i915_gem.c 132.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63 64
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65

66 67 68 69 70 71
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

72 73 74 75 76 77 78 79
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

80 81 82 83 84 85 86 87
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
88
	obj->fence_dirty = false;
89 90 91
	obj->fence_reg = I915_FENCE_REG_NONE;
}

92 93 94 95
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101 102 103 104
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
105
	spin_lock(&dev_priv->mm.object_stat_lock);
106 107
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
108
	spin_unlock(&dev_priv->mm.object_stat_lock);
109 110
}

111
static int
112
i915_gem_wait_for_error(struct i915_gpu_error *error)
113 114 115
{
	int ret;

116 117
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
118
	if (EXIT_COND)
119 120
		return 0;

121 122 123 124 125
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
126 127 128
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
129 130 131 132
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
133
		return ret;
134
	}
135
#undef EXIT_COND
136

137
	return 0;
138 139
}

140
int i915_mutex_lock_interruptible(struct drm_device *dev)
141
{
142
	struct drm_i915_private *dev_priv = dev->dev_private;
143 144
	int ret;

145
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 147 148 149 150 151 152
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

153
	WARN_ON(i915_verify_lists(dev));
154 155
	return 0;
}
156

157
static inline bool
158
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159
{
160
	return i915_gem_obj_bound_any(obj) && !obj->active;
161 162
}

J
Jesse Barnes 已提交
163 164
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
165
		    struct drm_file *file)
J
Jesse Barnes 已提交
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
J
Jesse Barnes 已提交
168
	struct drm_i915_gem_init *args = data;
169

170 171 172
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

173 174 175
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
176

177 178 179 180
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
181
	mutex_lock(&dev->struct_mutex);
182 183
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
				  args->gtt_end);
184
	dev_priv->gtt.mappable_end = args->gtt_end;
185 186
	mutex_unlock(&dev->struct_mutex);

187
	return 0;
188 189
}

190 191
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192
			    struct drm_file *file)
193
{
194
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	struct drm_i915_gem_get_aperture *args = data;
196 197
	struct drm_i915_gem_object *obj;
	size_t pinned;
198

199
	pinned = 0;
200
	mutex_lock(&dev->struct_mutex);
201
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
202
		if (i915_gem_obj_is_pinned(obj))
203
			pinned += i915_gem_obj_ggtt_size(obj);
204
	mutex_unlock(&dev->struct_mutex);
205

206
	args->aper_size = dev_priv->gtt.base.total;
207
	args->aper_available_size = args->aper_size - pinned;
208

209 210 211
	return 0;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
{
	drm_dma_handle_t *phys = obj->phys_handle;

	if (!phys)
		return;

	if (obj->madv == I915_MADV_WILLNEED) {
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
		char *vaddr = phys->vaddr;
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
			struct page *page = shmem_read_mapping_page(mapping, i);
			if (!IS_ERR(page)) {
				char *dst = kmap_atomic(page);
				memcpy(dst, vaddr, PAGE_SIZE);
				drm_clflush_virt_range(dst, PAGE_SIZE);
				kunmap_atomic(dst);

				set_page_dirty(page);
				mark_page_accessed(page);
				page_cache_release(page);
			}
			vaddr += PAGE_SIZE;
		}
		i915_gem_chipset_flush(obj->base.dev);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
	drm_pci_free(obj->base.dev, phys);
	obj->phys_handle = NULL;
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
	struct address_space *mapping;
	char *vaddr;
	int i;

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	vaddr = phys->vaddr;
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
#endif
	mapping = file_inode(obj->base.filp)->i_mapping;
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page)) {
#ifdef CONFIG_X86
			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
			drm_pci_free(obj->base.dev, phys);
			return PTR_ERR(page);
		}

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		kunmap_atomic(src);

		mark_page_accessed(page);
		page_cache_release(page);

		vaddr += PAGE_SIZE;
	}

	obj->phys_handle = phys;
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

	i915_gem_chipset_flush(dev);
	return 0;
}

334 335 336
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
337
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 339 340 341 342 343 344 345
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

346 347 348 349 350
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
351
{
352
	struct drm_i915_gem_object *obj;
353 354
	int ret;
	u32 handle;
355

356
	size = roundup(size, PAGE_SIZE);
357 358
	if (size == 0)
		return -EINVAL;
359 360

	/* Allocate the new object */
361
	obj = i915_gem_alloc_object(dev, size);
362 363 364
	if (obj == NULL)
		return -ENOMEM;

365
	ret = drm_gem_handle_create(file, &obj->base, &handle);
366
	/* drop reference from allocate - handle holds it now */
367 368 369
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
370

371
	*handle_p = handle;
372 373 374
	return 0;
}

375 376 377 378 379 380
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
381
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 383 384 385 386 387 388 389 390 391 392 393 394
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
395

396 397 398 399
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

426
static inline int
427 428
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
477 478

		i915_gem_object_retire(obj);
479 480 481 482 483 484 485 486 487 488 489
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

490 491 492
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
493
static int
494 495 496 497 498 499 500
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

501
	if (unlikely(page_do_bit17_swizzling))
502 503 504 505 506 507 508 509 510 511 512
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

513
	return ret ? -EFAULT : 0;
514 515
}

516 517 518 519
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
520
	if (unlikely(swizzled)) {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

538 539 540 541 542 543 544 545 546 547 548 549
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
550 551 552
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
553 554 555 556 557 558 559 560 561 562 563

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

564
	return ret ? - EFAULT : 0;
565 566
}

567
static int
568 569 570 571
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
572
{
573
	char __user *user_data;
574
	ssize_t remain;
575
	loff_t offset;
576
	int shmem_page_offset, page_length, ret = 0;
577
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578
	int prefaulted = 0;
579
	int needs_clflush = 0;
580
	struct sg_page_iter sg_iter;
581

V
Ville Syrjälä 已提交
582
	user_data = to_user_ptr(args->data_ptr);
583 584
	remain = args->size;

585
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586

587
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 589 590
	if (ret)
		return ret;

591
	offset = args->offset;
592

593 594
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
595
		struct page *page = sg_page_iter_page(&sg_iter);
596 597 598 599

		if (remain <= 0)
			break;

600 601 602 603 604
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
605
		shmem_page_offset = offset_in_page(offset);
606 607 608 609
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

610 611 612
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

613 614 615 616 617
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
618 619 620

		mutex_unlock(&dev->struct_mutex);

621
		if (likely(!i915.prefault_disable) && !prefaulted) {
622
			ret = fault_in_multipages_writeable(user_data, remain);
623 624 625 626 627 628 629
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
630

631 632 633
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
634

635
		mutex_lock(&dev->struct_mutex);
636 637

		if (ret)
638 639
			goto out;

640
next_page:
641
		remain -= page_length;
642
		user_data += page_length;
643 644 645
		offset += page_length;
	}

646
out:
647 648
	i915_gem_object_unpin_pages(obj);

649 650 651
	return ret;
}

652 653 654 655 656 657 658
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659
		     struct drm_file *file)
660 661
{
	struct drm_i915_gem_pread *args = data;
662
	struct drm_i915_gem_object *obj;
663
	int ret = 0;
664

665 666 667 668
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
669
		       to_user_ptr(args->data_ptr),
670 671 672
		       args->size))
		return -EFAULT;

673
	ret = i915_mutex_lock_interruptible(dev);
674
	if (ret)
675
		return ret;
676

677
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678
	if (&obj->base == NULL) {
679 680
		ret = -ENOENT;
		goto unlock;
681
	}
682

683
	/* Bounds check source.  */
684 685
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
686
		ret = -EINVAL;
687
		goto out;
C
Chris Wilson 已提交
688 689
	}

690 691 692 693 694 695 696 697
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
698 699
	trace_i915_gem_object_pread(obj, args->offset, args->size);

700
	ret = i915_gem_shmem_pread(dev, obj, args, file);
701

702
out:
703
	drm_gem_object_unreference(&obj->base);
704
unlock:
705
	mutex_unlock(&dev->struct_mutex);
706
	return ret;
707 708
}

709 710
/* This is the fast write path which cannot handle
 * page faults in the source data
711
 */
712 713 714 715 716 717

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
718
{
719 720
	void __iomem *vaddr_atomic;
	void *vaddr;
721
	unsigned long unwritten;
722

P
Peter Zijlstra 已提交
723
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 725 726
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
727
						      user_data, length);
P
Peter Zijlstra 已提交
728
	io_mapping_unmap_atomic(vaddr_atomic);
729
	return unwritten;
730 731
}

732 733 734 735
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
736
static int
737 738
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
739
			 struct drm_i915_gem_pwrite *args,
740
			 struct drm_file *file)
741
{
742
	struct drm_i915_private *dev_priv = dev->dev_private;
743
	ssize_t remain;
744
	loff_t offset, page_base;
745
	char __user *user_data;
D
Daniel Vetter 已提交
746 747
	int page_offset, page_length, ret;

748
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
749 750 751 752 753 754 755 756 757 758
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
759

V
Ville Syrjälä 已提交
760
	user_data = to_user_ptr(args->data_ptr);
761 762
	remain = args->size;

763
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764 765 766 767

	while (remain > 0) {
		/* Operation in this page
		 *
768 769 770
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
771
		 */
772 773
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
774 775 776 777 778
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
779 780
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
781
		 */
B
Ben Widawsky 已提交
782
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
783 784 785 786
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
787

788 789 790
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
791 792
	}

D
Daniel Vetter 已提交
793
out_unpin:
B
Ben Widawsky 已提交
794
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
795
out:
796
	return ret;
797 798
}

