i915_gem.c 127.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379
void *i915_gem_object_alloc(struct drm_device *dev)
{
380
	struct drm_i915_private *dev_priv = to_i915(dev);
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
386
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
639
	struct drm_i915_private *dev_priv = to_i915(dev);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919
 * @i915: i915 device private data
920 921 922
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = to_i915(dev);
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT || ret == -ENOSPC) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329 1330
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1331 1332
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1333
 */
1334
int
1335 1336 1337
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1338
	int ret, i;
1339

1340
	if (!obj->active)
1341 1342
		return 0;

1343 1344 1345 1346 1347
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1348

1349
			i = obj->last_write_req->engine->id;
1350 1351 1352 1353 1354 1355
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1356
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1357 1358 1359 1360 1361 1362 1363 1364 1365
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1366
		GEM_BUG_ON(obj->active);
1367 1368 1369 1370 1371 1372 1373 1374 1375
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1376
	int ring = req->engine->id;
1377 1378 1379 1380 1381 1382

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1383
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1384
		i915_gem_request_retire_upto(req);
1385 1386
}

1387 1388 1389 1390 1391
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392
					    struct intel_rps_client *rps,
1393 1394 1395
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1396
	struct drm_i915_private *dev_priv = to_i915(dev);
1397
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1398
	int ret, i, n = 0;
1399 1400 1401 1402

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1403
	if (!obj->active)
1404 1405
		return 0;

1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1415
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1426
	mutex_unlock(&dev->struct_mutex);
1427
	ret = 0;
1428
	for (i = 0; ret == 0 && i < n; i++)
1429
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1430 1431
	mutex_lock(&dev->struct_mutex);

1432 1433 1434 1435 1436 1437 1438
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1439 1440
}

1441 1442 1443 1444 1445 1446
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1447 1448 1449 1450 1451 1452 1453
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1454
/**
1455 1456
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1457 1458 1459
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1460 1461 1462
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1463
			  struct drm_file *file)
1464 1465
{
	struct drm_i915_gem_set_domain *args = data;
1466
	struct drm_i915_gem_object *obj;
1467 1468
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1469 1470
	int ret;

1471
	/* Only handle setting domains to types used by the CPU. */
1472
	if (write_domain & I915_GEM_GPU_DOMAINS)
1473 1474
		return -EINVAL;

1475
	if (read_domains & I915_GEM_GPU_DOMAINS)
1476 1477 1478 1479 1480 1481 1482 1483
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1484
	ret = i915_mutex_lock_interruptible(dev);
1485
	if (ret)
1486
		return ret;
1487

1488
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1489
	if (&obj->base == NULL) {
1490 1491
		ret = -ENOENT;
		goto unlock;
1492
	}
1493

1494 1495 1496 1497
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1498
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1499
							  to_rps_client(file),
1500
							  !write_domain);
1501 1502 1503
	if (ret)
		goto unref;

1504
	if (read_domains & I915_GEM_DOMAIN_GTT)
1505
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1506
	else
1507
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1508

1509
	if (write_domain != 0)
1510
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1511

1512
unref:
1513
	drm_gem_object_unreference(&obj->base);
1514
unlock:
1515 1516 1517 1518 1519 1520
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1521 1522 1523
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1524 1525 1526
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1527
			 struct drm_file *file)
1528 1529
{
	struct drm_i915_gem_sw_finish *args = data;
1530
	struct drm_i915_gem_object *obj;
1531 1532
	int ret = 0;

1533
	ret = i915_mutex_lock_interruptible(dev);
1534
	if (ret)
1535
		return ret;
1536

1537
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1538
	if (&obj->base == NULL) {
1539 1540
		ret = -ENOENT;
		goto unlock;
1541 1542 1543
	}

	/* Pinned buffers may be scanout, so flush the cache */
1544
	if (obj->pin_display)
1545
		i915_gem_object_flush_cpu_write_domain(obj);
1546

1547
	drm_gem_object_unreference(&obj->base);
1548
unlock:
1549 1550 1551 1552 1553
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1554 1555 1556 1557 1558
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1559 1560 1561
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1572 1573 1574
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1575
		    struct drm_file *file)
1576 1577 1578 1579 1580
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1581 1582 1583
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1584
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1585 1586
		return -ENODEV;

1587
	obj = drm_gem_object_lookup(file, args->handle);
1588
	if (obj == NULL)
1589
		return -ENOENT;
1590

1591 1592 1593 1594 1595 1596 1597 1598
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1599
	addr = vm_mmap(obj->filp, 0, args->size,
1600 1601
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1602 1603 1604 1605
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1606 1607 1608 1609
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1610 1611 1612 1613 1614 1615 1616
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1617 1618 1619

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1620
	}
1621
	drm_gem_object_unreference_unlocked(obj);
1622 1623 1624 1625 1626 1627 1628 1629
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1630 1631
/**
 * i915_gem_fault - fault a page into the GTT
1632 1633
 * @vma: VMA in question
 * @vmf: fault info
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1648 1649
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1650 1651
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1652
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1653 1654 1655
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1656
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1657

1658 1659
	intel_runtime_pm_get(dev_priv);

1660 1661 1662 1663
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1664 1665 1666
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1667

C
Chris Wilson 已提交
1668 1669
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1670 1671 1672 1673 1674 1675 1676 1677 1678
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1679 1680
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1681
		ret = -EFAULT;
1682 1683 1684
		goto unlock;
	}

1685
	/* Use a partial view if the object is bigger than the aperture. */
1686
	if (obj->base.size >= ggtt->mappable_end &&
1687
	    obj->tiling_mode == I915_TILING_NONE) {
1688
		static const unsigned int chunk_size = 256; // 1 MiB
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1702 1703
	if (ret)
		goto unlock;
1704

1705 1706 1707
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1708

1709
	ret = i915_gem_object_get_fence(obj);
1710
	if (ret)
1711
		goto unpin;
1712

1713
	/* Finally, remap it using the new GTT offset */
1714
	pfn = ggtt->mappable_base +
1715
		i915_gem_obj_ggtt_offset_view(obj, &view);
1716
	pfn >>= PAGE_SHIFT;
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1727

