i915_gem.c 126.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46
static void
47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
49
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int engine);
50

51 52 53 54 55 56
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59 60 61
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

62 63 64 65 66 67
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96 97 98
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       10*HZ);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

144
	WARN_ON(i915_verify_lists(dev));
145 146
	return 0;
}
147

148 149
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150
			    struct drm_file *file)
151
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
154
	struct drm_i915_gem_get_aperture *args = data;
155
	struct i915_vma *vma;
156
	size_t pinned;
157

158
	pinned = 0;
159
	mutex_lock(&dev->struct_mutex);
160
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161 162
		if (vma->pin_count)
			pinned += vma->node.size;
163
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164 165
		if (vma->pin_count)
			pinned += vma->node.size;
166
	mutex_unlock(&dev->struct_mutex);
167

168
	args->aper_size = ggtt->base.total;
169
	args->aper_available_size = args->aper_size - pinned;
170

171 172 173
	return 0;
}

174 175
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176
{
177 178 179 180 181
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

199
		put_page(page);
200 201 202
		vaddr += PAGE_SIZE;
	}

203
	i915_gem_chipset_flush(to_i915(obj->base.dev));
204 205 206 207 208 209 210 211 212 213 214 215 216

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
217

218 219 220 221 222 223 224 225 226 227 228 229 230
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
231

232
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
233
	if (WARN_ON(ret)) {
234 235 236 237 238 239 240 241 242 243
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
244
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
267
		obj->dirty = 0;
268 269
	}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

309 310 311 312 313
static int
drop_pages(struct drm_i915_gem_object *obj)
{
	int ret;

314
	i915_gem_object_get(obj);
315 316 317
	ret = i915_gem_object_unbind(obj);
	if (ret == 0)
		ret = i915_gem_object_put_pages(obj);
318
	i915_gem_object_put(obj);
319 320

	return ret;
321 322 323 324 325 326 327
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
328
	int ret;
329 330 331 332 333 334 335 336 337 338 339 340 341 342

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

343 344 345 346
	ret = drop_pages(obj);
	if (ret)
		return ret;

347 348 349 350 351 352
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
353 354 355
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
356 357 358 359 360 361 362 363 364
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
365
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
366
	int ret = 0;
367 368 369 370 371 372 373

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
374

375
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
376 377 378 379 380 381 382 383 384 385
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
386 387 388 389
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
390 391
	}

392
	drm_clflush_virt_range(vaddr, args->size);
393
	i915_gem_chipset_flush(to_i915(dev));
394 395

out:
396
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
397
	return ret;
398 399
}

400 401
void *i915_gem_object_alloc(struct drm_device *dev)
{
402
	struct drm_i915_private *dev_priv = to_i915(dev);
403
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
404 405 406 407
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
408
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
409
	kmem_cache_free(dev_priv->objects, obj);
410 411
}

412 413 414 415 416
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
417
{
418
	struct drm_i915_gem_object *obj;
419 420
	int ret;
	u32 handle;
421

422
	size = roundup(size, PAGE_SIZE);
423 424
	if (size == 0)
		return -EINVAL;
425 426

	/* Allocate the new object */
427
	obj = i915_gem_object_create(dev, size);
428 429
	if (IS_ERR(obj))
		return PTR_ERR(obj);
430

431
	ret = drm_gem_handle_create(file, &obj->base, &handle);
432
	/* drop reference from allocate - handle holds it now */
433
	i915_gem_object_put_unlocked(obj);
434 435
	if (ret)
		return ret;
436

437
	*handle_p = handle;
438 439 440
	return 0;
}

441 442 443 444 445 446
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
447
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
448 449
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
450
			       args->size, &args->handle);
451 452 453 454
}

/**
 * Creates a new mm object and returns a handle to it.
455 456 457
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
458 459 460 461 462 463
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
464

465
	return i915_gem_create(file, dev,
466
			       args->size, &args->handle);
467 468
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

495
static inline int
496 497
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

533
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
534 535
		return -EINVAL;

536 537 538 539
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

558 559 560
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
561
static int
562 563 564 565 566 567 568
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

569
	if (unlikely(page_do_bit17_swizzling))
570 571 572 573 574 575 576 577 578 579 580
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

581
	return ret ? -EFAULT : 0;
582 583
}

584 585 586 587
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
588
	if (unlikely(swizzled)) {
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

606 607 608 609 610 611 612 613 614 615 616 617
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
618 619 620
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
621 622 623 624 625 626 627 628 629 630 631

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

632
	return ret ? - EFAULT : 0;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
662
	struct drm_i915_private *dev_priv = to_i915(dev);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

771
static int
772 773 774 775
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
776
{
777
	char __user *user_data;
778
	ssize_t remain;
779
	loff_t offset;
780
	int shmem_page_offset, page_length, ret = 0;
781
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
782
	int prefaulted = 0;
783
	int needs_clflush = 0;
784
	struct sg_page_iter sg_iter;
785

786
	if (!i915_gem_object_has_struct_page(obj))
787 788
		return -ENODEV;

789
	user_data = u64_to_user_ptr(args->data_ptr);
790 791
	remain = args->size;

792
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
793

794
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
795 796 797
	if (ret)
		return ret;

798
	offset = args->offset;
799

800 801
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
802
		struct page *page = sg_page_iter_page(&sg_iter);
803 804 805 806

		if (remain <= 0)
			break;

807 808 809 810 811
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
812
		shmem_page_offset = offset_in_page(offset);
813 814 815 816
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

817 818 819
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

820 821 822 823 824
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
825 826 827

		mutex_unlock(&dev->struct_mutex);

828
		if (likely(!i915.prefault_disable) && !prefaulted) {
829
			ret = fault_in_multipages_writeable(user_data, remain);
830 831 832 833 834 835 836
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
837

838 839 840
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
841

842
		mutex_lock(&dev->struct_mutex);
843 844

		if (ret)
845 846
			goto out;

847
next_page:
848
		remain -= page_length;
849
		user_data += page_length;
850 851 852
		offset += page_length;
	}

853
out:
854 855
	i915_gem_object_unpin_pages(obj);

856 857 858
	return ret;
}

859 860
/**
 * Reads data from the object referenced by handle.
861 862 863
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
864 865 866 867 868
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
869
		     struct drm_file *file)
870 871
{
	struct drm_i915_gem_pread *args = data;
872
	struct drm_i915_gem_object *obj;
873
	int ret = 0;
874

875 876 877 878
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
879
		       u64_to_user_ptr(args->data_ptr),
880 881 882
		       args->size))
		return -EFAULT;

883
	ret = i915_mutex_lock_interruptible(dev);
884
	if (ret)
885
		return ret;
886

887 888
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
889 890
		ret = -ENOENT;
		goto unlock;
891
	}
892

893
	/* Bounds check source.  */
894 895
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
896
		ret = -EINVAL;
897
		goto out;
C
Chris Wilson 已提交
898 899
	}

C
Chris Wilson 已提交
900 901
	trace_i915_gem_object_pread(obj, args->offset, args->size);

902
	ret = i915_gem_shmem_pread(dev, obj, args, file);
903

904 905 906 907 908
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

909
out:
910
	i915_gem_object_put(obj);
911
unlock:
912
	mutex_unlock(&dev->struct_mutex);
913
	return ret;
914 915
}

916 917
/* This is the fast write path which cannot handle
 * page faults in the source data
918
 */
919 920 921 922 923 924

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
925
{
926 927
	void __iomem *vaddr_atomic;
	void *vaddr;
928
	unsigned long unwritten;
929

P
Peter Zijlstra 已提交
930
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
931 932 933
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
934
						      user_data, length);
P
Peter Zijlstra 已提交
935
	io_mapping_unmap_atomic(vaddr_atomic);
936
	return unwritten;
937 938
}

939 940 941
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
942
 * @i915: i915 device private data
943 944 945
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
946
 */
947
static int
948
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
949
			 struct drm_i915_gem_object *obj,
950
			 struct drm_i915_gem_pwrite *args,
951
			 struct drm_file *file)
952
{
953
	struct i915_ggtt *ggtt = &i915->ggtt;
954
	struct drm_device *dev = obj->base.dev;
955 956
	struct drm_mm_node node;
	uint64_t remain, offset;
957
	char __user *user_data;
958
	int ret;
959 960 961 962
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
963

964
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
980 981 982
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
983
	}
D
Daniel Vetter 已提交
984 985 986 987 988

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

989
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
990
	obj->dirty = true;
991

992 993 994 995
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
996 997
		/* Operation in this page
		 *
998 999 1000
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1001
		 */
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1015
		/* If we get a fault while copying data, then (presumably) our
1016 1017
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1018 1019
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1020
		 */
1021
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1022
				    page_offset, user_data, page_length)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1035
		}
1036

