scrub.c 104.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
A
Arne Jansen 已提交
9 10 11 12
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
13
#include "transaction.h"
14
#include "backref.h"
15
#include "extent_io.h"
16
#include "dev-replace.h"
17
#include "check-integrity.h"
18
#include "rcu-string.h"
D
David Woodhouse 已提交
19
#include "raid56.h"
A
Arne Jansen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

34
struct scrub_block;
35
struct scrub_ctx;
A
Arne Jansen 已提交
36

37 38 39 40 41 42 43 44 45
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 47 48 49 50 51

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
52
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
53

54
struct scrub_recover {
55
	refcount_t		refs;
56 57 58 59
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
60
struct scrub_page {
61 62
	struct scrub_block	*sblock;
	struct page		*page;
63
	struct btrfs_device	*dev;
64
	struct list_head	list;
A
Arne Jansen 已提交
65 66
	u64			flags;  /* extent flags */
	u64			generation;
67 68
	u64			logical;
	u64			physical;
69
	u64			physical_for_dev_replace;
70
	atomic_t		refs;
71 72 73 74 75
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
76
	u8			csum[BTRFS_CSUM_SIZE];
77 78

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
79 80 81 82
};

struct scrub_bio {
	int			index;
83
	struct scrub_ctx	*sctx;
84
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
85
	struct bio		*bio;
86
	blk_status_t		status;
A
Arne Jansen 已提交
87 88
	u64			logical;
	u64			physical;
89 90 91 92 93
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
94
	int			page_count;
A
Arne Jansen 已提交
95 96 97 98
	int			next_free;
	struct btrfs_work	work;
};

99
struct scrub_block {
100
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 102
	int			page_count;
	atomic_t		outstanding_pages;
103
	refcount_t		refs; /* free mem on transition to zero */
104
	struct scrub_ctx	*sctx;
105
	struct scrub_parity	*sparity;
106 107 108 109
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
110
		unsigned int	generation_error:1; /* also sets header_error */
111 112 113 114

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
115
	};
116
	struct btrfs_work	work;
117 118
};

119 120 121 122 123 124 125 126 127 128 129 130
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

131
	u64			stripe_len;
132

133
	refcount_t		refs;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

152
struct scrub_ctx {
153
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
155 156
	int			first_free;
	int			curr;
157 158
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
159 160 161 162 163
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
164
	int			readonly;
165
	int			pages_per_rd_bio;
166 167

	int			is_dev_replace;
168 169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191 192 193 194
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
195
	u64			physical;
196 197 198 199
	u64			logical;
	struct btrfs_device	*dev;
};

200 201 202 203 204 205 206
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

207 208
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211
				     struct scrub_block *sblocks_for_recheck);
212
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 214
				struct scrub_block *sblock,
				int retry_failed_mirror);
215
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217
					     struct scrub_block *sblock_good);
218 219 220
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
221 222 223
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
224 225 226 227 228
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
229 230
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
231 232
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
233 234
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
235
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236
		       u64 physical, struct btrfs_device *dev, u64 flags,
237 238
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
239
static void scrub_bio_end_io(struct bio *bio);
240 241
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
242 243 244 245 246 247 248 249
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
250
static void scrub_wr_bio_end_io(struct bio *bio);
251
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
255

256 257 258 259 260
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
261

262 263
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
264
	refcount_inc(&sctx->refs);
265 266 267 268 269 270 271
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
272
	scrub_put_ctx(sctx);
273 274
}

275
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 277 278 279 280 281 282 283 284
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

285
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
286 287 288
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
289
}
290

291 292
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
293 294 295 296 297 298 299 300
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

301 302 303 304 305 306
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

326
	lockdep_assert_held(&locks_root->lock);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

368
	lockdep_assert_held(&locks_root->lock);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

523
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
524
{
525
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
526
		struct btrfs_ordered_sum *sum;
527
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
528 529 530 531 532 533
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

534
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
535 536 537
{
	int i;

538
	if (!sctx)
A
Arne Jansen 已提交
539 540
		return;

541
	/* this can happen when scrub is cancelled */
542 543
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
544 545

		for (i = 0; i < sbio->page_count; i++) {
546
			WARN_ON(!sbio->pagev[i]->page);
547 548 549 550 551
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

552
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
553
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
554 555 556 557 558 559

		if (!sbio)
			break;
		kfree(sbio);
	}

560
	kfree(sctx->wr_curr_bio);
561 562
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
563 564
}

565 566
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
567
	if (refcount_dec_and_test(&sctx->refs))
568 569 570
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
571
static noinline_for_stack
572
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
573
{
574
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
575
	int		i;
576
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
577

578
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
579
	if (!sctx)
A
Arne Jansen 已提交
580
		goto nomem;
581
	refcount_set(&sctx->refs, 1);
582
	sctx->is_dev_replace = is_dev_replace;
583
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
584
	sctx->curr = -1;
585
	sctx->fs_info = dev->fs_info;
586
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
587 588
		struct scrub_bio *sbio;

589
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
590 591
		if (!sbio)
			goto nomem;
592
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
593 594

		sbio->index = i;
595
		sbio->sctx = sctx;
596
		sbio->page_count = 0;
597 598
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
599

600
		if (i != SCRUB_BIOS_PER_SCTX - 1)
601
			sctx->bios[i]->next_free = i + 1;
602
		else
603 604 605
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
606 607
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
608 609 610 611 612 613 614
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
615

616 617 618
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
619
	if (is_dev_replace) {
620
		WARN_ON(!fs_info->dev_replace.tgtdev);
621
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
622
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
623
		sctx->flush_all_writes = false;
624
	}
625

626
	return sctx;
A
Arne Jansen 已提交
627 628

nomem:
629
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
630 631 632
	return ERR_PTR(-ENOMEM);
}

633 634
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
635 636 637 638 639
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
640
	unsigned nofs_flag;
641 642
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
643
	struct scrub_warning *swarn = warn_ctx;
644
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
645 646 647
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
648
	struct btrfs_key key;
649 650 651 652 653 654 655 656 657 658

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

659 660 661
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
662 663 664 665 666
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
667 668 669 670 671 672 673 674 675 676 677 678
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

679 680 681 682 683 684
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
685
	ipath = init_ipath(4096, local_root, swarn->path);
686
	memalloc_nofs_restore(nofs_flag);
687 688 689 690 691
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
692 693 694 695 696 697 698 699 700 701
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
702
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
703
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
704 705
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
706
				  swarn->physical,
J
Jeff Mahoney 已提交
707 708 709
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
710 711 712 713 714