1728 1729
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1730 1731 1732 1733 1734
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1756
unpin:
1757
	i915_gem_object_ggtt_unpin_view(obj, &view);
1758
unlock:
1759
	mutex_unlock(&dev->struct_mutex);
1760
out:
1761
	switch (ret) {
1762
	case -EIO:
1763 1764 1765 1766 1767 1768 1769
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1770 1771 1772
			ret = VM_FAULT_SIGBUS;
			break;
		}
1773
	case -EAGAIN:
D
Daniel Vetter 已提交
1774 1775 1776 1777
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1778
		 */
1779 1780
	case 0:
	case -ERESTARTSYS:
1781
	case -EINTR:
1782 1783 1784 1785 1786
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1787 1788
		ret = VM_FAULT_NOPAGE;
		break;
1789
	case -ENOMEM:
1790 1791
		ret = VM_FAULT_OOM;
		break;
1792
	case -ENOSPC:
1793
	case -EFAULT:
1794 1795
		ret = VM_FAULT_SIGBUS;
		break;
1796
	default:
1797
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1798 1799
		ret = VM_FAULT_SIGBUS;
		break;
1800
	}
1801 1802 1803

	intel_runtime_pm_put(dev_priv);
	return ret;
1804 1805
}

1806 1807 1808 1809
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1810
 * Preserve the reservation of the mmapping with the DRM core code, but
1811 1812 1813 1814 1815 1816 1817 1818 1819
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1820
void
1821
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1822
{
1823 1824 1825 1826 1827 1828
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1829 1830
	if (!obj->fault_mappable)
		return;
1831

1832 1833
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1844
	obj->fault_mappable = false;
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854 1855
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1856
uint32_t
1857
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1858
{
1859
	uint32_t gtt_size;
1860 1861

	if (INTEL_INFO(dev)->gen >= 4 ||
1862 1863
	    tiling_mode == I915_TILING_NONE)
		return size;
1864 1865

	/* Previous chips need a power-of-two fence region when tiling */
1866
	if (IS_GEN3(dev))
1867
		gtt_size = 1024*1024;
1868
	else
1869
		gtt_size = 512*1024;
1870

1871 1872
	while (gtt_size < size)
		gtt_size <<= 1;
1873

1874
	return gtt_size;
1875 1876
}

1877 1878
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1879 1880 1881 1882
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1883 1884
 *
 * Return the required GTT alignment for an object, taking into account
1885
 * potential fence register mapping.
1886
 */
1887 1888 1889
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1890 1891 1892 1893 1894
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1895
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1896
	    tiling_mode == I915_TILING_NONE)
1897 1898
		return 4096;

1899 1900 1901 1902
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1903
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1904 1905
}

1906 1907
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1908
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1909 1910
	int ret;

1911 1912
	dev_priv->mm.shrinker_no_lock_stealing = true;

1913 1914
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1915
		goto out;
1916 1917 1918 1919 1920 1921 1922 1923

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1924 1925 1926 1927 1928
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1929 1930
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1931
		goto out;
1932 1933

	i915_gem_shrink_all(dev_priv);
1934 1935 1936 1937 1938
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1939 1940 1941 1942 1943 1944 1945
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1946
int
1947 1948
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1949
		  uint32_t handle,
1950
		  uint64_t *offset)
1951
{
1952
	struct drm_i915_gem_object *obj;
1953 1954
	int ret;

1955
	ret = i915_mutex_lock_interruptible(dev);
1956
	if (ret)
1957
		return ret;
1958

1959
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
1960
	if (&obj->base == NULL) {
1961 1962 1963
		ret = -ENOENT;
		goto unlock;
	}
1964

1965
	if (obj->madv != I915_MADV_WILLNEED) {
1966
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1967
		ret = -EFAULT;
1968
		goto out;
1969 1970
	}

1971 1972 1973
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1974

1975
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1976

1977
out:
1978
	drm_gem_object_unreference(&obj->base);
1979
unlock:
1980
	mutex_unlock(&dev->struct_mutex);
1981
	return ret;
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2005
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2006 2007
}

D
Daniel Vetter 已提交
2008 2009 2010
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2011
{
2012
	i915_gem_object_free_mmap_offset(obj);
2013

2014 2015
	if (obj->base.filp == NULL)
		return;
2016

D
Daniel Vetter 已提交
2017 2018 2019 2020 2021
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2022
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2023 2024
	obj->madv = __I915_MADV_PURGED;
}
2025

2026 2027 2028
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2029
{
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2044 2045
}

2046
static void
2047
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2048
{
2049 2050
	struct sgt_iter sgt_iter;
	struct page *page;
2051
	int ret;
2052

2053
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2054

C
Chris Wilson 已提交
2055
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2056
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2057 2058 2059
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2060
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2061 2062 2063
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2064 2065
	i915_gem_gtt_finish_object(obj);

2066
	if (i915_gem_object_needs_bit17_swizzle(obj))
2067 2068
		i915_gem_object_save_bit_17_swizzle(obj);

2069 2070
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2071

2072
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2073
		if (obj->dirty)
2074
			set_page_dirty(page);
2075

2076
		if (obj->madv == I915_MADV_WILLNEED)
2077
			mark_page_accessed(page);
2078

2079
		put_page(page);
2080
	}
2081
	obj->dirty = 0;
2082

2083 2084
	sg_free_table(obj->pages);
	kfree(obj->pages);
2085
}
C
Chris Wilson 已提交
2086

2087
int
2088 2089 2090 2091
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2092
	if (obj->pages == NULL)
2093 2094
		return 0;

2095 2096 2097
	if (obj->pages_pin_count)
		return -EBUSY;

2098
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2099

2100 2101 2102
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2103
	list_del(&obj->global_list);
2104

2105
	if (obj->mapping) {
2106 2107 2108 2109
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2110 2111 2112
		obj->mapping = NULL;
	}

2113
	ops->put_pages(obj);
2114
	obj->pages = NULL;
2115

2116
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2117 2118 2119 2120

	return 0;
}

2121
static int
C
Chris Wilson 已提交
2122
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2123
{
2124
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125 2126
	int page_count, i;
	struct address_space *mapping;
2127 2128
	struct sg_table *st;
	struct scatterlist *sg;
2129
	struct sgt_iter sgt_iter;
2130
	struct page *page;
2131
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2132
	int ret;
C
Chris Wilson 已提交
2133
	gfp_t gfp;
2134

C
Chris Wilson 已提交
2135 2136 2137 2138 2139 2140 2141
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2142 2143 2144 2145
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2146
	page_count = obj->base.size / PAGE_SIZE;
2147 2148
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2149
		return -ENOMEM;
2150
	}
2151

2152 2153 2154 2155 2156
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2157
	mapping = file_inode(obj->base.filp)->i_mapping;
2158
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2159
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2160 2161 2162
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2163 2164
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2165 2166 2167 2168 2169
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2170 2171 2172 2173 2174 2175 2176 2177
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2178
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2179 2180
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2181
				goto err_pages;
I
Imre Deak 已提交
2182
			}
C
Chris Wilson 已提交
2183
		}
2184 2185 2186 2187 2188 2189 2190 2191
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2192 2193 2194 2195 2196 2197 2198 2199 2200
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2201 2202 2203

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2204
	}
2205 2206 2207 2208
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2209 2210
	obj->pages = st;

I
Imre Deak 已提交
2211 2212 2213 2214
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2215
	if (i915_gem_object_needs_bit17_swizzle(obj))
2216 2217
		i915_gem_object_do_bit_17_swizzle(obj);

