scrub.c 114.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51

/*
52
 * The following value times PAGE_SIZE needs to be large enough to match the
53 54
 * largest node/leaf/sector size that shall be supported.
 */
55
#define SCRUB_MAX_PAGES_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59
	struct btrfs_io_context	*bioc;
60 61 62
	u64			map_length;
};

A
Arne Jansen 已提交
63
struct scrub_page {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74
	u8			mirror_num;
75 76
	unsigned int		have_csum:1;
	unsigned int		io_error:1;
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90 91 92 93 94
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
95
	int			page_count;
A
Arne Jansen 已提交
96 97 98 99
	int			next_free;
	struct btrfs_work	work;
};

100
struct scrub_block {
101
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
102 103
	int			page_count;
	atomic_t		outstanding_pages;
104
	refcount_t		refs; /* free mem on transition to zero */
105
	struct scrub_ctx	*sctx;
106
	struct scrub_parity	*sparity;
107 108 109 110
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
111
		unsigned int	generation_error:1; /* also sets header_error */
112 113 114 115

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
116
	};
117
	struct btrfs_work	work;
118 119
};

120 121 122 123 124 125 126 127 128 129 130 131
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

132
	u32			stripe_len;
133

134
	refcount_t		refs;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

150
	unsigned long		bitmap[];
151 152
};

153
struct scrub_ctx {
154
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
155
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
156 157
	int			first_free;
	int			curr;
158 159
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
160 161 162 163
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
164
	int			readonly;
165
	int			pages_per_rd_bio;
166

167 168 169 170
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

171
	int			is_dev_replace;
172
	u64			write_pointer;
173 174 175 176 177

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
178
	bool                    flush_all_writes;
179

A
Arne Jansen 已提交
180 181 182 183 184
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
185 186 187 188 189 190 191 192

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
193
	refcount_t              refs;
A
Arne Jansen 已提交
194 195
};

196 197 198 199
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
200
	u64			physical;
201 202 203 204
	u64			logical;
	struct btrfs_device	*dev;
};

205 206 207 208 209 210 211
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

212
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213
				     struct scrub_block *sblocks_for_recheck);
214
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 216
				struct scrub_block *sblock,
				int retry_failed_mirror);
217
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219
					     struct scrub_block *sblock_good);
220 221 222
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
223 224 225
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
226 227 228 229
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
230 231
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
232 233
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
234
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
235
		       u64 physical, struct btrfs_device *dev, u64 flags,
236
		       u64 gen, int mirror_num, u8 *csum,
237
		       u64 physical_for_dev_replace);
238
static void scrub_bio_end_io(struct bio *bio);
239 240
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
241
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
242
			       u64 extent_logical, u32 extent_len,
243 244 245 246 247 248
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
249
static void scrub_wr_bio_end_io(struct bio *bio);
250
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
251
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
252

253
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
254
{
255
	return spage->recover &&
256
	       (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
257
}
S
Stefan Behrens 已提交
258

259 260
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
261
	refcount_inc(&sctx->refs);
262 263 264 265 266 267 268
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
269
	scrub_put_ctx(sctx);
270 271
}

272
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
273 274 275 276 277 278 279 280 281
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

282
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
283 284 285
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
286
}
287

288 289
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
290 291 292 293 294 295 296 297
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

298 299 300 301 302 303
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

323
	lockdep_assert_held(&locks_root->lock);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

339 340 341
	/*
	 * Insert new lock.
	 */
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

367
	lockdep_assert_held(&locks_root->lock);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
387
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
388 389 390 391 392 393 394 395 396 397 398 399 400
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
401 402
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
420
	struct btrfs_block_group *bg_cache;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
467
	struct btrfs_block_group *bg_cache;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

521
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
522
{
523
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
524
		struct btrfs_ordered_sum *sum;
525
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
526 527 528 529 530 531
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

532
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
533 534 535
{
	int i;

536
	if (!sctx)
A
Arne Jansen 已提交
537 538
		return;

539
	/* this can happen when scrub is cancelled */
540 541
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
542 543

		for (i = 0; i < sbio->page_count; i++) {
544
			WARN_ON(!sbio->pagev[i]->page);
545 546 547 548 549
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

550
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
551
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
552 553 554 555 556 557

		if (!sbio)
			break;
		kfree(sbio);
	}

558
	kfree(sctx->wr_curr_bio);
559 560
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
561 562
}

563 564
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
565
	if (refcount_dec_and_test(&sctx->refs))
566 567 568
		scrub_free_ctx(sctx);
}

569 570
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
571
{
572
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
573 574
	int		i;

575
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
576
	if (!sctx)
A
Arne Jansen 已提交
577
		goto nomem;
578
	refcount_set(&sctx->refs, 1);
579
	sctx->is_dev_replace = is_dev_replace;
580
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
581
	sctx->curr = -1;
582
	sctx->fs_info = fs_info;
583
	INIT_LIST_HEAD(&sctx->csum_list);
584
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
585 586
		struct scrub_bio *sbio;

587
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
588 589
		if (!sbio)
			goto nomem;
590
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
591 592

		sbio->index = i;
593
		sbio->sctx = sctx;
594
		sbio->page_count = 0;
595 596
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
597

598
		if (i != SCRUB_BIOS_PER_SCTX - 1)
599
			sctx->bios[i]->next_free = i + 1;
600
		else
601 602 603
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
604 605
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
606 607 608 609 610
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
611
	sctx->throttle_deadline = 0;
612

613 614 615
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
616
	if (is_dev_replace) {
617
		WARN_ON(!fs_info->dev_replace.tgtdev);
618
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
619
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
620
		sctx->flush_all_writes = false;
621
	}
622

623
	return sctx;
A
Arne Jansen 已提交
624 625

nomem:
626
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
627 628 629
	return ERR_PTR(-ENOMEM);
}

630 631
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
632 633 634 635
{
	u32 nlink;
	int ret;
	int i;
636
	unsigned nofs_flag;
637 638
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
639
	struct scrub_warning *swarn = warn_ctx;
640
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
641 642
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
643
	struct btrfs_key key;
644

D
David Sterba 已提交
645
	local_root = btrfs_get_fs_root(fs_info, root, true);
646 647 648 649 650
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

651 652 653
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
654 655 656 657 658
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
659
	if (ret) {
660
		btrfs_put_root(local_root);
661 662 663 664 665 666 667 668 669 670
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

671 672 673 674 675 676
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
677
	ipath = init_ipath(4096, local_root, swarn->path);
678
	memalloc_nofs_restore(nofs_flag);
679
	if (IS_ERR(ipath)) {
680
		btrfs_put_root(local_root);
681 682 683 684
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
685 686 687 688 689 690 691 692 693 694
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
695
		btrfs_warn_in_rcu(fs_info,
696
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
697 698
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
699
				  swarn->physical,
J
Jeff Mahoney 已提交
700
				  root, inum, offset,
701
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
702
				  (char *)(unsigned long)ipath->fspath->val[i]);
703

704
	btrfs_put_root(local_root);
705 706 707 708
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
709
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
710
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
711 712
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
713
			  swarn->physical,
J
Jeff Mahoney 已提交
714
			  root, inum, offset, ret);
715 716 717 718 719

	free_ipath(ipath);
	return 0;
}

720
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
721
{
722 723
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
724 725 726 727 728
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
729 730 731
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
732
	u64 ref_root;
733
	u32 item_size;
734
	u8 ref_level = 0;
735
	int ret;
736

737
	WARN_ON(sblock->page_count < 1);
738
	dev = sblock->pagev[0]->dev;
739
	fs_info = sblock->sctx->fs_info;
740

741
	path = btrfs_alloc_path();
742 743
	if (!path)
		return;
744

D
David Sterba 已提交
745
	swarn.physical = sblock->pagev[0]->physical;
746
	swarn.logical = sblock->pagev[0]->logical;
747
	swarn.errstr = errstr;
748
	swarn.dev = NULL;
749