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
715
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
716
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
717 718
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
719
			  swarn->physical,
J
Jeff Mahoney 已提交
720
			  root, inum, offset, ret);
721 722 723 724 725

	free_ipath(ipath);
	return 0;
}

726
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
727
{
728 729
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
730 731 732 733 734
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
735 736 737
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
738
	u64 ref_root;
739
	u32 item_size;
740
	u8 ref_level = 0;
741
	int ret;
742

743
	WARN_ON(sblock->page_count < 1);
744
	dev = sblock->pagev[0]->dev;
745
	fs_info = sblock->sctx->fs_info;
746

747
	path = btrfs_alloc_path();
748 749
	if (!path)
		return;
750

D
David Sterba 已提交
751
	swarn.physical = sblock->pagev[0]->physical;
752
	swarn.logical = sblock->pagev[0]->logical;
753
	swarn.errstr = errstr;
754
	swarn.dev = NULL;
755

756 757
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
758 759 760
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
761
	extent_item_pos = swarn.logical - found_key.objectid;
762 763 764 765 766 767
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

768
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769
		do {
770 771 772
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
773
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
774
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
775
				errstr, swarn.logical,
776
				rcu_str_deref(dev->name),
D
David Sterba 已提交
777
				swarn.physical,
778 779 780 781
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
782
		btrfs_release_path(path);
783
	} else {
784
		btrfs_release_path(path);
785
		swarn.path = path;
786
		swarn.dev = dev;
787 788
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
789
					scrub_print_warning_inode, &swarn, false);
790 791 792 793 794 795
	}

out:
	btrfs_free_path(path);
}

796 797
static inline void scrub_get_recover(struct scrub_recover *recover)
{
798
	refcount_inc(&recover->refs);
799 800
}

801 802
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
803
{
804
	if (refcount_dec_and_test(&recover->refs)) {
805
		btrfs_bio_counter_dec(fs_info);
806
		btrfs_put_bbio(recover->bbio);
807 808 809 810
		kfree(recover);
	}
}

A
Arne Jansen 已提交
811
/*
812 813 814 815 816 817
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
818
 */
819
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
820
{
821
	struct scrub_ctx *sctx = sblock_to_check->sctx;
822
	struct btrfs_device *dev;
823 824 825 826 827 828 829 830 831 832 833
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
834
	bool full_stripe_locked;
835
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
836 837 838
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
839
	fs_info = sctx->fs_info;
840 841 842 843 844 845 846 847 848 849 850
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
851 852 853 854
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
855
			BTRFS_EXTENT_FLAG_DATA);
856 857
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

906 907
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
908
	if (!sblocks_for_recheck) {
909 910 911 912 913
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
914
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915
		goto out;
A
Arne Jansen 已提交
916 917
	}

918
	/* setup the context, map the logical blocks and alloc the pages */
919
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
920
	if (ret) {
921 922 923 924
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
925
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926 927 928 929
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
930

931
	/* build and submit the bios for the failed mirror, check checksums */
932
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
933

934 935 936 937 938 939 940 941 942 943
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
944 945
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
946
		sblock_to_check->data_corrected = 1;
947
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
948

949 950
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
951
		goto out;
A
Arne Jansen 已提交
952 953
	}

954
	if (!sblock_bad->no_io_error_seen) {
955 956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
958 959
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
960
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
961
	} else if (sblock_bad->checksum_error) {
962 963 964
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
965 966
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
967
		btrfs_dev_stat_inc_and_print(dev,
968
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
969
	} else if (sblock_bad->header_error) {
970 971 972
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
973 974 975
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
976
		if (sblock_bad->generation_error)
977
			btrfs_dev_stat_inc_and_print(dev,
978 979
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
980
			btrfs_dev_stat_inc_and_print(dev,
981
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
982
	}
A
Arne Jansen 已提交
983

984 985 986 987
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
988

989 990
	/*
	 * now build and submit the bios for the other mirrors, check
991 992
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
993 994 995 996 997 998 999 1000 1001 1002 1003
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1004
	for (mirror_index = 0; ;mirror_index++) {
1005
		struct scrub_block *sblock_other;
1006

1007 1008
		if (mirror_index == failed_mirror_index)
			continue;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1032 1033

		/* build and submit the bios, check checksums */
1034
		scrub_recheck_block(fs_info, sblock_other, 0);
1035 1036

		if (!sblock_other->header_error &&
1037 1038
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1039 1040
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1041
				goto corrected_error;
1042 1043
			} else {
				ret = scrub_repair_block_from_good_copy(
1044 1045 1046
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1047
			}
1048 1049
		}
	}
A
Arne Jansen 已提交
1050

1051 1052
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1053 1054 1055

	/*
	 * In case of I/O errors in the area that is supposed to be
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1068
	 * the final checksum succeeds. But this would be a rare
1069 1070 1071 1072 1073 1074 1075 1076
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1077
	 */
1078
	success = 1;
1079 1080
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1081
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1082
		struct scrub_block *sblock_other = NULL;
1083

1084 1085
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1086
			continue;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1099 1100 1101 1102 1103 1104 1105 1106 1107
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1108 1109
				}
			}
1110 1111
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1112
		}
A
Arne Jansen 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1128
					&fs_info->dev_replace.num_write_errors);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1139
		}
A
Arne Jansen 已提交
1140 1141
	}

1142
	if (success && !sctx->is_dev_replace) {
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1153
			scrub_recheck_block(fs_info, sblock_bad, 1);
1154
			if (!sblock_bad->header_error &&
1155 1156 1157 1158 1159 1160 1161
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1162 1163
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1164
			sblock_to_check->data_corrected = 1;
1165
			spin_unlock(&sctx->stat_lock);
1166 1167
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1168
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1169
		}
1170 1171
	} else {
did_not_correct_error:
1172 1173 1174
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1175 1176
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1177
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1178
	}
A
Arne Jansen 已提交
1179

1180 1181 1182 1183 1184 1185
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1186
			struct scrub_recover *recover;
1187 1188
			int page_index;

1189 1190 1191
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1192 1193
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1194
					scrub_put_recover(fs_info, recover);
1195 1196 1197
					sblock->pagev[page_index]->recover =
									NULL;
				}
1198 1199
				scrub_page_put(sblock->pagev[page_index]);
			}
1200 1201 1202
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1203

