scrub.c 113.5 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250 251 252
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
253
				u16 csum_size, int retry_failed_mirror);
254
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
255
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
256
					     struct scrub_block *sblock_good);
257 258 259
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
260 261 262
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
263 264 265 266 267
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
268 269
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
270 271
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
272 273
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
274
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
275
		       u64 physical, struct btrfs_device *dev, u64 flags,
276 277
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
278
static void scrub_bio_end_io(struct bio *bio);
279 280
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
295
static void scrub_wr_bio_end_io(struct bio *bio);
296 297 298 299
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
300
				      struct scrub_copy_nocow_ctx *ctx);
301 302 303
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
304
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
306
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
307 308


309 310
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
311
	atomic_inc(&sctx->refs);
312 313 314 315 316 317 318
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
319
	scrub_put_ctx(sctx);
320 321
}

322
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
323 324 325 326 327 328 329 330 331
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

332
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
333 334 335
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
336
}
337

338 339
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
340 341 342 343 344 345 346 347
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

348 349 350 351 352 353
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

354 355 356 357 358 359 360 361
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

362
	atomic_inc(&sctx->refs);
363 364 365 366 367 368 369 370 371 372 373 374 375
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
376 377 378 379 380 381 382 383 384 385

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
405
	scrub_put_ctx(sctx);
406 407
}

408
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
409
{
410
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
411
		struct btrfs_ordered_sum *sum;
412
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
413 414 415 416 417 418
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

419
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
420 421 422
{
	int i;

423
	if (!sctx)
A
Arne Jansen 已提交
424 425
		return;

426 427
	scrub_free_wr_ctx(&sctx->wr_ctx);

428
	/* this can happen when scrub is cancelled */
429 430
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
431 432

		for (i = 0; i < sbio->page_count; i++) {
433
			WARN_ON(!sbio->pagev[i]->page);
434 435 436 437 438
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

439
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
440
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
441 442 443 444 445 446

		if (!sbio)
			break;
		kfree(sbio);
	}

447 448
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
449 450
}

451 452 453 454 455 456
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
457
static noinline_for_stack
458
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
459
{
460
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
461 462
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
463
	int ret;
A
Arne Jansen 已提交
464

465 466
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
467
		goto nomem;
468
	atomic_set(&sctx->refs, 1);
469
	sctx->is_dev_replace = is_dev_replace;
470
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
471
	sctx->curr = -1;
472
	sctx->dev_root = dev->dev_root;
473
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
474 475 476 477 478
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
479
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
480 481

		sbio->index = i;
482
		sbio->sctx = sctx;
483
		sbio->page_count = 0;
484 485
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
486

487
		if (i != SCRUB_BIOS_PER_SCTX - 1)
488
			sctx->bios[i]->next_free = i + 1;
489
		else
490 491 492 493 494
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
495 496
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
497 498 499 500 501 502 503
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
504 505 506 507 508 509 510

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
511
	return sctx;
A
Arne Jansen 已提交
512 513

nomem:
514
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
515 516 517
	return ERR_PTR(-ENOMEM);
}

518 519
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
520 521 522 523 524 525 526
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
527
	struct scrub_warning *swarn = warn_ctx;
528 529 530 531
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
532
	struct btrfs_key key;
533 534 535 536 537 538 539 540 541 542

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

543 544 545
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
546 547 548 549 550
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
551 552 553 554 555 556 557 558 559 560 561 562 563
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
564 565 566 567 568
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
569 570 571 572 573 574 575 576 577 578
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
579
		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
580
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
581
			"length %llu, links %u (path: %s)", swarn->errstr,
582
			swarn->logical, rcu_str_deref(swarn->dev->name),
583 584
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
585
			(char *)(unsigned long)ipath->fspath->val[i]);
586 587 588 589 590

	free_ipath(ipath);
	return 0;

err:
591
	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
592
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
593
		"resolving failed with ret=%d", swarn->errstr,
594
		swarn->logical, rcu_str_deref(swarn->dev->name),
595 596 597 598 599 600
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

601
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
602
{
603 604
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
605 606 607 608 609
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
610 611 612
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
613
	u64 ref_root;
614
	u32 item_size;
615
	u8 ref_level;
616
	int ret;
617

618
	WARN_ON(sblock->page_count < 1);
619
	dev = sblock->pagev[0]->dev;
620 621
	fs_info = sblock->sctx->dev_root->fs_info;

622
	path = btrfs_alloc_path();
623 624
	if (!path)
		return;
625

626 627
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
628
	swarn.errstr = errstr;
629
	swarn.dev = NULL;
630

631 632
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
633 634 635
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
636
	extent_item_pos = swarn.logical - found_key.objectid;
637 638 639 640 641 642
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

643
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
644
		do {
645 646 647
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
648 649
			btrfs_warn_in_rcu(fs_info,
				"%s at logical %llu on dev %s, "
650
				"sector %llu: metadata %s (level %d) in tree "
651
				"%llu", errstr, swarn.logical,
652
				rcu_str_deref(dev->name),
653 654 655 656 657
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
658
		btrfs_release_path(path);
659
	} else {
660
		btrfs_release_path(path);
661
		swarn.path = path;
662
		swarn.dev = dev;
663 664
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
665 666 667 668 669 670 671
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

672
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
673
{
674
	struct page *page = NULL;
675
	unsigned long index;
676
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
677
	int ret;
678
	int corrected = 0;
679
	struct btrfs_key key;
680
	struct inode *inode = NULL;
681
	struct btrfs_fs_info *fs_info;
682 683
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
684
	int srcu_index;
685 686 687 688