750 751
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
752 753 754
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
755
	extent_item_pos = swarn.logical - found_key.objectid;
756 757 758 759
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
760
	item_size = btrfs_item_size(eb, path->slots[0]);
761

762
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
763
		do {
764 765 766
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
767
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
768
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
769
				errstr, swarn.logical,
770
				rcu_str_deref(dev->name),
D
David Sterba 已提交
771
				swarn.physical,
772 773 774 775
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
776
		btrfs_release_path(path);
777
	} else {
778
		btrfs_release_path(path);
779
		swarn.path = path;
780
		swarn.dev = dev;
781 782
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
783
					scrub_print_warning_inode, &swarn, false);
784 785 786 787 788 789
	}

out:
	btrfs_free_path(path);
}

790 791
static inline void scrub_get_recover(struct scrub_recover *recover)
{
792
	refcount_inc(&recover->refs);
793 794
}

795 796
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
797
{
798
	if (refcount_dec_and_test(&recover->refs)) {
799
		btrfs_bio_counter_dec(fs_info);
800
		btrfs_put_bioc(recover->bioc);
801 802 803 804
		kfree(recover);
	}
}

A
Arne Jansen 已提交
805
/*
806 807 808 809 810 811
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
812
 */
813
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
814
{
815
	struct scrub_ctx *sctx = sblock_to_check->sctx;
816
	struct btrfs_device *dev;
817 818 819 820 821 822 823 824 825 826 827
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
828
	bool full_stripe_locked;
829
	unsigned int nofs_flag;
830
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
831 832 833
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
834
	fs_info = sctx->fs_info;
835 836 837 838 839 840 841 842 843 844 845
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
846 847 848 849
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
850
			BTRFS_EXTENT_FLAG_DATA);
851 852
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
853

854 855 856
	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
		return btrfs_repair_one_zone(fs_info, logical);

857 858 859 860 861 862 863 864 865 866
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
867 868 869 870 871 872 873 874 875
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
876
		memalloc_nofs_restore(nofs_flag);
877 878 879 880 881 882 883 884 885
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

886 887 888 889
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
890
	 * sector by sector this time in order to know which sectors
891 892 893 894
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
895 896 897 898 899 900 901 902 903 904
	 * sectors from those mirrors without I/O error on the
	 * particular sectors. One example (with blocks >= 2 * sectorsize)
	 * would be that mirror #1 has an I/O error on the first sector,
	 * the second sector is good, and mirror #2 has an I/O error on
	 * the second sector, but the first sector is good.
	 * Then the first sector of the first mirror can be repaired by
	 * taking the first sector of the second mirror, and the
	 * second sector of the second mirror can be repaired by
	 * copying the contents of the 2nd sector of the 1st mirror.
	 * One more note: if the sectors of one mirror contain I/O
905 906 907
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
908
	 * Only if this is not possible, the sectors are picked from
909 910 911 912 913 914
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

915
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
916
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
917
	if (!sblocks_for_recheck) {
918 919 920 921 922
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
923
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
924
		goto out;
A
Arne Jansen 已提交
925 926
	}

927
	/* setup the context, map the logical blocks and alloc the pages */
928
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
929
	if (ret) {
930 931 932 933
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
934
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
935 936 937 938
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
939

940
	/* build and submit the bios for the failed mirror, check checksums */
941
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
942

943 944 945 946 947 948 949 950 951 952
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
953 954
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
955
		sblock_to_check->data_corrected = 1;
956
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
957

958 959
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
960
		goto out;
A
Arne Jansen 已提交
961 962
	}

963
	if (!sblock_bad->no_io_error_seen) {
964 965 966
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
967
		if (__ratelimit(&rs))
968
			scrub_print_warning("i/o error", sblock_to_check);
969
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
970
	} else if (sblock_bad->checksum_error) {
971 972 973
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
974
		if (__ratelimit(&rs))
975
			scrub_print_warning("checksum error", sblock_to_check);
976
		btrfs_dev_stat_inc_and_print(dev,
977
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
978
	} else if (sblock_bad->header_error) {
979 980 981
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
982
		if (__ratelimit(&rs))
983 984
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
985
		if (sblock_bad->generation_error)
986
			btrfs_dev_stat_inc_and_print(dev,
987 988
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
989
			btrfs_dev_stat_inc_and_print(dev,
990
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
991
	}
A
Arne Jansen 已提交
992

993 994 995 996
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
997

998 999
	/*
	 * now build and submit the bios for the other mirrors, check
1000 1001
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1013
	for (mirror_index = 0; ;mirror_index++) {
1014
		struct scrub_block *sblock_other;
1015

1016 1017
		if (mirror_index == failed_mirror_index)
			continue;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1029
			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1040 1041

		/* build and submit the bios, check checksums */
1042
		scrub_recheck_block(fs_info, sblock_other, 0);
1043 1044

		if (!sblock_other->header_error &&
1045 1046
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1047 1048
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1049
				goto corrected_error;
1050 1051
			} else {
				ret = scrub_repair_block_from_good_copy(
1052 1053 1054
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1055
			}
1056 1057
		}
	}
A
Arne Jansen 已提交
1058

1059 1060
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1061 1062 1063

	/*
	 * In case of I/O errors in the area that is supposed to be
1064 1065
	 * repaired, continue by picking good copies of those sectors.
	 * Select the good sectors from mirrors to rewrite bad sectors from
1066 1067 1068 1069 1070
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
1071
	 * all possible combinations of sectors from the different mirrors
1072
	 * until the checksum verification succeeds. For example, when
1073
	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1074
	 * of mirror #2 is readable but the final checksum test fails,
1075
	 * then the 2nd sector of mirror #3 could be tried, whether now
1076
	 * the final checksum succeeds. But this would be a rare
1077 1078 1079 1080
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
1081
	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1082
	 * mirror could be repaired by taking 512 byte of a different
1083
	 * mirror, even if other 512 byte sectors in the same sectorsize
1084
	 * area are unreadable.
A
Arne Jansen 已提交
1085
	 */
1086
	success = 1;
1087 1088
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1089
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1090
		struct scrub_block *sblock_other = NULL;
1091

1092
		/* skip no-io-error page in scrub */
1093
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1094
			continue;
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1105
		} else if (spage_bad->io_error) {
1106
			/* try to find no-io-error page in mirrors */
1107 1108 1109 1110 1111 1112 1113 1114 1115
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1116 1117
				}
			}
1118 1119
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1120
		}
A
Arne Jansen 已提交
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1135
				atomic64_inc(
1136
					&fs_info->dev_replace.num_write_errors);
1137 1138 1139 1140 1141 1142 1143
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1144
				spage_bad->io_error = 0;
1145 1146
			else
				success = 0;
1147
		}
A
Arne Jansen 已提交
1148 1149
	}

1150
	if (success && !sctx->is_dev_replace) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1161
			scrub_recheck_block(fs_info, sblock_bad, 1);
1162
			if (!sblock_bad->header_error &&
1163 1164 1165 1166 1167 1168 1169
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1170 1171
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1172
			sblock_to_check->data_corrected = 1;
1173
			spin_unlock(&sctx->stat_lock);
1174 1175
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1176
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1177
		}
1178 1179
	} else {
did_not_correct_error:
1180 1181 1182
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1183 1184
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1185
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1186
	}
A
Arne Jansen 已提交
1187

1188 1189 1190 1191 1192 1193
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1194
			struct scrub_recover *recover;
1195 1196
			int page_index;

1197 1198 1199
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1200 1201
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1202
					scrub_put_recover(fs_info, recover);
1203 1204 1205
					sblock->pagev[page_index]->recover =
									NULL;
				}
1206 1207
				scrub_page_put(sblock->pagev[page_index]);
			}
1208 1209 1210
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1211