1037 1038 1039
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1040 1041
	}

1042
out_flush:
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1056
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1057
out_unpin:
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1068
out:
1069
	return ret;
1070 1071
}

1072 1073 1074 1075
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1076
static int
1077 1078 1079 1080 1081
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1082
{
1083
	char *vaddr;
1084
	int ret;
1085

1086
	if (unlikely(page_do_bit17_swizzling))
1087
		return -EINVAL;
1088

1089 1090 1091 1092
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1093 1094
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1095 1096 1097 1098
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1099

1100
	return ret ? -EFAULT : 0;
1101 1102
}

1103 1104
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1105
static int
1106 1107 1108 1109 1110
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1111
{
1112 1113
	char *vaddr;
	int ret;
1114

1115
	vaddr = kmap(page);
1116
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1117 1118 1119
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1120 1121
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1122 1123
						user_data,
						page_length);
1124 1125 1126 1127 1128
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1129 1130 1131
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1132
	kunmap(page);
1133

1134
	return ret ? -EFAULT : 0;
1135 1136 1137
}

static int
1138 1139 1140 1141
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1142 1143
{
	ssize_t remain;
1144 1145
	loff_t offset;
	char __user *user_data;
1146
	int shmem_page_offset, page_length, ret = 0;
1147
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1148
	int hit_slowpath = 0;
1149 1150
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1151
	struct sg_page_iter sg_iter;
1152

1153
	user_data = u64_to_user_ptr(args->data_ptr);
1154 1155
	remain = args->size;

1156
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1157

1158 1159 1160 1161
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1162 1163 1164 1165 1166
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1167
		needs_clflush_after = cpu_write_needs_clflush(obj);
1168
	}
1169 1170 1171 1172 1173
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1174

1175 1176 1177 1178
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1179
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1180

1181 1182
	i915_gem_object_pin_pages(obj);

1183
	offset = args->offset;
1184
	obj->dirty = 1;
1185

1186 1187
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1188
		struct page *page = sg_page_iter_page(&sg_iter);
1189
		int partial_cacheline_write;
1190

1191 1192 1193
		if (remain <= 0)
			break;

1194 1195 1196 1197 1198
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1199
		shmem_page_offset = offset_in_page(offset);
1200 1201 1202 1203 1204

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1205 1206 1207 1208 1209 1210 1211
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1212 1213 1214
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1215 1216 1217 1218 1219 1220
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1221 1222 1223

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1224 1225 1226 1227
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1228

1229
		mutex_lock(&dev->struct_mutex);
1230 1231

		if (ret)
1232 1233
			goto out;

1234
next_page:
1235
		remain -= page_length;
1236
		user_data += page_length;
1237
		offset += page_length;
1238 1239
	}

1240
out:
1241 1242
	i915_gem_object_unpin_pages(obj);

1243
	if (hit_slowpath) {
1244 1245 1246 1247 1248 1249 1250
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1251
			if (i915_gem_clflush_object(obj, obj->pin_display))
1252
				needs_clflush_after = true;
1253
		}
1254
	}
1255

1256
	if (needs_clflush_after)
1257
		i915_gem_chipset_flush(to_i915(dev));
1258 1259
	else
		obj->cache_dirty = true;
1260

1261
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262
	return ret;
1263 1264 1265 1266
}

/**
 * Writes data to the object referenced by handle.
1267 1268 1269
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1270 1271 1272 1273 1274
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1275
		      struct drm_file *file)
1276
{
1277
	struct drm_i915_private *dev_priv = to_i915(dev);
1278
	struct drm_i915_gem_pwrite *args = data;
1279
	struct drm_i915_gem_object *obj;
1280 1281 1282 1283 1284 1285
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1286
		       u64_to_user_ptr(args->data_ptr),
1287 1288 1289
		       args->size))
		return -EFAULT;

1290
	if (likely(!i915.prefault_disable)) {
1291
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1292 1293 1294 1295
						   args->size);
		if (ret)
			return -EFAULT;
	}
1296

1297 1298
	intel_runtime_pm_get(dev_priv);

1299
	ret = i915_mutex_lock_interruptible(dev);
1300
	if (ret)
1301
		goto put_rpm;
1302

1303 1304
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1305 1306
		ret = -ENOENT;
		goto unlock;
1307
	}
1308

1309
	/* Bounds check destination. */
1310 1311
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1312
		ret = -EINVAL;
1313
		goto out;
C
Chris Wilson 已提交
1314 1315
	}

C
Chris Wilson 已提交
1316 1317
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1318
	ret = -EFAULT;
1319 1320 1321 1322 1323 1324
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1325 1326
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1327
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1328 1329 1330
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1331
	}
1332

1333
	if (ret == -EFAULT || ret == -ENOSPC) {
1334 1335
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1336
		else if (i915_gem_object_has_struct_page(obj))
1337
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1338 1339
		else
			ret = -ENODEV;
1340
	}
1341

1342
out:
1343
	i915_gem_object_put(obj);
1344
unlock:
1345
	mutex_unlock(&dev->struct_mutex);
1346 1347 1348
put_rpm:
	intel_runtime_pm_put(dev_priv);

1349 1350 1351
	return ret;
}

1352 1353 1354
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1355 1356
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1357
 */
1358
int
1359 1360 1361
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1362
	struct reservation_object *resv;
1363
	int ret, i;
1364

1365 1366 1367 1368 1369
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1370

1371
			i = obj->last_write_req->engine->id;
1372 1373 1374 1375 1376 1377
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1378
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1379 1380 1381 1382 1383 1384 1385 1386 1387
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1388
		GEM_BUG_ON(obj->active);
1389 1390
	}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1401 1402 1403 1404 1405 1406 1407
	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1408
	int idx = req->engine->id;
1409

1410 1411
	if (obj->last_read_req[idx] == req)
		i915_gem_object_retire__read(obj, idx);
1412 1413 1414
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1415
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1416
		i915_gem_request_retire_upto(req);
1417 1418
}

1419 1420 1421 1422 1423
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1424
					    struct intel_rps_client *rps,
1425 1426 1427
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1428
	struct drm_i915_private *dev_priv = to_i915(dev);
1429
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1430
	int ret, i, n = 0;
1431 1432 1433 1434

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1435
	if (!obj->active)
1436 1437
		return 0;

1438 1439 1440 1441 1442 1443 1444
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

1445
		requests[n++] = i915_gem_request_get(req);
1446
	} else {
1447
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1448 1449 1450 1451 1452 1453
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

1454
			requests[n++] = i915_gem_request_get(req);
1455 1456 1457
		}
	}

1458
	mutex_unlock(&dev->struct_mutex);
1459
	ret = 0;
1460
	for (i = 0; ret == 0 && i < n; i++)
1461
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1462 1463
	mutex_lock(&dev->struct_mutex);

1464 1465 1466
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
1467
		i915_gem_request_put(requests[i]);
1468 1469 1470
	}

	return ret;
1471 1472
}

1473 1474 1475 1476 1477 1478
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1479 1480 1481 1482 1483 1484 1485
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1486
/**
1487 1488
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1489 1490 1491
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1492 1493 1494
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1495
			  struct drm_file *file)
1496 1497
{
	struct drm_i915_gem_set_domain *args = data;
1498
	struct drm_i915_gem_object *obj;
1499 1500
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1501 1502
	int ret;

1503
	/* Only handle setting domains to types used by the CPU. */
1504
	if (write_domain & I915_GEM_GPU_DOMAINS)
1505 1506
		return -EINVAL;

1507
	if (read_domains & I915_GEM_GPU_DOMAINS)
1508 1509 1510 1511 1512 1513 1514 1515
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1516
	ret = i915_mutex_lock_interruptible(dev);
1517
	if (ret)
1518
		return ret;
1519

1520 1521
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1522 1523
		ret = -ENOENT;
		goto unlock;
1524
	}
1525

1526 1527 1528 1529
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1530
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1531
							  to_rps_client(file),
1532
							  !write_domain);
1533 1534 1535
	if (ret)
		goto unref;

1536
	if (read_domains & I915_GEM_DOMAIN_GTT)
1537
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1538
	else
1539
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1540

1541
	if (write_domain != 0)
1542
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1543

1544
unref:
1545
	i915_gem_object_put(obj);
1546
unlock:
1547 1548 1549 1550 1551 1552
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1553 1554 1555
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1556 1557 1558
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1559
			 struct drm_file *file)
1560 1561
{
	struct drm_i915_gem_sw_finish *args = data;
1562
	struct drm_i915_gem_object *obj;
1563 1564
	int ret = 0;

1565
	ret = i915_mutex_lock_interruptible(dev);
1566
	if (ret)
1567
		return ret;
1568