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
689 690 691 692 693 694 695

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
696
		return PTR_ERR(local_root);
697
	}
698 699 700 701

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
702 703
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
704 705 706 707 708 709
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
736
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
737
					fixup->logical, page,
738
					offset - page_offset(page),
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
773 774

	iput(inode);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
794
	struct scrub_ctx *sctx;
795 796 797 798 799
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
800
	sctx = fixup->sctx;
801 802 803

	path = btrfs_alloc_path();
	if (!path) {
804 805 806
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

835 836 837
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
838 839 840 841 842

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
843 844 845
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
846 847 848
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
849 850
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
851
			fixup->logical, rcu_str_deref(fixup->dev->name));
852 853 854 855 856
	}

	btrfs_free_path(path);
	kfree(fixup);

857
	scrub_pending_trans_workers_dec(sctx);
858 859
}

860 861 862 863 864 865 866 867
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
868
		btrfs_put_bbio(recover->bbio);
869 870 871 872
		kfree(recover);
	}
}

A
Arne Jansen 已提交
873
/*
874 875 876 877 878 879
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
880
 */
881
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
882
{
883
	struct scrub_ctx *sctx = sblock_to_check->sctx;
884
	struct btrfs_device *dev;
885 886 887 888 889 890 891 892 893 894 895 896 897 898
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
899
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
900 901 902
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
903
	fs_info = sctx->dev_root->fs_info;
904 905 906 907 908 909 910 911 912 913 914
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
915
	length = sblock_to_check->page_count * PAGE_SIZE;
916 917 918 919 920
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
921
			BTRFS_EXTENT_FLAG_DATA);
922 923 924
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
925

926 927 928 929 930
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

960 961
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
962
	if (!sblocks_for_recheck) {
963 964 965 966 967
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
968
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
969
		goto out;
A
Arne Jansen 已提交
970 971
	}

972
	/* setup the context, map the logical blocks and alloc the pages */
973
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
974
	if (ret) {
975 976 977 978
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
979
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
980 981 982 983
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
984

985
	/* build and submit the bios for the failed mirror, check checksums */
986
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
987
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
988

989 990 991 992 993 994 995 996 997 998
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
999 1000
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1001
		sblock_to_check->data_corrected = 1;
1002
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1003

1004 1005
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1006
		goto out;
A
Arne Jansen 已提交
1007 1008
	}

1009
	if (!sblock_bad->no_io_error_seen) {
1010 1011 1012
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1013 1014
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1015
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1016
	} else if (sblock_bad->checksum_error) {
1017 1018 1019
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1020 1021
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1022
		btrfs_dev_stat_inc_and_print(dev,
1023
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1024
	} else if (sblock_bad->header_error) {
1025 1026 1027
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1028 1029 1030
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1031
		if (sblock_bad->generation_error)
1032
			btrfs_dev_stat_inc_and_print(dev,
1033 1034
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1035
			btrfs_dev_stat_inc_and_print(dev,
1036
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1037
	}
A
Arne Jansen 已提交
1038

1039 1040 1041 1042
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1043

1044 1045
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1046

1047 1048
		WARN_ON(sctx->is_dev_replace);

1049 1050
nodatasum_case:

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1061
		fixup_nodatasum->sctx = sctx;
1062
		fixup_nodatasum->dev = dev;
1063 1064 1065
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1066
		scrub_pending_trans_workers_inc(sctx);
1067 1068
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1069 1070
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1071
		goto out;
A
Arne Jansen 已提交
1072 1073
	}

1074 1075
	/*
	 * now build and submit the bios for the other mirrors, check
1076 1077
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1093
		struct scrub_block *sblock_other;
1094

1095 1096 1097 1098 1099
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1100 1101
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1102
				    sctx->csum_size, 0);
1103 1104

		if (!sblock_other->header_error &&
1105 1106
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1107 1108
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1109
				goto corrected_error;
1110 1111
			} else {
				ret = scrub_repair_block_from_good_copy(
1112 1113 1114
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1115
			}
1116 1117
		}
	}
A
Arne Jansen 已提交
1118

1119 1120
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1121 1122 1123

	/*
	 * In case of I/O errors in the area that is supposed to be
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1145
	 */
1146
	success = 1;
1147 1148
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1149
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1150
		struct scrub_block *sblock_other = NULL;
1151

1152 1153
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1154
			continue;
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1167 1168
				}
			}
1169 1170
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1171
		}
A
Arne Jansen 已提交
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1200
		}
A
Arne Jansen 已提交
1201 1202
	}

1203
	if (success && !sctx->is_dev_replace) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1214 1215
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1216
					    generation, sctx->csum_size, 1);
1217
			if (!sblock_bad->header_error &&
1218 1219 1220 1221 1222 1223 1224
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1225 1226
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1227
			sblock_to_check->data_corrected = 1;
1228
			spin_unlock(&sctx->stat_lock);
1229 1230
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1231
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1232
		}
1233 1234
	} else {
did_not_correct_error:
1235 1236 1237
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1238 1239
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1240
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1241
	}
A
Arne Jansen 已提交
1242

1243 1244 1245 1246 1247 1248
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1249
			struct scrub_recover *recover;
1250 1251
			int page_index;

1252 1253 1254
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1255 1256 1257 1258 1259 1260
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1261 1262
				scrub_page_put(sblock->pagev[page_index]);
			}
1263 1264 1265
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1266