2218 2219 2220 2221
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2222 2223 2224
	return 0;

err_pages:
2225
	sg_mark_end(sg);
2226 2227
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2228 2229
	sg_free_table(st);
	kfree(st);
2230 2231 2232 2233 2234 2235 2236 2237 2238

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2239 2240 2241 2242
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2243 2244
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2255
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2256 2257 2258
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2259
	if (obj->pages)
2260 2261
		return 0;

2262
	if (obj->madv != I915_MADV_WILLNEED) {
2263
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2264
		return -EFAULT;
2265 2266
	}

2267 2268
	BUG_ON(obj->pages_pin_count);

2269 2270 2271 2272
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2273
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2274 2275 2276 2277

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2278
	return 0;
2279 2280
}

2281 2282 2283 2284 2285
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2286 2287
	struct sgt_iter sgt_iter;
	struct page *page;
2288 2289
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2290 2291 2292 2293 2294 2295 2296
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2297 2298 2299 2300 2301 2302
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2303

2304 2305
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2306 2307 2308 2309 2310 2311

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2312 2313
	if (pages != stack_pages)
		drm_free_large(pages);
2314 2315 2316 2317 2318

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2331 2332 2333
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2334 2335 2336 2337 2338 2339 2340 2341
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2342
void i915_vma_move_to_active(struct i915_vma *vma,
2343
			     struct drm_i915_gem_request *req)
2344
{
2345
	struct drm_i915_gem_object *obj = vma->obj;
2346
	struct intel_engine_cs *engine;
2347

2348
	engine = i915_gem_request_get_engine(req);
2349 2350

	/* Add a reference if we're newly entering the active list. */
2351
	if (obj->active == 0)
2352
		drm_gem_object_reference(&obj->base);
2353
	obj->active |= intel_engine_flag(engine);
2354

2355
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2356
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2357

2358
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2359 2360
}

2361 2362
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2363
{
2364 2365
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2366 2367

	i915_gem_request_assign(&obj->last_write_req, NULL);
2368
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2369 2370
}

2371
static void
2372
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373
{
2374
	struct i915_vma *vma;
2375

2376 2377
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2378

2379
	list_del_init(&obj->engine_list[ring]);
2380 2381
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2382
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2383 2384 2385 2386 2387
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2388

2389 2390 2391 2392 2393 2394 2395
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2396 2397 2398
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2399
	}
2400

2401
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402
	drm_gem_object_unreference(&obj->base);
2403 2404
}

2405
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2406
{
2407
	unsigned long elapsed;
2408

2409
	if (ctx->hang_stats.banned)
2410 2411
		return true;

2412
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2413 2414
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2415 2416
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2417 2418 2419 2420 2421
	}

	return false;
}

2422
static void i915_set_reset_status(struct i915_gem_context *ctx,
2423
				  const bool guilty)
2424
{
2425
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2426 2427

	if (guilty) {
2428
		hs->banned = i915_context_is_banned(ctx);
2429 2430 2431 2432
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2433 2434 2435
	}
}

2436
struct drm_i915_gem_request *
2437
i915_gem_find_active_request(struct intel_engine_cs *engine)
2438
{
2439 2440
	struct drm_i915_gem_request *request;

2441 2442 2443 2444 2445 2446 2447 2448
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2449
	list_for_each_entry(request, &engine->request_list, list) {
2450
		if (i915_gem_request_completed(request))
2451
			continue;
2452

2453
		return request;
2454
	}
2455 2456 2457 2458

	return NULL;
}

2459
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2460 2461 2462 2463
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2464
	request = i915_gem_find_active_request(engine);
2465 2466 2467
	if (request == NULL)
		return;

2468
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2469

2470
	i915_set_reset_status(request->ctx, ring_hung);
2471
	list_for_each_entry_continue(request, &engine->request_list, list)
2472
		i915_set_reset_status(request->ctx, false);
2473
}
2474

2475
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2476
{
2477 2478
	struct intel_ringbuffer *buffer;

2479
	while (!list_empty(&engine->active_list)) {
2480
		struct drm_i915_gem_object *obj;
2481

2482
		obj = list_first_entry(&engine->active_list,
2483
				       struct drm_i915_gem_object,
2484
				       engine_list[engine->id]);
2485

2486
		i915_gem_object_retire__read(obj, engine->id);
2487
	}
2488

2489 2490 2491 2492 2493 2494
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2495
	if (i915.enable_execlists) {
2496 2497
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2498

2499
		intel_execlists_cancel_requests(engine);
2500 2501
	}

2502 2503 2504 2505 2506 2507 2508
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2509
	if (!list_empty(&engine->request_list)) {
2510 2511
		struct drm_i915_gem_request *request;

2512 2513 2514
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
					  list);
2515

2516
		i915_gem_request_retire_upto(request);
2517
	}
2518 2519 2520 2521 2522 2523 2524 2525

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2526
	list_for_each_entry(buffer, &engine->buffers, link) {
2527 2528 2529
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2530 2531

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2532 2533

	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2534 2535
}

2536
void i915_gem_reset(struct drm_device *dev)
2537
{
2538
	struct drm_i915_private *dev_priv = to_i915(dev);
2539
	struct intel_engine_cs *engine;
2540

2541 2542 2543 2544 2545
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2546
	for_each_engine(engine, dev_priv)
2547
		i915_gem_reset_engine_status(engine);
2548

2549
	for_each_engine(engine, dev_priv)
2550
		i915_gem_reset_engine_cleanup(engine);
2551
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2552

2553 2554
	i915_gem_context_reset(dev);

2555
	i915_gem_restore_fences(dev);
2556 2557

	WARN_ON(i915_verify_lists(dev));
2558 2559 2560 2561
}

/**
 * This function clears the request list as sequence numbers are passed.
2562
 * @engine: engine to retire requests on
2563
 */
2564
void
2565
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2566
{
2567
	WARN_ON(i915_verify_lists(engine->dev));
2568

2569 2570 2571 2572
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2573
	 */
2574
	while (!list_empty(&engine->request_list)) {
2575 2576
		struct drm_i915_gem_request *request;

2577
		request = list_first_entry(&engine->request_list,
2578 2579 2580
					   struct drm_i915_gem_request,
					   list);

2581
		if (!i915_gem_request_completed(request))
2582 2583
			break;

2584
		i915_gem_request_retire_upto(request);
2585
	}
2586

2587 2588 2589 2590
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2591
	while (!list_empty(&engine->active_list)) {
2592 2593
		struct drm_i915_gem_object *obj;

2594 2595
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2596
				       engine_list[engine->id]);
2597

2598
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2599 2600
			break;

2601
		i915_gem_object_retire__read(obj, engine->id);
2602 2603
	}

2604
	WARN_ON(i915_verify_lists(engine->dev));
2605 2606
}

2607
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2608
{
2609
	struct intel_engine_cs *engine;
2610

2611
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2612 2613 2614 2615 2616