1569 1570
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1571 1572
		ret = -ENOENT;
		goto unlock;
1573 1574 1575
	}

	/* Pinned buffers may be scanout, so flush the cache */
1576
	if (obj->pin_display)
1577
		i915_gem_object_flush_cpu_write_domain(obj);
1578

1579
	i915_gem_object_put(obj);
1580
unlock:
1581 1582 1583 1584 1585
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1586 1587 1588 1589 1590
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1591 1592 1593
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1604 1605 1606
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1607
		    struct drm_file *file)
1608 1609
{
	struct drm_i915_gem_mmap *args = data;
1610
	struct drm_i915_gem_object *obj;
1611 1612
	unsigned long addr;

1613 1614 1615
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1616
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1617 1618
		return -ENODEV;

1619 1620
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1621
		return -ENOENT;
1622

1623 1624 1625
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1626
	if (!obj->base.filp) {
1627
		i915_gem_object_put_unlocked(obj);
1628 1629 1630
		return -EINVAL;
	}

1631
	addr = vm_mmap(obj->base.filp, 0, args->size,
1632 1633
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1634 1635 1636 1637
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1638
		if (down_write_killable(&mm->mmap_sem)) {
1639
			i915_gem_object_put_unlocked(obj);
1640 1641
			return -EINTR;
		}
1642 1643 1644 1645 1646 1647 1648
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1649 1650

		/* This may race, but that's ok, it only gets set */
1651
		WRITE_ONCE(obj->has_wc_mmap, true);
1652
	}
1653
	i915_gem_object_put_unlocked(obj);
1654 1655 1656 1657 1658 1659 1660 1661
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1662 1663
/**
 * i915_gem_fault - fault a page into the GTT
1664 1665
 * @vma: VMA in question
 * @vmf: fault info
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1680 1681
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1682 1683
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1684
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1685 1686 1687
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1688
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1689

1690 1691
	intel_runtime_pm_get(dev_priv);

1692 1693 1694 1695
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1696 1697 1698
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1699

C
Chris Wilson 已提交
1700 1701
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1702 1703 1704 1705 1706 1707 1708 1709 1710
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1711 1712
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1713
		ret = -EFAULT;
1714 1715 1716
		goto unlock;
	}

1717
	/* Use a partial view if the object is bigger than the aperture. */
1718
	if (obj->base.size >= ggtt->mappable_end &&
1719
	    obj->tiling_mode == I915_TILING_NONE) {
1720
		static const unsigned int chunk_size = 256; // 1 MiB
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1734 1735
	if (ret)
		goto unlock;
1736

1737 1738 1739
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1740

1741
	ret = i915_gem_object_get_fence(obj);
1742
	if (ret)
1743
		goto unpin;
1744

1745
	/* Finally, remap it using the new GTT offset */
1746
	pfn = ggtt->mappable_base +
1747
		i915_gem_obj_ggtt_offset_view(obj, &view);
1748
	pfn >>= PAGE_SHIFT;
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1759

1760 1761
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1762 1763 1764 1765 1766
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1788
unpin:
1789
	i915_gem_object_ggtt_unpin_view(obj, &view);
1790
unlock:
1791
	mutex_unlock(&dev->struct_mutex);
1792
out:
1793
	switch (ret) {
1794
	case -EIO:
1795 1796 1797 1798 1799 1800 1801
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1802 1803 1804
			ret = VM_FAULT_SIGBUS;
			break;
		}
1805
	case -EAGAIN:
D
Daniel Vetter 已提交
1806 1807 1808 1809
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1810
		 */
1811 1812
	case 0:
	case -ERESTARTSYS:
1813
	case -EINTR:
1814 1815 1816 1817 1818
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1819 1820
		ret = VM_FAULT_NOPAGE;
		break;
1821
	case -ENOMEM:
1822 1823
		ret = VM_FAULT_OOM;
		break;
1824
	case -ENOSPC:
1825
	case -EFAULT:
1826 1827
		ret = VM_FAULT_SIGBUS;
		break;
1828
	default:
1829
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1830 1831
		ret = VM_FAULT_SIGBUS;
		break;
1832
	}
1833 1834 1835

	intel_runtime_pm_put(dev_priv);
	return ret;
1836 1837
}

1838 1839 1840 1841
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1842
 * Preserve the reservation of the mmapping with the DRM core code, but
1843 1844 1845 1846 1847 1848 1849 1850 1851
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1852
void
1853
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1854
{
1855 1856 1857 1858 1859 1860
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1861 1862
	if (!obj->fault_mappable)
		return;
1863

1864 1865
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1876
	obj->fault_mappable = false;
1877 1878
}

1879 1880 1881 1882 1883 1884 1885 1886 1887
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1888
uint32_t
1889
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1890
{
1891
	uint32_t gtt_size;
1892 1893

	if (INTEL_INFO(dev)->gen >= 4 ||
1894 1895
	    tiling_mode == I915_TILING_NONE)
		return size;
1896 1897

	/* Previous chips need a power-of-two fence region when tiling */
1898
	if (IS_GEN3(dev))
1899
		gtt_size = 1024*1024;
1900
	else
1901
		gtt_size = 512*1024;
1902

1903 1904
	while (gtt_size < size)
		gtt_size <<= 1;
1905

1906
	return gtt_size;
1907 1908
}

1909 1910
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1911 1912 1913 1914
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1915 1916
 *
 * Return the required GTT alignment for an object, taking into account
1917
 * potential fence register mapping.
1918
 */
1919 1920 1921
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1922 1923 1924 1925 1926
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1927
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1928
	    tiling_mode == I915_TILING_NONE)
1929 1930
		return 4096;

1931 1932 1933 1934
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1935
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1936 1937
}

1938 1939
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1940
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1941 1942
	int ret;

1943 1944
	dev_priv->mm.shrinker_no_lock_stealing = true;

1945 1946
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1947
		goto out;
1948 1949 1950 1951 1952 1953 1954 1955

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1956 1957 1958 1959 1960
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1961 1962
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1963
		goto out;
1964 1965

	i915_gem_shrink_all(dev_priv);
1966 1967 1968 1969 1970
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1971 1972 1973 1974 1975 1976 1977
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1978
int
1979 1980
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1981
		  uint32_t handle,
1982
		  uint64_t *offset)
1983
{
1984
	struct drm_i915_gem_object *obj;
1985 1986
	int ret;

1987
	ret = i915_mutex_lock_interruptible(dev);
1988
	if (ret)
1989
		return ret;
1990

1991 1992
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1993 1994 1995
		ret = -ENOENT;
		goto unlock;
	}
1996

1997
	if (obj->madv != I915_MADV_WILLNEED) {
1998
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1999
		ret = -EFAULT;
2000
		goto out;
2001 2002
	}

2003 2004 2005
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2006

2007
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2008

2009
out:
2010
	i915_gem_object_put(obj);
2011
unlock:
2012
	mutex_unlock(&dev->struct_mutex);
2013
	return ret;
2014 2015
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2037
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2038 2039
}

D
Daniel Vetter 已提交
2040 2041 2042
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2043
{
2044
	i915_gem_object_free_mmap_offset(obj);
2045

2046 2047
	if (obj->base.filp == NULL)
		return;
2048

D
Daniel Vetter 已提交
2049 2050 2051 2052 2053
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2054
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2055 2056
	obj->madv = __I915_MADV_PURGED;
}
2057

2058 2059 2060
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2061
{
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2076 2077
}

2078
static void
2079
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2080
{
2081 2082
	struct sgt_iter sgt_iter;
	struct page *page;
2083
	int ret;
2084

2085
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2086

C
Chris Wilson 已提交
2087
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2088
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2089 2090 2091
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2092
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2093 2094 2095
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2096 2097
	i915_gem_gtt_finish_object(obj);

2098
	if (i915_gem_object_needs_bit17_swizzle(obj))
2099 2100
		i915_gem_object_save_bit_17_swizzle(obj);

2101 2102
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2103

2104
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2105
		if (obj->dirty)
2106
			set_page_dirty(page);
2107

2108
		if (obj->madv == I915_MADV_WILLNEED)
2109
			mark_page_accessed(page);
2110

2111
		put_page(page);
2112
	}
2113
	obj->dirty = 0;
2114

2115 2116
	sg_free_table(obj->pages);
	kfree(obj->pages);
2117
}
C
Chris Wilson 已提交
2118

2119
int
2120 2121 2122 2123
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2124
	if (obj->pages == NULL)
2125 2126
		return 0;

2127 2128 2129
	if (obj->pages_pin_count)
		return -EBUSY;

2130
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2131

2132 2133 2134
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2135
	list_del(&obj->global_list);
2136

2137
	if (obj->mapping) {
2138 2139 2140 2141
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2142 2143 2144
		obj->mapping = NULL;
	}