1267 1268
	return 0;
}
A
Arne Jansen 已提交
1269

1270
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1271
{
Z
Zhao Lei 已提交
1272 1273 1274 1275 1276
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1277 1278 1279
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1280 1281
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1282 1283 1284 1285 1286 1287 1288
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1289
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1310
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1311 1312
				     struct scrub_block *sblocks_for_recheck)
{
1313 1314 1315 1316
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1317 1318 1319
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1320 1321 1322 1323 1324 1325
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1326
	int page_index = 0;
1327
	int mirror_index;
1328
	int nmirrors;
1329 1330 1331
	int ret;

	/*
1332
	 * note: the two members refs and outstanding_pages
1333 1334 1335 1336 1337
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1338 1339 1340
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1341

1342 1343 1344 1345
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1346
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1347
				       &mapped_length, &bbio, 0, 1);
1348
		if (ret || !bbio || mapped_length < sublen) {
1349
			btrfs_put_bbio(bbio);
1350 1351
			return -EIO;
		}
A
Arne Jansen 已提交
1352

1353 1354
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1355
			btrfs_put_bbio(bbio);
1356 1357 1358 1359 1360 1361 1362
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1363
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1364

1365
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1366

1367
		for (mirror_index = 0; mirror_index < nmirrors;
1368 1369 1370 1371 1372
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1373
			sblock->sctx = sctx;
1374

1375 1376 1377
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1378 1379 1380
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1381
				scrub_put_recover(recover);
1382 1383
				return -ENOMEM;
			}
1384 1385
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1386 1387 1388
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1389
			page->logical = logical;
1390 1391 1392 1393 1394
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1395

Z
Zhao Lei 已提交
1396 1397 1398
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1399
						      mapped_length,
1400 1401
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1402 1403 1404 1405 1406 1407 1408
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1409 1410 1411 1412
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1413 1414
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1415
			sblock->page_count++;
1416 1417 1418
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1419 1420 1421

			scrub_get_recover(recover);
			page->recover = recover;
1422
		}
1423
		scrub_put_recover(recover);
1424 1425 1426 1427 1428 1429
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1430 1431
}

1432 1433 1434 1435 1436
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1437
static void scrub_bio_wait_endio(struct bio *bio)
1438 1439 1440
{
	struct scrub_bio_ret *ret = bio->bi_private;

1441
	ret->error = bio->bi_error;
1442 1443 1444 1445 1446
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1447
	return page->recover &&
1448
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1466
				    page->mirror_num, 0);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1477 1478 1479 1480 1481 1482 1483
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1484 1485 1486
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1487
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1488
{
1489
	int page_num;
I
Ilya Dryomov 已提交
1490

1491
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1492

1493 1494
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1495
		struct scrub_page *page = sblock->pagev[page_num];
1496

1497
		if (page->dev->bdev == NULL) {
1498 1499 1500 1501 1502
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1503
		WARN_ON(!page->page);
1504
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1505 1506 1507 1508 1509
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1510
		bio->bi_bdev = page->dev->bdev;
1511

1512
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1513 1514 1515 1516 1517 1518 1519 1520 1521
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1522

1523 1524
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1525

1526
	if (sblock->no_io_error_seen)
1527
		scrub_recheck_block_checksum(sblock);
1528

1529
	return;
A
Arne Jansen 已提交
1530 1531
}

M
Miao Xie 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1542
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1543
{
1544 1545 1546
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1547

1548 1549 1550 1551
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1552 1553
}

1554
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1555
					     struct scrub_block *sblock_good)
1556 1557 1558
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1559

1560 1561
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1562

1563 1564
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1565
							   page_num, 1);
1566 1567
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1568
	}
1569 1570 1571 1572 1573 1574 1575 1576

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1577 1578
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1579

1580 1581
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1582 1583 1584 1585 1586
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1587
		if (!page_bad->dev->bdev) {
1588
			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1589
				"scrub_repair_page_from_good_copy(bdev == NULL) "
1590
				"is unexpected");
1591 1592 1593
			return -EIO;
		}

1594
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1595 1596
		if (!bio)
			return -EIO;
1597
		bio->bi_bdev = page_bad->dev->bdev;
1598
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1599 1600 1601 1602 1603

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1604
		}
1605

1606
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1607 1608
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1609 1610 1611
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1612 1613 1614
			bio_put(bio);
			return -EIO;
		}
1615
		bio_put(bio);
A
Arne Jansen 已提交
1616 1617
	}

1618 1619 1620
	return 0;
}

1621 1622 1623 1624
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1625 1626 1627 1628 1629 1630 1631
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1687
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1698
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

1749
static void scrub_wr_bio_end_io(struct bio *bio)
1750 1751 1752 1753
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

1754
	sbio->err = bio->bi_error;
1755 1756
	sbio->bio = bio;

1757 1758
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1759
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1791 1792 1793 1794
{
	u64 flags;
	int ret;

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1807 1808
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1820 1821

	return ret;
A
Arne Jansen 已提交
1822 1823
}

1824
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1825
{
1826
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1827
	u8 csum[BTRFS_CSUM_SIZE];
1828 1829 1830
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1831
	u32 crc = ~(u32)0;
1832 1833
	u64 len;
	int index;
A
Arne Jansen 已提交
1834

1835
	BUG_ON(sblock->page_count < 1);
1836
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1837 1838
		return 0;

1839 1840
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1841
	buffer = kmap_atomic(page);
1842