1204 1205 1206
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1207 1208
	return 0;
}
A
Arne Jansen 已提交
1209

1210
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1211
{
Z
Zhao Lei 已提交
1212 1213 1214 1215 1216
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1217 1218 1219
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1220 1221
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1222 1223 1224 1225 1226 1227 1228
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1229
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1250
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1251 1252
				     struct scrub_block *sblocks_for_recheck)
{
1253
	struct scrub_ctx *sctx = original_sblock->sctx;
1254
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1255 1256
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1257 1258 1259
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1260 1261 1262 1263 1264 1265
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1266
	int page_index = 0;
1267
	int mirror_index;
1268
	int nmirrors;
1269 1270 1271
	int ret;

	/*
1272
	 * note: the two members refs and outstanding_pages
1273 1274 1275 1276 1277
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1278 1279 1280
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1281

1282 1283 1284 1285
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1286
		btrfs_bio_counter_inc_blocked(fs_info);
1287
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1288
				logical, &mapped_length, &bbio);
1289
		if (ret || !bbio || mapped_length < sublen) {
1290
			btrfs_put_bbio(bbio);
1291
			btrfs_bio_counter_dec(fs_info);
1292 1293
			return -EIO;
		}
A
Arne Jansen 已提交
1294

1295 1296
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1297
			btrfs_put_bbio(bbio);
1298
			btrfs_bio_counter_dec(fs_info);
1299 1300 1301
			return -ENOMEM;
		}

1302
		refcount_set(&recover->refs, 1);
1303 1304 1305
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1306
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1307

1308
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1309

1310
		for (mirror_index = 0; mirror_index < nmirrors;
1311 1312 1313 1314 1315
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1316
			sblock->sctx = sctx;
1317

1318 1319 1320
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1321 1322 1323
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1324
				scrub_put_recover(fs_info, recover);
1325 1326
				return -ENOMEM;
			}
1327 1328
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1329 1330 1331
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1332
			page->logical = logical;
1333 1334 1335 1336 1337
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1338

Z
Zhao Lei 已提交
1339 1340 1341
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1342
						      mapped_length,
1343 1344
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1345 1346 1347 1348 1349 1350 1351
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1352 1353 1354 1355
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1356 1357
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1358
			sblock->page_count++;
1359 1360 1361
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1362 1363 1364

			scrub_get_recover(recover);
			page->recover = recover;
1365
		}
1366
		scrub_put_recover(fs_info, recover);
1367 1368 1369 1370 1371 1372
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1373 1374
}

1375
static void scrub_bio_wait_endio(struct bio *bio)
1376
{
1377
	complete(bio->bi_private);
1378 1379 1380 1381 1382 1383
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1384
	DECLARE_COMPLETION_ONSTACK(done);
1385
	int ret;
1386
	int mirror_num;
1387 1388 1389 1390 1391

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1392
	mirror_num = page->sblock->pagev[0]->mirror_num;
1393
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1394
				    page->recover->map_length,
1395
				    mirror_num, 0);
1396 1397 1398
	if (ret)
		return ret;

1399 1400
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1401 1402
}

L
Liu Bo 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1442 1443 1444 1445 1446 1447 1448
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1449
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1450 1451
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1452
{
1453
	int page_num;
I
Ilya Dryomov 已提交
1454

1455
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1456

L
Liu Bo 已提交
1457 1458 1459 1460
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1461 1462
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1463
		struct scrub_page *page = sblock->pagev[page_num];
1464

1465
		if (page->dev->bdev == NULL) {
1466 1467 1468 1469 1470
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1471
		WARN_ON(!page->page);
1472
		bio = btrfs_io_bio_alloc(1);
1473
		bio_set_dev(bio, page->dev->bdev);
1474

1475
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1476 1477
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1478

L
Liu Bo 已提交
1479 1480 1481
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1482
		}
1483

1484 1485
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1486

1487
	if (sblock->no_io_error_seen)
1488
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1489 1490
}

M
Miao Xie 已提交
1491 1492 1493 1494 1495 1496
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1497
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1498 1499 1500
	return !ret;
}

1501
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1502
{
1503 1504 1505
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1506

1507 1508 1509 1510
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1511 1512
}

1513
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1514
					     struct scrub_block *sblock_good)
1515 1516 1517
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1518

1519 1520
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1521

1522 1523
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1524
							   page_num, 1);
1525 1526
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1527
	}
1528 1529 1530 1531 1532 1533 1534 1535

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1536 1537
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1538
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1539

1540 1541
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1542 1543 1544 1545 1546
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1547
		if (!page_bad->dev->bdev) {
1548
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1549
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1550 1551 1552
			return -EIO;
		}

1553
		bio = btrfs_io_bio_alloc(1);
1554
		bio_set_dev(bio, page_bad->dev->bdev);
1555
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1556
		bio->bi_opf = REQ_OP_WRITE;
1557 1558 1559 1560 1561

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1562
		}
1563

1564
		if (btrfsic_submit_bio_wait(bio)) {
1565 1566
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1567
			btrfs_dev_replace_stats_inc(
1568
				&fs_info->dev_replace.num_write_errors);
1569 1570 1571
			bio_put(bio);
			return -EIO;
		}
1572
		bio_put(bio);
A
Arne Jansen 已提交
1573 1574
	}

1575 1576 1577
	return 0;
}

1578 1579
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1580
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1581 1582
	int page_num;

1583 1584 1585 1586 1587 1588 1589
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1590 1591 1592 1593 1594 1595
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1596
				&fs_info->dev_replace.num_write_errors);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1609
		clear_page(mapped_buffer);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1622
	mutex_lock(&sctx->wr_lock);
1623
again:
1624 1625
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1626
					      GFP_KERNEL);
1627 1628
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1629 1630
			return -ENOMEM;
		}
1631 1632
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1633
	}
1634
	sbio = sctx->wr_curr_bio;
1635 1636 1637 1638 1639
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1640
		sbio->dev = sctx->wr_tgtdev;
1641 1642
		bio = sbio->bio;
		if (!bio) {
1643
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1644 1645 1646 1647 1648
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1649
		bio_set_dev(bio, sbio->dev->bdev);
1650
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1651
		bio->bi_opf = REQ_OP_WRITE;
1652
		sbio->status = 0;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1666
			mutex_unlock(&sctx->wr_lock);
1667 1668 1669 1670 1671 1672 1673 1674 1675
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1676
	if (sbio->page_count == sctx->pages_per_wr_bio)
1677
		scrub_wr_submit(sctx);
1678
	mutex_unlock(&sctx->wr_lock);
1679 1680 1681 1682 1683 1684 1685 1686