799 800 801 802
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
803
static int
804 805 806 807 808
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
809
{
810
	char *vaddr;
811
	int ret;
812

813
	if (unlikely(page_do_bit17_swizzling))
814
		return -EINVAL;
815

816 817 818 819
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
820 821
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
822 823 824 825
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
826

827
	return ret ? -EFAULT : 0;
828 829
}

830 831
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
832
static int
833 834 835 836 837
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
838
{
839 840
	char *vaddr;
	int ret;
841

842
	vaddr = kmap(page);
843
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 845 846
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
847 848
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 850
						user_data,
						page_length);
851 852 853 854 855
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
856 857 858
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
859
	kunmap(page);
860

861
	return ret ? -EFAULT : 0;
862 863 864
}

static int
865 866 867 868
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
869 870
{
	ssize_t remain;
871 872
	loff_t offset;
	char __user *user_data;
873
	int shmem_page_offset, page_length, ret = 0;
874
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875
	int hit_slowpath = 0;
876 877
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
878
	struct sg_page_iter sg_iter;
879

V
Ville Syrjälä 已提交
880
	user_data = to_user_ptr(args->data_ptr);
881 882
	remain = args->size;

883
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885 886 887 888 889
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
890
		needs_clflush_after = cpu_write_needs_clflush(obj);
891 892 893
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
894 895

		i915_gem_object_retire(obj);
896
	}
897 898 899 900 901
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
902

903 904 905 906 907 908
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

909
	offset = args->offset;
910
	obj->dirty = 1;
911

912 913
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
914
		struct page *page = sg_page_iter_page(&sg_iter);
915
		int partial_cacheline_write;
916

917 918 919
		if (remain <= 0)
			break;

920 921 922 923 924
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
925
		shmem_page_offset = offset_in_page(offset);
926 927 928 929 930

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

931 932 933 934 935 936 937
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

938 939 940
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

941 942 943 944 945 946
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
947 948 949

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
950 951 952 953
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
954

955
		mutex_lock(&dev->struct_mutex);
956 957

		if (ret)
958 959
			goto out;

960
next_page:
961
		remain -= page_length;
962
		user_data += page_length;
963
		offset += page_length;
964 965
	}

966
out:
967 968
	i915_gem_object_unpin_pages(obj);

969
	if (hit_slowpath) {
970 971 972 973 974 975 976
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 978
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
979
		}
980
	}
981

982
	if (needs_clflush_after)
983
		i915_gem_chipset_flush(dev);
984

985
	return ret;
986 987 988 989 990 991 992 993 994
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995
		      struct drm_file *file)
996 997
{
	struct drm_i915_gem_pwrite *args = data;
998
	struct drm_i915_gem_object *obj;
999 1000 1001 1002 1003 1004
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1005
		       to_user_ptr(args->data_ptr),
1006 1007 1008
		       args->size))
		return -EFAULT;

1009
	if (likely(!i915.prefault_disable)) {
1010 1011 1012 1013 1014
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1015

1016
	ret = i915_mutex_lock_interruptible(dev);
1017
	if (ret)
1018
		return ret;
1019

1020
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021
	if (&obj->base == NULL) {
1022 1023
		ret = -ENOENT;
		goto unlock;
1024
	}
1025

1026
	/* Bounds check destination. */
1027 1028
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1029
		ret = -EINVAL;
1030
		goto out;
C
Chris Wilson 已提交
1031 1032
	}

1033 1034 1035 1036 1037 1038 1039 1040
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1041 1042
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1043
	ret = -EFAULT;
1044 1045 1046 1047 1048 1049
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1050 1051
	if (obj->phys_handle) {
		ret = i915_gem_phys_pwrite(obj, args, file);
1052 1053 1054
		goto out;
	}

1055 1056 1057
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1058
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1059 1060 1061
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1062
	}
1063

1064
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
1065
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066

1067
out:
1068
	drm_gem_object_unreference(&obj->base);
1069
unlock:
1070
	mutex_unlock(&dev->struct_mutex);
1071 1072 1073
	return ret;
}

1074
int
1075
i915_gem_check_wedge(struct i915_gpu_error *error,
1076 1077
		     bool interruptible)
{
1078
	if (i915_reset_in_progress(error)) {
1079 1080 1081 1082 1083
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1084 1085
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
1099
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 1101 1102 1103 1104 1105
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1106
	if (seqno == ring->outstanding_lazy_seqno)
1107
		ret = i915_add_request(ring, NULL);
1108 1109 1110 1111

	return ret;
}

1112 1113 1114 1115 1116 1117
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1118
		       struct intel_engine_cs *ring)
1119 1120 1121 1122
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1123 1124 1125 1126 1127 1128 1129 1130
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1131 1132 1133 1134
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1135
 * @reset_counter: reset sequence associated with the given seqno
1136 1137 1138
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1139 1140 1141 1142 1143 1144 1145
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1146 1147 1148
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1149
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150
			unsigned reset_counter,
1151 1152 1153
			bool interruptible,
			struct timespec *timeout,
			struct drm_i915_file_private *file_priv)
1154
{
1155
	struct drm_device *dev = ring->dev;
1156
	struct drm_i915_private *dev_priv = dev->dev_private;
1157 1158
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 1160
	struct timespec before, now;
	DEFINE_WAIT(wait);
1161
	unsigned long timeout_expire;
1162 1163
	int ret;

1164
	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1165

1166 1167 1168
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1169
	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170

1171
	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1172 1173 1174 1175 1176 1177 1178
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1179
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 1181
		return -ENODEV;

1182 1183
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1184
	getrawmonotonic(&before);
1185 1186
	for (;;) {
		struct timer_list timer;
1187

1188 1189
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190

1191 1192
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1193 1194 1195 1196 1197 1198 1199 1200
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1201

1202 1203 1204 1205
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1206

1207 1208 1209 1210 1211
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1212
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 1214 1215 1216 1217 1218
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1219 1220
			unsigned long expire;

1221
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 1224 1225
			mod_timer(&timer, expire);
		}

1226
		io_schedule();
1227 1228 1229 1230 1231 1232

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1233
	getrawmonotonic(&now);
1234
	trace_i915_gem_request_wait_end(ring, seqno);
1235

1236 1237
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1238 1239

	finish_wait(&ring->irq_queue, &wait);
1240 1241 1242 1243

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
1244 1245
		if (!timespec_valid(timeout)) /* i.e. negative time remains */
			set_normalized_timespec(timeout, 0, 0);
1246 1247
	}

1248
	return ret;
1249 1250 1251 1252 1253 1254 1255
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1256
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 1258 1259 1260 1261 1262 1263 1264 1265
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1266
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267 1268 1269 1270 1271 1272 1273
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1274 1275
	return __wait_seqno(ring, seqno,
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1276
			    interruptible, NULL, NULL);
1277 1278
}

1279 1280
static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281
				     struct intel_engine_cs *ring)
1282
{
1283 1284
	if (!obj->active)
		return 0;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1298 1299 1300 1301 1302 1303 1304 1305
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1306
	struct intel_engine_cs *ring = obj->ring;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1318
	return i915_gem_object_wait_rendering__tail(obj, ring);
1319 1320
}

1321 1322 1323 1324 1325
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326
					    struct drm_i915_file_private *file_priv,
1327 1328 1329 1330
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1331
	struct intel_engine_cs *ring = obj->ring;
1332
	unsigned reset_counter;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1343
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344 1345 1346 1347 1348 1349 1350
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1351
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352
	mutex_unlock(&dev->struct_mutex);
1353
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354
	mutex_lock(&dev->struct_mutex);
1355 1356
	if (ret)
		return ret;
1357

1358
	return i915_gem_object_wait_rendering__tail(obj, ring);
1359 1360
}

1361
/**
1362 1363
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1364 1365 1366
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367
			  struct drm_file *file)
1368 1369
{
	struct drm_i915_gem_set_domain *args = data;
1370
	struct drm_i915_gem_object *obj;
1371 1372
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1373 1374
	int ret;

1375
	/* Only handle setting domains to types used by the CPU. */
1376
	if (write_domain & I915_GEM_GPU_DOMAINS)
1377 1378
		return -EINVAL;

1379
	if (read_domains & I915_GEM_GPU_DOMAINS)
1380 1381 1382 1383 1384 1385 1386 1387
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1388
	ret = i915_mutex_lock_interruptible(dev);
1389
	if (ret)
1390
		return ret;
1391

1392
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393
	if (&obj->base == NULL) {
1394 1395
		ret = -ENOENT;
		goto unlock;
1396
	}
1397

1398 1399 1400 1401
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1402 1403 1404
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1405 1406 1407
	if (ret)
		goto unref;

1408 1409
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1410 1411 1412 1413 1414 1415 1416

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1417
	} else {
1418
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1419 1420
	}

1421
unref:
1422
	drm_gem_object_unreference(&obj->base);
1423
unlock:
1424 1425 1426 1427 1428 1429 1430 1431 1432
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1433
			 struct drm_file *file)
1434 1435
{
	struct drm_i915_gem_sw_finish *args = data;
1436
	struct drm_i915_gem_object *obj;
1437 1438
	int ret = 0;

1439
	ret = i915_mutex_lock_interruptible(dev);
1440
	if (ret)
1441
		return ret;
1442

1443
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1444
	if (&obj->base == NULL) {
1445 1446
		ret = -ENOENT;
		goto unlock;
1447 1448 1449
	}

	/* Pinned buffers may be scanout, so flush the cache */
1450 1451
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1452