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2617

2618
	for_each_engine(engine, dev_priv) {
2619
		i915_gem_retire_requests_ring(engine);
2620 2621
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2622 2623
	}

2624
	if (dev_priv->gt.active_engines == 0)
2625 2626 2627
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2628 2629
}

2630
static void
2631 2632
i915_gem_retire_work_handler(struct work_struct *work)
{
2633
	struct drm_i915_private *dev_priv =
2634
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2635
	struct drm_device *dev = &dev_priv->drm;
2636

2637
	/* Come back later if the device is busy... */
2638
	if (mutex_trylock(&dev->struct_mutex)) {
2639
		i915_gem_retire_requests(dev_priv);
2640
		mutex_unlock(&dev->struct_mutex);
2641
	}
2642 2643 2644 2645 2646

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2647 2648
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2649 2650
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2651
				   round_jiffies_up_relative(HZ));
2652
	}
2653
}
2654

2655 2656 2657 2658
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2659
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2660
	struct drm_device *dev = &dev_priv->drm;
2661
	struct intel_engine_cs *engine;
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2684

2685
	for_each_engine(engine, dev_priv)
2686
		i915_gem_batch_pool_fini(&engine->batch_pool);
2687

2688 2689 2690
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2691

2692 2693 2694 2695 2696
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
2697

2698 2699 2700 2701 2702
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2703

2704 2705 2706 2707
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2708
	}
2709 2710
}

2711 2712 2713 2714
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
2715
 * @obj: object to flush
2716 2717 2718 2719
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2720
	int i;
2721 2722 2723

	if (!obj->active)
		return 0;
2724

2725
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2726
		struct drm_i915_gem_request *req;
2727

2728 2729 2730 2731
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

2732
		if (i915_gem_request_completed(req))
2733
			i915_gem_object_retire__read(obj, i);
2734 2735 2736 2737 2738
	}

	return 0;
}

2739 2740
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2741 2742 2743
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2768
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2769 2770
	int i, n = 0;
	int ret;
2771

2772 2773 2774
	if (args->flags != 0)
		return -EINVAL;

2775 2776 2777 2778
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2779
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
2780 2781 2782 2783 2784
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2785 2786
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2787 2788 2789
	if (ret)
		goto out;

2790
	if (!obj->active)
2791
		goto out;
2792 2793

	/* Do this after OLR check to make sure we make forward progress polling
2794
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2795
	 */
2796
	if (args->timeout_ns == 0) {
2797 2798 2799 2800 2801
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2802

2803
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2804 2805 2806 2807 2808 2809
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

2810 2811
	mutex_unlock(&dev->struct_mutex);

2812 2813
	for (i = 0; i < n; i++) {
		if (ret == 0)
2814
			ret = __i915_wait_request(req[i], true,
2815
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2816
						  to_rps_client(file));
2817
		i915_gem_request_unreference(req[i]);
2818
	}
2819
	return ret;
2820 2821 2822 2823 2824 2825 2826

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2827 2828 2829
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
2830 2831
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
2832 2833 2834 2835
{
	struct intel_engine_cs *from;
	int ret;

2836
	from = i915_gem_request_get_engine(from_req);
2837 2838 2839
	if (to == from)
		return 0;

2840
	if (i915_gem_request_completed(from_req))
2841 2842
		return 0;

2843
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
2844
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
2845
		ret = __i915_wait_request(from_req,
2846 2847 2848
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
2849 2850 2851
		if (ret)
			return ret;

2852
		i915_gem_object_retire_request(obj, from_req);
2853 2854
	} else {
		int idx = intel_ring_sync_index(from, to);
2855 2856 2857
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
2858 2859 2860 2861

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

2862
		if (*to_req == NULL) {
2863 2864 2865 2866 2867 2868 2869
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
2870 2871
		}

2872 2873
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

2888 2889 2890 2891 2892
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
2893 2894 2895
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
2896 2897 2898
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
2899
 * rather than a particular GPU ring. Conceptually we serialise writes
2900
 * between engines inside the GPU. We only allow one engine to write
2901 2902 2903 2904 2905 2906 2907 2908 2909
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2910
 *
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
2921 2922
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2923 2924
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2925 2926
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
2927
{
2928
	const bool readonly = obj->base.pending_write_domain == 0;
2929
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2930
	int ret, i, n;
2931

2932
	if (!obj->active)
2933 2934
		return 0;

2935 2936
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
2937

2938 2939 2940 2941 2942
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
2943
		for (i = 0; i < I915_NUM_ENGINES; i++)
2944 2945 2946 2947
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
2948
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
2949 2950 2951
		if (ret)
			return ret;
	}
2952

2953
	return 0;
2954 2955
}

2956 2957 2958 2959 2960 2961 2962
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2963 2964 2965
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2988
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2989
{
2990
	struct drm_i915_gem_object *obj = vma->obj;
2991
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2992
	int ret;
2993

2994
	if (list_empty(&vma->obj_link))
2995 2996
		return 0;

2997 2998 2999 3000
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3001

B
Ben Widawsky 已提交
3002
	if (vma->pin_count)
3003
		return -EBUSY;
3004

3005 3006
	BUG_ON(obj->pages == NULL);

3007 3008 3009 3010 3011
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3012

3013
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3014
		i915_gem_object_finish_gtt(obj);
3015

3016 3017 3018 3019
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3020 3021

		__i915_vma_iounmap(vma);
3022
	}
3023

3024
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3025

3026
	vma->vm->unbind_vma(vma);
3027
	vma->bound = 0;
3028

3029
	list_del_init(&vma->vm_link);
3030
	if (vma->is_ggtt) {
3031 3032 3033 3034 3035 3036
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3037
		vma->ggtt_view.pages = NULL;
3038
	}
3039

B
Ben Widawsky 已提交
3040 3041 3042 3043
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3044
	 * no more VMAs exist. */
I
Imre Deak 已提交
3045
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3046
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3047

3048 3049 3050 3051 3052 3053
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3054
	return 0;
3055 3056
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3067
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3068
{
3069
	struct intel_engine_cs *engine;
3070
	int ret;
3071

3072
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3073

3074
	for_each_engine(engine, dev_priv) {
3075 3076 3077
		if (engine->last_context == NULL)
			continue;

3078
		ret = intel_engine_idle(engine);
3079 3080 3081
		if (ret)
			return ret;
	}
3082

3083
	WARN_ON(i915_verify_lists(dev));
3084
	return 0;
3085 3086
}

3087
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3088 3089
				     unsigned long cache_level)
{
3090
	struct drm_mm_node *gtt_space = &vma->node;
3091 3092
	struct drm_mm_node *other;

3093 3094 3095 3096 3097 3098
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3099
	 */
3100
	if (vma->vm->mm.color_adjust == NULL)
3101 3102
		return true;