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1687
	if (!sctx->wr_curr_bio)
1688 1689
		return;

1690 1691
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1692
	WARN_ON(!sbio->bio->bi_disk);
1693 1694 1695 1696 1697
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1698
	btrfsic_submit_bio(sbio->bio);
1699 1700
}

1701
static void scrub_wr_bio_end_io(struct bio *bio)
1702 1703
{
	struct scrub_bio *sbio = bio->bi_private;
1704
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1705

1706
	sbio->status = bio->bi_status;
1707 1708
	sbio->bio = bio;

1709 1710
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1711
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1712 1713 1714 1715 1716 1717 1718 1719 1720
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1721
	if (sbio->status) {
1722
		struct btrfs_dev_replace *dev_replace =
1723
			&sbio->sctx->fs_info->dev_replace;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1743 1744 1745 1746
{
	u64 flags;
	int ret;

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1759 1760
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1772 1773

	return ret;
A
Arne Jansen 已提交
1774 1775
}

1776
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1777
{
1778
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1779
	u8 csum[BTRFS_CSUM_SIZE];
1780 1781 1782
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1783
	u32 crc = ~(u32)0;
1784 1785
	u64 len;
	int index;
A
Arne Jansen 已提交
1786

1787
	BUG_ON(sblock->page_count < 1);
1788
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1789 1790
		return 0;

1791 1792
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1793
	buffer = kmap_atomic(page);
1794

1795
	len = sctx->fs_info->sectorsize;
1796 1797 1798 1799
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1800
		crc = btrfs_csum_data(buffer, crc, l);
1801
		kunmap_atomic(buffer);
1802 1803 1804 1805 1806
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1807 1808
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1809
		buffer = kmap_atomic(page);
1810 1811
	}

A
Arne Jansen 已提交
1812
	btrfs_csum_final(crc, csum);
1813
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1814
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1815

1816
	return sblock->checksum_error;
A
Arne Jansen 已提交
1817 1818
}

1819
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1820
{
1821
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1822
	struct btrfs_header *h;
1823
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1824 1825 1826 1827 1828 1829
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1830
	u32 crc = ~(u32)0;
1831 1832 1833 1834
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1835
	page = sblock->pagev[0]->page;
1836
	mapped_buffer = kmap_atomic(page);
1837
	h = (struct btrfs_header *)mapped_buffer;
1838
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1839 1840 1841 1842 1843 1844

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1845
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1846
		sblock->header_error = 1;
A
Arne Jansen 已提交
1847

1848 1849 1850 1851
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1852

M
Miao Xie 已提交
1853
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1854
		sblock->header_error = 1;
A
Arne Jansen 已提交
1855 1856 1857

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1858
		sblock->header_error = 1;
A
Arne Jansen 已提交
1859

1860
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1861 1862 1863 1864 1865 1866
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1867
		crc = btrfs_csum_data(p, crc, l);
1868
		kunmap_atomic(mapped_buffer);
1869 1870 1871 1872 1873
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1874 1875
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1876
		mapped_buffer = kmap_atomic(page);
1877 1878 1879 1880 1881
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1882
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1883
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1884

1885
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1886 1887
}

1888
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1889 1890
{
	struct btrfs_super_block *s;
1891
	struct scrub_ctx *sctx = sblock->sctx;
1892 1893 1894 1895 1896 1897
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1898
	u32 crc = ~(u32)0;
1899 1900
	int fail_gen = 0;
	int fail_cor = 0;
1901 1902
	u64 len;
	int index;
A
Arne Jansen 已提交
1903

1904
	BUG_ON(sblock->page_count < 1);
1905
	page = sblock->pagev[0]->page;
1906
	mapped_buffer = kmap_atomic(page);
1907
	s = (struct btrfs_super_block *)mapped_buffer;
1908
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1909

1910
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1911
		++fail_cor;
A
Arne Jansen 已提交
1912

1913
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1914
		++fail_gen;
A
Arne Jansen 已提交
1915

M
Miao Xie 已提交
1916
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1917
		++fail_cor;
A
Arne Jansen 已提交
1918

1919 1920 1921 1922 1923 1924 1925
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1926
		crc = btrfs_csum_data(p, crc, l);
1927
		kunmap_atomic(mapped_buffer);
1928 1929 1930 1931 1932
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1933 1934
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1935
		mapped_buffer = kmap_atomic(page);
1936 1937 1938 1939 1940
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1941
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1942
		++fail_cor;
A
Arne Jansen 已提交
1943

1944
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1945 1946 1947 1948 1949
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1950 1951 1952
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1953
		if (fail_cor)
1954
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1955 1956
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1957
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1958
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1959 1960
	}

1961
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1962 1963
}

1964 1965
static void scrub_block_get(struct scrub_block *sblock)
{
1966
	refcount_inc(&sblock->refs);
1967 1968 1969 1970
}

static void scrub_block_put(struct scrub_block *sblock)
{
1971
	if (refcount_dec_and_test(&sblock->refs)) {
1972 1973
		int i;

1974 1975 1976
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1977
		for (i = 0; i < sblock->page_count; i++)
1978
			scrub_page_put(sblock->pagev[i]);
1979 1980 1981 1982
		kfree(sblock);
	}
}

1983 1984
static void scrub_page_get(struct scrub_page *spage)
{
1985
	atomic_inc(&spage->refs);
1986 1987 1988 1989
}

static void scrub_page_put(struct scrub_page *spage)
{
1990
	if (atomic_dec_and_test(&spage->refs)) {
1991 1992 1993 1994 1995 1996
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1997
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1998 1999 2000
{
	struct scrub_bio *sbio;

2001
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2002
		return;
A
Arne Jansen 已提交
2003

2004 2005
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2006
	scrub_pending_bio_inc(sctx);
2007
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2008 2009
}

2010 2011
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2012
{
2013
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2014
	struct scrub_bio *sbio;
2015
	int ret;
A
Arne Jansen 已提交
2016 2017 2018 2019 2020