1843
	len = sctx->sectorsize;
1844 1845 1846 1847
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1848
		crc = btrfs_csum_data(buffer, crc, l);
1849
		kunmap_atomic(buffer);
1850 1851 1852 1853 1854
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1855 1856
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1857
		buffer = kmap_atomic(page);
1858 1859
	}

A
Arne Jansen 已提交
1860
	btrfs_csum_final(crc, csum);
1861
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1862
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1863

1864
	return sblock->checksum_error;
A
Arne Jansen 已提交
1865 1866
}

1867
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1868
{
1869
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1870
	struct btrfs_header *h;
1871
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1872
	struct btrfs_fs_info *fs_info = root->fs_info;
1873 1874 1875 1876 1877 1878
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1879
	u32 crc = ~(u32)0;
1880 1881 1882 1883
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1884
	page = sblock->pagev[0]->page;
1885
	mapped_buffer = kmap_atomic(page);
1886
	h = (struct btrfs_header *)mapped_buffer;
1887
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1888 1889 1890 1891 1892 1893

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1894
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1895
		sblock->header_error = 1;
A
Arne Jansen 已提交
1896

1897 1898 1899 1900
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1901

M
Miao Xie 已提交
1902
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1903
		sblock->header_error = 1;
A
Arne Jansen 已提交
1904 1905 1906

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1907
		sblock->header_error = 1;
A
Arne Jansen 已提交
1908

1909
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1910 1911 1912 1913 1914 1915
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1916
		crc = btrfs_csum_data(p, crc, l);
1917
		kunmap_atomic(mapped_buffer);
1918 1919 1920 1921 1922
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1923 1924
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1925
		mapped_buffer = kmap_atomic(page);
1926 1927 1928 1929 1930
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1931
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1932
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1933

1934
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1935 1936
}

1937
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1938 1939
{
	struct btrfs_super_block *s;
1940
	struct scrub_ctx *sctx = sblock->sctx;
1941 1942 1943 1944 1945 1946
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1947
	u32 crc = ~(u32)0;
1948 1949
	int fail_gen = 0;
	int fail_cor = 0;
1950 1951
	u64 len;
	int index;
A
Arne Jansen 已提交
1952

1953
	BUG_ON(sblock->page_count < 1);
1954
	page = sblock->pagev[0]->page;
1955
	mapped_buffer = kmap_atomic(page);
1956
	s = (struct btrfs_super_block *)mapped_buffer;
1957
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1958

1959
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1960
		++fail_cor;
A
Arne Jansen 已提交
1961

1962
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1963
		++fail_gen;
A
Arne Jansen 已提交
1964

M
Miao Xie 已提交
1965
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1966
		++fail_cor;
A
Arne Jansen 已提交
1967

1968 1969 1970 1971 1972 1973 1974
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1975
		crc = btrfs_csum_data(p, crc, l);
1976
		kunmap_atomic(mapped_buffer);
1977 1978 1979 1980 1981
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1982 1983
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1984
		mapped_buffer = kmap_atomic(page);
1985 1986 1987 1988 1989
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1990
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1991
		++fail_cor;
A
Arne Jansen 已提交
1992

1993
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1994 1995 1996 1997 1998
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1999 2000 2001
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2002
		if (fail_cor)
2003
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2004 2005
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2006
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2007
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2008 2009
	}

2010
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2011 2012
}

2013 2014
static void scrub_block_get(struct scrub_block *sblock)
{
2015
	atomic_inc(&sblock->refs);
2016 2017 2018 2019
}

static void scrub_block_put(struct scrub_block *sblock)
{
2020
	if (atomic_dec_and_test(&sblock->refs)) {
2021 2022
		int i;

2023 2024 2025
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2026
		for (i = 0; i < sblock->page_count; i++)
2027
			scrub_page_put(sblock->pagev[i]);
2028 2029 2030 2031
		kfree(sblock);
	}
}

2032 2033
static void scrub_page_get(struct scrub_page *spage)
{
2034
	atomic_inc(&spage->refs);
2035 2036 2037 2038
}

static void scrub_page_put(struct scrub_page *spage)
{
2039
	if (atomic_dec_and_test(&spage->refs)) {
2040 2041 2042 2043 2044 2045
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2046
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2047 2048 2049
{
	struct scrub_bio *sbio;

2050
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2051
		return;
A
Arne Jansen 已提交
2052

2053 2054
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2055
	scrub_pending_bio_inc(sctx);
2056
	btrfsic_submit_bio(READ, sbio->bio);
A
Arne Jansen 已提交
2057 2058
}

2059 2060
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2061
{
2062
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2063
	struct scrub_bio *sbio;
2064
	int ret;
A
Arne Jansen 已提交
2065 2066 2067 2068 2069

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2070 2071 2072 2073 2074 2075 2076 2077
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2078
		} else {
2079 2080
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2081 2082
		}
	}
2083
	sbio = sctx->bios[sctx->curr];
2084
	if (sbio->page_count == 0) {
2085 2086
		struct bio *bio;

2087 2088
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2089
		sbio->dev = spage->dev;
2090 2091
		bio = sbio->bio;
		if (!bio) {
2092
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2093 2094 2095 2096
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2097 2098 2099