2145
	ops->put_pages(obj);
2146
	obj->pages = NULL;
2147

2148
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2149 2150 2151 2152

	return 0;
}

2153
static int
C
Chris Wilson 已提交
2154
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2155
{
2156
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2157 2158
	int page_count, i;
	struct address_space *mapping;
2159 2160
	struct sg_table *st;
	struct scatterlist *sg;
2161
	struct sgt_iter sgt_iter;
2162
	struct page *page;
2163
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2164
	int ret;
C
Chris Wilson 已提交
2165
	gfp_t gfp;
2166

C
Chris Wilson 已提交
2167 2168 2169 2170 2171 2172 2173
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2174 2175 2176 2177
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2178
	page_count = obj->base.size / PAGE_SIZE;
2179 2180
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2181
		return -ENOMEM;
2182
	}
2183

2184 2185 2186 2187 2188
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2189
	mapping = file_inode(obj->base.filp)->i_mapping;
2190
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2191
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2192 2193 2194
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2195 2196
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2197 2198 2199 2200 2201
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2202 2203 2204 2205 2206 2207 2208 2209
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2210
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2211 2212
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2213
				goto err_pages;
I
Imre Deak 已提交
2214
			}
C
Chris Wilson 已提交
2215
		}
2216 2217 2218 2219 2220 2221 2222 2223
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2224 2225 2226 2227 2228 2229 2230 2231 2232
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2233 2234 2235

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2236
	}
2237 2238 2239 2240
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2241 2242
	obj->pages = st;

I
Imre Deak 已提交
2243 2244 2245 2246
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2247
	if (i915_gem_object_needs_bit17_swizzle(obj))
2248 2249
		i915_gem_object_do_bit_17_swizzle(obj);

2250 2251 2252 2253
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2254 2255 2256
	return 0;

err_pages:
2257
	sg_mark_end(sg);
2258 2259
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2260 2261
	sg_free_table(st);
	kfree(st);
2262 2263 2264 2265 2266 2267 2268 2269 2270

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2271 2272 2273 2274
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2275 2276
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2287
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2288 2289 2290
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2291
	if (obj->pages)
2292 2293
		return 0;

2294
	if (obj->madv != I915_MADV_WILLNEED) {
2295
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2296
		return -EFAULT;
2297 2298
	}

2299 2300
	BUG_ON(obj->pages_pin_count);

2301 2302 2303 2304
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2305
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2306 2307 2308 2309

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2310
	return 0;
2311 2312
}

2313 2314 2315 2316 2317
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2318 2319
	struct sgt_iter sgt_iter;
	struct page *page;
2320 2321
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2322 2323 2324 2325 2326 2327 2328
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2329 2330 2331 2332 2333 2334
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2335

2336 2337
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2338 2339 2340 2341 2342 2343

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2344 2345
	if (pages != stack_pages)
		drm_free_large(pages);
2346 2347 2348 2349 2350

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2363 2364 2365
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2366 2367 2368 2369 2370 2371 2372 2373
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2374
void i915_vma_move_to_active(struct i915_vma *vma,
2375
			     struct drm_i915_gem_request *req)
2376
{
2377
	struct drm_i915_gem_object *obj = vma->obj;
2378
	struct intel_engine_cs *engine;
2379

2380
	engine = i915_gem_request_get_engine(req);
2381 2382

	/* Add a reference if we're newly entering the active list. */
2383
	if (obj->active == 0)
2384
		i915_gem_object_get(obj);
2385
	obj->active |= intel_engine_flag(engine);
2386

2387
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2388
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2389

2390
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2391 2392
}

2393 2394
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2395
{
2396 2397
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2398 2399

	i915_gem_request_assign(&obj->last_write_req, NULL);
2400
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2401 2402
}

2403
static void
2404
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int idx)
2405
{
2406
	struct i915_vma *vma;
2407

2408 2409
	GEM_BUG_ON(obj->last_read_req[idx] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << idx)));
2410

2411 2412
	list_del_init(&obj->engine_list[idx]);
	i915_gem_request_assign(&obj->last_read_req[idx], NULL);
2413

2414
	if (obj->last_write_req && obj->last_write_req->engine->id == idx)
2415 2416
		i915_gem_object_retire__write(obj);

2417
	obj->active &= ~(1 << idx);
2418 2419
	if (obj->active)
		return;
2420

2421 2422 2423 2424 2425 2426 2427
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2428 2429 2430
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2431
	}
2432

2433
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2434
	i915_gem_object_put(obj);
2435 2436
}

2437
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2438
{
2439
	unsigned long elapsed;
2440

2441
	if (ctx->hang_stats.banned)
2442 2443
		return true;

2444
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2445 2446
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2447 2448
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2449 2450 2451 2452 2453
	}

	return false;
}

2454
static void i915_set_reset_status(struct i915_gem_context *ctx,
2455
				  const bool guilty)
2456
{
2457
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2458 2459

	if (guilty) {
2460
		hs->banned = i915_context_is_banned(ctx);
2461 2462 2463 2464
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2465 2466 2467
	}
}

2468
struct drm_i915_gem_request *
2469
i915_gem_find_active_request(struct intel_engine_cs *engine)
2470
{
2471 2472
	struct drm_i915_gem_request *request;

2473 2474 2475 2476 2477 2478 2479 2480
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2481
	list_for_each_entry(request, &engine->request_list, list) {
2482
		if (i915_gem_request_completed(request))
2483
			continue;
2484

2485
		return request;
2486
	}
2487 2488 2489 2490

	return NULL;
}

2491
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2492 2493 2494 2495
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2496
	request = i915_gem_find_active_request(engine);
2497 2498 2499
	if (request == NULL)
		return;

2500
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2501

2502
	i915_set_reset_status(request->ctx, ring_hung);
2503
	list_for_each_entry_continue(request, &engine->request_list, list)
2504
		i915_set_reset_status(request->ctx, false);
2505
}
2506

2507
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2508
{
2509
	struct intel_ring *ring;
2510

2511
	while (!list_empty(&engine->active_list)) {
2512
		struct drm_i915_gem_object *obj;
2513

2514
		obj = list_first_entry(&engine->active_list,
2515
				       struct drm_i915_gem_object,
2516
				       engine_list[engine->id]);
2517

2518
		i915_gem_object_retire__read(obj, engine->id);
2519
	}
2520

2521 2522 2523 2524
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2525
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2526

2527 2528 2529 2530 2531 2532
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2533
	if (i915.enable_execlists) {
2534 2535
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2536

2537
		intel_execlists_cancel_requests(engine);
2538 2539
	}

2540 2541 2542 2543 2544 2545 2546
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2547
	if (!list_empty(&engine->request_list)) {
2548 2549
		struct drm_i915_gem_request *request;

2550 2551 2552
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
					  list);
2553

2554
		i915_gem_request_retire_upto(request);
2555
	}
2556 2557 2558 2559 2560 2561 2562 2563

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2564 2565 2566
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2567
	}
2568

2569
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2570 2571
}

2572
void i915_gem_reset(struct drm_device *dev)
2573
{
2574
	struct drm_i915_private *dev_priv = to_i915(dev);
2575
	struct intel_engine_cs *engine;
2576

2577 2578 2579 2580 2581
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2582
	for_each_engine(engine, dev_priv)
2583
		i915_gem_reset_engine_status(engine);
2584

2585
	for_each_engine(engine, dev_priv)
2586
		i915_gem_reset_engine_cleanup(engine);
2587
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2588

2589 2590
	i915_gem_context_reset(dev);

2591
	i915_gem_restore_fences(dev);
2592 2593

	WARN_ON(i915_verify_lists(dev));
2594 2595 2596 2597
}

/**
 * This function clears the request list as sequence numbers are passed.
2598
 * @engine: engine to retire requests on
2599
 */
2600
void
2601
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2602
{
2603
	WARN_ON(i915_verify_lists(engine->dev));
2604

2605 2606 2607 2608
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2609
	 */
2610
	while (!list_empty(&engine->request_list)) {
2611 2612
		struct drm_i915_gem_request *request;

2613
		request = list_first_entry(&engine->request_list,
2614 2615 2616
					   struct drm_i915_gem_request,
					   list);

2617
		if (!i915_gem_request_completed(request))
2618 2619
			break;

2620
		i915_gem_request_retire_upto(request);
2621
	}
2622

2623 2624 2625 2626
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2627
	while (!list_empty(&engine->active_list)) {
2628 2629
		struct drm_i915_gem_object *obj;

2630 2631
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2632
				       engine_list[engine->id]);
2633

2634
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2635 2636
			break;