1453
	drm_gem_object_unreference(&obj->base);
1454
unlock:
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1468
		    struct drm_file *file)
1469 1470 1471 1472 1473
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1474
	obj = drm_gem_object_lookup(dev, file, args->handle);
1475
	if (obj == NULL)
1476
		return -ENOENT;
1477

1478 1479 1480 1481 1482 1483 1484 1485
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1486
	addr = vm_mmap(obj->filp, 0, args->size,
1487 1488
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1489
	drm_gem_object_unreference_unlocked(obj);
1490 1491 1492 1493 1494 1495 1496 1497
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1516 1517
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1518
	struct drm_i915_private *dev_priv = dev->dev_private;
1519 1520 1521
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1522
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1523

1524 1525
	intel_runtime_pm_get(dev_priv);

1526 1527 1528 1529
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1530 1531 1532
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1533

C
Chris Wilson 已提交
1534 1535
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1536 1537 1538 1539 1540 1541 1542 1543 1544
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1545 1546
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1547
		ret = -EFAULT;
1548 1549 1550
		goto unlock;
	}

1551
	/* Now bind it into the GTT if needed */
1552
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1553 1554
	if (ret)
		goto unlock;
1555

1556 1557 1558
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1559

1560
	ret = i915_gem_object_get_fence(obj);
1561
	if (ret)
1562
		goto unpin;
1563

1564 1565
	obj->fault_mappable = true;

1566 1567 1568
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
	pfn += page_offset;
1569 1570 1571

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1572
unpin:
B
Ben Widawsky 已提交
1573
	i915_gem_object_ggtt_unpin(obj);
1574
unlock:
1575
	mutex_unlock(&dev->struct_mutex);
1576
out:
1577
	switch (ret) {
1578
	case -EIO:
1579 1580 1581
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
1582 1583 1584 1585
		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
			ret = VM_FAULT_SIGBUS;
			break;
		}
1586
	case -EAGAIN:
D
Daniel Vetter 已提交
1587 1588 1589 1590
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1591
		 */
1592 1593
	case 0:
	case -ERESTARTSYS:
1594
	case -EINTR:
1595 1596 1597 1598 1599
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1600 1601
		ret = VM_FAULT_NOPAGE;
		break;
1602
	case -ENOMEM:
1603 1604
		ret = VM_FAULT_OOM;
		break;
1605
	case -ENOSPC:
1606
	case -EFAULT:
1607 1608
		ret = VM_FAULT_SIGBUS;
		break;
1609
	default:
1610
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1611 1612
		ret = VM_FAULT_SIGBUS;
		break;
1613
	}
1614 1615 1616

	intel_runtime_pm_put(dev_priv);
	return ret;
1617 1618
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct i915_vma *vma;

	/*
	 * Only the global gtt is relevant for gtt memory mappings, so restrict
	 * list traversal to objects bound into the global address space. Note
	 * that the active list should be empty, but better safe than sorry.
	 */
	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
		i915_gem_release_mmap(vma->obj);
	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
		i915_gem_release_mmap(vma->obj);
}

1635 1636 1637 1638
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1639
 * Preserve the reservation of the mmapping with the DRM core code, but
1640 1641 1642 1643 1644 1645 1646 1647 1648
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1649
void
1650
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1651
{
1652 1653
	if (!obj->fault_mappable)
		return;
1654

1655 1656
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1657
	obj->fault_mappable = false;
1658 1659
}

1660
uint32_t
1661
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1662
{
1663
	uint32_t gtt_size;
1664 1665

	if (INTEL_INFO(dev)->gen >= 4 ||
1666 1667
	    tiling_mode == I915_TILING_NONE)
		return size;
1668 1669 1670

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1671
		gtt_size = 1024*1024;
1672
	else
1673
		gtt_size = 512*1024;
1674

1675 1676
	while (gtt_size < size)
		gtt_size <<= 1;
1677

1678
	return gtt_size;
1679 1680
}

1681 1682 1683 1684 1685
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1686
 * potential fence register mapping.
1687
 */
1688 1689 1690
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1691 1692 1693 1694 1695
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1696
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1697
	    tiling_mode == I915_TILING_NONE)
1698 1699
		return 4096;

1700 1701 1702 1703
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1704
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1705 1706
}

1707 1708 1709 1710 1711
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1712
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1713 1714
		return 0;

1715 1716
	dev_priv->mm.shrinker_no_lock_stealing = true;

1717 1718
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1719
		goto out;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1731
		goto out;
1732 1733

	i915_gem_shrink_all(dev_priv);
1734 1735 1736 1737 1738
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1739 1740 1741 1742 1743 1744 1745
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1746
int
1747 1748 1749 1750
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1751
{
1752
	struct drm_i915_private *dev_priv = dev->dev_private;
1753
	struct drm_i915_gem_object *obj;
1754 1755
	int ret;

1756
	ret = i915_mutex_lock_interruptible(dev);
1757
	if (ret)
1758
		return ret;
1759

1760
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1761
	if (&obj->base == NULL) {
1762 1763 1764
		ret = -ENOENT;
		goto unlock;
	}
1765

B
Ben Widawsky 已提交
1766
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1767
		ret = -E2BIG;
1768
		goto out;
1769 1770
	}

1771
	if (obj->madv != I915_MADV_WILLNEED) {
1772
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1773
		ret = -EFAULT;
1774
		goto out;
1775 1776
	}

1777 1778 1779
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1780

1781
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1782

1783
out:
1784
	drm_gem_object_unreference(&obj->base);
1785
unlock:
1786
	mutex_unlock(&dev->struct_mutex);
1787
	return ret;
1788 1789
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1814 1815 1816 1817 1818 1819
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1820 1821 1822
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1823
{
1824
	i915_gem_object_free_mmap_offset(obj);
1825

1826 1827
	if (obj->base.filp == NULL)
		return;
1828

D
Daniel Vetter 已提交
1829 1830 1831 1832 1833
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1834
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1835 1836
	obj->madv = __I915_MADV_PURGED;
}
1837

1838 1839 1840
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1841
{
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1856 1857
}

1858
static void
1859
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1860
{
1861 1862
	struct sg_page_iter sg_iter;
	int ret;
1863

1864
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1865

C
Chris Wilson 已提交
1866 1867 1868 1869 1870 1871
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1872
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1873 1874 1875
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1876
	if (i915_gem_object_needs_bit17_swizzle(obj))
1877 1878
		i915_gem_object_save_bit_17_swizzle(obj);

1879 1880
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1881

1882
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1883
		struct page *page = sg_page_iter_page(&sg_iter);
1884

1885
		if (obj->dirty)
1886
			set_page_dirty(page);
1887

1888
		if (obj->madv == I915_MADV_WILLNEED)
1889
			mark_page_accessed(page);
1890

1891
		page_cache_release(page);
1892
	}
1893
	obj->dirty = 0;
1894

1895 1896
	sg_free_table(obj->pages);
	kfree(obj->pages);
1897
}
C
Chris Wilson 已提交
1898

1899
int
1900 1901 1902 1903
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1904
	if (obj->pages == NULL)
1905 1906
		return 0;

1907 1908 1909
	if (obj->pages_pin_count)
		return -EBUSY;

1910
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
1911

1912 1913 1914
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
1915
	list_del(&obj->global_list);
1916

1917
	ops->put_pages(obj);
1918
	obj->pages = NULL;
1919

1920
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
1921 1922 1923 1924

	return 0;
}

1925
static unsigned long
1926 1927
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
		  bool purgeable_only)
C
Chris Wilson 已提交
1928
{
1929 1930
	struct list_head still_in_list;
	struct drm_i915_gem_object *obj;
1931
	unsigned long count = 0;
C
Chris Wilson 已提交
1932

1933
	/*
1934
	 * As we may completely rewrite the (un)bound list whilst unbinding
1935 1936 1937
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
1951
	 */
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	INIT_LIST_HEAD(&still_in_list);
	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
		obj = list_first_entry(&dev_priv->mm.unbound_list,
				       typeof(*obj), global_list);
		list_move_tail(&obj->global_list, &still_in_list);

		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

		drm_gem_object_reference(&obj->base);

		if (i915_gem_object_put_pages(obj) == 0)
			count += obj->base.size >> PAGE_SHIFT;

		drm_gem_object_unreference(&obj->base);
	}
	list_splice(&still_in_list, &dev_priv->mm.unbound_list);

	INIT_LIST_HEAD(&still_in_list);
1971
	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1972
		struct i915_vma *vma, *v;
1973

1974 1975
		obj = list_first_entry(&dev_priv->mm.bound_list,
				       typeof(*obj), global_list);
1976
		list_move_tail(&obj->global_list, &still_in_list);
1977

1978 1979 1980
		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

1981 1982
		drm_gem_object_reference(&obj->base);

1983 1984 1985
		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
			if (i915_vma_unbind(vma))
				break;
1986

1987
		if (i915_gem_object_put_pages(obj) == 0)
C
Chris Wilson 已提交
1988
			count += obj->base.size >> PAGE_SHIFT;
1989 1990

		drm_gem_object_unreference(&obj->base);
C
Chris Wilson 已提交
1991
	}
1992
	list_splice(&still_in_list, &dev_priv->mm.bound_list);
C
Chris Wilson 已提交
1993 1994 1995 1996

	return count;
}

1997
static unsigned long
1998 1999 2000 2001 2002
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	return __i915_gem_shrink(dev_priv, target, true);
}

2003
static unsigned long
C
Chris Wilson 已提交
2004 2005 2006
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2007
	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
D
Daniel Vetter 已提交
2008 2009
}