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2021 2022 2023 2024 2025 2026 2027 2028
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2029
		} else {
2030 2031
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2032 2033
		}
	}
2034
	sbio = sctx->bios[sctx->curr];
2035
	if (sbio->page_count == 0) {
2036 2037
		struct bio *bio;

2038 2039
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2040
		sbio->dev = spage->dev;
2041 2042
		bio = sbio->bio;
		if (!bio) {
2043
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2044 2045
			sbio->bio = bio;
		}
2046 2047 2048

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2049
		bio_set_dev(bio, sbio->dev->bdev);
2050
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2051
		bio->bi_opf = REQ_OP_READ;
2052
		sbio->status = 0;
2053 2054 2055
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2056 2057
		   spage->logical ||
		   sbio->dev != spage->dev) {
2058
		scrub_submit(sctx);
A
Arne Jansen 已提交
2059 2060
		goto again;
	}
2061

2062 2063 2064 2065 2066 2067 2068 2069
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2070
		scrub_submit(sctx);
2071 2072 2073
		goto again;
	}

2074
	scrub_block_get(sblock); /* one for the page added to the bio */
2075 2076
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2077
	if (sbio->page_count == sctx->pages_per_rd_bio)
2078
		scrub_submit(sctx);
2079 2080 2081 2082

	return 0;
}

2083
static void scrub_missing_raid56_end_io(struct bio *bio)
2084 2085
{
	struct scrub_block *sblock = bio->bi_private;
2086
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2087

2088
	if (bio->bi_status)
2089 2090
		sblock->no_io_error_seen = 0;

2091 2092
	bio_put(bio);

2093 2094 2095 2096 2097 2098 2099
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2100
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2101 2102 2103 2104 2105 2106
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2107
	if (sblock->no_io_error_seen)
2108
		scrub_recheck_block_checksum(sblock);
2109 2110 2111 2112 2113

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2114
		btrfs_err_rl_in_rcu(fs_info,
2115
			"IO error rebuilding logical %llu for dev %s",
2116 2117 2118 2119 2120
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2121
		btrfs_err_rl_in_rcu(fs_info,
2122
			"failed to rebuild valid logical %llu for dev %s",
2123 2124 2125 2126 2127 2128 2129
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2130
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2131
		mutex_lock(&sctx->wr_lock);
2132
		scrub_wr_submit(sctx);
2133
		mutex_unlock(&sctx->wr_lock);
2134 2135 2136 2137 2138 2139 2140 2141
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2142
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2143 2144
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2145
	struct btrfs_bio *bbio = NULL;
2146 2147 2148 2149 2150
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2151
	btrfs_bio_counter_inc_blocked(fs_info);
2152
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2153
			&length, &bbio);
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2168
	bio = btrfs_io_bio_alloc(0);
2169 2170 2171 2172
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2173
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2193
	btrfs_bio_counter_dec(fs_info);
2194 2195 2196 2197 2198 2199
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2200
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2201
		       u64 physical, struct btrfs_device *dev, u64 flags,
2202 2203
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2204 2205 2206 2207
{
	struct scrub_block *sblock;
	int index;

2208
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2209
	if (!sblock) {
2210 2211 2212
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2213
		return -ENOMEM;
A
Arne Jansen 已提交
2214
	}
2215

2216 2217
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2218
	refcount_set(&sblock->refs, 1);
2219
	sblock->sctx = sctx;
2220 2221 2222
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2223
		struct scrub_page *spage;
2224 2225
		u64 l = min_t(u64, len, PAGE_SIZE);

2226
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2227 2228
		if (!spage) {
leave_nomem:
2229 2230 2231
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2232
			scrub_block_put(sblock);
2233 2234
			return -ENOMEM;
		}
2235 2236 2237
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2238
		spage->sblock = sblock;
2239
		spage->dev = dev;
2240 2241 2242 2243
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2244
		spage->physical_for_dev_replace = physical_for_dev_replace;
2245 2246 2247
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2248
			memcpy(spage->csum, csum, sctx->csum_size);
2249 2250 2251 2252
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2253
		spage->page = alloc_page(GFP_KERNEL);
2254 2255
		if (!spage->page)
			goto leave_nomem;
2256 2257 2258
		len -= l;
		logical += l;
		physical += l;
2259
		physical_for_dev_replace += l;
2260 2261
	}

2262
	WARN_ON(sblock->page_count == 0);
2263
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2264 2265 2266 2267 2268 2269 2270 2271 2272
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2273

2274 2275 2276 2277 2278
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2279
		}
A
Arne Jansen 已提交
2280

2281 2282 2283
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2284

2285 2286
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2287 2288 2289
	return 0;
}

2290
static void scrub_bio_end_io(struct bio *bio)
2291 2292
{
	struct scrub_bio *sbio = bio->bi_private;
2293
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2294

2295
	sbio->status = bio->bi_status;
2296 2297
	sbio->bio = bio;

2298
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2299 2300 2301 2302 2303
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2304
	struct scrub_ctx *sctx = sbio->sctx;
2305 2306
	int i;

2307
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2308
	if (sbio->status) {
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2329 2330 2331 2332
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2333

2334
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2335
		mutex_lock(&sctx->wr_lock);
2336
		scrub_wr_submit(sctx);
2337
		mutex_unlock(&sctx->wr_lock);
2338 2339
	}

2340
	scrub_pending_bio_dec(sctx);
2341 2342
}

2343 2344 2345 2346
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2347
	u64 offset;
2348 2349
	u64 nsectors64;
	u32 nsectors;
2350
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2351 2352 2353 2354 2355 2356 2357

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2358 2359
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2360 2361 2362 2363
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2386 2387
static void scrub_block_complete(struct scrub_block *sblock)
{
2388 2389
	int corrupted = 0;

2390
	if (!sblock->no_io_error_seen) {
2391
		corrupted = 1;
2392
		scrub_handle_errored_block(sblock);
2393 2394 2395 2396 2397 2398
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2399 2400
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2401 2402
			scrub_write_block_to_dev_replace(sblock);
	}
2403 2404 2405 2406 2407 2408 2409 2410 2411

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2412 2413
}

2414
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2415 2416
{
	struct btrfs_ordered_sum *sum = NULL;
2417
	unsigned long index;
A
Arne Jansen 已提交
2418 2419
	unsigned long num_sectors;