3103
	if (!drm_mm_node_allocated(gtt_space))
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3120
/**
3121 3122
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3123 3124 3125 3126 3127
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3128
 */
3129
static struct i915_vma *
3130 3131
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3132
			   const struct i915_ggtt_view *ggtt_view,
3133
			   unsigned alignment,
3134
			   uint64_t flags)
3135
{
3136
	struct drm_device *dev = obj->base.dev;
3137 3138
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3139
	u32 fence_alignment, unfenced_alignment;
3140 3141
	u32 search_flag, alloc_flag;
	u64 start, end;
3142
	u64 size, fence_size;
B
Ben Widawsky 已提交
3143
	struct i915_vma *vma;
3144
	int ret;
3145

3146 3147 3148 3149 3150
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3181

3182 3183 3184
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3185
		end = min_t(u64, end, ggtt->mappable_end);
3186
	if (flags & PIN_ZONE_4G)
3187
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3188

3189
	if (alignment == 0)
3190
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3191
						unfenced_alignment;
3192
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3193 3194 3195
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3196
		return ERR_PTR(-EINVAL);
3197 3198
	}

3199 3200 3201
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3202
	 */
3203
	if (size > end) {
3204
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3205 3206
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3207
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3208
			  end);
3209
		return ERR_PTR(-E2BIG);
3210 3211
	}

3212
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3213
	if (ret)
3214
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3215

3216 3217
	i915_gem_object_pin_pages(obj);

3218 3219 3220
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3221
	if (IS_ERR(vma))
3222
		goto err_unpin;
B
Ben Widawsky 已提交
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3242
	} else {
3243 3244 3245 3246 3247 3248 3249
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3250

3251
search_free:
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3265

3266 3267
			goto err_free_vma;
		}
3268
	}
3269
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3270
		ret = -EINVAL;
3271
		goto err_remove_node;
3272 3273
	}

3274
	trace_i915_vma_bind(vma, flags);
3275
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3276
	if (ret)
I
Imre Deak 已提交
3277
		goto err_remove_node;
3278

3279
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3280
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3281

3282
	return vma;
B
Ben Widawsky 已提交
3283

3284
err_remove_node:
3285
	drm_mm_remove_node(&vma->node);
3286
err_free_vma:
B
Ben Widawsky 已提交
3287
	i915_gem_vma_destroy(vma);
3288
	vma = ERR_PTR(ret);
3289
err_unpin:
B
Ben Widawsky 已提交
3290
	i915_gem_object_unpin_pages(obj);
3291
	return vma;
3292 3293
}

3294
bool
3295 3296
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3297 3298 3299 3300 3301
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3302
	if (obj->pages == NULL)
3303
		return false;
3304

3305 3306 3307 3308
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3309
	if (obj->stolen || obj->phys_handle)
3310
		return false;
3311

3312 3313 3314 3315 3316 3317 3318 3319
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3320 3321
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3322
		return false;
3323
	}
3324

C
Chris Wilson 已提交
3325
	trace_i915_gem_object_clflush(obj);
3326
	drm_clflush_sg(obj->pages);
3327
	obj->cache_dirty = false;
3328 3329

	return true;
3330 3331 3332 3333
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3334
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3335
{
C
Chris Wilson 已提交
3336 3337
	uint32_t old_write_domain;

3338
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3339 3340
		return;

3341
	/* No actual flushing is required for the GTT write domain.  Writes
3342 3343
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3344 3345 3346 3347
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3348
	 */
3349 3350
	wmb();

3351 3352
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3353

3354
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3355

C
Chris Wilson 已提交
3356
	trace_i915_gem_object_change_domain(obj,
3357
					    obj->base.read_domains,
C
Chris Wilson 已提交
3358
					    old_write_domain);
3359 3360 3361 3362
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3363
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3364
{
C
Chris Wilson 已提交
3365
	uint32_t old_write_domain;
3366

3367
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3368 3369
		return;

3370
	if (i915_gem_clflush_object(obj, obj->pin_display))
3371
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3372

3373 3374
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3375

3376
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3377

C
Chris Wilson 已提交
3378
	trace_i915_gem_object_change_domain(obj,
3379
					    obj->base.read_domains,
C
Chris Wilson 已提交
3380
					    old_write_domain);
3381 3382
}

3383 3384
/**
 * Moves a single object to the GTT read, and possibly write domain.
3385 3386
 * @obj: object to act on
 * @write: ask for write access or read only
3387 3388 3389 3390
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3391
int
3392
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3393
{
3394 3395 3396
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3397
	uint32_t old_write_domain, old_read_domains;
3398
	struct i915_vma *vma;
3399
	int ret;
3400

3401 3402 3403
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3404
	ret = i915_gem_object_wait_rendering(obj, !write);
3405 3406 3407
	if (ret)
		return ret;

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3420
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3421

3422 3423 3424 3425 3426 3427 3428
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3429 3430
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3431

3432 3433 3434
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3435 3436
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3437
	if (write) {
3438 3439 3440
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3441 3442
	}

C
Chris Wilson 已提交
3443 3444 3445 3446
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3447
	/* And bump the LRU for this access */
3448 3449
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3450
		list_move_tail(&vma->vm_link,
3451
			       &ggtt->base.inactive_list);
3452

3453 3454 3455
	return 0;
}

3456 3457
/**
 * Changes the cache-level of an object across all VMA.
3458 3459
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3471 3472 3473
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3474
	struct drm_device *dev = obj->base.dev;
3475
	struct i915_vma *vma, *next;
3476
	bool bound = false;
3477
	int ret = 0;
3478 3479

	if (obj->cache_level == cache_level)
3480
		goto out;
3481

3482 3483 3484 3485 3486
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3487
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3488 3489 3490 3491 3492 3493 3494 3495
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3496
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3497
			ret = i915_vma_unbind(vma);
3498 3499
			if (ret)
				return ret;
3500 3501
		} else
			bound = true;
3502 3503
	}

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3516
		ret = i915_gem_object_wait_rendering(obj, false);
3517 3518 3519
		if (ret)
			return ret;

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3537 3538 3539
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3540 3541 3542 3543 3544 3545 3546 3547
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3548 3549
		}

3550
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3551 3552 3553 3554 3555 3556 3557
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3558 3559
	}

3560
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3561 3562 3563
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3564
out:
3565 3566 3567 3568
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3569
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3570
		if (i915_gem_clflush_object(obj, true))
3571
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3572 3573 3574 3575 3576
	}

	return 0;
}

B
Ben Widawsky 已提交
3577 3578
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3579
{
B
Ben Widawsky 已提交
3580
	struct drm_i915_gem_caching *args = data;
3581 3582
	struct drm_i915_gem_object *obj;

3583
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3584 3585
	if (&obj->base == NULL)
		return -ENOENT;
3586

3587 3588 3589 3590 3591 3592
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3593 3594 3595 3596
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3597 3598 3599 3600
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3601