1212
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1213
	memalloc_nofs_restore(nofs_flag);
1214 1215
	if (ret < 0)
		return ret;
1216 1217
	return 0;
}
A
Arne Jansen 已提交
1218

1219
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1220
{
1221
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1222
		return 2;
1223
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
1224 1225
		return 3;
	else
1226
		return (int)bioc->num_stripes;
1227 1228
}

Z
Zhao Lei 已提交
1229 1230
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1231 1232 1233 1234 1235 1236 1237
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1238
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1259
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1260 1261
				     struct scrub_block *sblocks_for_recheck)
{
1262
	struct scrub_ctx *sctx = original_sblock->sctx;
1263
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1264
	u64 length = original_sblock->page_count * fs_info->sectorsize;
1265
	u64 logical = original_sblock->pagev[0]->logical;
1266 1267 1268
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1269
	struct scrub_recover *recover;
1270
	struct btrfs_io_context *bioc;
1271 1272 1273 1274
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1275
	int page_index = 0;
1276
	int mirror_index;
1277
	int nmirrors;
1278 1279 1280
	int ret;

	/*
1281
	 * note: the two members refs and outstanding_pages
1282 1283 1284 1285 1286
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1287
		sublen = min_t(u64, length, fs_info->sectorsize);
1288
		mapped_length = sublen;
1289
		bioc = NULL;
A
Arne Jansen 已提交
1290

1291
		/*
1292 1293
		 * With a length of sectorsize, each returned stripe represents
		 * one mirror
1294
		 */
1295
		btrfs_bio_counter_inc_blocked(fs_info);
1296
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1297 1298 1299
				       logical, &mapped_length, &bioc);
		if (ret || !bioc || mapped_length < sublen) {
			btrfs_put_bioc(bioc);
1300
			btrfs_bio_counter_dec(fs_info);
1301 1302
			return -EIO;
		}
A
Arne Jansen 已提交
1303

1304 1305
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1306
			btrfs_put_bioc(bioc);
1307
			btrfs_bio_counter_dec(fs_info);
1308 1309 1310
			return -ENOMEM;
		}

1311
		refcount_set(&recover->refs, 1);
1312
		recover->bioc = bioc;
1313 1314
		recover->map_length = mapped_length;

1315
		ASSERT(page_index < SCRUB_MAX_PAGES_PER_BLOCK);
1316

1317
		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1318

1319
		for (mirror_index = 0; mirror_index < nmirrors;
1320 1321
		     mirror_index++) {
			struct scrub_block *sblock;
1322
			struct scrub_page *spage;
1323 1324

			sblock = sblocks_for_recheck + mirror_index;
1325
			sblock->sctx = sctx;
1326

1327 1328
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1329
leave_nomem:
1330 1331 1332
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1333
				scrub_put_recover(fs_info, recover);
1334 1335
				return -ENOMEM;
			}
1336 1337 1338 1339 1340 1341 1342
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1343
			if (have_csum)
1344
				memcpy(spage->csum,
1345
				       original_sblock->pagev[0]->csum,
1346
				       sctx->fs_info->csum_size);
1347

Z
Zhao Lei 已提交
1348
			scrub_stripe_index_and_offset(logical,
1349 1350
						      bioc->map_type,
						      bioc->raid_map,
1351
						      mapped_length,
1352 1353
						      bioc->num_stripes -
						      bioc->num_tgtdevs,
1354 1355 1356
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1357
			spage->physical = bioc->stripes[stripe_index].physical +
1358
					 stripe_offset;
1359
			spage->dev = bioc->stripes[stripe_index].dev;
1360

1361
			BUG_ON(page_index >= original_sblock->page_count);
1362
			spage->physical_for_dev_replace =
1363 1364
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1365
			/* for missing devices, dev->bdev is NULL */
1366
			spage->mirror_num = mirror_index + 1;
1367
			sblock->page_count++;
1368 1369
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1370
				goto leave_nomem;
1371 1372

			scrub_get_recover(recover);
1373
			spage->recover = recover;
1374
		}
1375
		scrub_put_recover(fs_info, recover);
1376 1377 1378 1379 1380 1381
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1382 1383
}

1384
static void scrub_bio_wait_endio(struct bio *bio)
1385
{
1386
	complete(bio->bi_private);
1387 1388 1389 1390
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1391
					struct scrub_page *spage)
1392
{
1393
	DECLARE_COMPLETION_ONSTACK(done);
1394
	int ret;
1395
	int mirror_num;
1396

1397
	bio->bi_iter.bi_sector = spage->logical >> 9;
1398 1399 1400
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1401
	mirror_num = spage->sblock->pagev[0]->mirror_num;
1402
	ret = raid56_parity_recover(bio, spage->recover->bioc,
1403
				    spage->recover->map_length,
1404
				    mirror_num, 0);
1405 1406 1407
	if (ret)
		return ret;

1408 1409
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1410 1411
}

L
Liu Bo 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

1424
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
L
Liu Bo 已提交
1425 1426 1427
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1428
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1429

1430 1431
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1451 1452 1453 1454 1455 1456 1457
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1458
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1459 1460
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1461
{
1462
	int page_num;
I
Ilya Dryomov 已提交
1463

1464
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1465

L
Liu Bo 已提交
1466 1467 1468 1469
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1470 1471
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1472
		struct scrub_page *spage = sblock->pagev[page_num];
1473

1474 1475
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1476 1477 1478 1479
			sblock->no_io_error_seen = 0;
			continue;
		}

1480
		WARN_ON(!spage->page);
1481
		bio = btrfs_bio_alloc(1);
1482
		bio_set_dev(bio, spage->dev->bdev);
1483

1484
		bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
1485
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1486
		bio->bi_opf = REQ_OP_READ;
1487

L
Liu Bo 已提交
1488
		if (btrfsic_submit_bio_wait(bio)) {
1489
			spage->io_error = 1;
L
Liu Bo 已提交
1490
			sblock->no_io_error_seen = 0;
1491
		}
1492

1493 1494
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1495

1496
	if (sblock->no_io_error_seen)
1497
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1498 1499
}

M
Miao Xie 已提交
1500 1501 1502 1503 1504 1505
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1506
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1507 1508 1509
	return !ret;
}

1510
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1511
{
1512 1513 1514
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1515

1516 1517 1518 1519
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1520 1521
}

1522
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1523
					     struct scrub_block *sblock_good)
1524 1525 1526
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1527

1528 1529
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1530

1531 1532
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1533
							   page_num, 1);
1534 1535
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1536
	}
1537 1538 1539 1540 1541 1542 1543 1544

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1545 1546
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1547
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1548
	const u32 sectorsize = fs_info->sectorsize;
1549

1550 1551
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1552
	if (force_write || sblock_bad->header_error ||
1553
	    sblock_bad->checksum_error || spage_bad->io_error) {
1554 1555 1556
		struct bio *bio;
		int ret;

1557
		if (!spage_bad->dev->bdev) {
1558
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1559
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1560 1561 1562
			return -EIO;
		}

1563
		bio = btrfs_bio_alloc(1);
1564 1565
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1566
		bio->bi_opf = REQ_OP_WRITE;
1567

1568 1569
		ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
		if (ret != sectorsize) {
1570 1571
			bio_put(bio);
			return -EIO;
1572
		}
1573

1574
		if (btrfsic_submit_bio_wait(bio)) {
1575
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1576
				BTRFS_DEV_STAT_WRITE_ERRS);
1577
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1578 1579 1580
			bio_put(bio);
			return -EIO;
		}
1581
		bio_put(bio);
A
Arne Jansen 已提交
1582 1583
	}

1584 1585 1586
	return 0;
}

1587 1588
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1589
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1590 1591
	int page_num;

1592 1593 1594 1595 1596 1597 1598
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1599 1600 1601 1602 1603
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1604
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1605 1606 1607 1608 1609 1610 1611 1612 1613
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1614 1615
	if (spage->io_error)
		clear_page(page_address(spage->page));
1616 1617 1618 1619