2420 2421
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2422 2423 2424 2425 2426 2427
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2428
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2429 2430 2431 2432 2433 2434 2435
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2436 2437 2438
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2439
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2440 2441
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2442 2443 2444
		list_del(&sum->list);
		kfree(sum);
	}
2445
	return 1;
A
Arne Jansen 已提交
2446 2447 2448
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2449 2450
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2451
			u64 physical, struct btrfs_device *dev, u64 flags,
2452
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2453 2454 2455
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2456 2457 2458
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2459 2460 2461 2462
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2463 2464 2465 2466
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2467
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2468 2469 2470 2471
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2472 2473 2474 2475
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2476
	} else {
2477
		blocksize = sctx->fs_info->sectorsize;
2478
		WARN_ON(1);
2479
	}
A
Arne Jansen 已提交
2480 2481

	while (len) {
2482
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2483 2484 2485 2486
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2487
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2488
			if (have_csum == 0)
2489
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2490
		}
2491
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2492 2493
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2494 2495 2496 2497 2498
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2499
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2500 2501 2502 2503
	}
	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511 2512
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2513
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2514 2515 2516 2517 2518 2519 2520 2521 2522
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2523
	refcount_set(&sblock->refs, 1);
2524 2525 2526 2527 2528 2529 2530 2531 2532
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2533
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2563
		spage->page = alloc_page(GFP_KERNEL);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2598
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2599 2600 2601 2602
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2603
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2604
		blocksize = sparity->stripe_len;
2605
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2606
		blocksize = sparity->stripe_len;
2607
	} else {
2608
		blocksize = sctx->fs_info->sectorsize;
2609 2610 2611 2612 2613 2614 2615 2616 2617
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2618
			have_csum = scrub_find_csum(sctx, logical, csum);
2619 2620 2621 2622 2623 2624 2625 2626
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2627
skip:
2628 2629 2630 2631 2632 2633 2634
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2635 2636 2637 2638 2639 2640 2641 2642
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2643 2644
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2645 2646 2647 2648 2649
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2650 2651
	u32 stripe_index;
	u32 rot;
2652 2653 2654

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2655 2656 2657
	if (stripe_start)
		*stripe_start = last_offset;

2658 2659 2660 2661
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2662
		stripe_nr = div64_u64(*offset, map->stripe_len);
2663
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2664 2665

		/* Work out the disk rotation on this stripe-set */
2666
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2667 2668
		/* calculate which stripe this data locates */
		rot += i;
2669
		stripe_index = rot % map->num_stripes;
2670 2671 2672 2673 2674 2675 2676 2677 2678
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2711
static void scrub_parity_bio_endio(struct bio *bio)
2712 2713
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2714
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2715

2716
	if (bio->bi_status)
2717 2718 2719 2720
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2721 2722 2723

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
2724
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2725 2726 2727 2728 2729
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2730
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2741
	length = sparity->logic_end - sparity->logic_start;
2742 2743

	btrfs_bio_counter_inc_blocked(fs_info);
2744
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2745
			       &length, &bbio);
2746
	if (ret || !bbio || !bbio->raid_map)
2747 2748
		goto bbio_out;

2749
	bio = btrfs_io_bio_alloc(0);
2750 2751 2752 2753
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2754
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2755
					      length, sparity->scrub_dev,
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2768
	btrfs_bio_counter_dec(fs_info);
2769
	btrfs_put_bbio(bbio);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2781
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2782 2783 2784 2785
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2786
	refcount_inc(&sparity->refs);
2787 2788 2789 2790
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2791
	if (!refcount_dec_and_test(&sparity->refs))
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2804
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2805 2806 2807
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2808
	struct btrfs_bio *bbio = NULL;
2809 2810 2811 2812 2813 2814 2815 2816 2817
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2818
	u64 mapped_length;
2819 2820 2821 2822 2823 2824 2825
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2826
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2843
	refcount_set(&sparity->refs, 1);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2892 2893 2894 2895
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2896
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2897
				bytes = fs_info->nodesize;
2898 2899 2900 2901 2902 2903
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2904
			if (key.objectid >= logic_end) {
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2917 2918 2919 2920
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2921 2922
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2923
					  key.objectid, logic_start);
2924 2925 2926
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2946
			mapped_length = extent_len;
2947
			bbio = NULL;
2948 2949 2950
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
2977 2978 2979

			scrub_free_csums(sctx);

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3011
						logic_end - logic_start);
3012 3013
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3014
	mutex_lock(&sctx->wr_lock);
3015
	scrub_wr_submit(sctx);
3016
	mutex_unlock(&sctx->wr_lock);
3017 3018 3019 3020 3021

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3022
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3023 3024
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3025
					   int num, u64 base, u64 length)
A
Arne Jansen 已提交
3026
{
3027
	struct btrfs_path *path, *ppath;
3028
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3029 3030 3031
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3032
	struct blk_plug plug;
A
Arne Jansen 已提交
3033 3034 3035 3036 3037 3038 3039
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3040
	u64 logic_end;
3041
	u64 physical_end;
A
Arne Jansen 已提交
3042
	u64 generation;
3043
	int mirror_num;
A
Arne Jansen 已提交
3044 3045
	struct reada_control *reada1;
	struct reada_control *reada2;
3046
	struct btrfs_key key;
A
Arne Jansen 已提交
3047
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3048 3049
	u64 increment = map->stripe_len;
	u64 offset;
3050 3051 3052
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3053 3054
	u64 stripe_logical;
	u64 stripe_end;
3055 3056
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3057
	int stop_loop = 0;
D
David Woodhouse 已提交
3058

3059
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3060
	offset = 0;
3061
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3062 3063 3064
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3065
		mirror_num = 1;
A
Arne Jansen 已提交
3066 3067 3068 3069
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3070
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3071 3072
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3073
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3074 3075
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3076
		mirror_num = num % map->num_stripes + 1;
3077
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3078
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3079 3080
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3081 3082
	} else {
		increment = map->stripe_len;
3083
		mirror_num = 1;
A
Arne Jansen 已提交
3084 3085 3086 3087 3088 3089
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3090 3091
	ppath = btrfs_alloc_path();
	if (!ppath) {
3092
		btrfs_free_path(path);
3093 3094 3095
		return -ENOMEM;
	}

3096 3097 3098 3099 3100
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3101 3102 3103
	path->search_commit_root = 1;
	path->skip_locking = 1;