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2100
		bio->bi_bdev = sbio->dev->bdev;
2101
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2102
		sbio->err = 0;
2103 2104 2105
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2106 2107
		   spage->logical ||
		   sbio->dev != spage->dev) {
2108
		scrub_submit(sctx);
A
Arne Jansen 已提交
2109 2110
		goto again;
	}
2111

2112 2113 2114 2115 2116 2117 2118 2119
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2120
		scrub_submit(sctx);
2121 2122 2123
		goto again;
	}

2124
	scrub_block_get(sblock); /* one for the page added to the bio */
2125 2126
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2127
	if (sbio->page_count == sctx->pages_per_rd_bio)
2128
		scrub_submit(sctx);
2129 2130 2131 2132

	return 0;
}

2133
static void scrub_missing_raid56_end_io(struct bio *bio)
2134 2135 2136 2137
{
	struct scrub_block *sblock = bio->bi_private;
	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;

2138
	if (bio->bi_error)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		sblock->no_io_error_seen = 0;

	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

	if (sblock->no_io_error_seen) {
2155
		scrub_recheck_block_checksum(sblock);
2156 2157 2158 2159 2160 2161
	}

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2162
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2163
			"IO error rebuilding logical %llu for dev %s",
2164 2165 2166 2167 2168
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2169
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2170
			"failed to rebuild valid logical %llu for dev %s",
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
	struct btrfs_bio *bbio;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
			       &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2250
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2251
		       u64 physical, struct btrfs_device *dev, u64 flags,
2252 2253
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2254 2255 2256 2257 2258 2259
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2260 2261 2262
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2263
		return -ENOMEM;
A
Arne Jansen 已提交
2264
	}
2265

2266 2267
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2268
	atomic_set(&sblock->refs, 1);
2269
	sblock->sctx = sctx;
2270 2271 2272
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2273
		struct scrub_page *spage;
2274 2275
		u64 l = min_t(u64, len, PAGE_SIZE);

2276 2277 2278
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2279 2280 2281
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2282
			scrub_block_put(sblock);
2283 2284
			return -ENOMEM;
		}
2285 2286 2287
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2288
		spage->sblock = sblock;
2289
		spage->dev = dev;
2290 2291 2292 2293
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2294
		spage->physical_for_dev_replace = physical_for_dev_replace;
2295 2296 2297
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2298
			memcpy(spage->csum, csum, sctx->csum_size);
2299 2300 2301 2302
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2303 2304 2305
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2306 2307 2308
		len -= l;
		logical += l;
		physical += l;
2309
		physical_for_dev_replace += l;
2310 2311
	}

2312
	WARN_ON(sblock->page_count == 0);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2323

2324 2325 2326 2327 2328
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2329
		}
A
Arne Jansen 已提交
2330

2331 2332 2333
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2334

2335 2336
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2337 2338 2339
	return 0;
}

2340
static void scrub_bio_end_io(struct bio *bio)
2341 2342
{
	struct scrub_bio *sbio = bio->bi_private;
2343
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2344

2345
	sbio->err = bio->bi_error;
2346 2347
	sbio->bio = bio;

2348
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2349 2350 2351 2352 2353
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2354
	struct scrub_ctx *sctx = sbio->sctx;
2355 2356
	int i;

2357
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2379 2380 2381 2382
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2383 2384 2385 2386 2387 2388 2389 2390

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2391
	scrub_pending_bio_dec(sctx);
2392 2393
}

2394 2395 2396 2397
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2398
	u32 offset;
2399 2400 2401 2402 2403 2404 2405 2406 2407
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2408
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2433 2434
static void scrub_block_complete(struct scrub_block *sblock)
{
2435 2436
	int corrupted = 0;

2437
	if (!sblock->no_io_error_seen) {
2438
		corrupted = 1;
2439
		scrub_handle_errored_block(sblock);
2440 2441 2442 2443 2444 2445
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2446 2447
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2448 2449
			scrub_write_block_to_dev_replace(sblock);
	}
2450 2451 2452 2453 2454 2455 2456 2457 2458

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2459 2460
}

2461
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2462 2463 2464
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2465
	unsigned long index;
A
Arne Jansen 已提交
2466 2467
	unsigned long num_sectors;

2468 2469
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2470 2471 2472 2473 2474 2475
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2476
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2477 2478 2479 2480 2481 2482 2483
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2484
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2485
	num_sectors = sum->len / sctx->sectorsize;
2486 2487
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2488 2489 2490
		list_del(&sum->list);
		kfree(sum);
	}
2491
	return 1;
A
Arne Jansen 已提交
2492 2493 2494
}

/* scrub extent tries to collect up to 64 kB for each bio */
2495
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2496
			u64 physical, struct btrfs_device *dev, u64 flags,
2497
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2498 2499 2500
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2501 2502 2503
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2504 2505 2506 2507 2508
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2509
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2510 2511 2512 2513 2514
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2515
	} else {
2516
		blocksize = sctx->sectorsize;
2517
		WARN_ON(1);
2518
	}
A
Arne Jansen 已提交
2519 2520

	while (len) {
2521
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2522 2523 2524 2525
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2526
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2527
			if (have_csum == 0)
2528
				++sctx->stat.no_csum;
2529 2530 2531 2532 2533 2534
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2535
		}
2536
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2537 2538 2539
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2540 2541 2542 2543 2544
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2545
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2546 2547 2548 2549
	}
	return 0;
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2569
	atomic_set(&sblock->refs, 1);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2644 2645 2646 2647 2648
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2673
skip:
2674 2675 2676 2677 2678 2679 2680
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2681 2682 2683 2684 2685 2686 2687 2688
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2689 2690
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2691 2692 2693 2694 2695
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2696 2697
	u32 stripe_index;
	u32 rot;
2698 2699 2700