2010
static int
C
Chris Wilson 已提交
2011
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2012
{
C
Chris Wilson 已提交
2013
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2014 2015
	int page_count, i;
	struct address_space *mapping;
2016 2017
	struct sg_table *st;
	struct scatterlist *sg;
2018
	struct sg_page_iter sg_iter;
2019
	struct page *page;
2020
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2021
	gfp_t gfp;
2022

C
Chris Wilson 已提交
2023 2024 2025 2026 2027 2028 2029
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2030 2031 2032 2033
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2034
	page_count = obj->base.size / PAGE_SIZE;
2035 2036
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2037
		return -ENOMEM;
2038
	}
2039

2040 2041 2042 2043 2044
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2045
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2046
	gfp = mapping_gfp_mask(mapping);
2047
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2048
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2049 2050 2051
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2062
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
C
Chris Wilson 已提交
2063 2064 2065 2066 2067 2068 2069
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

2070
			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2071 2072
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
2073 2074 2075 2076 2077 2078 2079 2080
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2081 2082 2083 2084 2085 2086 2087 2088 2089
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2090 2091 2092

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2093
	}
2094 2095 2096 2097
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2098 2099
	obj->pages = st;

2100
	if (i915_gem_object_needs_bit17_swizzle(obj))
2101 2102 2103 2104 2105
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
2106 2107
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2108
		page_cache_release(sg_page_iter_page(&sg_iter));
2109 2110
	sg_free_table(st);
	kfree(st);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2124 2125
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2140
	if (obj->pages)
2141 2142
		return 0;

2143
	if (obj->madv != I915_MADV_WILLNEED) {
2144
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2145
		return -EFAULT;
2146 2147
	}

2148 2149
	BUG_ON(obj->pages_pin_count);

2150 2151 2152 2153
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2154
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2155
	return 0;
2156 2157
}

B
Ben Widawsky 已提交
2158
static void
2159
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2160
			       struct intel_engine_cs *ring)
2161
{
2162
	struct drm_device *dev = obj->base.dev;
2163
	struct drm_i915_private *dev_priv = dev->dev_private;
2164
	u32 seqno = intel_ring_get_seqno(ring);
2165

2166
	BUG_ON(ring == NULL);
2167 2168 2169 2170
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2171
	obj->ring = ring;
2172 2173

	/* Add a reference if we're newly entering the active list. */
2174 2175 2176
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2177
	}
2178

2179
	list_move_tail(&obj->ring_list, &ring->active_list);
2180

2181
	obj->last_read_seqno = seqno;
2182

2183
	if (obj->fenced_gpu_access) {
2184 2185
		obj->last_fenced_seqno = seqno;

2186 2187 2188 2189 2190 2191 2192 2193
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
2194 2195 2196
	}
}

B
Ben Widawsky 已提交
2197
void i915_vma_move_to_active(struct i915_vma *vma,
2198
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2199 2200 2201 2202 2203
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2204 2205
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2206
{
B
Ben Widawsky 已提交
2207
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2208 2209
	struct i915_address_space *vm;
	struct i915_vma *vma;
2210

2211
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2212
	BUG_ON(!obj->active);
2213

2214 2215 2216 2217 2218
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2219

2220
	list_del_init(&obj->ring_list);
2221 2222
	obj->ring = NULL;

2223 2224 2225 2226 2227
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2228 2229 2230 2231 2232 2233
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2234
}
2235

2236 2237 2238
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2239
	struct intel_engine_cs *ring = obj->ring;
2240 2241 2242 2243 2244 2245 2246 2247 2248

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2249
static int
2250
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251
{
2252
	struct drm_i915_private *dev_priv = dev->dev_private;
2253
	struct intel_engine_cs *ring;
2254
	int ret, i, j;
2255

2256
	/* Carefully retire all requests without writing to the rings */
2257
	for_each_ring(ring, dev_priv, i) {
2258 2259 2260
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2261 2262
	}
	i915_gem_retire_requests(dev);
2263 2264

	/* Finally reset hw state */
2265
	for_each_ring(ring, dev_priv, i) {
2266
		intel_ring_init_seqno(ring, seqno);
2267

2268 2269
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2270
	}
2271

2272
	return 0;
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2301 2302
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303
{
2304 2305 2306 2307
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2308
		int ret = i915_gem_init_seqno(dev, 0);
2309 2310
		if (ret)
			return ret;
2311

2312 2313
		dev_priv->next_seqno = 1;
	}
2314

2315
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316
	return 0;
2317 2318
}

2319
int __i915_add_request(struct intel_engine_cs *ring,
2320
		       struct drm_file *file,
2321
		       struct drm_i915_gem_object *obj,
2322
		       u32 *out_seqno)
2323
{
2324
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2325
	struct drm_i915_gem_request *request;
2326
	u32 request_ring_position, request_start;
2327 2328
	int ret;

2329
	request_start = intel_ring_get_tail(ring);
2330 2331 2332 2333 2334 2335 2336
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2337 2338 2339
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
2340

2341 2342
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
2343
		return -ENOMEM;
2344

2345 2346 2347 2348 2349 2350 2351
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

2352
	ret = ring->add_request(ring);
2353
	if (ret)
2354
		return ret;
2355

2356
	request->seqno = intel_ring_get_seqno(ring);
2357
	request->ring = ring;
2358
	request->head = request_start;
2359
	request->tail = request_ring_position;
2360 2361 2362 2363 2364 2365 2366

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2367
	request->batch_obj = obj;
2368

2369 2370 2371 2372
	/* Hold a reference to the current context so that we can inspect
	 * it later in case a hangcheck error event fires.
	 */
	request->ctx = ring->last_context;
2373 2374 2375
	if (request->ctx)
		i915_gem_context_reference(request->ctx);

2376
	request->emitted_jiffies = jiffies;
2377
	list_add_tail(&request->list, &ring->request_list);
2378
	request->file_priv = NULL;
2379

C
Chris Wilson 已提交
2380 2381 2382
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2383
		spin_lock(&file_priv->mm.lock);
2384
		request->file_priv = file_priv;
2385
		list_add_tail(&request->client_list,
2386
			      &file_priv->mm.request_list);
2387
		spin_unlock(&file_priv->mm.lock);
2388
	}
2389

2390
	trace_i915_gem_request_add(ring, request->seqno);
2391
	ring->outstanding_lazy_seqno = 0;
2392
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2393

2394
	if (!dev_priv->ums.mm_suspended) {
2395 2396
		i915_queue_hangcheck(ring->dev);

2397 2398 2399 2400 2401
		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
		intel_mark_busy(dev_priv->dev);
B
Ben Gamari 已提交
2402
	}
2403

2404
	if (out_seqno)
2405
		*out_seqno = request->seqno;
2406
	return 0;
2407 2408
}

2409 2410
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2411
{
2412
	struct drm_i915_file_private *file_priv = request->file_priv;
2413

2414 2415
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2416

2417
	spin_lock(&file_priv->mm.lock);
2418 2419
	list_del(&request->client_list);
	request->file_priv = NULL;
2420
	spin_unlock(&file_priv->mm.lock);
2421 2422
}

2423
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2424
				   const struct intel_context *ctx)
2425
{
2426
	unsigned long elapsed;
2427

2428 2429 2430
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2431 2432 2433
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2434
		if (!i915_gem_context_is_default(ctx)) {
2435
			DRM_DEBUG("context hanging too fast, banning!\n");
2436
			return true;
2437 2438 2439
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2440
			return true;
2441
		}
2442 2443 2444 2445 2446
	}

	return false;
}

2447
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2448
				  struct intel_context *ctx,
2449
				  const bool guilty)
2450
{
2451 2452 2453 2454
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2455

2456 2457 2458
	hs = &ctx->hang_stats;

	if (guilty) {
2459
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2460 2461 2462 2463
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2464 2465 2466
	}
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

	if (request->ctx)
		i915_gem_context_unreference(request->ctx);

	kfree(request);
}

2478
struct drm_i915_gem_request *
2479
i915_gem_find_active_request(struct intel_engine_cs *ring)
2480
{
2481
	struct drm_i915_gem_request *request;
2482 2483 2484
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2485 2486 2487 2488

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2489

2490
		return request;
2491
	}
2492 2493 2494 2495 2496

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2497
				       struct intel_engine_cs *ring)
2498 2499 2500 2501
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2502
	request = i915_gem_find_active_request(ring);
2503 2504 2505 2506 2507 2508

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2509
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2510 2511

	list_for_each_entry_continue(request, &ring->request_list, list)
2512
		i915_set_reset_status(dev_priv, request->ctx, false);
2513
}
2514

2515
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2516
					struct intel_engine_cs *ring)
2517
{
2518
	while (!list_empty(&ring->active_list)) {
2519
		struct drm_i915_gem_object *obj;
2520

2521 2522 2523
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2524

2525
		i915_gem_object_move_to_inactive(obj);
2526
	}
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2544 2545 2546 2547 2548

	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2549 2550
}

2551
void i915_gem_restore_fences(struct drm_device *dev)
2552 2553 2554 2555
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2556
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2557
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2569 2570 2571
	}
}

2572
void i915_gem_reset(struct drm_device *dev)
2573
{
2574
	struct drm_i915_private *dev_priv = dev->dev_private;
2575
	struct intel_engine_cs *ring;
2576
	int i;
2577

2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2586
	for_each_ring(ring, dev_priv, i)
2587
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2588

2589 2590
	i915_gem_context_reset(dev);

2591
	i915_gem_restore_fences(dev);
2592 2593 2594 2595 2596
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2597
void
2598
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2599 2600 2601
{
	uint32_t seqno;