2637
		i915_gem_object_retire__read(obj, engine->id);
2638 2639
	}

2640
	WARN_ON(i915_verify_lists(engine->dev));
2641 2642
}

2643
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2644
{
2645
	struct intel_engine_cs *engine;
2646

2647
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2648 2649 2650 2651 2652

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2653

2654
	for_each_engine(engine, dev_priv) {
2655
		i915_gem_retire_requests_ring(engine);
2656 2657
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2658 2659
	}

2660
	if (dev_priv->gt.active_engines == 0)
2661 2662 2663
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2664 2665
}

2666
static void
2667 2668
i915_gem_retire_work_handler(struct work_struct *work)
{
2669
	struct drm_i915_private *dev_priv =
2670
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2671
	struct drm_device *dev = &dev_priv->drm;
2672

2673
	/* Come back later if the device is busy... */
2674
	if (mutex_trylock(&dev->struct_mutex)) {
2675
		i915_gem_retire_requests(dev_priv);
2676
		mutex_unlock(&dev->struct_mutex);
2677
	}
2678 2679 2680 2681 2682

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2683 2684
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2685 2686
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2687
				   round_jiffies_up_relative(HZ));
2688
	}
2689
}
2690

2691 2692 2693 2694
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2695
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2696
	struct drm_device *dev = &dev_priv->drm;
2697
	struct intel_engine_cs *engine;
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2720

2721
	for_each_engine(engine, dev_priv)
2722
		i915_gem_batch_pool_fini(&engine->batch_pool);
2723

2724 2725 2726
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2727

2728 2729 2730 2731
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2732
	stuck_engines = intel_kick_waiters(dev_priv);
2733 2734 2735
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2736

2737 2738 2739 2740 2741
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2742

2743 2744 2745 2746
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2747
	}
2748 2749
}

2750 2751 2752 2753
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
2754
 * @obj: object to flush
2755 2756 2757 2758
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2759
	int i;
2760 2761 2762

	if (!obj->active)
		return 0;
2763

2764
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2765
		struct drm_i915_gem_request *req;
2766

2767 2768 2769 2770
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

2771
		if (i915_gem_request_completed(req))
2772
			i915_gem_object_retire__read(obj, i);
2773 2774 2775 2776 2777
	}

	return 0;
}

2778 2779
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2780 2781 2782
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2807
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2808 2809
	int i, n = 0;
	int ret;
2810

2811 2812 2813
	if (args->flags != 0)
		return -EINVAL;

2814 2815 2816 2817
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2818 2819
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2820 2821 2822 2823
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2824 2825
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2826 2827 2828
	if (ret)
		goto out;

2829
	if (!obj->active)
2830
		goto out;
2831 2832

	/* Do this after OLR check to make sure we make forward progress polling
2833
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2834
	 */
2835
	if (args->timeout_ns == 0) {
2836 2837 2838 2839
		ret = -ETIME;
		goto out;
	}

2840
	i915_gem_object_put(obj);
2841

2842
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2843 2844 2845
		if (obj->last_read_req[i] == NULL)
			continue;

2846
		req[n++] = i915_gem_request_get(obj->last_read_req[i]);
2847 2848
	}

2849 2850
	mutex_unlock(&dev->struct_mutex);

2851 2852
	for (i = 0; i < n; i++) {
		if (ret == 0)
2853
			ret = __i915_wait_request(req[i], true,
2854
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2855
						  to_rps_client(file));
2856
		i915_gem_request_put(req[i]);
2857
	}
2858
	return ret;
2859 2860

out:
2861
	i915_gem_object_put(obj);
2862 2863 2864 2865
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2866 2867
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
2868 2869
		       struct drm_i915_gem_request *to,
		       struct drm_i915_gem_request *from)
2870 2871 2872
{
	int ret;

2873
	if (to->engine == from->engine)
2874 2875
		return 0;

2876
	if (i915_gem_request_completed(from))
2877 2878
		return 0;

2879
	if (!i915.semaphores) {
2880 2881
		ret = __i915_wait_request(from,
					  from->i915->mm.interruptible,
2882
					  NULL,
2883
					  NO_WAITBOOST);
2884 2885 2886
		if (ret)
			return ret;

2887
		i915_gem_object_retire_request(obj, from);
2888
	} else {
2889
		int idx = intel_engine_sync_index(from->engine, to->engine);
2890
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2891 2892
			return 0;

2893
		trace_i915_gem_ring_sync_to(to, from);
2894
		ret = to->engine->semaphore.sync_to(to, from);
2895 2896 2897
		if (ret)
			return ret;

2898
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2899 2900 2901 2902 2903
	}

	return 0;
}

2904 2905 2906 2907
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2908
 * @to: request we are wishing to use
2909 2910
 *
 * This code is meant to abstract object synchronization with the GPU.
2911 2912 2913
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2914 2915 2916 2917 2918 2919 2920
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2921 2922 2923
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2924 2925
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2926
		     struct drm_i915_gem_request *to)
2927
{
2928
	const bool readonly = obj->base.pending_write_domain == 0;
2929
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2930
	int ret, i, n;
2931

2932
	if (!obj->active)
2933 2934
		return 0;

2935 2936 2937 2938 2939
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
2940
		for (i = 0; i < I915_NUM_ENGINES; i++)
2941 2942 2943 2944
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
2945
		ret = __i915_gem_object_sync(obj, to, req[i]);
2946 2947 2948
		if (ret)
			return ret;
	}
2949

2950
	return 0;
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2960 2961 2962
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2985
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2986
{
2987
	struct drm_i915_gem_object *obj = vma->obj;
2988
	int ret;
2989

2990
	if (list_empty(&vma->obj_link))
2991 2992
		return 0;

2993 2994 2995 2996
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2997

B
Ben Widawsky 已提交
2998
	if (vma->pin_count)
2999
		return -EBUSY;
3000

3001 3002
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
3003

3004 3005 3006 3007 3008
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3009

3010
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3011
		i915_gem_object_finish_gtt(obj);
3012

3013 3014 3015 3016
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3017 3018

		__i915_vma_iounmap(vma);
3019
	}
3020

3021
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3022

3023
	vma->vm->unbind_vma(vma);
3024
	vma->bound = 0;
3025

3026
	list_del_init(&vma->vm_link);
3027
	if (vma->is_ggtt) {
3028 3029 3030 3031 3032 3033
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3034
		vma->ggtt_view.pages = NULL;
3035
	}
3036

B
Ben Widawsky 已提交
3037 3038 3039 3040
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3041
	 * no more VMAs exist. */
3042 3043 3044
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3045

3046 3047 3048 3049 3050 3051
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3052
	return 0;
3053 3054
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3065
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3066
{
3067
	struct intel_engine_cs *engine;
3068
	int ret;
3069

3070
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3071

3072
	for_each_engine(engine, dev_priv) {
3073 3074 3075
		if (engine->last_context == NULL)
			continue;

3076
		ret = intel_engine_idle(engine);
3077 3078 3079
		if (ret)
			return ret;
	}
3080

3081
	WARN_ON(i915_verify_lists(dev));
3082
	return 0;
3083 3084
}

3085
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3086 3087
				     unsigned long cache_level)
{
3088
	struct drm_mm_node *gtt_space = &vma->node;
3089 3090
	struct drm_mm_node *other;

3091 3092 3093 3094 3095 3096
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3097
	 */
3098
	if (vma->vm->mm.color_adjust == NULL)
3099 3100
		return true;

3101
	if (!drm_mm_node_allocated(gtt_space))
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3118
/**
3119 3120
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3121 3122 3123 3124 3125
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3126
 */
3127
static struct i915_vma *
3128 3129
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3130
			   const struct i915_ggtt_view *ggtt_view,
3131
			   unsigned alignment,
3132
			   uint64_t flags)
3133
{
3134
	struct drm_device *dev = obj->base.dev;
3135 3136
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3137
	u32 fence_alignment, unfenced_alignment;
3138 3139
	u32 search_flag, alloc_flag;
	u64 start, end;
3140
	u64 size, fence_size;
B
Ben Widawsky 已提交
3141
	struct i915_vma *vma;
3142
	int ret;
3143

3144 3145 3146 3147 3148
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3179

3180 3181 3182
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3183
		end = min_t(u64, end, ggtt->mappable_end);
3184
	if (flags & PIN_ZONE_4G)
3185
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3186

3187
	if (alignment == 0)
3188
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3189
						unfenced_alignment;
3190
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3191 3192 3193
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3194
		return ERR_PTR(-EINVAL);
3195 3196
	}

3197 3198 3199
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3200
	 */
3201
	if (size > end) {
3202
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3203 3204
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3205
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3206
			  end);
3207
		return ERR_PTR(-E2BIG);
3208 3209
	}

3210
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3211
	if (ret)
3212
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3213

3214 3215
	i915_gem_object_pin_pages(obj);