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2701 2702 2703
	if (stripe_start)
		*stripe_start = last_offset;

2704 2705 2706 2707
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2708 2709
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2710 2711

		/* Work out the disk rotation on this stripe-set */
2712
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2713 2714
		/* calculate which stripe this data locates */
		rot += i;
2715
		stripe_index = rot % map->num_stripes;
2716 2717 2718 2719 2720 2721 2722 2723 2724
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2757
static void scrub_parity_bio_endio(struct bio *bio)
2758 2759 2760
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

2761
	if (bio->bi_error)
2762 2763 2764 2765
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2766 2767 2768 2769 2770

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2787
	length = sparity->logic_end - sparity->logic_start;
2788
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2789
			       sparity->logic_start,
2790 2791
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2803
					      length, sparity->scrub_dev,
2804 2805 2806 2807 2808 2809
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2810
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2811 2812 2813 2814 2815 2816 2817 2818

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2819
	btrfs_put_bbio(bbio);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2836
	atomic_inc(&sparity->refs);
2837 2838 2839 2840
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2841
	if (!atomic_dec_and_test(&sparity->refs))
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2858
	struct btrfs_bio *bbio = NULL;
2859 2860 2861 2862 2863 2864 2865 2866 2867
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2868
	u64 mapped_length;
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2893
	atomic_set(&sparity->refs, 1);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2942 2943 2944 2945
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2946 2947 2948 2949 2950 2951 2952 2953
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2954
			if (key.objectid >= logic_end) {
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2967 2968 2969 2970 2971 2972
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					  key.objectid, logic_start);
2973 2974 2975
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
			mapped_length = extent_len;
			ret = btrfs_map_block(fs_info, READ, extent_logical,
					      &mapped_length, &bbio, 0);
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3024 3025 3026

			scrub_free_csums(sctx);

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3058
						logic_end - logic_start);
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3069
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3070 3071
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3072 3073
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3074
{
3075
	struct btrfs_path *path, *ppath;
3076
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
3077 3078 3079
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3080
	struct blk_plug plug;
A
Arne Jansen 已提交
3081 3082 3083 3084 3085 3086 3087 3088
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3089
	u64 logic_end;
3090
	u64 physical_end;
A
Arne Jansen 已提交
3091
	u64 generation;
3092
	int mirror_num;
A
Arne Jansen 已提交
3093 3094 3095 3096
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3097 3098
	u64 increment = map->stripe_len;
	u64 offset;
3099 3100 3101
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3102 3103
	u64 stripe_logical;
	u64 stripe_end;
3104 3105
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3106
	int stop_loop = 0;
D
David Woodhouse 已提交
3107

3108
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3109
	offset = 0;
3110
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3111 3112 3113
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3114
		mirror_num = 1;
A
Arne Jansen 已提交
3115 3116 3117 3118
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3119
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3120 3121
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3122
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3123 3124
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3125
		mirror_num = num % map->num_stripes + 1;
3126
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3127
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3128 3129
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3130 3131
	} else {
		increment = map->stripe_len;
3132
		mirror_num = 1;
A
Arne Jansen 已提交
3133 3134 3135 3136 3137 3138
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3139 3140
	ppath = btrfs_alloc_path();
	if (!ppath) {
3141
		btrfs_free_path(path);
3142 3143 3144
		return -ENOMEM;
	}

3145 3146 3147 3148 3149
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3150 3151 3152
	path->search_commit_root = 1;
	path->skip_locking = 1;

3153 3154
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3155
	/*
A
Arne Jansen 已提交
3156 3157 3158
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3159 3160
	 */
	logical = base + offset;
3161
	physical_end = physical + nstripes * map->stripe_len;
3162
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3163
		get_raid56_logic_offset(physical_end, num,
3164
					map, &logic_end, NULL);
3165 3166 3167 3168
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3169
	wait_event(sctx->list_wait,
3170
		   atomic_read(&sctx->bios_in_flight) == 0);
3171
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3172 3173 3174 3175 3176

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3177
	key_end.objectid = logic_end;
3178 3179
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3180 3181 3182 3183 3184 3185 3186
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3187
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3188 3189 3190 3191 3192 3193 3194
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3195 3196 3197 3198 3199

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3200
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3201 3202 3203 3204 3205

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3206
	while (physical < physical_end) {
A
Arne Jansen 已提交
3207 3208 3209 3210
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3211
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3212 3213 3214 3215 3216 3217 3218 3219
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3220
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3221
			scrub_submit(sctx);
3222 3223 3224
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3225
			wait_event(sctx->list_wait,
3226
				   atomic_read(&sctx->bios_in_flight) == 0);
3227
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3228
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3229 3230
		}

3231 3232 3233 3234 3235 3236
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3237
				/* it is parity strip */
3238
				stripe_logical += base;
3239
				stripe_end = stripe_logical + increment;
3240 3241 3242 3243 3244 3245 3246 3247 3248
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3249 3250 3251 3252
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3253
		key.objectid = logical;
L
Liu Bo 已提交
3254
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3255 3256 3257 3258

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3259

3260
		if (ret > 0) {
3261
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3262 3263
			if (ret < 0)
				goto out;
3264 3265 3266 3267 3268 3269 3270 3271 3272
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3273 3274
		}