3104 3105
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3106
	/*
A
Arne Jansen 已提交
3107 3108 3109
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3110 3111
	 */
	logical = base + offset;
3112
	physical_end = physical + nstripes * map->stripe_len;
3113
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3114
		get_raid56_logic_offset(physical_end, num,
3115
					map, &logic_end, NULL);
3116 3117 3118 3119
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3120
	wait_event(sctx->list_wait,
3121
		   atomic_read(&sctx->bios_in_flight) == 0);
3122
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3123 3124

	/* FIXME it might be better to start readahead at commit root */
3125 3126 3127
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3128
	key_end.objectid = logic_end;
3129 3130
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3131
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3132

3133 3134 3135
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3136 3137
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3138
	key_end.offset = logic_end;
3139
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3140 3141 3142 3143 3144 3145

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3146 3147 3148 3149 3150

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3151
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3152 3153 3154 3155 3156

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3157
	while (physical < physical_end) {
A
Arne Jansen 已提交
3158 3159 3160 3161
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3162
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3163 3164 3165 3166 3167 3168 3169 3170
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3171
			sctx->flush_all_writes = true;
3172
			scrub_submit(sctx);
3173
			mutex_lock(&sctx->wr_lock);
3174
			scrub_wr_submit(sctx);
3175
			mutex_unlock(&sctx->wr_lock);
3176
			wait_event(sctx->list_wait,
3177
				   atomic_read(&sctx->bios_in_flight) == 0);
3178
			sctx->flush_all_writes = false;
3179
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3180 3181
		}

3182 3183 3184 3185 3186 3187
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3188
				/* it is parity strip */
3189
				stripe_logical += base;
3190
				stripe_end = stripe_logical + increment;
3191 3192 3193 3194 3195 3196 3197 3198 3199
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3200 3201 3202 3203
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3204
		key.objectid = logical;
L
Liu Bo 已提交
3205
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3206 3207 3208 3209

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3210

3211
		if (ret > 0) {
3212
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3213 3214
			if (ret < 0)
				goto out;
3215 3216 3217 3218 3219 3220 3221 3222 3223
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3224 3225
		}

L
Liu Bo 已提交
3226
		stop_loop = 0;
A
Arne Jansen 已提交
3227
		while (1) {
3228 3229
			u64 bytes;

A
Arne Jansen 已提交
3230 3231 3232 3233 3234 3235 3236 3237 3238
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3239
				stop_loop = 1;
A
Arne Jansen 已提交
3240 3241 3242 3243
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3244 3245 3246 3247
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3248
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3249
				bytes = fs_info->nodesize;
3250 3251 3252 3253
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3254 3255
				goto next;

L
Liu Bo 已提交
3256 3257 3258 3259 3260 3261
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3262 3263 3264 3265 3266 3267

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3268 3269 3270 3271
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3272
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3273
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3274
				       key.objectid, logical);
3275 3276 3277
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3278 3279 3280
				goto next;
			}

L
Liu Bo 已提交
3281 3282 3283 3284
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3285 3286 3287
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3288 3289 3290
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3291
			}
L
Liu Bo 已提交
3292
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3293
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3294 3295
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3296 3297
			}

L
Liu Bo 已提交
3298
			extent_physical = extent_logical - logical + physical;
3299 3300
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3301
			if (sctx->is_dev_replace)
3302 3303 3304 3305
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3306

3307 3308 3309 3310 3311
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3312 3313 3314
			if (ret)
				goto out;

L
Liu Bo 已提交
3315
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3316 3317
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3318
					   extent_logical - logical + physical);
3319 3320 3321

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3322 3323 3324
			if (ret)
				goto out;

L
Liu Bo 已提交
3325 3326
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3327
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3328 3329 3330 3331
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3342
								increment;
3343 3344 3345 3346 3347 3348 3349 3350
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3351 3352 3353 3354
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3355 3356 3357 3358 3359
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3360
				if (physical >= physical_end) {
L
Liu Bo 已提交
3361 3362 3363 3364
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3365 3366 3367
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3368
		btrfs_release_path(path);
3369
skip:
A
Arne Jansen 已提交
3370 3371
		logical += increment;
		physical += map->stripe_len;
3372
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3373 3374 3375 3376 3377
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3378
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3379 3380
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3381
	}
3382
out:
A
Arne Jansen 已提交
3383
	/* push queued extents */
3384
	scrub_submit(sctx);
3385
	mutex_lock(&sctx->wr_lock);
3386
	scrub_wr_submit(sctx);
3387
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3388

3389
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3390
	btrfs_free_path(path);
3391
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3392 3393 3394
	return ret < 0 ? ret : 0;
}

3395
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3396 3397
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3398
					  u64 dev_offset,
3399
					  struct btrfs_block_group_cache *cache)
A
Arne Jansen 已提交
3400
{
3401 3402
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3403 3404 3405
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3406
	int ret = 0;
A
Arne Jansen 已提交
3407 3408 3409 3410 3411

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3424

3425
	map = em->map_lookup;
A
Arne Jansen 已提交
3426 3427 3428 3429 3430 3431 3432
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3433
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3434
		    map->stripes[i].physical == dev_offset) {
3435
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3436
					   chunk_offset, length);
A
Arne Jansen 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3448
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3449
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3450 3451 3452
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3453 3454
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3455 3456
	u64 length;
	u64 chunk_offset;
3457
	int ret = 0;
3458
	int ro_set;
A
Arne Jansen 已提交
3459 3460 3461 3462 3463
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3464
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3465 3466 3467 3468 3469

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3470
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3471 3472 3473
	path->search_commit_root = 1;
	path->skip_locking = 1;

3474
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3475 3476 3477 3478 3479 3480
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3481 3482 3483 3484 3485
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3486 3487 3488 3489
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3490
					break;
3491 3492 3493
				}
			} else {
				ret = 0;
3494 3495
			}
		}
A
Arne Jansen 已提交
3496 3497 3498 3499 3500 3501

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3502
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3503 3504
			break;

3505
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3517 3518
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3519 3520 3521 3522 3523 3524 3525 3526

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3527 3528 3529 3530 3531 3532