3216 3217 3218
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3219
	if (IS_ERR(vma))
3220
		goto err_unpin;
B
Ben Widawsky 已提交
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3240
	} else {
3241 3242 3243 3244 3245 3246 3247
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3248

3249
search_free:
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3263

3264 3265
			goto err_free_vma;
		}
3266
	}
3267
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3268
		ret = -EINVAL;
3269
		goto err_remove_node;
3270 3271
	}

3272
	trace_i915_vma_bind(vma, flags);
3273
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3274
	if (ret)
I
Imre Deak 已提交
3275
		goto err_remove_node;
3276

3277
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3278
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3279
	obj->bind_count++;
3280

3281
	return vma;
B
Ben Widawsky 已提交
3282

3283
err_remove_node:
3284
	drm_mm_remove_node(&vma->node);
3285
err_free_vma:
B
Ben Widawsky 已提交
3286
	i915_gem_vma_destroy(vma);
3287
	vma = ERR_PTR(ret);
3288
err_unpin:
B
Ben Widawsky 已提交
3289
	i915_gem_object_unpin_pages(obj);
3290
	return vma;
3291 3292
}

3293
bool
3294 3295
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3296 3297 3298 3299 3300
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3301
	if (obj->pages == NULL)
3302
		return false;
3303

3304 3305 3306 3307
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3308
	if (obj->stolen || obj->phys_handle)
3309
		return false;
3310

3311 3312 3313 3314 3315 3316 3317 3318
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3319 3320
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3321
		return false;
3322
	}
3323

C
Chris Wilson 已提交
3324
	trace_i915_gem_object_clflush(obj);
3325
	drm_clflush_sg(obj->pages);
3326
	obj->cache_dirty = false;
3327 3328

	return true;
3329 3330 3331 3332
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3333
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3334
{
C
Chris Wilson 已提交
3335 3336
	uint32_t old_write_domain;

3337
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3338 3339
		return;

3340
	/* No actual flushing is required for the GTT write domain.  Writes
3341 3342
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3343 3344 3345 3346
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3347
	 */
3348 3349
	wmb();

3350 3351
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3352

3353
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3354

C
Chris Wilson 已提交
3355
	trace_i915_gem_object_change_domain(obj,
3356
					    obj->base.read_domains,
C
Chris Wilson 已提交
3357
					    old_write_domain);
3358 3359 3360 3361
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3362
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3363
{
C
Chris Wilson 已提交
3364
	uint32_t old_write_domain;
3365

3366
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3367 3368
		return;

3369
	if (i915_gem_clflush_object(obj, obj->pin_display))
3370
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3371

3372 3373
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3374

3375
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3376

C
Chris Wilson 已提交
3377
	trace_i915_gem_object_change_domain(obj,
3378
					    obj->base.read_domains,
C
Chris Wilson 已提交
3379
					    old_write_domain);
3380 3381
}

3382 3383
/**
 * Moves a single object to the GTT read, and possibly write domain.
3384 3385
 * @obj: object to act on
 * @write: ask for write access or read only
3386 3387 3388 3389
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3390
int
3391
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3392
{
3393 3394 3395
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3396
	uint32_t old_write_domain, old_read_domains;
3397
	struct i915_vma *vma;
3398
	int ret;
3399

3400
	ret = i915_gem_object_wait_rendering(obj, !write);
3401 3402 3403
	if (ret)
		return ret;

3404 3405 3406
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3419
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3420

3421 3422 3423 3424 3425 3426 3427
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3428 3429
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3430

3431 3432 3433
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3434 3435
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3436
	if (write) {
3437 3438 3439
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3440 3441
	}

C
Chris Wilson 已提交
3442 3443 3444 3445
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3446
	/* And bump the LRU for this access */
3447 3448
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3449
		list_move_tail(&vma->vm_link,
3450
			       &ggtt->base.inactive_list);
3451

3452 3453 3454
	return 0;
}

3455 3456
/**
 * Changes the cache-level of an object across all VMA.
3457 3458
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3470 3471 3472
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3473
	struct i915_vma *vma;
3474
	int ret = 0;
3475 3476

	if (obj->cache_level == cache_level)
3477
		goto out;
3478

3479 3480 3481 3482 3483
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3484 3485
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3486 3487 3488 3489 3490 3491 3492 3493
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3506 3507
	}

3508 3509 3510 3511 3512 3513 3514
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3515
	if (obj->bind_count) {
3516 3517 3518 3519
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3520
		ret = i915_gem_object_wait_rendering(obj, false);
3521 3522 3523
		if (ret)
			return ret;

3524
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3541 3542 3543
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3544 3545 3546 3547 3548 3549 3550 3551
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3552 3553
		}

3554
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3555 3556 3557 3558 3559 3560 3561
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3562 3563
	}

3564
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3565 3566 3567
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3568
out:
3569 3570 3571 3572
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3573
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3574
		if (i915_gem_clflush_object(obj, true))
3575
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3576 3577 3578 3579 3580
	}

	return 0;
}

B
Ben Widawsky 已提交
3581 3582
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3583
{
B
Ben Widawsky 已提交
3584
	struct drm_i915_gem_caching *args = data;
3585 3586
	struct drm_i915_gem_object *obj;

3587 3588
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3589
		return -ENOENT;
3590

3591 3592 3593 3594 3595 3596
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3597 3598 3599 3600
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3601 3602 3603 3604
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3605

3606
	i915_gem_object_put_unlocked(obj);
3607
	return 0;
3608 3609
}

B
Ben Widawsky 已提交
3610 3611
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3612
{
3613
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3614
	struct drm_i915_gem_caching *args = data;
3615 3616 3617 3618
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3619 3620
	switch (args->caching) {
	case I915_CACHING_NONE:
3621 3622
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3623
	case I915_CACHING_CACHED:
3624 3625 3626 3627 3628 3629
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3630
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3631 3632
			return -ENODEV;

3633 3634
		level = I915_CACHE_LLC;
		break;
3635 3636 3637
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3638 3639 3640 3641
	default:
		return -EINVAL;
	}

3642 3643
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3644 3645
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3646
		goto rpm_put;
B
Ben Widawsky 已提交
3647

3648 3649
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3650 3651 3652 3653 3654 3655
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3656
	i915_gem_object_put(obj);
3657 3658
unlock:
	mutex_unlock(&dev->struct_mutex);
3659 3660 3661
rpm_put:
	intel_runtime_pm_put(dev_priv);

3662 3663 3664
	return ret;
}

3665
/*
3666 3667 3668
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3669 3670
 */
int
3671 3672
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3673
				     const struct i915_ggtt_view *view)
3674
{
3675
	u32 old_read_domains, old_write_domain;
3676 3677
	int ret;

3678 3679 3680
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3681
	obj->pin_display++;
3682

3683 3684 3685 3686 3687 3688 3689 3690 3691
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3692 3693
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3694
	if (ret)
3695
		goto err_unpin_display;
3696

3697 3698 3699 3700
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3701 3702 3703
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3704
	if (ret)
3705
		goto err_unpin_display;
3706

3707
	i915_gem_object_flush_cpu_write_domain(obj);
3708

3709
	old_write_domain = obj->base.write_domain;
3710
	old_read_domains = obj->base.read_domains;
3711 3712 3713 3714

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3715
	obj->base.write_domain = 0;
3716
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3717 3718 3719

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3720
					    old_write_domain);
3721 3722

	return 0;
3723 3724

err_unpin_display:
3725
	obj->pin_display--;
3726 3727 3728 3729
	return ret;
}

void
3730 3731
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3732
{
3733 3734 3735
	if (WARN_ON(obj->pin_display == 0))
		return;

3736 3737
	i915_gem_object_ggtt_unpin_view(obj, view);

3738
	obj->pin_display--;
3739 3740
}

3741 3742
/**
 * Moves a single object to the CPU read, and possibly write domain.
3743 3744
 * @obj: object to act on
 * @write: requesting write or read-only access
3745 3746 3747 3748
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3749
int
3750
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3751
{
C
Chris Wilson 已提交
3752
	uint32_t old_write_domain, old_read_domains;
3753 3754
	int ret;

3755
	ret = i915_gem_object_wait_rendering(obj, !write);
3756 3757 3758
	if (ret)
		return ret;

3759 3760 3761
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3762
	i915_gem_object_flush_gtt_write_domain(obj);
3763

3764 3765
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3766

3767
	/* Flush the CPU cache if it's still invalid. */
3768
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3769
		i915_gem_clflush_object(obj, false);
3770

3771
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3772 3773 3774 3775 3776
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3777
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3778 3779 3780 3781 3782

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3783 3784
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3785
	}
3786

C
Chris Wilson 已提交
3787 3788 3789 3790
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3791 3792 3793
	return 0;
}