L
Liu Bo 已提交
3275
		stop_loop = 0;
A
Arne Jansen 已提交
3276
		while (1) {
3277 3278
			u64 bytes;

A
Arne Jansen 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3288
				stop_loop = 1;
A
Arne Jansen 已提交
3289 3290 3291 3292
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3293 3294 3295 3296
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3297
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3298
				bytes = root->nodesize;
3299 3300 3301 3302
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3303 3304
				goto next;

L
Liu Bo 已提交
3305 3306 3307 3308 3309 3310
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3311 3312 3313 3314 3315 3316

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3317 3318 3319 3320
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3321 3322 3323
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3324
				       key.objectid, logical);
3325 3326 3327
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3328 3329 3330
				goto next;
			}

L
Liu Bo 已提交
3331 3332 3333 3334
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3335 3336 3337
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3338 3339 3340
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3341
			}
L
Liu Bo 已提交
3342
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3343
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3344 3345
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3346 3347
			}

L
Liu Bo 已提交
3348
			extent_physical = extent_logical - logical + physical;
3349 3350 3351 3352 3353 3354 3355
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3356

3357 3358 3359 3360 3361
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3362 3363 3364
			if (ret)
				goto out;

3365 3366 3367
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3368
					   extent_logical - logical + physical);
3369 3370 3371

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3372 3373 3374
			if (ret)
				goto out;

L
Liu Bo 已提交
3375 3376
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3377
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3378 3379 3380 3381
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3392
								increment;
3393 3394 3395 3396 3397 3398 3399 3400
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3401 3402 3403 3404
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3405 3406 3407 3408 3409
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3410
				if (physical >= physical_end) {
L
Liu Bo 已提交
3411 3412 3413 3414
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3415 3416 3417
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3418
		btrfs_release_path(path);
3419
skip:
A
Arne Jansen 已提交
3420 3421
		logical += increment;
		physical += map->stripe_len;
3422
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3423 3424 3425 3426 3427
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3428
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3429 3430
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3431
	}
3432
out:
A
Arne Jansen 已提交
3433
	/* push queued extents */
3434
	scrub_submit(sctx);
3435 3436 3437
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3438

3439
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3440
	btrfs_free_path(path);
3441
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3442 3443 3444
	return ret < 0 ? ret : 0;
}

3445
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3446 3447
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3448
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3449 3450
{
	struct btrfs_mapping_tree *map_tree =
3451
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3452 3453 3454
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3455
	int ret = 0;
A
Arne Jansen 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3472
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3473
		    map->stripes[i].physical == dev_offset) {
3474
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3475 3476
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3488
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3489 3490
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3491 3492 3493
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3494
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3495 3496 3497
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_offset;
3498
	int ret = 0;
A
Arne Jansen 已提交
3499 3500 3501 3502 3503
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3504
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3514
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3515 3516 3517 3518 3519 3520
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3521 3522 3523 3524 3525
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3526 3527 3528 3529
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3530
					break;
3531 3532 3533
				}
			} else {
				ret = 0;
3534 3535
			}
		}
A
Arne Jansen 已提交
3536 3537 3538 3539 3540 3541

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3542
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3543 3544
			break;

3545
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3557 3558
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3559 3560 3561 3562 3563 3564 3565 3566

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3567 3568 3569 3570 3571 3572

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
		scrub_pause_off(fs_info);
		if (ret) {
			btrfs_put_block_group(cache);
			break;
		}

3589 3590 3591
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3592 3593
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
				  found_key.offset, is_dev_replace);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3613 3614

		scrub_pause_on(fs_info);
3615 3616 3617 3618 3619 3620

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3621 3622
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3623 3624
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3625
		scrub_pause_off(fs_info);
3626

3627
		btrfs_dec_block_group_ro(root, cache);
3628

A
Arne Jansen 已提交
3629 3630 3631
		btrfs_put_block_group(cache);
		if (ret)
			break;
3632 3633
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3634 3635 3636 3637 3638 3639 3640
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3641

3642 3643
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3644
skip:
A
Arne Jansen 已提交
3645
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3646
		btrfs_release_path(path);
A
Arne Jansen 已提交
3647 3648 3649
	}

	btrfs_free_path(path);
3650

3651
	return ret;
A
Arne Jansen 已提交
3652 3653
}

3654 3655
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3656 3657 3658 3659 3660
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3661
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3662

3663
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3664 3665
		return -EIO;

3666 3667 3668 3669 3670
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3671 3672 3673

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3674 3675
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3676 3677
			break;

3678
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3679
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3680
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3681 3682 3683
		if (ret)
			return ret;
	}
3684
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3685 3686 3687 3688 3689 3690 3691

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3692 3693
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3694
{
3695
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3696
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3697

A
Arne Jansen 已提交
3698
	if (fs_info->scrub_workers_refcnt == 0) {
3699
		if (is_dev_replace)
3700 3701 3702
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3703
		else
3704 3705 3706
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
3707 3708 3709
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3710 3711 3712
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
3713 3714 3715
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3716 3717
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3718 3719
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3720 3721 3722
		fs_info->scrub_parity_workers =
			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
					      max_active, 2);
3723 3724
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3725
	}
A
Arne Jansen 已提交
3726
	++fs_info->scrub_workers_refcnt;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3737 3738
}