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1620 1621 1622 1623 1624 1625 1626 1627
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1628 1629 1630
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1642 1643 1644 1645 1646
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;
1647
	const u32 sectorsize = sctx->fs_info->sectorsize;
1648

1649
	mutex_lock(&sctx->wr_lock);
1650
again:
1651 1652
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1653
					      GFP_KERNEL);
1654 1655
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1656 1657
			return -ENOMEM;
		}
1658 1659
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1660
	}
1661
	sbio = sctx->wr_curr_bio;
1662 1663 1664
	if (sbio->page_count == 0) {
		struct bio *bio;

1665 1666 1667 1668 1669 1670 1671
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1672 1673
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1674
		sbio->dev = sctx->wr_tgtdev;
1675 1676
		bio = sbio->bio;
		if (!bio) {
1677
			bio = btrfs_bio_alloc(sctx->pages_per_wr_bio);
1678 1679 1680 1681 1682
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1683
		bio_set_dev(bio, sbio->dev->bdev);
1684
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1685
		bio->bi_opf = REQ_OP_WRITE;
1686
		sbio->status = 0;
1687
	} else if (sbio->physical + sbio->page_count * sectorsize !=
1688
		   spage->physical_for_dev_replace ||
1689
		   sbio->logical + sbio->page_count * sectorsize !=
1690 1691 1692 1693 1694
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

1695 1696
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
1697 1698 1699
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1700
			mutex_unlock(&sctx->wr_lock);
1701 1702 1703 1704 1705 1706 1707 1708 1709
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1710
	if (sbio->page_count == sctx->pages_per_wr_bio)
1711
		scrub_wr_submit(sctx);
1712
	mutex_unlock(&sctx->wr_lock);
1713 1714 1715 1716 1717 1718 1719 1720

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1721
	if (!sctx->wr_curr_bio)
1722 1723
		return;

1724 1725
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1726
	WARN_ON(!sbio->bio->bi_bdev);
1727 1728 1729 1730 1731
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1732
	btrfsic_submit_bio(sbio->bio);
1733 1734

	if (btrfs_is_zoned(sctx->fs_info))
1735 1736
		sctx->write_pointer = sbio->physical + sbio->page_count *
			sctx->fs_info->sectorsize;
1737 1738
}

1739
static void scrub_wr_bio_end_io(struct bio *bio)
1740 1741
{
	struct scrub_bio *sbio = bio->bi_private;
1742
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1743

1744
	sbio->status = bio->bi_status;
1745 1746
	sbio->bio = bio;

1747
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1748
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749 1750 1751 1752 1753 1754 1755 1756 1757
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758
	if (sbio->status) {
1759
		struct btrfs_dev_replace *dev_replace =
1760
			&sbio->sctx->fs_info->dev_replace;
1761 1762 1763 1764 1765

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1766
			atomic64_inc(&dev_replace->num_write_errors);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1779 1780 1781 1782
{
	u64 flags;
	int ret;

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1795 1796
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1808 1809

	return ret;
A
Arne Jansen 已提交
1810 1811
}

1812
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1813
{
1814
	struct scrub_ctx *sctx = sblock->sctx;
1815 1816
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1817
	u8 csum[BTRFS_CSUM_SIZE];
1818
	struct scrub_page *spage;
1819
	char *kaddr;
A
Arne Jansen 已提交
1820

1821
	BUG_ON(sblock->page_count < 1);
1822 1823
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1824 1825
		return 0;

1826
	kaddr = page_address(spage->page);
1827

1828 1829
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1830

1831 1832 1833 1834 1835
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1836

1837 1838
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1839
	return sblock->checksum_error;
A
Arne Jansen 已提交
1840 1841
}

1842
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1843
{
1844
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1845
	struct btrfs_header *h;
1846
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1847
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1848 1849
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1850 1851 1852 1853 1854 1855 1856
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1857
	int i;
1858
	struct scrub_page *spage;
1859
	char *kaddr;
1860

1861
	BUG_ON(sblock->page_count < 1);
1862 1863 1864 1865

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1866 1867
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1868
	h = (struct btrfs_header *)kaddr;
1869
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1870 1871 1872 1873 1874 1875

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1876
	if (spage->logical != btrfs_stack_header_bytenr(h))
1877
		sblock->header_error = 1;
A
Arne Jansen 已提交
1878

1879
	if (spage->generation != btrfs_stack_header_generation(h)) {
1880 1881 1882
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1883

1884
	if (!scrub_check_fsid(h->fsid, spage))
1885
		sblock->header_error = 1;
A
Arne Jansen 已提交
1886 1887 1888

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1889
		sblock->header_error = 1;
A
Arne Jansen 已提交
1890

1891 1892 1893
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1894
			    sectorsize - BTRFS_CSUM_SIZE);
1895

1896
	for (i = 1; i < num_sectors; i++) {
1897
		kaddr = page_address(sblock->pagev[i]->page);
1898
		crypto_shash_update(shash, kaddr, sectorsize);
1899 1900
	}

1901
	crypto_shash_final(shash, calculated_csum);
1902
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1903
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1904

1905
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1906 1907
}

1908
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1909 1910
{
	struct btrfs_super_block *s;
1911
	struct scrub_ctx *sctx = sblock->sctx;
1912 1913
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1914
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1915
	struct scrub_page *spage;
1916
	char *kaddr;
1917 1918
	int fail_gen = 0;
	int fail_cor = 0;
1919

1920
	BUG_ON(sblock->page_count < 1);
1921 1922
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1923
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1924

1925
	if (spage->logical != btrfs_super_bytenr(s))
1926
		++fail_cor;
A
Arne Jansen 已提交
1927

1928
	if (spage->generation != btrfs_super_generation(s))
1929
		++fail_gen;
A
Arne Jansen 已提交
1930

1931
	if (!scrub_check_fsid(s->fsid, spage))
1932
		++fail_cor;
A
Arne Jansen 已提交
1933

1934 1935 1936 1937
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1938

1939
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1940
		++fail_cor;
A
Arne Jansen 已提交
1941

1942
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1943 1944 1945 1946 1947
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1948 1949 1950
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1951
		if (fail_cor)
1952
			btrfs_dev_stat_inc_and_print(spage->dev,
1953 1954
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1955
			btrfs_dev_stat_inc_and_print(spage->dev,
1956
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1957 1958
	}

1959
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1960 1961
}

1962 1963
static void scrub_block_get(struct scrub_block *sblock)
{
1964
	refcount_inc(&sblock->refs);
1965 1966 1967 1968
}

static void scrub_block_put(struct scrub_block *sblock)
{
1969
	if (refcount_dec_and_test(&sblock->refs)) {
1970 1971
		int i;

1972 1973 1974
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1975
		for (i = 0; i < sblock->page_count; i++)
1976
			scrub_page_put(sblock->pagev[i]);
1977 1978 1979 1980
		kfree(sblock);
	}
}

1981 1982
static void scrub_page_get(struct scrub_page *spage)
{
1983
	atomic_inc(&spage->refs);
1984 1985 1986 1987
}

static void scrub_page_put(struct scrub_page *spage)
{
1988
	if (atomic_dec_and_test(&spage->refs)) {
1989 1990 1991 1992 1993 1994
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2054
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2055 2056 2057
{
	struct scrub_bio *sbio;

2058
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2059
		return;
A
Arne Jansen 已提交
2060

2061 2062
	scrub_throttle(sctx);

2063 2064
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2065
	scrub_pending_bio_inc(sctx);
2066
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2067 2068
}

2069 2070
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2071
{
2072
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2073
	struct scrub_bio *sbio;
2074
	const u32 sectorsize = sctx->fs_info->sectorsize;
2075
	int ret;
A
Arne Jansen 已提交
2076 2077 2078 2079 2080