3602 3603
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3604 3605
}

B
Ben Widawsky 已提交
3606 3607
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3608
{
3609
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3610
	struct drm_i915_gem_caching *args = data;
3611 3612 3613 3614
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3615 3616
	switch (args->caching) {
	case I915_CACHING_NONE:
3617 3618
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3619
	case I915_CACHING_CACHED:
3620 3621 3622 3623 3624 3625
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3626
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3627 3628
			return -ENODEV;

3629 3630
		level = I915_CACHE_LLC;
		break;
3631 3632 3633
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3634 3635 3636 3637
	default:
		return -EINVAL;
	}

3638 3639
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3640 3641
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3642
		goto rpm_put;
B
Ben Widawsky 已提交
3643

3644
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3655 3656 3657
rpm_put:
	intel_runtime_pm_put(dev_priv);

3658 3659 3660
	return ret;
}

3661
/*
3662 3663 3664
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3665 3666
 */
int
3667 3668
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3669
				     const struct i915_ggtt_view *view)
3670
{
3671
	u32 old_read_domains, old_write_domain;
3672 3673
	int ret;

3674 3675 3676
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3677
	obj->pin_display++;
3678

3679 3680 3681 3682 3683 3684 3685 3686 3687
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3688 3689
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3690
	if (ret)
3691
		goto err_unpin_display;
3692

3693 3694 3695 3696
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3697 3698 3699
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3700
	if (ret)
3701
		goto err_unpin_display;
3702

3703
	i915_gem_object_flush_cpu_write_domain(obj);
3704

3705
	old_write_domain = obj->base.write_domain;
3706
	old_read_domains = obj->base.read_domains;
3707 3708 3709 3710

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3711
	obj->base.write_domain = 0;
3712
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3713 3714 3715

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3716
					    old_write_domain);
3717 3718

	return 0;
3719 3720

err_unpin_display:
3721
	obj->pin_display--;
3722 3723 3724 3725
	return ret;
}

void
3726 3727
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3728
{
3729 3730 3731
	if (WARN_ON(obj->pin_display == 0))
		return;

3732 3733
	i915_gem_object_ggtt_unpin_view(obj, view);

3734
	obj->pin_display--;
3735 3736
}

3737 3738
/**
 * Moves a single object to the CPU read, and possibly write domain.
3739 3740
 * @obj: object to act on
 * @write: requesting write or read-only access
3741 3742 3743 3744
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3745
int
3746
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3747
{
C
Chris Wilson 已提交
3748
	uint32_t old_write_domain, old_read_domains;
3749 3750
	int ret;

3751 3752 3753
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3754
	ret = i915_gem_object_wait_rendering(obj, !write);
3755 3756 3757
	if (ret)
		return ret;

3758
	i915_gem_object_flush_gtt_write_domain(obj);
3759

3760 3761
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3762

3763
	/* Flush the CPU cache if it's still invalid. */
3764
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3765
		i915_gem_clflush_object(obj, false);
3766

3767
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3768 3769 3770 3771 3772
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3773
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3774 3775 3776 3777 3778

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3779 3780
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3781
	}
3782

C
Chris Wilson 已提交
3783 3784 3785 3786
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3787 3788 3789
	return 0;
}

3790 3791 3792
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3793 3794 3795 3796
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3797 3798 3799
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3800
static int
3801
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3802
{
3803
	struct drm_i915_private *dev_priv = to_i915(dev);
3804
	struct drm_i915_file_private *file_priv = file->driver_priv;
3805
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3806
	struct drm_i915_gem_request *request, *target = NULL;
3807
	int ret;
3808

3809 3810 3811 3812
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3813 3814 3815
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3816

3817
	spin_lock(&file_priv->mm.lock);
3818
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3819 3820
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3821

3822 3823 3824 3825 3826 3827 3828
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3829
		target = request;
3830
	}
3831 3832
	if (target)
		i915_gem_request_reference(target);
3833
	spin_unlock(&file_priv->mm.lock);
3834

3835
	if (target == NULL)
3836
		return 0;
3837

3838
	ret = __i915_wait_request(target, true, NULL, NULL);
3839
	i915_gem_request_unreference(target);
3840

3841 3842 3843
	return ret;
}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3860 3861 3862 3863
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3864 3865 3866
	return false;
}

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3885
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3886 3887 3888 3889

	obj->map_and_fenceable = mappable && fenceable;
}

3890 3891 3892 3893 3894 3895
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3896
{
3897
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3898
	struct i915_vma *vma;
3899
	unsigned bound;
3900 3901
	int ret;

3902 3903 3904
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3905
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3906
		return -EINVAL;
3907

3908 3909 3910
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3911 3912 3913 3914 3915 3916
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3917
	if (vma) {
B
Ben Widawsky 已提交
3918 3919 3920
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3921
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3922
			WARN(vma->pin_count,
3923
			     "bo is already pinned in %s with incorrect alignment:"
3924
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3925
			     " obj->map_and_fenceable=%d\n",
3926
			     ggtt_view ? "ggtt" : "ppgtt",
3927 3928
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3929
			     alignment,
3930
			     !!(flags & PIN_MAPPABLE),
3931
			     obj->map_and_fenceable);
3932
			ret = i915_vma_unbind(vma);
3933 3934
			if (ret)
				return ret;
3935 3936

			vma = NULL;
3937 3938 3939
		}
	}

3940
	bound = vma ? vma->bound : 0;
3941
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3942 3943
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3944 3945
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3946 3947
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3948 3949 3950
		if (ret)
			return ret;
	}
3951

3952 3953
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3954
		__i915_vma_set_map_and_fenceable(vma);
3955 3956
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3957

3958
	vma->pin_count++;
3959 3960 3961
	return 0;
}

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3979 3980 3981 3982
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3983
	BUG_ON(!view);
3984

3985
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3986
				      alignment, flags | PIN_GLOBAL);
3987 3988
}

3989
void
3990 3991
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3992
{
3993
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3994

3995
	WARN_ON(vma->pin_count == 0);
3996
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3997

3998
	--vma->pin_count;
3999 4000 4001 4002
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4003
		    struct drm_file *file)
4004 4005
{
	struct drm_i915_gem_busy *args = data;
4006
	struct drm_i915_gem_object *obj;
4007 4008
	int ret;

4009
	ret = i915_mutex_lock_interruptible(dev);
4010
	if (ret)
4011
		return ret;
4012

4013
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4014
	if (&obj->base == NULL) {
4015 4016
		ret = -ENOENT;
		goto unlock;
4017
	}
4018

4019 4020 4021 4022
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4023
	 */
4024
	ret = i915_gem_object_flush_active(obj);
4025 4026
	if (ret)
		goto unref;
4027

4028 4029 4030 4031
	args->busy = 0;
	if (obj->active) {
		int i;

4032
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4033 4034 4035 4036
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4037
				args->busy |= 1 << (16 + req->engine->exec_id);
4038 4039
		}
		if (obj->last_write_req)
4040
			args->busy |= obj->last_write_req->engine->exec_id;
4041
	}
4042