C
Chris Wilson 已提交
2602
	if (list_empty(&ring->request_list))
2603 2604
		return;

C
Chris Wilson 已提交
2605
	WARN_ON(i915_verify_lists(ring->dev));
2606

2607
	seqno = ring->get_seqno(ring, true);
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2627
	while (!list_empty(&ring->request_list)) {
2628 2629
		struct drm_i915_gem_request *request;

2630
		request = list_first_entry(&ring->request_list,
2631 2632 2633
					   struct drm_i915_gem_request,
					   list);

2634
		if (!i915_seqno_passed(seqno, request->seqno))
2635 2636
			break;

C
Chris Wilson 已提交
2637
		trace_i915_gem_request_retire(ring, request->seqno);
2638 2639 2640 2641 2642
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2643
		ring->buffer->last_retired_head = request->tail;
2644

2645
		i915_gem_free_request(request);
2646
	}
2647

C
Chris Wilson 已提交
2648 2649
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2650
		ring->irq_put(ring);
C
Chris Wilson 已提交
2651
		ring->trace_irq_seqno = 0;
2652
	}
2653

C
Chris Wilson 已提交
2654
	WARN_ON(i915_verify_lists(ring->dev));
2655 2656
}

2657
bool
2658 2659
i915_gem_retire_requests(struct drm_device *dev)
{
2660
	struct drm_i915_private *dev_priv = dev->dev_private;
2661
	struct intel_engine_cs *ring;
2662
	bool idle = true;
2663
	int i;
2664

2665
	for_each_ring(ring, dev_priv, i) {
2666
		i915_gem_retire_requests_ring(ring);
2667 2668 2669 2670 2671 2672 2673 2674 2675
		idle &= list_empty(&ring->request_list);
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2676 2677
}

2678
static void
2679 2680
i915_gem_retire_work_handler(struct work_struct *work)
{
2681 2682 2683
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2684
	bool idle;
2685

2686
	/* Come back later if the device is busy... */
2687 2688 2689 2690
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2691
	}
2692
	if (!idle)
2693 2694
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2695
}
2696

2697 2698 2699 2700 2701 2702 2703
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2704 2705
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2717
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2718 2719 2720 2721 2722 2723 2724 2725 2726
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2752
	struct drm_i915_private *dev_priv = dev->dev_private;
2753 2754
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2755
	struct intel_engine_cs *ring = NULL;
2756
	struct timespec timeout_stack, *timeout = NULL;
2757
	unsigned reset_counter;
2758 2759 2760
	u32 seqno = 0;
	int ret = 0;

2761 2762 2763 2764
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2776 2777
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2778 2779 2780 2781
	if (ret)
		goto out;

	if (obj->active) {
2782
		seqno = obj->last_read_seqno;
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2798
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2799 2800
	mutex_unlock(&dev->struct_mutex);

2801
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2802
	if (timeout)
2803
		args->timeout_ns = timespec_to_ns(timeout);
2804 2805 2806 2807 2808 2809 2810 2811
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2824 2825
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2826
		     struct intel_engine_cs *to)
2827
{
2828
	struct intel_engine_cs *from = obj->ring;
2829 2830 2831 2832 2833 2834
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2835
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2836
		return i915_gem_object_wait_rendering(obj, false);
2837 2838 2839

	idx = intel_ring_sync_index(from, to);

2840
	seqno = obj->last_read_seqno;
2841
	if (seqno <= from->semaphore.sync_seqno[idx])
2842 2843
		return 0;

2844 2845 2846
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2847

2848
	trace_i915_gem_ring_sync_to(from, to, seqno);
2849
	ret = to->semaphore.sync_to(to, from, seqno);
2850
	if (!ret)
2851 2852 2853 2854
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2855
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2856

2857
	return ret;
2858 2859
}

2860 2861 2862 2863 2864 2865 2866
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2867 2868 2869
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2870 2871 2872
	/* Wait for any direct GTT access to complete */
	mb();

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2884
int i915_vma_unbind(struct i915_vma *vma)
2885
{
2886
	struct drm_i915_gem_object *obj = vma->obj;
2887
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2888
	int ret;
2889

2890
	if (list_empty(&vma->vma_link))
2891 2892
		return 0;

2893 2894 2895 2896
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2897

B
Ben Widawsky 已提交
2898
	if (vma->pin_count)
2899
		return -EBUSY;
2900

2901 2902
	BUG_ON(obj->pages == NULL);

2903
	ret = i915_gem_object_finish_gpu(obj);
2904
	if (ret)
2905 2906 2907 2908 2909 2910
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2911 2912
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
2913

2914 2915 2916 2917 2918
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
2919

2920
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2921

2922 2923
	vma->unbind_vma(vma);

2924
	i915_gem_gtt_finish_object(obj);
2925

2926
	list_del_init(&vma->mm_list);
2927
	/* Avoid an unnecessary call to unbind on rebind. */
2928 2929
	if (i915_is_ggtt(vma->vm))
		obj->map_and_fenceable = true;
2930

B
Ben Widawsky 已提交
2931 2932 2933 2934
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
2935
	 * no more VMAs exist. */
B
Ben Widawsky 已提交
2936 2937
	if (list_empty(&obj->vma_list))
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2938

2939 2940 2941 2942 2943 2944
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2945
	return 0;
2946 2947
}

2948
int i915_gpu_idle(struct drm_device *dev)
2949
{
2950
	struct drm_i915_private *dev_priv = dev->dev_private;
2951
	struct intel_engine_cs *ring;
2952
	int ret, i;
2953 2954

	/* Flush everything onto the inactive list. */
2955
	for_each_ring(ring, dev_priv, i) {
2956
		ret = i915_switch_context(ring, ring->default_context);
2957 2958 2959
		if (ret)
			return ret;

2960
		ret = intel_ring_idle(ring);
2961 2962 2963
		if (ret)
			return ret;
	}
2964

2965
	return 0;
2966 2967
}

2968 2969
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2970
{
2971
	struct drm_i915_private *dev_priv = dev->dev_private;
2972 2973
	int fence_reg;
	int fence_pitch_shift;
2974

2975 2976 2977 2978 2979 2980 2981 2982
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

2997
	if (obj) {
2998
		u32 size = i915_gem_obj_ggtt_size(obj);
2999
		uint64_t val;
3000

3001
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3002
				 0xfffff000) << 32;
3003
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3004
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3005 3006 3007
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3018 3019
}

3020 3021
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3022
{
3023
	struct drm_i915_private *dev_priv = dev->dev_private;
3024
	u32 val;
3025

3026
	if (obj) {
3027
		u32 size = i915_gem_obj_ggtt_size(obj);
3028 3029
		int pitch_val;
		int tile_width;
3030

3031
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3032
		     (size & -size) != size ||
3033 3034 3035
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3046
		val = i915_gem_obj_ggtt_offset(obj);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3062 3063
}

3064 3065
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3066
{
3067
	struct drm_i915_private *dev_priv = dev->dev_private;
3068 3069
	uint32_t val;

3070
	if (obj) {
3071
		u32 size = i915_gem_obj_ggtt_size(obj);
3072
		uint32_t pitch_val;
3073

3074
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3075
		     (size & -size) != size ||
3076 3077 3078
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3079

3080 3081
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3082

3083
		val = i915_gem_obj_ggtt_offset(obj);
3084 3085 3086 3087 3088 3089 3090
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3091

3092 3093 3094 3095
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3096 3097 3098 3099 3100
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3101 3102 3103
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3104 3105 3106 3107 3108 3109 3110 3111
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3112 3113 3114 3115
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3116
	switch (INTEL_INFO(dev)->gen) {
3117
	case 8:
3118
	case 7:
3119
	case 6:
3120 3121 3122 3123
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3124
	default: BUG();
3125
	}
3126 3127 3128 3129 3130 3131

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3132 3133
}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3144
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3145 3146 3147
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3148 3149

	if (enable) {
3150
		obj->fence_reg = reg;
3151 3152 3153 3154 3155 3156 3157
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3158
	obj->fence_dirty = false;
3159 3160
}

3161
static int
3162
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3163
{
3164
	if (obj->last_fenced_seqno) {
3165
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3166 3167
		if (ret)
			return ret;
3168 3169 3170 3171

		obj->last_fenced_seqno = 0;
	}

3172
	obj->fenced_gpu_access = false;
3173 3174 3175 3176 3177 3178
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3179
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3180
	struct drm_i915_fence_reg *fence;
3181 3182
	int ret;

3183
	ret = i915_gem_object_wait_fence(obj);
3184 3185 3186
	if (ret)
		return ret;

3187 3188
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3189

3190 3191
	fence = &dev_priv->fence_regs[obj->fence_reg];

3192 3193 3194
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3195
	i915_gem_object_fence_lost(obj);
3196
	i915_gem_object_update_fence(obj, fence, false);
3197 3198 3199 3200 3201

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3202
i915_find_fence_reg(struct drm_device *dev)
3203 3204
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3205
	struct drm_i915_fence_reg *reg, *avail;
3206
	int i;
3207 3208

	/* First try to find a free reg */
3209
	avail = NULL;
3210 3211 3212
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3213
			return reg;
3214

3215
		if (!reg->pin_count)
3216
			avail = reg;
3217 3218
	}

3219
	if (avail == NULL)
3220
		goto deadlock;
3221 3222

	/* None available, try to steal one or wait for a user to finish */
3223
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3224
		if (reg->pin_count)
3225 3226
			continue;