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2081 2082 2083 2084 2085 2086 2087 2088
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2089
		} else {
2090 2091
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2092 2093
		}
	}
2094
	sbio = sctx->bios[sctx->curr];
2095
	if (sbio->page_count == 0) {
2096 2097
		struct bio *bio;

2098 2099
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2100
		sbio->dev = spage->dev;
2101 2102
		bio = sbio->bio;
		if (!bio) {
2103
			bio = btrfs_bio_alloc(sctx->pages_per_rd_bio);
2104 2105
			sbio->bio = bio;
		}
2106 2107 2108

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2109
		bio_set_dev(bio, sbio->dev->bdev);
2110
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2111
		bio->bi_opf = REQ_OP_READ;
2112
		sbio->status = 0;
2113
	} else if (sbio->physical + sbio->page_count * sectorsize !=
2114
		   spage->physical ||
2115
		   sbio->logical + sbio->page_count * sectorsize !=
2116 2117
		   spage->logical ||
		   sbio->dev != spage->dev) {
2118
		scrub_submit(sctx);
A
Arne Jansen 已提交
2119 2120
		goto again;
	}
2121

2122
	sbio->pagev[sbio->page_count] = spage;
2123 2124
	ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
	if (ret != sectorsize) {
2125 2126 2127 2128 2129
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2130
		scrub_submit(sctx);
2131 2132 2133
		goto again;
	}

2134
	scrub_block_get(sblock); /* one for the page added to the bio */
2135 2136
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2137
	if (sbio->page_count == sctx->pages_per_rd_bio)
2138
		scrub_submit(sctx);
2139 2140 2141 2142

	return 0;
}

2143
static void scrub_missing_raid56_end_io(struct bio *bio)
2144 2145
{
	struct scrub_block *sblock = bio->bi_private;
2146
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2147

2148
	if (bio->bi_status)
2149 2150
		sblock->no_io_error_seen = 0;

2151 2152
	bio_put(bio);

2153 2154 2155 2156 2157 2158 2159
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2160
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2161 2162 2163 2164 2165 2166
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2167
	if (sblock->no_io_error_seen)
2168
		scrub_recheck_block_checksum(sblock);
2169 2170 2171 2172 2173

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2174
		btrfs_err_rl_in_rcu(fs_info,
2175
			"IO error rebuilding logical %llu for dev %s",
2176 2177 2178 2179 2180
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2181
		btrfs_err_rl_in_rcu(fs_info,
2182
			"failed to rebuild valid logical %llu for dev %s",
2183 2184 2185 2186 2187
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2188
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2189
		mutex_lock(&sctx->wr_lock);
2190
		scrub_wr_submit(sctx);
2191
		mutex_unlock(&sctx->wr_lock);
2192 2193
	}

2194
	scrub_block_put(sblock);
2195 2196 2197 2198 2199 2200
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2201
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2202 2203
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2204
	struct btrfs_io_context *bioc = NULL;
2205 2206 2207 2208 2209
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2210
	btrfs_bio_counter_inc_blocked(fs_info);
2211
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2212 2213 2214
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2215 2216

	if (WARN_ON(!sctx->is_dev_replace ||
2217
		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2218 2219 2220 2221 2222 2223
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
2224
		goto bioc_out;
2225 2226
	}

2227
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2228 2229 2230 2231
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2232
	rbio = raid56_alloc_missing_rbio(bio, bioc, length);
2233 2234 2235 2236 2237 2238 2239 2240 2241
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2242
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2243 2244 2245 2246 2247 2248 2249
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2250
bioc_out:
2251
	btrfs_bio_counter_dec(fs_info);
2252
	btrfs_put_bioc(bioc);
2253 2254 2255 2256 2257
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2258
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2259
		       u64 physical, struct btrfs_device *dev, u64 flags,
2260
		       u64 gen, int mirror_num, u8 *csum,
2261
		       u64 physical_for_dev_replace)
2262 2263
{
	struct scrub_block *sblock;
2264
	const u32 sectorsize = sctx->fs_info->sectorsize;
2265 2266
	int index;

2267
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2268
	if (!sblock) {
2269 2270 2271
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2272
		return -ENOMEM;
A
Arne Jansen 已提交
2273
	}
2274

2275 2276
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2277
	refcount_set(&sblock->refs, 1);
2278
	sblock->sctx = sctx;
2279 2280 2281
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2282
		struct scrub_page *spage;
2283 2284 2285 2286 2287 2288
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2289

2290
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2291 2292
		if (!spage) {
leave_nomem:
2293 2294 2295
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2296
			scrub_block_put(sblock);
2297 2298
			return -ENOMEM;
		}
2299
		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2300 2301
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2302
		spage->sblock = sblock;
2303
		spage->dev = dev;
2304 2305 2306 2307
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2308
		spage->physical_for_dev_replace = physical_for_dev_replace;
2309 2310 2311
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2312
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2313 2314 2315 2316
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2317
		spage->page = alloc_page(GFP_KERNEL);
2318 2319
		if (!spage->page)
			goto leave_nomem;
2320 2321 2322
		len -= l;
		logical += l;
		physical += l;
2323
		physical_for_dev_replace += l;
2324 2325
	}

2326
	WARN_ON(sblock->page_count == 0);
2327
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2328 2329 2330 2331 2332 2333 2334 2335 2336
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2337

2338 2339 2340 2341 2342
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2343
		}
A
Arne Jansen 已提交
2344

2345
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2346 2347
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2348

2349 2350
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2351 2352 2353
	return 0;
}

2354
static void scrub_bio_end_io(struct bio *bio)
2355 2356
{
	struct scrub_bio *sbio = bio->bi_private;
2357
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2358

2359
	sbio->status = bio->bi_status;
2360 2361
	sbio->bio = bio;

2362
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2363 2364 2365 2366 2367
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2368
	struct scrub_ctx *sctx = sbio->sctx;
2369 2370
	int i;

2371
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2372
	if (sbio->status) {
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2393 2394 2395 2396
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2397

2398
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2399
		mutex_lock(&sctx->wr_lock);
2400
		scrub_wr_submit(sctx);
2401
		mutex_unlock(&sctx->wr_lock);
2402 2403
	}

2404
	scrub_pending_bio_dec(sctx);
2405 2406
}

2407 2408
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2409
				       u64 start, u32 len)
2410
{
2411
	u64 offset;
2412
	u32 nsectors;
2413
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2414 2415 2416 2417 2418 2419 2420

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2421
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2422
	offset = offset >> sectorsize_bits;
2423
	nsectors = len >> sectorsize_bits;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2435
						   u64 start, u32 len)
2436 2437 2438 2439 2440
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2441
						  u64 start, u32 len)
2442 2443 2444 2445
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2446 2447
static void scrub_block_complete(struct scrub_block *sblock)
{
2448 2449
	int corrupted = 0;

2450
	if (!sblock->no_io_error_seen) {
2451
		corrupted = 1;
2452
		scrub_handle_errored_block(sblock);
2453 2454 2455 2456 2457 2458
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2459 2460
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2461 2462
			scrub_write_block_to_dev_replace(sblock);
	}
2463 2464 2465 2466

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2467
			  sblock->sctx->fs_info->sectorsize;
2468

2469
		ASSERT(end - start <= U32_MAX);
2470 2471 2472
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2473 2474
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
D
David Sterba 已提交
2487
 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2488 2489 2490 2491 2492
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2493
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2494
{
2495
	bool found = false;
A
Arne Jansen 已提交
2496

2497
	while (!list_empty(&sctx->csum_list)) {
2498 2499 2500 2501
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2502
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2503
				       struct btrfs_ordered_sum, list);
2504
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2505 2506 2507
		if (sum->bytenr > logical)
			break;