3794 3795 3796
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3797 3798 3799 3800
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3801 3802 3803
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3804
static int
3805
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3806
{
3807
	struct drm_i915_private *dev_priv = to_i915(dev);
3808
	struct drm_i915_file_private *file_priv = file->driver_priv;
3809
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3810
	struct drm_i915_gem_request *request, *target = NULL;
3811
	int ret;
3812

3813 3814 3815 3816
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3817 3818 3819
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3820

3821
	spin_lock(&file_priv->mm.lock);
3822
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3823 3824
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3825

3826 3827 3828 3829 3830 3831 3832
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3833
		target = request;
3834
	}
3835
	if (target)
3836
		i915_gem_request_get(target);
3837
	spin_unlock(&file_priv->mm.lock);
3838

3839
	if (target == NULL)
3840
		return 0;
3841

3842
	ret = __i915_wait_request(target, true, NULL, NULL);
3843
	i915_gem_request_put(target);
3844

3845 3846 3847
	return ret;
}

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3864 3865 3866 3867
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3868 3869 3870
	return false;
}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3889
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3890 3891 3892 3893

	obj->map_and_fenceable = mappable && fenceable;
}

3894 3895 3896 3897 3898 3899
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3900
{
3901
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3902
	struct i915_vma *vma;
3903
	unsigned bound;
3904 3905
	int ret;

3906 3907 3908
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3909
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3910
		return -EINVAL;
3911

3912 3913 3914
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3915 3916 3917 3918 3919 3920
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3921
	if (vma) {
B
Ben Widawsky 已提交
3922 3923 3924
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3925
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3926
			WARN(vma->pin_count,
3927
			     "bo is already pinned in %s with incorrect alignment:"
3928
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3929
			     " obj->map_and_fenceable=%d\n",
3930
			     ggtt_view ? "ggtt" : "ppgtt",
3931 3932
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3933
			     alignment,
3934
			     !!(flags & PIN_MAPPABLE),
3935
			     obj->map_and_fenceable);
3936
			ret = i915_vma_unbind(vma);
3937 3938
			if (ret)
				return ret;
3939 3940

			vma = NULL;
3941 3942 3943
		}
	}

3944
	bound = vma ? vma->bound : 0;
3945
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3946 3947
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3948 3949
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3950 3951
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3952 3953 3954
		if (ret)
			return ret;
	}
3955

3956 3957
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3958
		__i915_vma_set_map_and_fenceable(vma);
3959 3960
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3961

3962
	vma->pin_count++;
3963 3964 3965
	return 0;
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3983 3984 3985 3986
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3987
	BUG_ON(!view);
3988

3989
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3990
				      alignment, flags | PIN_GLOBAL);
3991 3992
}

3993
void
3994 3995
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3996
{
3997
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3998

3999
	WARN_ON(vma->pin_count == 0);
4000
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4001

4002
	--vma->pin_count;
4003 4004 4005 4006
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4007
		    struct drm_file *file)
4008 4009
{
	struct drm_i915_gem_busy *args = data;
4010
	struct drm_i915_gem_object *obj;
4011 4012
	int ret;

4013
	ret = i915_mutex_lock_interruptible(dev);
4014
	if (ret)
4015
		return ret;
4016

4017 4018
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
4019 4020
		ret = -ENOENT;
		goto unlock;
4021
	}
4022

4023 4024 4025 4026
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4027
	 */
4028
	ret = i915_gem_object_flush_active(obj);
4029 4030
	if (ret)
		goto unref;
4031

4032 4033 4034 4035
	args->busy = 0;
	if (obj->active) {
		int i;

4036
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4037 4038 4039 4040
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4041
				args->busy |= 1 << (16 + req->engine->exec_id);
4042 4043
		}
		if (obj->last_write_req)
4044
			args->busy |= obj->last_write_req->engine->exec_id;
4045
	}
4046

4047
unref:
4048
	i915_gem_object_put(obj);
4049
unlock:
4050
	mutex_unlock(&dev->struct_mutex);
4051
	return ret;
4052 4053 4054 4055 4056 4057
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4058
	return i915_gem_ring_throttle(dev, file_priv);
4059 4060
}

4061 4062 4063 4064
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4065
	struct drm_i915_private *dev_priv = to_i915(dev);
4066
	struct drm_i915_gem_madvise *args = data;
4067
	struct drm_i915_gem_object *obj;
4068
	int ret;
4069 4070 4071 4072 4073 4074 4075 4076 4077

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4078 4079 4080 4081
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4082 4083
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4084 4085
		ret = -ENOENT;
		goto unlock;
4086 4087
	}

B
Ben Widawsky 已提交
4088
	if (i915_gem_obj_is_pinned(obj)) {
4089 4090
		ret = -EINVAL;
		goto out;
4091 4092
	}

4093 4094 4095 4096 4097 4098 4099 4100 4101
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4102 4103
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4104

C
Chris Wilson 已提交
4105
	/* if the object is no longer attached, discard its backing storage */
4106
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4107 4108
		i915_gem_object_truncate(obj);

4109
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4110

4111
out:
4112
	i915_gem_object_put(obj);
4113
unlock:
4114
	mutex_unlock(&dev->struct_mutex);
4115
	return ret;
4116 4117
}

4118 4119
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4120
{
4121 4122
	int i;

4123
	INIT_LIST_HEAD(&obj->global_list);
4124
	for (i = 0; i < I915_NUM_ENGINES; i++)
4125
		INIT_LIST_HEAD(&obj->engine_list[i]);
4126
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4127
	INIT_LIST_HEAD(&obj->vma_list);
4128
	INIT_LIST_HEAD(&obj->batch_pool_link);
4129

4130 4131
	obj->ops = ops;

4132 4133 4134
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4135
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4136 4137
}

4138
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4139
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4140 4141 4142 4143
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4144
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4145
						  size_t size)
4146
{
4147
	struct drm_i915_gem_object *obj;
4148
	struct address_space *mapping;
D
Daniel Vetter 已提交
4149
	gfp_t mask;
4150
	int ret;
4151

4152
	obj = i915_gem_object_alloc(dev);
4153
	if (obj == NULL)
4154
		return ERR_PTR(-ENOMEM);
4155

4156 4157 4158
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4159

4160 4161 4162 4163 4164 4165 4166
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4167
	mapping = file_inode(obj->base.filp)->i_mapping;
4168
	mapping_set_gfp_mask(mapping, mask);
4169

4170
	i915_gem_object_init(obj, &i915_gem_object_ops);
4171

4172 4173
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4174

4175 4176
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4192 4193
	trace_i915_gem_object_create(obj);

4194
	return obj;
4195 4196 4197 4198 4199

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4200 4201
}

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4226
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4227
{
4228
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4229
	struct drm_device *dev = obj->base.dev;
4230
	struct drm_i915_private *dev_priv = to_i915(dev);
4231
	struct i915_vma *vma, *next;
4232

4233 4234
	intel_runtime_pm_get(dev_priv);

4235 4236
	trace_i915_gem_object_destroy(obj);

4237
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4238 4239 4240
		int ret;

		vma->pin_count = 0;
4241
		ret = __i915_vma_unbind_no_wait(vma);
4242 4243
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4244

4245 4246
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4247

4248
			WARN_ON(i915_vma_unbind(vma));
4249

4250 4251
			dev_priv->mm.interruptible = was_interruptible;
		}
4252
	}
4253
	GEM_BUG_ON(obj->bind_count);
4254

B
Ben Widawsky 已提交
4255 4256 4257 4258 4259
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4260 4261
	WARN_ON(obj->frontbuffer_bits);

4262 4263 4264 4265 4266
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4267 4268
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4269
	if (discard_backing_storage(obj))
4270
		obj->madv = I915_MADV_DONTNEED;
4271
	i915_gem_object_put_pages(obj);
4272

4273 4274
	BUG_ON(obj->pages);

4275 4276
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4277

4278 4279 4280
	if (obj->ops->release)
		obj->ops->release(obj);

4281 4282
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4283

4284
	kfree(obj->bit_17);
4285
	i915_gem_object_free(obj);
4286 4287

	intel_runtime_pm_put(dev_priv);
4288 4289
}

4290 4291
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4292 4293
{
	struct i915_vma *vma;
4294
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4295 4296
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4297
			return vma;
4298 4299 4300 4301 4302 4303 4304 4305
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4306

4307
	GEM_BUG_ON(!view);
4308

4309
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4310
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4311
			return vma;
4312 4313 4314
	return NULL;
}

B
Ben Widawsky 已提交
4315 4316 4317
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4318 4319 4320 4321 4322

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4323 4324
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4325