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3533 3534 3535 3536 3537 3538 3539 3540 3541
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3542
		ret = btrfs_inc_block_group_ro(cache);
3543
		if (!ret && sctx->is_dev_replace) {
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3564
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3565 3566 3567 3568 3569 3570 3571 3572 3573
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3574
					ret = btrfs_commit_transaction(trans);
3575 3576 3577 3578 3579 3580 3581
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3582
		scrub_pause_off(fs_info);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3596
			btrfs_warn(fs_info,
3597
				   "failed setting block group ro: %d", ret);
3598 3599 3600 3601
			btrfs_put_block_group(cache);
			break;
		}

3602
		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3603 3604 3605
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3606
		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3607
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3608
				  found_key.offset, cache);
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3620
		sctx->flush_all_writes = true;
3621
		scrub_submit(sctx);
3622
		mutex_lock(&sctx->wr_lock);
3623
		scrub_wr_submit(sctx);
3624
		mutex_unlock(&sctx->wr_lock);
3625 3626 3627

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3628 3629

		scrub_pause_on(fs_info);
3630 3631 3632 3633 3634 3635

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3636 3637
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3638
		sctx->flush_all_writes = false;
3639

3640
		scrub_pause_off(fs_info);
3641

3642
		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3643 3644
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3645
		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3646

3647
		if (ro_set)
3648
			btrfs_dec_block_group_ro(cache);
3649

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
3661
			btrfs_mark_bg_unused(cache);
3662 3663 3664 3665
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3666 3667 3668
		btrfs_put_block_group(cache);
		if (ret)
			break;
3669
		if (sctx->is_dev_replace &&
3670
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3671 3672 3673 3674 3675 3676 3677
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3678
skip:
A
Arne Jansen 已提交
3679
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3680
		btrfs_release_path(path);
A
Arne Jansen 已提交
3681 3682 3683
	}

	btrfs_free_path(path);
3684

3685
	return ret;
A
Arne Jansen 已提交
3686 3687
}

3688 3689
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3690 3691 3692 3693 3694
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3695
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3696

3697
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3698 3699
		return -EIO;

3700
	/* Seed devices of a new filesystem has their own generation. */
3701
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3702 3703
		gen = scrub_dev->generation;
	else
3704
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3705 3706 3707

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3708 3709
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3710 3711
			break;

3712
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3713
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3714
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3715 3716 3717
		if (ret)
			return ret;
	}
3718
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3719 3720 3721 3722 3723 3724 3725

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3726 3727
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3728
{
3729
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3730
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3731

A
Arne Jansen 已提交
3732
	if (fs_info->scrub_workers_refcnt == 0) {
3733 3734
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3735 3736 3737
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3738
		fs_info->scrub_wr_completion_workers =
3739
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3740
					      max_active, 2);
3741 3742 3743
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3744
		fs_info->scrub_parity_workers =
3745
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3746
					      max_active, 2);
3747 3748
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3749
	}
A
Arne Jansen 已提交
3750
	++fs_info->scrub_workers_refcnt;
3751 3752 3753 3754 3755 3756 3757 3758
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3759 3760
}

3761
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3762
{
3763
	if (--fs_info->scrub_workers_refcnt == 0) {
3764 3765
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3766
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3767
	}
A
Arne Jansen 已提交
3768 3769 3770
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3771 3772
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3773
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3774
{
3775
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3776 3777 3778
	int ret;
	struct btrfs_device *dev;

3779
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3780 3781
		return -EINVAL;

3782
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3783 3784 3785 3786 3787
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3788 3789
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3790 3791
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3792 3793 3794
		return -EINVAL;
	}

3795
	if (fs_info->sectorsize != PAGE_SIZE) {
3796
		/* not supported for data w/o checksums */
3797
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3798
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3799
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3800 3801 3802
		return -EINVAL;
	}

3803
	if (fs_info->nodesize >
3804
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3805
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3806 3807 3808 3809
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3810 3811
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3812
		       fs_info->nodesize,
3813
		       SCRUB_MAX_PAGES_PER_BLOCK,
3814
		       fs_info->sectorsize,
3815 3816 3817 3818
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3819

3820 3821
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3822 3823
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3824
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3825 3826 3827
		return -ENODEV;
	}

3828 3829
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3830
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3831 3832
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3833 3834 3835
		return -EROFS;
	}

3836
	mutex_lock(&fs_info->scrub_lock);
3837
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3838
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3839
		mutex_unlock(&fs_info->scrub_lock);
3840 3841
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3842 3843
	}

3844
	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3845
	if (dev->scrub_ctx ||
3846 3847
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3848
		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3849
		mutex_unlock(&fs_info->scrub_lock);
3850
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3851 3852
		return -EINPROGRESS;
	}
3853
	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3854 3855 3856 3857 3858 3859 3860 3861

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3862
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3863
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3864
		mutex_unlock(&fs_info->scrub_lock);
3865 3866
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3867
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3868
	}
3869
	sctx->readonly = readonly;
3870
	dev->scrub_ctx = sctx;
3871
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3872

3873 3874 3875 3876
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3877
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3878 3879 3880
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3881
	if (!is_dev_replace) {
3882 3883 3884 3885
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3886
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887
		ret = scrub_supers(sctx, dev);
3888
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889
	}
A
Arne Jansen 已提交
3890 3891

	if (!ret)
3892
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
A
Arne Jansen 已提交
3893

3894
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3895 3896 3897
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3898
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3899

A
Arne Jansen 已提交
3900
	if (progress)
3901
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3902 3903

	mutex_lock(&fs_info->scrub_lock);
3904
	dev->scrub_ctx = NULL;
3905
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3906 3907
	mutex_unlock(&fs_info->scrub_lock);

3908
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3909 3910 3911 3912

	return ret;
}

3913
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3928
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3929 3930 3931 3932 3933
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3934
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3955 3956
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3957
{
3958
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3959 3960

	mutex_lock(&fs_info->scrub_lock);
3961
	sctx = dev->scrub_ctx;
3962
	if (!sctx) {
A
Arne Jansen 已提交
3963 3964 3965
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3966
	atomic_inc(&sctx->cancel_req);
3967
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
3968 3969
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
3970
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
3971 3972 3973 3974 3975 3976
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3977

3978
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
3979 3980 3981
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3982
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3983

3984 3985
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3986
	if (dev)
3987
		sctx = dev->scrub_ctx;
3988 3989
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
3990
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3991

3992
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3993
}
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4006
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4007 4008 4009
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4010
		btrfs_put_bbio(bbio);
4011 4012 4013 4014 4015 4016
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4017
	btrfs_put_bbio(bbio);
4018
}