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2518

2519 2520 2521 2522
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2523

2524 2525 2526 2527 2528 2529 2530
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2531
	}
2532 2533
	if (!found)
		return 0;
2534
	return 1;
A
Arne Jansen 已提交
2535 2536 2537
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2538
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2539
			u64 logical, u32 len,
2540
			u64 physical, struct btrfs_device *dev, u64 flags,
2541
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2542 2543 2544
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2545 2546 2547
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2548 2549 2550 2551
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2552 2553 2554 2555
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2556
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2557 2558 2559 2560
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2561 2562 2563 2564
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2565
	} else {
2566
		blocksize = sctx->fs_info->sectorsize;
2567
		WARN_ON(1);
2568
	}
A
Arne Jansen 已提交
2569 2570

	while (len) {
2571
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2572 2573 2574 2575
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2576
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2577
			if (have_csum == 0)
2578
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2579
		}
2580
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2581
				  mirror_num, have_csum ? csum : NULL,
2582
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2583 2584 2585 2586 2587
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2588
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2589 2590 2591 2592
	}
	return 0;
}

2593
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2594
				  u64 logical, u32 len,
2595 2596 2597 2598 2599
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2600
	const u32 sectorsize = sctx->fs_info->sectorsize;
2601 2602
	int index;

2603 2604
	ASSERT(IS_ALIGNED(len, sectorsize));

2605
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2606 2607 2608 2609 2610 2611 2612 2613 2614
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2615
	refcount_set(&sblock->refs, 1);
2616 2617 2618 2619 2620 2621 2622 2623
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2624
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2625 2626 2627 2628 2629 2630 2631 2632
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
2633
		ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2649
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2650 2651 2652 2653
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2654
		spage->page = alloc_page(GFP_KERNEL);
2655 2656
		if (!spage->page)
			goto leave_nomem;
2657 2658 2659 2660 2661 2662


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2683
				   u64 logical, u32 len,
2684 2685 2686 2687 2688 2689 2690 2691
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2692
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2693 2694 2695 2696
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2697
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2698
		blocksize = sparity->stripe_len;
2699
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2700
		blocksize = sparity->stripe_len;
2701
	} else {
2702
		blocksize = sctx->fs_info->sectorsize;
2703 2704 2705 2706
		WARN_ON(1);
	}

	while (len) {
2707
		u32 l = min(len, blocksize);
2708 2709 2710 2711
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2712
			have_csum = scrub_find_csum(sctx, logical, csum);
2713 2714 2715 2716 2717 2718 2719 2720
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2721
skip:
2722 2723 2724 2725 2726 2727 2728
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2729 2730 2731 2732 2733 2734 2735 2736
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2737 2738
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2739 2740 2741 2742 2743
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2744 2745
	u32 stripe_index;
	u32 rot;
2746
	const int data_stripes = nr_data_stripes(map);
2747

2748
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2749 2750 2751
	if (stripe_start)
		*stripe_start = last_offset;

2752
	*offset = last_offset;
2753
	for (i = 0; i < data_stripes; i++) {
2754 2755
		*offset = last_offset + i * map->stripe_len;

2756
		stripe_nr = div64_u64(*offset, map->stripe_len);
2757
		stripe_nr = div_u64(stripe_nr, data_stripes);
2758 2759

		/* Work out the disk rotation on this stripe-set */
2760
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2761 2762
		/* calculate which stripe this data locates */
		rot += i;
2763
		stripe_index = rot % map->num_stripes;
2764 2765 2766 2767 2768 2769 2770 2771 2772
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2805
static void scrub_parity_bio_endio(struct bio *bio)
2806 2807
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2808
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2809

2810
	if (bio->bi_status)
2811 2812 2813 2814
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2815

2816 2817
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2818
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2819 2820 2821 2822 2823
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2824
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2825 2826
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
2827
	struct btrfs_io_context *bioc = NULL;
2828 2829 2830 2831 2832 2833 2834
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2835
	length = sparity->logic_end - sparity->logic_start;
2836 2837

	btrfs_bio_counter_inc_blocked(fs_info);
2838
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2839 2840 2841
			       &length, &bioc);
	if (ret || !bioc || !bioc->raid_map)
		goto bioc_out;
2842

2843
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
2844 2845 2846 2847
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2848 2849
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
					      sparity->scrub_dev,
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
2861
bioc_out:
2862
	btrfs_bio_counter_dec(fs_info);
2863
	btrfs_put_bioc(bioc);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2875
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2876 2877 2878 2879
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2880
	refcount_inc(&sparity->refs);
2881 2882 2883 2884
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2885
	if (!refcount_dec_and_test(&sparity->refs))
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2898
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2899
	struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
2900
	struct btrfs_root *csum_root;
2901
	struct btrfs_extent_item *extent;
2902
	struct btrfs_io_context *bioc = NULL;
2903 2904 2905 2906 2907 2908 2909 2910
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2911 2912
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2913
	u64 mapped_length;
2914 2915 2916 2917 2918 2919 2920
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2921
	ASSERT(map->stripe_len <= U32_MAX);
2922
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2933
	ASSERT(map->stripe_len <= U32_MAX);
2934 2935 2936 2937 2938 2939
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2940
	refcount_set(&sparity->refs, 1);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2989 2990 2991 2992
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2993
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2994
				bytes = fs_info->nodesize;
2995 2996 2997 2998 2999 3000
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3001
			if (key.objectid >= logic_end) {
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3014 3015 3016 3017
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3018 3019
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3020
					  key.objectid, logic_start);
3021 3022 3023
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3024 3025 3026 3027
				goto next;
			}
again:
			extent_logical = key.objectid;
3028
			ASSERT(bytes <= U32_MAX);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3044
			mapped_length = extent_len;
3045
			bioc = NULL;
3046
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3047
					extent_logical, &mapped_length, &bioc,
3048
					0);
3049
			if (!ret) {
3050
				if (!bioc || mapped_length < extent_len)
3051 3052 3053
					ret = -EIO;
			}
			if (ret) {
3054
				btrfs_put_bioc(bioc);
3055 3056
				goto out;
			}
3057 3058 3059 3060
			extent_physical = bioc->stripes[0].physical;
			extent_mirror_num = bioc->mirror_num;
			extent_dev = bioc->stripes[0].dev;
			btrfs_put_bioc(bioc);
3061

3062
			csum_root = btrfs_csum_root(fs_info, extent_logical);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3076 3077 3078

			scrub_free_csums(sctx);

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3108 3109
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3110
		scrub_parity_mark_sectors_error(sparity, logic_start,
3111
						logic_end - logic_start);
3112
	}
3113 3114
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3115
	mutex_lock(&sctx->wr_lock);
3116
	scrub_wr_submit(sctx);
3117
	mutex_unlock(&sctx->wr_lock);
3118 3119 3120 3121 3122

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3163
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3164 3165
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3166 3167
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3168
{
3169
	struct btrfs_path *path, *ppath;
3170
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3171
	struct btrfs_root *root;
3172
	struct btrfs_root *csum_root;
A
Arne Jansen 已提交
3173
	struct btrfs_extent_item *extent;
3174
	struct blk_plug plug;
A
Arne Jansen 已提交
3175 3176 3177 3178 3179 3180 3181
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3182
	u64 logic_end;
3183
	u64 physical_end;
A
Arne Jansen 已提交
3184
	u64 generation;
3185
	int mirror_num;
A
Arne Jansen 已提交
3186 3187
	struct reada_control *reada1;
	struct reada_control *reada2;
3188
	struct btrfs_key key;
A
Arne Jansen 已提交
3189
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3190 3191
	u64 increment = map->stripe_len;
	u64 offset;
3192 3193
	u64 extent_logical;
	u64 extent_physical;
3194 3195 3196 3197 3198
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3199 3200
	u64 stripe_logical;
	u64 stripe_end;
3201 3202
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3203
	int stop_loop = 0;
D
David Woodhouse 已提交
3204