4043
unref:
4044
	drm_gem_object_unreference(&obj->base);
4045
unlock:
4046
	mutex_unlock(&dev->struct_mutex);
4047
	return ret;
4048 4049 4050 4051 4052 4053
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4054
	return i915_gem_ring_throttle(dev, file_priv);
4055 4056
}

4057 4058 4059 4060
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4061
	struct drm_i915_private *dev_priv = to_i915(dev);
4062
	struct drm_i915_gem_madvise *args = data;
4063
	struct drm_i915_gem_object *obj;
4064
	int ret;
4065 4066 4067 4068 4069 4070 4071 4072 4073

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4074 4075 4076 4077
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4078
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4079
	if (&obj->base == NULL) {
4080 4081
		ret = -ENOENT;
		goto unlock;
4082 4083
	}

B
Ben Widawsky 已提交
4084
	if (i915_gem_obj_is_pinned(obj)) {
4085 4086
		ret = -EINVAL;
		goto out;
4087 4088
	}

4089 4090 4091 4092 4093 4094 4095 4096 4097
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4098 4099
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4100

C
Chris Wilson 已提交
4101
	/* if the object is no longer attached, discard its backing storage */
4102
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4103 4104
		i915_gem_object_truncate(obj);

4105
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4106

4107
out:
4108
	drm_gem_object_unreference(&obj->base);
4109
unlock:
4110
	mutex_unlock(&dev->struct_mutex);
4111
	return ret;
4112 4113
}

4114 4115
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4116
{
4117 4118
	int i;

4119
	INIT_LIST_HEAD(&obj->global_list);
4120
	for (i = 0; i < I915_NUM_ENGINES; i++)
4121
		INIT_LIST_HEAD(&obj->engine_list[i]);
4122
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4123
	INIT_LIST_HEAD(&obj->vma_list);
4124
	INIT_LIST_HEAD(&obj->batch_pool_link);
4125

4126 4127
	obj->ops = ops;

4128 4129 4130
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4131
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4132 4133
}

4134
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4135
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4136 4137 4138 4139
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4140
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4141
						  size_t size)
4142
{
4143
	struct drm_i915_gem_object *obj;
4144
	struct address_space *mapping;
D
Daniel Vetter 已提交
4145
	gfp_t mask;
4146
	int ret;
4147

4148
	obj = i915_gem_object_alloc(dev);
4149
	if (obj == NULL)
4150
		return ERR_PTR(-ENOMEM);
4151

4152 4153 4154
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4155

4156 4157 4158 4159 4160 4161 4162
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4163
	mapping = file_inode(obj->base.filp)->i_mapping;
4164
	mapping_set_gfp_mask(mapping, mask);
4165

4166
	i915_gem_object_init(obj, &i915_gem_object_ops);
4167

4168 4169
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4170

4171 4172
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4188 4189
	trace_i915_gem_object_create(obj);

4190
	return obj;
4191 4192 4193 4194 4195

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4196 4197
}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4222
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4223
{
4224
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4225
	struct drm_device *dev = obj->base.dev;
4226
	struct drm_i915_private *dev_priv = to_i915(dev);
4227
	struct i915_vma *vma, *next;
4228

4229 4230
	intel_runtime_pm_get(dev_priv);

4231 4232
	trace_i915_gem_object_destroy(obj);

4233
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4234 4235 4236 4237
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4238 4239
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4240

4241 4242
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4243

4244
			WARN_ON(i915_vma_unbind(vma));
4245

4246 4247
			dev_priv->mm.interruptible = was_interruptible;
		}
4248 4249
	}

B
Ben Widawsky 已提交
4250 4251 4252 4253 4254
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4255 4256
	WARN_ON(obj->frontbuffer_bits);

4257 4258 4259 4260 4261
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4262 4263
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4264
	if (discard_backing_storage(obj))
4265
		obj->madv = I915_MADV_DONTNEED;
4266
	i915_gem_object_put_pages(obj);
4267

4268 4269
	BUG_ON(obj->pages);

4270 4271
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4272

4273 4274 4275
	if (obj->ops->release)
		obj->ops->release(obj);

4276 4277
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4278

4279
	kfree(obj->bit_17);
4280
	i915_gem_object_free(obj);
4281 4282

	intel_runtime_pm_put(dev_priv);
4283 4284
}

4285 4286
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4287 4288
{
	struct i915_vma *vma;
4289
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4290 4291
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4292
			return vma;
4293 4294 4295 4296 4297 4298 4299 4300
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4301

4302
	GEM_BUG_ON(!view);
4303

4304
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4305
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4306
			return vma;
4307 4308 4309
	return NULL;
}

B
Ben Widawsky 已提交
4310 4311 4312
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4313 4314 4315 4316 4317

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4318 4319
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4320

4321
	list_del(&vma->obj_link);
4322

4323
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4324 4325
}

4326
static void
4327
i915_gem_stop_engines(struct drm_device *dev)
4328
{
4329
	struct drm_i915_private *dev_priv = to_i915(dev);
4330
	struct intel_engine_cs *engine;
4331

4332
	for_each_engine(engine, dev_priv)
4333
		dev_priv->gt.stop_engine(engine);
4334 4335
}

4336
int
4337
i915_gem_suspend(struct drm_device *dev)
4338
{
4339
	struct drm_i915_private *dev_priv = to_i915(dev);
4340
	int ret = 0;
4341

4342 4343
	intel_suspend_gt_powersave(dev_priv);

4344
	mutex_lock(&dev->struct_mutex);
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4358
	ret = i915_gem_wait_for_idle(dev_priv);
4359
	if (ret)
4360
		goto err;
4361

4362
	i915_gem_retire_requests(dev_priv);
4363

4364 4365 4366 4367 4368
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4369
	i915_gem_stop_engines(dev);
4370
	i915_gem_context_lost(dev_priv);
4371 4372
	mutex_unlock(&dev->struct_mutex);

4373
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4374 4375
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4376

4377 4378 4379
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4380
	WARN_ON(dev_priv->gt.awake);
4381

4382
	return 0;
4383 4384 4385 4386

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4387 4388
}

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4406 4407
void i915_gem_init_swizzling(struct drm_device *dev)
{
4408
	struct drm_i915_private *dev_priv = to_i915(dev);
4409

4410
	if (INTEL_INFO(dev)->gen < 5 ||
4411 4412 4413 4414 4415 4416
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4417 4418 4419
	if (IS_GEN5(dev))
		return;

4420 4421
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4422
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4423
	else if (IS_GEN7(dev))
4424
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4425 4426
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4427 4428
	else
		BUG();
4429
}
D
Daniel Vetter 已提交
4430

4431 4432
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4433
	struct drm_i915_private *dev_priv = to_i915(dev);
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4458 4459 4460
int
i915_gem_init_hw(struct drm_device *dev)
{
4461
	struct drm_i915_private *dev_priv = to_i915(dev);
4462
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4463
	int ret;
4464