3739
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3740
{
3741
	if (--fs_info->scrub_workers_refcnt == 0) {
3742 3743 3744
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3745
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3746
	}
A
Arne Jansen 已提交
3747 3748 3749
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3750 3751
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3752
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3753
{
3754
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3755 3756
	int ret;
	struct btrfs_device *dev;
3757
	struct rcu_string *name;
A
Arne Jansen 已提交
3758

3759
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3760 3761
		return -EINVAL;

3762
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3763 3764 3765 3766 3767
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3768 3769
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3770
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3771 3772 3773
		return -EINVAL;
	}

3774
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3775
		/* not supported for data w/o checksums */
3776 3777 3778
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3779
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3780 3781 3782
		return -EINVAL;
	}

3783 3784 3785 3786 3787 3788 3789 3790
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3791 3792
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3793 3794 3795 3796 3797 3798 3799
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3800

3801 3802
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3803
	if (!dev || (dev->missing && !is_dev_replace)) {
3804
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3805 3806 3807
		return -ENODEV;
	}

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3818
	mutex_lock(&fs_info->scrub_lock);
3819
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3820
		mutex_unlock(&fs_info->scrub_lock);
3821 3822
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3823 3824
	}

3825 3826 3827 3828 3829
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3830
		mutex_unlock(&fs_info->scrub_lock);
3831
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3832 3833
		return -EINPROGRESS;
	}
3834
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3835 3836 3837 3838 3839 3840 3841 3842

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3843
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3844
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3845
		mutex_unlock(&fs_info->scrub_lock);
3846 3847
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3848
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3849
	}
3850 3851
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3852
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3853

3854 3855 3856 3857
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3858
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3859 3860 3861
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3862
	if (!is_dev_replace) {
3863 3864 3865 3866
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3867
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3868
		ret = scrub_supers(sctx, dev);
3869
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3870
	}
A
Arne Jansen 已提交
3871 3872

	if (!ret)
3873 3874
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3875

3876
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3877 3878 3879
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3880
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3881

A
Arne Jansen 已提交
3882
	if (progress)
3883
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3884 3885 3886

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3887
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3888 3889
	mutex_unlock(&fs_info->scrub_lock);

3890
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3891 3892 3893 3894

	return ret;
}

3895
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3912
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3913 3914 3915 3916 3917 3918 3919
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3920
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3941 3942
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3943
{
3944
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3945 3946

	mutex_lock(&fs_info->scrub_lock);
3947 3948
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3949 3950 3951
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3952
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3963

A
Arne Jansen 已提交
3964 3965 3966 3967
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3968
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3969 3970

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3971
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3972
	if (dev)
3973 3974 3975
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3976 3977
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3978
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3979
}
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3996
		btrfs_put_bbio(bbio);
3997 3998 3999 4000 4001 4002
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4003
	btrfs_put_bbio(bbio);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4020
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4055 4056
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4057
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4058 4059
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4060 4061 4062 4063

	return 0;
}

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4116
					  record_inode_for_nocow, nocow_ctx);
4117
	if (ret != 0 && ret != -ENOENT) {
4118 4119
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4120 4121
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4122 4123 4124 4125
		not_written = 1;
		goto out;
	}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4144
out:
4145 4146 4147 4148 4149 4150 4151 4152
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4209 4210
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4211
{
4212
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4213
	struct btrfs_key key;
4214 4215
	struct inode *inode;
	struct page *page;
4216
	struct btrfs_root *local_root;
4217
	struct extent_io_tree *io_tree;
4218
	u64 physical_for_dev_replace;
4219
	u64 nocow_ctx_logical;
4220
	u64 len = nocow_ctx->len;
4221
	unsigned long index;
4222
	int srcu_index;
4223 4224
	int ret = 0;
	int err = 0;
4225 4226 4227 4228

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4229 4230 4231

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4232
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4233 4234
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4235
		return PTR_ERR(local_root);
4236
	}
4237 4238 4239 4240 4241

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4242
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4243 4244 4245
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4246 4247 4248 4249
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4250
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4251
	io_tree = &BTRFS_I(inode)->io_tree;
4252
	nocow_ctx_logical = nocow_ctx->logical;
4253

4254 4255 4256 4257
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4258 4259
	}

4260 4261
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4262
again:
4263 4264
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4265
			btrfs_err(fs_info, "find_or_create_page() failed");
4266
			ret = -ENOMEM;
4267
			goto out;
4268 4269 4270 4271 4272 4273 4274
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4275
			err = extent_read_full_page(io_tree, page,
4276 4277
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4278 4279
			if (err) {
				ret = err;
4280 4281
				goto next_page;
			}
4282

4283
			lock_page(page);
4284 4285 4286 4287 4288 4289 4290
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4291
				unlock_page(page);
4292 4293 4294
				page_cache_release(page);
				goto again;
			}
4295 4296 4297 4298 4299
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4300 4301 4302 4303 4304 4305 4306 4307

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4308 4309 4310 4311
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4312
next_page:
4313 4314 4315 4316 4317 4318
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4319 4320
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4321
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4322 4323
		len -= PAGE_CACHE_SIZE;
	}
4324
	ret = COPY_COMPLETE;
4325
out:
4326
	mutex_unlock(&inode->i_mutex);
4327
	iput(inode);
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4342 4343
		btrfs_warn_rl(dev->dev_root->fs_info,
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4344 4345
		return -EIO;
	}
4346
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4347 4348 4349 4350 4351 4352
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4353 4354
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4355 4356 4357 4358 4359 4360 4361 4362 4363
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4364
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4365 4366 4367 4368 4369
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}