3205
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3206
	offset = 0;
3207
	nstripes = div64_u64(length, map->stripe_len);
3208 3209
	mirror_num = 1;
	increment = map->stripe_len;
A
Arne Jansen 已提交
3210 3211 3212 3213 3214 3215 3216
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3217
		mirror_num = num % map->sub_stripes + 1;
3218
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3219
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3220
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3221
		mirror_num = num % map->num_stripes + 1;
3222
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3223
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3224
		increment = map->stripe_len * nr_data_stripes(map);
A
Arne Jansen 已提交
3225 3226 3227 3228 3229 3230
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3231 3232
	ppath = btrfs_alloc_path();
	if (!ppath) {
3233
		btrfs_free_path(path);
3234 3235 3236
		return -ENOMEM;
	}

3237 3238 3239 3240 3241
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3242 3243 3244
	path->search_commit_root = 1;
	path->skip_locking = 1;

3245 3246
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3247
	/*
A
Arne Jansen 已提交
3248 3249 3250
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3251 3252
	 */
	logical = base + offset;
3253
	physical_end = physical + nstripes * map->stripe_len;
3254
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3255
		get_raid56_logic_offset(physical_end, num,
3256
					map, &logic_end, NULL);
3257 3258 3259 3260
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3261
	wait_event(sctx->list_wait,
3262
		   atomic_read(&sctx->bios_in_flight) == 0);
3263
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3264

3265 3266
	root = btrfs_extent_root(fs_info, logical);

A
Arne Jansen 已提交
3267
	/* FIXME it might be better to start readahead at commit root */
3268 3269 3270
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3271
	key_end.objectid = logic_end;
3272 3273
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3274
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3275

3276 3277
	csum_root = btrfs_csum_root(fs_info, logical);

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3289 3290 3291

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3292
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3293 3294
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3295 3296 3297 3298 3299

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3300
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3301

3302 3303 3304 3305 3306 3307 3308 3309
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3310 3311 3312 3313
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3314
	while (physical < physical_end) {
A
Arne Jansen 已提交
3315 3316 3317 3318
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3319
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3320 3321 3322 3323 3324 3325 3326 3327
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3328
			sctx->flush_all_writes = true;
3329
			scrub_submit(sctx);
3330
			mutex_lock(&sctx->wr_lock);
3331
			scrub_wr_submit(sctx);
3332
			mutex_unlock(&sctx->wr_lock);
3333
			wait_event(sctx->list_wait,
3334
				   atomic_read(&sctx->bios_in_flight) == 0);
3335
			sctx->flush_all_writes = false;
3336
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3337 3338
		}

3339 3340 3341 3342 3343 3344
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3345
				/* it is parity strip */
3346
				stripe_logical += base;
3347
				stripe_end = stripe_logical + increment;
3348 3349 3350 3351 3352 3353 3354 3355 3356
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3357 3358 3359 3360
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3361
		key.objectid = logical;
L
Liu Bo 已提交
3362
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3363 3364 3365 3366

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3367

3368
		if (ret > 0) {
3369
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3370 3371
			if (ret < 0)
				goto out;
3372 3373 3374 3375 3376 3377 3378 3379 3380
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3381 3382
		}

L
Liu Bo 已提交
3383
		stop_loop = 0;
A
Arne Jansen 已提交
3384
		while (1) {
3385 3386
			u64 bytes;

A
Arne Jansen 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3396
				stop_loop = 1;
A
Arne Jansen 已提交
3397 3398 3399 3400
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3401 3402 3403 3404
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3405
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3406
				bytes = fs_info->nodesize;
3407 3408 3409 3410
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3411 3412
				goto next;

L
Liu Bo 已提交
3413 3414 3415 3416 3417 3418
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3419

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3434 3435 3436 3437 3438
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3439 3440 3441 3442
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3443
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3444
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3445
				       key.objectid, logical);
3446 3447 3448
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3449 3450 3451
				goto next;
			}

L
Liu Bo 已提交
3452 3453
again:
			extent_logical = key.objectid;
3454
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3455 3456
			extent_len = bytes;

A
Arne Jansen 已提交
3457 3458 3459
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3460 3461 3462
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3463
			}
L
Liu Bo 已提交
3464
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3465
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3466 3467
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3468 3469
			}

L
Liu Bo 已提交
3470
			extent_physical = extent_logical - logical + physical;
3471 3472
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3473
			if (sctx->is_dev_replace)
3474 3475 3476 3477
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3478

3479 3480 3481 3482 3483 3484 3485 3486
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3487

L
Liu Bo 已提交
3488
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3489 3490
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3491
					   extent_logical - logical + physical);
3492 3493 3494

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3495 3496 3497
			if (ret)
				goto out;

3498 3499 3500
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3501 3502
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3503
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3504 3505 3506 3507
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3518
								increment;
3519 3520 3521 3522 3523 3524 3525 3526
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3527 3528 3529 3530
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3531 3532 3533 3534 3535
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3536
				if (physical >= physical_end) {
L
Liu Bo 已提交
3537 3538 3539 3540
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3541 3542 3543
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3544
		btrfs_release_path(path);
3545
skip:
A
Arne Jansen 已提交
3546 3547
		logical += increment;
		physical += map->stripe_len;
3548
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3549 3550 3551 3552 3553
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3554
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3555 3556
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3557
	}
3558
out:
A
Arne Jansen 已提交
3559
	/* push queued extents */
3560
	scrub_submit(sctx);
3561
	mutex_lock(&sctx->wr_lock);
3562
	scrub_wr_submit(sctx);
3563
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3564

3565
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3566
	btrfs_free_path(path);
3567
	btrfs_free_path(ppath);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3579 3580 3581
	return ret < 0 ? ret : 0;
}

3582
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3583 3584
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3585
					  u64 dev_offset,
3586
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3587
{
3588
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3589
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3590 3591 3592
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3593
	int ret = 0;
A
Arne Jansen 已提交
3594

3595 3596 3597
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3598

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3611

3612
	map = em->map_lookup;
A
Arne Jansen 已提交
3613 3614 3615 3616 3617 3618 3619
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3620
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3621
		    map->stripes[i].physical == dev_offset) {
3622
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3623
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3653
static noinline_for_stack
3654
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3655
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3656 3657 3658
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3659 3660
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3661 3662
	u64 length;
	u64 chunk_offset;
3663
	int ret = 0;
3664
	int ro_set;
A
Arne Jansen 已提交
3665 3666 3667 3668
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3669
	struct btrfs_block_group *cache;
3670
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3671 3672 3673 3674 3675

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3676
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3677 3678 3679
	path->search_commit_root = 1;
	path->skip_locking = 1;

3680
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3681 3682 3683 3684 3685 3686
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3687 3688 3689 3690 3691
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3692 3693 3694 3695
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3696
					break;
3697 3698 3699
				}
			} else {
				ret = 0;
3700 3701
			}
		}
A
Arne Jansen 已提交
3702 3703 3704 3705 3706 3707

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3708
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3709 3710
			break;

3711
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3723 3724
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3725 3726 3727 3728 3729 3730 3731 3732

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3733 3734 3735 3736 3737 3738

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3739 3740 3741 3742
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3743 3744
				btrfs_put_block_group(cache);
				goto skip;
3745 3746 3747 3748
			}
			spin_unlock(&cache->lock);
		}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3763
		btrfs_freeze_block_group(cache);
3764 3765
		spin_unlock(&cache->lock);

3766 3767 3768 3769 3770 3771 3772 3773 3774
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3805
		 */
3806
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3817 3818
		if (ret == 0) {
			ro_set = 1;
3819
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3820 3821 3822
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3823
			 * It is not a problem for scrub, because
3824 3825 3826 3827
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3828 3829 3830 3831 3832 3833 3834
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3835
		} else {
J
Jeff Mahoney 已提交
3836
			btrfs_warn(fs_info,
3837
				   "failed setting block group ro: %d", ret);
3838
			btrfs_unfreeze_block_group(cache);
3839
			btrfs_put_block_group(cache);
3840
			scrub_pause_off(fs_info);
3841 3842 3843
			break;
		}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3856
		down_write(&dev_replace->rwsem);
3857 3858 3859
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3860 3861
		up_write(&dev_replace->rwsem);