4465 4466 4467
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4468
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4469
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4470

4471 4472 4473
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4474

4475
	if (HAS_PCH_NOP(dev)) {
4476 4477 4478 4479 4480 4481 4482 4483 4484
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4485 4486
	}

4487 4488
	i915_gem_init_swizzling(dev);

4489 4490 4491 4492 4493 4494 4495 4496
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4497
	BUG_ON(!dev_priv->kernel_context);
4498

4499 4500 4501 4502 4503 4504 4505
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4506
	for_each_engine(engine, dev_priv) {
4507
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4508
		if (ret)
4509
			goto out;
D
Daniel Vetter 已提交
4510
	}
4511

4512 4513
	intel_mocs_init_l3cc_table(dev);

4514
	/* We can't enable contexts until all firmware is loaded */
4515 4516 4517
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4518

4519 4520
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4521
	return ret;
4522 4523
}

4524 4525
int i915_gem_init(struct drm_device *dev)
{
4526
	struct drm_i915_private *dev_priv = to_i915(dev);
4527 4528 4529
	int ret;

	mutex_lock(&dev->struct_mutex);
4530

4531
	if (!i915.enable_execlists) {
4532
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4533 4534
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4535
	} else {
4536
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4537 4538
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4539 4540
	}

4541 4542 4543 4544 4545 4546 4547 4548
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4549
	i915_gem_init_userptr(dev_priv);
4550
	i915_gem_init_ggtt(dev);
4551

4552
	ret = i915_gem_context_init(dev);
4553 4554
	if (ret)
		goto out_unlock;
4555

4556
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4557
	if (ret)
4558
		goto out_unlock;
4559

4560
	ret = i915_gem_init_hw(dev);
4561 4562 4563 4564 4565 4566
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4567
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4568
		ret = 0;
4569
	}
4570 4571

out_unlock:
4572
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4573
	mutex_unlock(&dev->struct_mutex);
4574

4575
	return ret;
4576 4577
}

4578
void
4579
i915_gem_cleanup_engines(struct drm_device *dev)
4580
{
4581
	struct drm_i915_private *dev_priv = to_i915(dev);
4582
	struct intel_engine_cs *engine;
4583

4584
	for_each_engine(engine, dev_priv)
4585
		dev_priv->gt.cleanup_engine(engine);
4586 4587
}

4588
static void
4589
init_engine_lists(struct intel_engine_cs *engine)
4590
{
4591 4592
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4593 4594
}

4595 4596 4597
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4598
	struct drm_device *dev = &dev_priv->drm;
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4609
	if (intel_vgpu_active(dev_priv))
4610 4611 4612 4613 4614 4615 4616 4617 4618
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4619
void
4620
i915_gem_load_init(struct drm_device *dev)
4621
{
4622
	struct drm_i915_private *dev_priv = to_i915(dev);
4623 4624
	int i;

4625
	dev_priv->objects =
4626 4627 4628 4629
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4630 4631 4632 4633 4634
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4635 4636 4637 4638 4639
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4640

B
Ben Widawsky 已提交
4641
	INIT_LIST_HEAD(&dev_priv->vm_list);
4642
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4643 4644
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4645
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4646 4647
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4648
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4649
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4650
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4651
			  i915_gem_retire_work_handler);
4652
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4653
			  i915_gem_idle_work_handler);
4654
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4655
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4656

4657 4658
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4659
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4660

4661
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4662

4663 4664
	dev_priv->mm.interruptible = true;

4665
	mutex_init(&dev_priv->fb_tracking.lock);
4666
}
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4705
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4706
{
4707
	struct drm_i915_file_private *file_priv = file->driver_priv;
4708 4709 4710 4711 4712

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4713
	spin_lock(&file_priv->mm.lock);
4714 4715 4716 4717 4718 4719 4720 4721 4722
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4723
	spin_unlock(&file_priv->mm.lock);
4724

4725
	if (!list_empty(&file_priv->rps.link)) {
4726
		spin_lock(&to_i915(dev)->rps.client_lock);
4727
		list_del(&file_priv->rps.link);
4728
		spin_unlock(&to_i915(dev)->rps.client_lock);
4729
	}
4730 4731 4732 4733 4734
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4735
	int ret;
4736 4737 4738 4739 4740 4741 4742 4743

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4744
	file_priv->dev_priv = to_i915(dev);
4745
	file_priv->file = file;
4746
	INIT_LIST_HEAD(&file_priv->rps.link);
4747 4748 4749 4750

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4751 4752
	file_priv->bsd_ring = -1;

4753 4754 4755
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4756

4757
	return ret;
4758 4759
}

4760 4761
/**
 * i915_gem_track_fb - update frontbuffer tracking
4762 4763 4764
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4765 4766 4767 4768
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4786
/* All the new VM stuff */
4787 4788
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4789
{
4790
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4791 4792
	struct i915_vma *vma;

4793
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4794

4795
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4796
		if (vma->is_ggtt &&
4797 4798 4799
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4800 4801
			return vma->node.start;
	}
4802

4803 4804
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4805 4806 4807
	return -1;
}

4808 4809
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4810 4811 4812
{
	struct i915_vma *vma;

4813
	list_for_each_entry(vma, &o->vma_list, obj_link)
4814
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4815 4816
			return vma->node.start;

4817
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4818 4819 4820 4821 4822 4823 4824 4825
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4826
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4827
		if (vma->is_ggtt &&
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4838
				  const struct i915_ggtt_view *view)
4839 4840 4841
{
	struct i915_vma *vma;

4842
	list_for_each_entry(vma, &o->vma_list, obj_link)
4843
		if (vma->is_ggtt &&
4844
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4845
		    drm_mm_node_allocated(&vma->node))
4846 4847 4848 4849 4850 4851 4852
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
4853
	struct i915_vma *vma;
4854

4855
	list_for_each_entry(vma, &o->vma_list, obj_link)
4856
		if (drm_mm_node_allocated(&vma->node))
4857 4858 4859 4860 4861
			return true;

	return false;
}

4862
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4863 4864 4865
{
	struct i915_vma *vma;

4866
	GEM_BUG_ON(list_empty(&o->vma_list));
4867

4868
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4869
		if (vma->is_ggtt &&
4870
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4871
			return vma->node.size;
4872
	}
4873

4874 4875 4876
	return 0;
}

4877
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4878 4879
{
	struct i915_vma *vma;
4880
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4881 4882
		if (vma->pin_count > 0)
			return true;
4883

4884
	return false;
4885
}
4886

4887 4888 4889 4890 4891 4892 4893
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4894
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4895 4896 4897 4898 4899 4900 4901
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4912
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4913
	if (IS_ERR(obj))
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4927
	obj->dirty = 1;		/* Backing store is now out of date */
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}