C
Chris Wilson 已提交
3227
		return reg;
3228 3229
	}

3230 3231 3232 3233 3234 3235
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3236 3237
}

3238
/**
3239
 * i915_gem_object_get_fence - set up fencing for an object
3240 3241 3242 3243 3244 3245 3246 3247 3248
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3249 3250
 *
 * For an untiled surface, this removes any existing fence.
3251
 */
3252
int
3253
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3254
{
3255
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3256
	struct drm_i915_private *dev_priv = dev->dev_private;
3257
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3258
	struct drm_i915_fence_reg *reg;
3259
	int ret;
3260

3261 3262 3263
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3264
	if (obj->fence_dirty) {
3265
		ret = i915_gem_object_wait_fence(obj);
3266 3267 3268
		if (ret)
			return ret;
	}
3269

3270
	/* Just update our place in the LRU if our fence is getting reused. */
3271 3272
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3273
		if (!obj->fence_dirty) {
3274 3275 3276 3277 3278 3279
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
3280 3281
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3282

3283 3284 3285
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3286
			ret = i915_gem_object_wait_fence(old);
3287 3288 3289
			if (ret)
				return ret;

3290
			i915_gem_object_fence_lost(old);
3291
		}
3292
	} else
3293 3294
		return 0;

3295 3296
	i915_gem_object_update_fence(obj, reg, enable);

3297
	return 0;
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
3308
	 * crossing memory domains and dying.
3309 3310 3311 3312
	 */
	if (HAS_LLC(dev))
		return true;

3313
	if (!drm_mm_node_allocated(gtt_space))
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

3337
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3338 3339 3340 3341 3342 3343 3344 3345
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3346 3347
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3358 3359
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

3370 3371 3372
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3373
static struct i915_vma *
3374 3375 3376
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3377
			   uint64_t flags)
3378
{
3379
	struct drm_device *dev = obj->base.dev;
3380
	struct drm_i915_private *dev_priv = dev->dev_private;
3381
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3382 3383 3384
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3385
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3386
	struct i915_vma *vma;
3387
	int ret;
3388

3389 3390 3391 3392 3393
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3394
						     obj->tiling_mode, true);
3395
	unfenced_alignment =
3396
		i915_gem_get_gtt_alignment(dev,
3397 3398
					   obj->base.size,
					   obj->tiling_mode, false);
3399

3400
	if (alignment == 0)
3401
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3402
						unfenced_alignment;
3403
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3404
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3405
		return ERR_PTR(-EINVAL);
3406 3407
	}

3408
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3409

3410 3411 3412
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3413 3414
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3415
			  obj->base.size,
3416
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3417
			  end);
3418
		return ERR_PTR(-E2BIG);
3419 3420
	}

3421
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3422
	if (ret)
3423
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3424

3425 3426
	i915_gem_object_pin_pages(obj);

3427
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3428
	if (IS_ERR(vma))
3429
		goto err_unpin;
B
Ben Widawsky 已提交
3430

3431
search_free:
3432
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3433
						  size, alignment,
3434 3435
						  obj->cache_level,
						  start, end,
3436 3437
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3438
	if (ret) {
3439
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3440 3441 3442
					       obj->cache_level,
					       start, end,
					       flags);
3443 3444
		if (ret == 0)
			goto search_free;
3445

3446
		goto err_free_vma;
3447
	}
B
Ben Widawsky 已提交
3448
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3449
					      obj->cache_level))) {
B
Ben Widawsky 已提交
3450
		ret = -EINVAL;
3451
		goto err_remove_node;
3452 3453
	}

3454
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3455
	if (ret)
3456
		goto err_remove_node;
3457

3458
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3459
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3460

3461 3462
	if (i915_is_ggtt(vm)) {
		bool mappable, fenceable;
3463

3464 3465
		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);
3466

3467 3468
		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);
3469

3470
		obj->map_and_fenceable = mappable && fenceable;
3471
	}
3472

3473
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3474

3475
	trace_i915_vma_bind(vma, flags);
3476 3477 3478
	vma->bind_vma(vma, obj->cache_level,
		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);

3479
	i915_gem_verify_gtt(dev);
3480
	return vma;
B
Ben Widawsky 已提交
3481

3482
err_remove_node:
3483
	drm_mm_remove_node(&vma->node);
3484
err_free_vma:
B
Ben Widawsky 已提交
3485
	i915_gem_vma_destroy(vma);
3486
	vma = ERR_PTR(ret);
3487
err_unpin:
B
Ben Widawsky 已提交
3488
	i915_gem_object_unpin_pages(obj);
3489
	return vma;
3490 3491
}

3492
bool
3493 3494
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3495 3496 3497 3498 3499
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3500
	if (obj->pages == NULL)
3501
		return false;
3502

3503 3504 3505 3506 3507
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
	if (obj->stolen)
3508
		return false;
3509

3510 3511 3512 3513 3514 3515 3516 3517
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3518
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3519
		return false;
3520

C
Chris Wilson 已提交
3521
	trace_i915_gem_object_clflush(obj);
3522
	drm_clflush_sg(obj->pages);
3523 3524

	return true;
3525 3526 3527 3528
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3529
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3530
{
C
Chris Wilson 已提交
3531 3532
	uint32_t old_write_domain;

3533
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3534 3535
		return;

3536
	/* No actual flushing is required for the GTT write domain.  Writes
3537 3538
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3539 3540 3541 3542
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3543
	 */
3544 3545
	wmb();

3546 3547
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3548 3549

	trace_i915_gem_object_change_domain(obj,
3550
					    obj->base.read_domains,
C
Chris Wilson 已提交
3551
					    old_write_domain);
3552 3553 3554 3555
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3556 3557
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3558
{
C
Chris Wilson 已提交
3559
	uint32_t old_write_domain;
3560

3561
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3562 3563
		return;

3564 3565 3566
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3567 3568
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3569 3570

	trace_i915_gem_object_change_domain(obj,
3571
					    obj->base.read_domains,
C
Chris Wilson 已提交
3572
					    old_write_domain);
3573 3574
}

3575 3576 3577 3578 3579 3580
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3581
int
3582
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3583
{
3584
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3585
	uint32_t old_write_domain, old_read_domains;
3586
	int ret;
3587

3588
	/* Not valid to be called on unbound objects. */
3589
	if (!i915_gem_obj_bound_any(obj))
3590 3591
		return -EINVAL;

3592 3593 3594
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3595
	ret = i915_gem_object_wait_rendering(obj, !write);
3596 3597 3598
	if (ret)
		return ret;

3599
	i915_gem_object_retire(obj);
3600
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3601

3602 3603 3604 3605 3606 3607 3608
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3609 3610
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3611

3612 3613 3614
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3615 3616
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617
	if (write) {
3618 3619 3620
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3621 3622
	}

C
Chris Wilson 已提交
3623 3624 3625 3626
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3627
	/* And bump the LRU for this access */
B
Ben Widawsky 已提交
3628
	if (i915_gem_object_is_inactive(obj)) {
3629
		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
B
Ben Widawsky 已提交
3630 3631 3632 3633 3634
		if (vma)
			list_move_tail(&vma->mm_list,
				       &dev_priv->gtt.base.inactive_list);

	}
3635

3636 3637 3638
	return 0;
}

3639 3640 3641
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3642
	struct drm_device *dev = obj->base.dev;
3643
	struct i915_vma *vma, *next;
3644 3645 3646 3647 3648
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3649
	if (i915_gem_obj_is_pinned(obj)) {
3650 3651 3652 3653
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3654
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3655
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3656
			ret = i915_vma_unbind(vma);
3657 3658 3659
			if (ret)
				return ret;
		}
3660 3661
	}

3662
	if (i915_gem_obj_bound_any(obj)) {
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3673
		if (INTEL_INFO(dev)->gen < 6) {
3674 3675 3676 3677 3678
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3679
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3680 3681 3682
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3683 3684
	}

3685 3686 3687 3688 3689
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3690 3691 3692 3693 3694 3695 3696 3697
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3698
		i915_gem_object_retire(obj);
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

3712
	i915_gem_verify_gtt(dev);
3713 3714 3715
	return 0;
}

B
Ben Widawsky 已提交
3716 3717
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3718
{
B
Ben Widawsky 已提交
3719
	struct drm_i915_gem_caching *args = data;
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3733 3734 3735 3736 3737 3738
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3739 3740 3741 3742
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3743 3744 3745 3746
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3747 3748 3749 3750 3751 3752 3753

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3754 3755
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3756
{
B
Ben Widawsky 已提交
3757
	struct drm_i915_gem_caching *args = data;
3758 3759 3760 3761
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3762 3763
	switch (args->caching) {
	case I915_CACHING_NONE:
3764 3765
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3766
	case I915_CACHING_CACHED:
3767 3768
		level = I915_CACHE_LLC;
		break;
3769 3770 3771
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3772 3773 3774 3775
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3776 3777 3778 3779
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3794 3795
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3796 3797 3798 3799 3800 3801 3802 3803 3804
	struct i915_vma *vma;

	if (list_empty(&obj->vma_list))
		return false;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3816
	return vma->pin_count - !!obj->user_pin_count;
3817 3818
}

3819
/*
3820 3821 3822
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3823 3824
 */
int
3825 3826
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3827
				     struct intel_engine_cs *pipelined)
3828
{
3829
	u32 old_read_domains, old_write_domain;
3830
	bool was_pin_display;
3831 3832
	int ret;

3833
	if (pipelined != obj->ring) {
3834 3835
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3836 3837 3838
			return ret;
	}

3839 3840 3841
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3842
	was_pin_display = obj->pin_display;
3843 3844
	obj->pin_display = true;