4326
	list_del(&vma->obj_link);
4327

4328
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4329 4330
}

4331
static void
4332
i915_gem_stop_engines(struct drm_device *dev)
4333
{
4334
	struct drm_i915_private *dev_priv = to_i915(dev);
4335
	struct intel_engine_cs *engine;
4336

4337
	for_each_engine(engine, dev_priv)
4338
		dev_priv->gt.stop_engine(engine);
4339 4340
}

4341
int
4342
i915_gem_suspend(struct drm_device *dev)
4343
{
4344
	struct drm_i915_private *dev_priv = to_i915(dev);
4345
	int ret = 0;
4346

4347 4348
	intel_suspend_gt_powersave(dev_priv);

4349
	mutex_lock(&dev->struct_mutex);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4363
	ret = i915_gem_wait_for_idle(dev_priv);
4364
	if (ret)
4365
		goto err;
4366

4367
	i915_gem_retire_requests(dev_priv);
4368

4369 4370 4371 4372 4373
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4374
	i915_gem_stop_engines(dev);
4375
	i915_gem_context_lost(dev_priv);
4376 4377
	mutex_unlock(&dev->struct_mutex);

4378
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4379 4380
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4381

4382 4383 4384
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4385
	WARN_ON(dev_priv->gt.awake);
4386

4387
	return 0;
4388 4389 4390 4391

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4392 4393
}

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4411 4412
void i915_gem_init_swizzling(struct drm_device *dev)
{
4413
	struct drm_i915_private *dev_priv = to_i915(dev);
4414

4415
	if (INTEL_INFO(dev)->gen < 5 ||
4416 4417 4418 4419 4420 4421
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4422 4423 4424
	if (IS_GEN5(dev))
		return;

4425 4426
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4427
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4428
	else if (IS_GEN7(dev))
4429
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4430 4431
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4432 4433
	else
		BUG();
4434
}
D
Daniel Vetter 已提交
4435

4436 4437
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4438
	struct drm_i915_private *dev_priv = to_i915(dev);
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4463 4464 4465
int
i915_gem_init_hw(struct drm_device *dev)
{
4466
	struct drm_i915_private *dev_priv = to_i915(dev);
4467
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4468
	int ret;
4469

4470 4471 4472
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4473
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4474
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4475

4476 4477 4478
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4479

4480
	if (HAS_PCH_NOP(dev)) {
4481 4482 4483 4484 4485 4486 4487 4488 4489
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4490 4491
	}

4492 4493
	i915_gem_init_swizzling(dev);

4494 4495 4496 4497 4498 4499 4500 4501
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4502
	BUG_ON(!dev_priv->kernel_context);
4503

4504 4505 4506 4507 4508 4509 4510
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4511
	for_each_engine(engine, dev_priv) {
4512
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4513
		if (ret)
4514
			goto out;
D
Daniel Vetter 已提交
4515
	}
4516

4517 4518
	intel_mocs_init_l3cc_table(dev);

4519
	/* We can't enable contexts until all firmware is loaded */
4520 4521 4522
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4523

4524 4525
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4526
	return ret;
4527 4528
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4550 4551
int i915_gem_init(struct drm_device *dev)
{
4552
	struct drm_i915_private *dev_priv = to_i915(dev);
4553 4554 4555
	int ret;

	mutex_lock(&dev->struct_mutex);
4556

4557
	if (!i915.enable_execlists) {
4558 4559
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4560
	} else {
4561 4562
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4563 4564
	}

4565 4566 4567 4568 4569 4570 4571 4572
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4573
	i915_gem_init_userptr(dev_priv);
4574 4575 4576 4577

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4578

4579
	ret = i915_gem_context_init(dev);
4580 4581
	if (ret)
		goto out_unlock;
4582

4583
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4584
	if (ret)
4585
		goto out_unlock;
4586

4587
	ret = i915_gem_init_hw(dev);
4588
	if (ret == -EIO) {
4589
		/* Allow engine initialisation to fail by marking the GPU as
4590 4591 4592 4593
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4594
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4595
		ret = 0;
4596
	}
4597 4598

out_unlock:
4599
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4600
	mutex_unlock(&dev->struct_mutex);
4601

4602
	return ret;
4603 4604
}

4605
void
4606
i915_gem_cleanup_engines(struct drm_device *dev)
4607
{
4608
	struct drm_i915_private *dev_priv = to_i915(dev);
4609
	struct intel_engine_cs *engine;
4610

4611
	for_each_engine(engine, dev_priv)
4612
		dev_priv->gt.cleanup_engine(engine);
4613 4614
}

4615
static void
4616
init_engine_lists(struct intel_engine_cs *engine)
4617
{
4618 4619
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4620 4621
}

4622 4623 4624
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4625
	struct drm_device *dev = &dev_priv->drm;
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4636
	if (intel_vgpu_active(dev_priv))
4637 4638 4639 4640 4641 4642 4643 4644 4645
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4646
void
4647
i915_gem_load_init(struct drm_device *dev)
4648
{
4649
	struct drm_i915_private *dev_priv = to_i915(dev);
4650 4651
	int i;

4652
	dev_priv->objects =
4653 4654 4655 4656
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4657 4658 4659 4660 4661
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4662 4663 4664 4665 4666
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4667

4668
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4669 4670
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4671
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4672 4673
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4674
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4675
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4676
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4677
			  i915_gem_retire_work_handler);
4678
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4679
			  i915_gem_idle_work_handler);
4680
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4681
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4682

4683 4684
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4685
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4686

4687
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4688

4689 4690
	dev_priv->mm.interruptible = true;

4691
	mutex_init(&dev_priv->fb_tracking.lock);
4692
}
4693

4694 4695 4696 4697 4698 4699 4700 4701 4702
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4731
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4732
{
4733
	struct drm_i915_file_private *file_priv = file->driver_priv;
4734
	struct drm_i915_gem_request *request;
4735 4736 4737 4738 4739

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4740
	spin_lock(&file_priv->mm.lock);
4741
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4742
		request->file_priv = NULL;
4743
	spin_unlock(&file_priv->mm.lock);
4744

4745
	if (!list_empty(&file_priv->rps.link)) {
4746
		spin_lock(&to_i915(dev)->rps.client_lock);
4747
		list_del(&file_priv->rps.link);
4748
		spin_unlock(&to_i915(dev)->rps.client_lock);
4749
	}
4750 4751 4752 4753 4754
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4755
	int ret;
4756 4757 4758 4759 4760 4761 4762 4763

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4764
	file_priv->dev_priv = to_i915(dev);
4765
	file_priv->file = file;
4766
	INIT_LIST_HEAD(&file_priv->rps.link);
4767 4768 4769 4770

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4771
	file_priv->bsd_engine = -1;
4772

4773 4774 4775
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4776

4777
	return ret;
4778 4779
}

4780 4781
/**
 * i915_gem_track_fb - update frontbuffer tracking
4782 4783 4784
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4785 4786 4787 4788
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4806
/* All the new VM stuff */
4807 4808
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4809
{
4810
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4811 4812
	struct i915_vma *vma;

4813
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4814

4815
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4816
		if (vma->is_ggtt &&
4817 4818 4819
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4820 4821
			return vma->node.start;
	}
4822

4823 4824
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4825 4826 4827
	return -1;
}

4828 4829
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4830 4831 4832
{
	struct i915_vma *vma;

4833
	list_for_each_entry(vma, &o->vma_list, obj_link)
4834
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4835 4836
			return vma->node.start;

4837
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4838 4839 4840 4841 4842 4843 4844 4845
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4846
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4847
		if (vma->is_ggtt &&
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4858
				  const struct i915_ggtt_view *view)
4859 4860 4861
{
	struct i915_vma *vma;

4862
	list_for_each_entry(vma, &o->vma_list, obj_link)
4863
		if (vma->is_ggtt &&
4864
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4865
		    drm_mm_node_allocated(&vma->node))
4866 4867 4868 4869 4870
			return true;

	return false;
}

4871
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4872 4873 4874
{
	struct i915_vma *vma;

4875
	GEM_BUG_ON(list_empty(&o->vma_list));
4876

4877
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4878
		if (vma->is_ggtt &&
4879
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4880
			return vma->node.size;
4881
	}
4882

4883 4884 4885
	return 0;
}

4886
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4887 4888
{
	struct i915_vma *vma;
4889
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4890 4891
		if (vma->pin_count > 0)
			return true;
4892

4893
	return false;
4894
}
4895

4896 4897 4898 4899 4900 4901 4902
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4903
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4904 4905 4906 4907 4908 4909 4910
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4921
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4922
	if (IS_ERR(obj))
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4936
	obj->dirty = 1;		/* Backing store is now out of date */
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4948
	i915_gem_object_put(obj);
4949 4950
	return ERR_PTR(ret);
}