3862
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3863
				  found_key.offset, cache);
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3875
		sctx->flush_all_writes = true;
3876
		scrub_submit(sctx);
3877
		mutex_lock(&sctx->wr_lock);
3878
		scrub_wr_submit(sctx);
3879
		mutex_unlock(&sctx->wr_lock);
3880 3881 3882

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3883 3884

		scrub_pause_on(fs_info);
3885 3886 3887 3888 3889 3890

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3891 3892
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3893
		sctx->flush_all_writes = false;
3894

3895
		scrub_pause_off(fs_info);
3896

3897 3898 3899 3900 3901
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3902
		down_write(&dev_replace->rwsem);
3903 3904
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3905
		up_write(&dev_replace->rwsem);
3906

3907
		if (ro_set)
3908
			btrfs_dec_block_group_ro(cache);
3909

3910 3911 3912 3913 3914 3915 3916 3917 3918
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3919
		    cache->used == 0) {
3920
			spin_unlock(&cache->lock);
3921 3922 3923 3924 3925
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3926 3927 3928
		} else {
			spin_unlock(&cache->lock);
		}
3929
skip_unfreeze:
3930
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3931 3932 3933
		btrfs_put_block_group(cache);
		if (ret)
			break;
3934
		if (sctx->is_dev_replace &&
3935
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3936 3937 3938 3939 3940 3941 3942
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3943
skip:
A
Arne Jansen 已提交
3944
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3945
		btrfs_release_path(path);
A
Arne Jansen 已提交
3946 3947 3948
	}

	btrfs_free_path(path);
3949

3950
	return ret;
A
Arne Jansen 已提交
3951 3952
}

3953 3954
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3955 3956 3957 3958 3959
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3960
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3961

J
Josef Bacik 已提交
3962
	if (BTRFS_FS_ERROR(fs_info))
3963
		return -EROFS;
3964

3965
	/* Seed devices of a new filesystem has their own generation. */
3966
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3967 3968
		gen = scrub_dev->generation;
	else
3969
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3970 3971 3972

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3973 3974
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3975
			break;
3976 3977
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3978

3979
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3980
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3981
				  NULL, bytenr);
A
Arne Jansen 已提交
3982 3983 3984
		if (ret)
			return ret;
	}
3985
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3986 3987 3988 3989

	return 0;
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
4013 4014 4015
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4016 4017
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4018
{
4019 4020 4021
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
4022
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4023
	int max_active = fs_info->thread_pool_size;
4024
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4025

4026 4027
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4028

4029 4030 4031 4032
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
4033

4034
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4035
					      max_active, 2);
4036 4037
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4052
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4053 4054
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4055
	}
4056 4057 4058
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4059

4060 4061
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
4062
fail_scrub_parity_workers:
4063
	btrfs_destroy_workqueue(scrub_wr_comp);
4064
fail_scrub_wr_completion_workers:
4065
	btrfs_destroy_workqueue(scrub_workers);
4066
fail_scrub_workers:
4067
	return ret;
A
Arne Jansen 已提交
4068 4069
}

4070 4071
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4072
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4073
{
4074
	struct btrfs_dev_lookup_args args = { .devid = devid };
4075
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4076 4077
	int ret;
	struct btrfs_device *dev;
4078
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4079

4080
	if (btrfs_fs_closing(fs_info))
4081
		return -EAGAIN;
A
Arne Jansen 已提交
4082

4083
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4084 4085 4086 4087 4088
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4089 4090
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4091 4092
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4093 4094 4095
		return -EINVAL;
	}

4096
	if (fs_info->nodesize >
4097
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4098
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4099 4100 4101 4102
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4103 4104
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4105
		       fs_info->nodesize,
4106
		       SCRUB_MAX_PAGES_PER_BLOCK,
4107
		       fs_info->sectorsize,
4108 4109 4110 4111
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4112 4113 4114 4115
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4116

4117 4118 4119 4120
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4121
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4122
	dev = btrfs_find_device(fs_info->fs_devices, &args);
4123 4124
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4125
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4126
		ret = -ENODEV;
4127
		goto out;
A
Arne Jansen 已提交
4128 4129
	}

4130 4131
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4132
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4133 4134 4135
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4136
		ret = -EROFS;
4137
		goto out;
4138 4139
	}

4140
	mutex_lock(&fs_info->scrub_lock);
4141
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4142
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4143
		mutex_unlock(&fs_info->scrub_lock);
4144
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4145
		ret = -EIO;
4146
		goto out;
A
Arne Jansen 已提交
4147 4148
	}

4149
	down_read(&fs_info->dev_replace.rwsem);
4150
	if (dev->scrub_ctx ||
4151 4152
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4153
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4154
		mutex_unlock(&fs_info->scrub_lock);
4155
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4156
		ret = -EINPROGRESS;
4157
		goto out;
A
Arne Jansen 已提交
4158
	}
4159
	up_read(&fs_info->dev_replace.rwsem);
4160

4161
	sctx->readonly = readonly;
4162
	dev->scrub_ctx = sctx;
4163
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4164

4165 4166 4167 4168
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4169
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4170 4171 4172
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4183
	if (!is_dev_replace) {
4184
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4185 4186 4187 4188
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4189
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4190
		ret = scrub_supers(sctx, dev);
4191
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4192
	}
A
Arne Jansen 已提交
4193 4194

	if (!ret)
4195
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4196
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4197

4198
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4199 4200 4201
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4202
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4203

A
Arne Jansen 已提交
4204
	if (progress)
4205
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4206

4207 4208 4209 4210
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4211
	mutex_lock(&fs_info->scrub_lock);
4212
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4213 4214
	mutex_unlock(&fs_info->scrub_lock);

4215
	scrub_workers_put(fs_info);
4216
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4217

4218
	return ret;
4219 4220
out:
	scrub_workers_put(fs_info);
4221 4222 4223
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4224 4225 4226
	return ret;
}

4227
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4242
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4243 4244 4245 4246 4247
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4248
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4269
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4270
{
4271
	struct btrfs_fs_info *fs_info = dev->fs_info;
4272
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4273 4274

	mutex_lock(&fs_info->scrub_lock);
4275
	sctx = dev->scrub_ctx;
4276
	if (!sctx) {
A
Arne Jansen 已提交
4277 4278 4279
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4280
	atomic_inc(&sctx->cancel_req);
4281
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4282 4283
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4284
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4285 4286 4287 4288 4289 4290
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4291

4292
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4293 4294
			 struct btrfs_scrub_progress *progress)
{
4295
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
4296
	struct btrfs_device *dev;
4297
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4298

4299
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4300
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
4301
	if (dev)
4302
		sctx = dev->scrub_ctx;
4303 4304
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4305
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4306

4307
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4308
}
4309 4310

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4311
			       u64 extent_logical, u32 extent_len,
4312 4313 4314 4315 4316
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
4317
	struct btrfs_io_context *bioc = NULL;
4318 4319 4320
	int ret;

	mapped_length = extent_len;
4321
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4322 4323 4324 4325
			      &mapped_length, &bioc, 0);
	if (ret || !bioc || mapped_length < extent_len ||
	    !bioc->stripes[0].dev->bdev) {
		btrfs_put_bioc(bioc);
4326 4327 4328
		return;
	}

4329 4330 4331 4332
	*extent_physical = bioc->stripes[0].physical;
	*extent_mirror_num = bioc->mirror_num;
	*extent_dev = bioc->stripes[0].dev;
	btrfs_put_bioc(bioc);
4333
}