3845 3846 3847 3848 3849 3850 3851 3852 3853
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3854 3855
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3856
	if (ret)
3857
		goto err_unpin_display;
3858

3859 3860 3861 3862
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3863
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3864
	if (ret)
3865
		goto err_unpin_display;
3866

3867
	i915_gem_object_flush_cpu_write_domain(obj, true);
3868

3869
	old_write_domain = obj->base.write_domain;
3870
	old_read_domains = obj->base.read_domains;
3871 3872 3873 3874

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3875
	obj->base.write_domain = 0;
3876
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3877 3878 3879

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3880
					    old_write_domain);
3881 3882

	return 0;
3883 3884

err_unpin_display:
3885 3886
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3887 3888 3889 3890 3891 3892
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3893
	i915_gem_object_ggtt_unpin(obj);
3894
	obj->pin_display = is_pin_display(obj);
3895 3896
}

3897
int
3898
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3899
{
3900 3901
	int ret;

3902
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3903 3904
		return 0;

3905
	ret = i915_gem_object_wait_rendering(obj, false);
3906 3907 3908
	if (ret)
		return ret;

3909 3910
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3911
	return 0;
3912 3913
}

3914 3915 3916 3917 3918 3919
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3920
int
3921
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3922
{
C
Chris Wilson 已提交
3923
	uint32_t old_write_domain, old_read_domains;
3924 3925
	int ret;

3926 3927 3928
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3929
	ret = i915_gem_object_wait_rendering(obj, !write);
3930 3931 3932
	if (ret)
		return ret;

3933
	i915_gem_object_retire(obj);
3934
	i915_gem_object_flush_gtt_write_domain(obj);
3935

3936 3937
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3938

3939
	/* Flush the CPU cache if it's still invalid. */
3940
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3941
		i915_gem_clflush_object(obj, false);
3942

3943
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3944 3945 3946 3947 3948
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3949
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3950 3951 3952 3953 3954

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3955 3956
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3957
	}
3958

C
Chris Wilson 已提交
3959 3960 3961 3962
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3963 3964 3965
	return 0;
}

3966 3967 3968
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3969 3970 3971 3972
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3973 3974 3975
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3976
static int
3977
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3978
{
3979 3980
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3981
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3982
	struct drm_i915_gem_request *request;
3983
	struct intel_engine_cs *ring = NULL;
3984
	unsigned reset_counter;
3985 3986
	u32 seqno = 0;
	int ret;
3987

3988 3989 3990 3991 3992 3993 3994
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
3995

3996
	spin_lock(&file_priv->mm.lock);
3997
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3998 3999
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4000

4001 4002
		ring = request->ring;
		seqno = request->seqno;
4003
	}
4004
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4005
	spin_unlock(&file_priv->mm.lock);
4006

4007 4008
	if (seqno == 0)
		return 0;
4009

4010
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4011 4012
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4013 4014 4015 4016

	return ret;
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4036
int
4037
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4038
		    struct i915_address_space *vm,
4039
		    uint32_t alignment,
4040
		    uint64_t flags)
4041
{
4042
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4043
	struct i915_vma *vma;
4044 4045
	int ret;

4046 4047 4048
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4049
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4050
		return -EINVAL;
4051 4052 4053

	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4054 4055 4056
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4057
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4058
			WARN(vma->pin_count,
4059
			     "bo is already pinned with incorrect alignment:"
4060
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4061
			     " obj->map_and_fenceable=%d\n",
4062
			     i915_gem_obj_offset(obj, vm), alignment,
4063
			     !!(flags & PIN_MAPPABLE),
4064
			     obj->map_and_fenceable);
4065
			ret = i915_vma_unbind(vma);
4066 4067
			if (ret)
				return ret;
4068 4069

			vma = NULL;
4070 4071 4072
		}
	}

4073
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4074 4075 4076
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4077
	}
J
Jesse Barnes 已提交
4078

4079 4080
	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4081

4082
	vma->pin_count++;
4083 4084
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4085 4086 4087 4088 4089

	return 0;
}

void
B
Ben Widawsky 已提交
4090
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4091
{
B
Ben Widawsky 已提交
4092
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4093

B
Ben Widawsky 已提交
4094 4095 4096 4097 4098
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4099
		obj->pin_mappable = false;
4100 4101
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4128 4129
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4130
		   struct drm_file *file)
4131 4132
{
	struct drm_i915_gem_pin *args = data;
4133
	struct drm_i915_gem_object *obj;
4134 4135
	int ret;

4136 4137 4138
	if (INTEL_INFO(dev)->gen >= 6)
		return -ENODEV;

4139 4140 4141
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4142

4143
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4144
	if (&obj->base == NULL) {
4145 4146
		ret = -ENOENT;
		goto unlock;
4147 4148
	}

4149
	if (obj->madv != I915_MADV_WILLNEED) {
4150
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4151
		ret = -EFAULT;
4152
		goto out;
4153 4154
	}

4155
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4156
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4157
			  args->handle);
4158 4159
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4160 4161
	}

4162 4163 4164 4165 4166
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4167
	if (obj->user_pin_count == 0) {
4168
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4169 4170
		if (ret)
			goto out;
4171 4172
	}

4173 4174 4175
	obj->user_pin_count++;
	obj->pin_filp = file;

4176
	args->offset = i915_gem_obj_ggtt_offset(obj);
4177
out:
4178
	drm_gem_object_unreference(&obj->base);
4179
unlock:
4180
	mutex_unlock(&dev->struct_mutex);
4181
	return ret;
4182 4183 4184 4185
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4186
		     struct drm_file *file)
4187 4188
{
	struct drm_i915_gem_pin *args = data;
4189
	struct drm_i915_gem_object *obj;
4190
	int ret;
4191

4192 4193 4194
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4195

4196
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4197
	if (&obj->base == NULL) {
4198 4199
		ret = -ENOENT;
		goto unlock;
4200
	}
4201

4202
	if (obj->pin_filp != file) {
4203
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4204
			  args->handle);
4205 4206
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4207
	}
4208 4209 4210
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4211
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4212
	}
4213

4214
out:
4215
	drm_gem_object_unreference(&obj->base);
4216
unlock:
4217
	mutex_unlock(&dev->struct_mutex);
4218
	return ret;
4219 4220 4221 4222
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4223
		    struct drm_file *file)
4224 4225
{
	struct drm_i915_gem_busy *args = data;
4226
	struct drm_i915_gem_object *obj;
4227 4228
	int ret;

4229
	ret = i915_mutex_lock_interruptible(dev);
4230
	if (ret)
4231
		return ret;
4232

4233
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4234
	if (&obj->base == NULL) {
4235 4236
		ret = -ENOENT;
		goto unlock;
4237
	}
4238

4239 4240 4241 4242
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4243
	 */
4244
	ret = i915_gem_object_flush_active(obj);
4245

4246
	args->busy = obj->active;
4247 4248 4249 4250
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4251

4252
	drm_gem_object_unreference(&obj->base);
4253
unlock:
4254
	mutex_unlock(&dev->struct_mutex);
4255
	return ret;
4256 4257 4258 4259 4260 4261
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4262
	return i915_gem_ring_throttle(dev, file_priv);
4263 4264
}

4265 4266 4267 4268 4269
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
4270
	struct drm_i915_gem_object *obj;
4271
	int ret;
4272 4273 4274 4275 4276 4277 4278 4279 4280

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4281 4282 4283 4284
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4285
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4286
	if (&obj->base == NULL) {
4287 4288
		ret = -ENOENT;
		goto unlock;
4289 4290
	}

B
Ben Widawsky 已提交
4291
	if (i915_gem_obj_is_pinned(obj)) {
4292 4293
		ret = -EINVAL;
		goto out;
4294 4295
	}

4296 4297
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4298

C
Chris Wilson 已提交
4299 4300
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4301 4302
		i915_gem_object_truncate(obj);

4303
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4304

4305
out:
4306
	drm_gem_object_unreference(&obj->base);
4307
unlock:
4308
	mutex_unlock(&dev->struct_mutex);
4309
	return ret;
4310 4311
}

4312 4313
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4314
{
4315
	INIT_LIST_HEAD(&obj->global_list);
4316
	INIT_LIST_HEAD(&obj->ring_list);
4317
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4318
	INIT_LIST_HEAD(&obj->vma_list);
4319

4320 4321
	obj->ops = ops;

4322 4323 4324 4325 4326 4327 4328 4329
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4330 4331 4332 4333 4334
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4335 4336
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4337
{
4338
	struct drm_i915_gem_object *obj;
4339
	struct address_space *mapping;
D
Daniel Vetter 已提交
4340
	gfp_t mask;
4341

4342
	obj = i915_gem_object_alloc(dev);
4343 4344
	if (obj == NULL)
		return NULL;
4345

4346
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4347
		i915_gem_object_free(obj);
4348 4349
		return NULL;
	}
4350

4351 4352 4353 4354 4355 4356 4357
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4358
	mapping = file_inode(obj->base.filp)->i_mapping;
4359
	mapping_set_gfp_mask(mapping, mask);
4360

4361
	i915_gem_object_init(obj, &i915_gem_object_ops);
4362

4363 4364
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4365

4366 4367
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4383 4384
	trace_i915_gem_object_create(obj);

4385
	return obj;
4386 4387
}

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4412
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4413
{
4414
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4415
	struct drm_device *dev = obj->base.dev;
4416
	struct drm_i915_private *dev_priv = dev->dev_private;
4417
	struct i915_vma *vma, *next;
4418

