if (dev->scrub_ctx ||
4350 4351
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4352
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4353
		mutex_unlock(&fs_info->scrub_lock);
4354
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4355
		ret = -EINPROGRESS;
4356
		goto out;
A
Arne Jansen 已提交
4357
	}
4358
	up_read(&fs_info->dev_replace.rwsem);
4359

4360
	sctx->readonly = readonly;
4361
	dev->scrub_ctx = sctx;
4362
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4363

4364 4365 4366 4367
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4368
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4369 4370 4371
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4372 4373 4374
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4375
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4376 4377 4378 4379 4380 4381
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4382
	if (!is_dev_replace) {
4383 4384 4385 4386 4387 4388
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

4389
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4390 4391 4392 4393
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4394
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4395
		ret = scrub_supers(sctx, dev);
4396
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
4407
	}
A
Arne Jansen 已提交
4408 4409

	if (!ret)
4410
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4411
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4412

4413
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4414 4415 4416
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4417
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4418

A
Arne Jansen 已提交
4419
	if (progress)
4420
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4421

4422 4423 4424 4425
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4426
	mutex_lock(&fs_info->scrub_lock);
4427
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4428 4429
	mutex_unlock(&fs_info->scrub_lock);

4430
	scrub_workers_put(fs_info);
4431
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4432

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
4452
	return ret;
4453 4454
out:
	scrub_workers_put(fs_info);
4455 4456 4457
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4458 4459 4460
	return ret;
}

4461
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4476
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4477 4478 4479 4480 4481
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4482
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4503
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4504
{
4505
	struct btrfs_fs_info *fs_info = dev->fs_info;
4506
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4507 4508

	mutex_lock(&fs_info->scrub_lock);
4509
	sctx = dev->scrub_ctx;
4510
	if (!sctx) {
A
Arne Jansen 已提交
4511 4512 4513
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4514
	atomic_inc(&sctx->cancel_req);
4515
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4516 4517
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4518
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4519 4520 4521 4522 4523 4524
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4525

4526
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4527 4528
			 struct btrfs_scrub_progress *progress)
{
4529
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4530
	struct btrfs_device *dev;
4531
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4532

4533
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4534
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4535
	if (dev)
4536
		sctx = dev->scrub_ctx;
4537 4538
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4539
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4540

4541
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4542
}
4543

4544 4545 4546 4547 4548
static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
				 u64 extent_logical, u32 extent_len,
				 u64 *extent_physical,
				 struct btrfs_device **extent_dev,
				 int *extent_mirror_num)
4549 4550
{
	u64 mapped_length;
4551
	struct btrfs_io_context *bioc = NULL;
4552 4553 4554
	int ret;

	mapped_length = extent_len;
4555
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4556 4557 4558 4559
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4560 4561 4562
		return;
	}

4563 4564 4565 4566
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4567
}