4419 4420
	intel_runtime_pm_get(dev_priv);

4421 4422
	trace_i915_gem_object_destroy(obj);

4423
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4424 4425 4426 4427
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4428 4429
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4430

4431 4432
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4433

4434
			WARN_ON(i915_vma_unbind(vma));
4435

4436 4437
			dev_priv->mm.interruptible = was_interruptible;
		}
4438 4439
	}

4440 4441
	i915_gem_object_detach_phys(obj);

B
Ben Widawsky 已提交
4442 4443 4444 4445 4446
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4447 4448
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4449
	if (discard_backing_storage(obj))
4450
		obj->madv = I915_MADV_DONTNEED;
4451
	i915_gem_object_put_pages(obj);
4452
	i915_gem_object_free_mmap_offset(obj);
4453
	i915_gem_object_release_stolen(obj);
4454

4455 4456
	BUG_ON(obj->pages);

4457 4458
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4459

4460 4461 4462
	if (obj->ops->release)
		obj->ops->release(obj);

4463 4464
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4465

4466
	kfree(obj->bit_17);
4467
	i915_gem_object_free(obj);
4468 4469

	intel_runtime_pm_put(dev_priv);
4470 4471
}

4472
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4473
				     struct i915_address_space *vm)
4474 4475 4476 4477 4478 4479 4480 4481 4482
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4483 4484 4485
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4486 4487 4488 4489 4490

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4491
	list_del(&vma->vma_link);
4492

B
Ben Widawsky 已提交
4493 4494 4495
	kfree(vma);
}

4496 4497 4498 4499
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4500
	struct intel_engine_cs *ring;
4501 4502 4503 4504 4505 4506
	int i;

	for_each_ring(ring, dev_priv, i)
		intel_stop_ring_buffer(ring);
}

4507
int
4508
i915_gem_suspend(struct drm_device *dev)
4509
{
4510
	struct drm_i915_private *dev_priv = dev->dev_private;
4511
	int ret = 0;
4512

4513
	mutex_lock(&dev->struct_mutex);
4514
	if (dev_priv->ums.mm_suspended)
4515
		goto err;
4516

4517
	ret = i915_gpu_idle(dev);
4518
	if (ret)
4519
		goto err;
4520

4521
	i915_gem_retire_requests(dev);
4522

4523
	/* Under UMS, be paranoid and evict. */
4524
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4525
		i915_gem_evict_everything(dev);
4526 4527

	i915_kernel_lost_context(dev);
4528
	i915_gem_stop_ringbuffers(dev);
4529

4530 4531 4532 4533 4534 4535 4536 4537 4538
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound ums.mm_suspended!
	 */
	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
							     DRIVER_MODESET);
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4539
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4540
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4541

4542
	return 0;
4543 4544 4545 4546

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4547 4548
}

4549
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4550
{
4551
	struct drm_device *dev = ring->dev;
4552
	struct drm_i915_private *dev_priv = dev->dev_private;
4553 4554
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4555
	int i, ret;
B
Ben Widawsky 已提交
4556

4557
	if (!HAS_L3_DPF(dev) || !remap_info)
4558
		return 0;
B
Ben Widawsky 已提交
4559

4560 4561 4562
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4563

4564 4565 4566 4567 4568
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4569
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4570 4571 4572
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4573 4574
	}

4575
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4576

4577
	return ret;
B
Ben Widawsky 已提交
4578 4579
}

4580 4581
void i915_gem_init_swizzling(struct drm_device *dev)
{
4582
	struct drm_i915_private *dev_priv = dev->dev_private;
4583

4584
	if (INTEL_INFO(dev)->gen < 5 ||
4585 4586 4587 4588 4589 4590
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4591 4592 4593
	if (IS_GEN5(dev))
		return;

4594 4595
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4596
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4597
	else if (IS_GEN7(dev))
4598
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4599 4600
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4601 4602
	else
		BUG();
4603
}
D
Daniel Vetter 已提交
4604

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4621
static int i915_gem_init_rings(struct drm_device *dev)
4622
{
4623
	struct drm_i915_private *dev_priv = dev->dev_private;
4624
	int ret;
4625

4626
	ret = intel_init_render_ring_buffer(dev);
4627
	if (ret)
4628
		return ret;
4629 4630

	if (HAS_BSD(dev)) {
4631
		ret = intel_init_bsd_ring_buffer(dev);
4632 4633
		if (ret)
			goto cleanup_render_ring;
4634
	}
4635

4636
	if (intel_enable_blt(dev)) {
4637 4638 4639 4640 4641
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4642 4643 4644 4645 4646 4647
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4648 4649 4650 4651 4652
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4653

4654
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4655
	if (ret)
4656
		goto cleanup_bsd2_ring;
4657 4658 4659

	return 0;

4660 4661
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4662 4663
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4677
	struct drm_i915_private *dev_priv = dev->dev_private;
4678
	int ret, i;
4679 4680 4681 4682

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4683
	if (dev_priv->ellc_size)
4684
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4685

4686 4687 4688
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4689

4690
	if (HAS_PCH_NOP(dev)) {
4691 4692 4693 4694 4695 4696 4697 4698 4699
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4700 4701
	}

4702 4703 4704
	i915_gem_init_swizzling(dev);

	ret = i915_gem_init_rings(dev);
4705 4706 4707
	if (ret)
		return ret;

4708 4709 4710
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4711
	/*
4712 4713 4714 4715 4716
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4717
	 */
4718
	ret = i915_gem_context_enable(dev_priv);
4719
	if (ret && ret != -EIO) {
4720
		DRM_ERROR("Context enable failed %d\n", ret);
4721
		i915_gem_cleanup_ringbuffer(dev);
4722
	}
D
Daniel Vetter 已提交
4723

4724
	return ret;
4725 4726
}

4727 4728 4729 4730 4731 4732
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4733 4734 4735

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4736 4737 4738
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4739 4740 4741
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4742
	i915_gem_init_userptr(dev);
4743
	i915_gem_init_global_gtt(dev);
4744

4745
	ret = i915_gem_context_init(dev);
4746 4747
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4748
		return ret;
4749
	}
4750

4751
	ret = i915_gem_init_hw(dev);
4752 4753 4754 4755 4756 4757 4758 4759
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4760
	}
4761
	mutex_unlock(&dev->struct_mutex);
4762

4763 4764 4765
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4766
	return ret;
4767 4768
}

4769 4770 4771
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4772
	struct drm_i915_private *dev_priv = dev->dev_private;
4773
	struct intel_engine_cs *ring;
4774
	int i;
4775

4776 4777
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4778 4779
}

4780 4781 4782 4783
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4784
	struct drm_i915_private *dev_priv = dev->dev_private;
4785
	int ret;
4786

J
Jesse Barnes 已提交
4787 4788 4789
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4790
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4791
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4792
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4793 4794 4795
	}

	mutex_lock(&dev->struct_mutex);
4796
	dev_priv->ums.mm_suspended = 0;
4797

4798
	ret = i915_gem_init_hw(dev);
4799 4800
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4801
		return ret;
4802
	}
4803

4804
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4805

4806
	ret = drm_irq_install(dev, dev->pdev->irq);
4807 4808
	if (ret)
		goto cleanup_ringbuffer;
4809
	mutex_unlock(&dev->struct_mutex);
4810

4811
	return 0;
4812 4813 4814

cleanup_ringbuffer:
	i915_gem_cleanup_ringbuffer(dev);
4815
	dev_priv->ums.mm_suspended = 1;
4816 4817 4818
	mutex_unlock(&dev->struct_mutex);

	return ret;
4819 4820 4821 4822 4823 4824
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4825 4826 4827
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4828
	mutex_lock(&dev->struct_mutex);
4829
	drm_irq_uninstall(dev);
4830
	mutex_unlock(&dev->struct_mutex);
4831

4832
	return i915_gem_suspend(dev);
4833 4834 4835 4836 4837 4838 4839
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4840 4841 4842
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4843
	ret = i915_gem_suspend(dev);
4844 4845
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4846 4847
}

4848
static void
4849
init_ring_lists(struct intel_engine_cs *ring)
4850 4851 4852 4853 4854
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4855 4856
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4857
{
4858 4859
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4860 4861 4862 4863
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4864
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4865 4866
}

4867 4868 4869
void
i915_gem_load(struct drm_device *dev)
{
4870
	struct drm_i915_private *dev_priv = dev->dev_private;
4871 4872 4873 4874 4875 4876 4877
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4878

B
Ben Widawsky 已提交
4879 4880 4881
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4882
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4883 4884
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4885
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4886 4887
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4888
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4889
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4890 4891
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4892 4893
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4894
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4895

4896
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4897
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4898 4899
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4900 4901
	}

4902 4903
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4904
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4905 4906
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4907

4908 4909 4910
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4911 4912 4913 4914
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4915
	/* Initialize fence registers to zero */
4916 4917
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4918

4919
	i915_gem_detect_bit_6_swizzle(dev);
4920
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4921

4922 4923
	dev_priv->mm.interruptible = true;

4924 4925 4926 4927
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4928 4929 4930

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4931
}
4932

4933
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4934
{
4935
	struct drm_i915_file_private *file_priv = file->driver_priv;
4936

4937 4938
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4939 4940 4941 4942
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4943
	spin_lock(&file_priv->mm.lock);
4944 4945 4946 4947 4948 4949 4950 4951 4952
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4953
	spin_unlock(&file_priv->mm.lock);
4954
}
4955

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4968
	int ret;
4969 4970 4971 4972 4973 4974 4975 4976 4977

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
4978
	file_priv->file = file;
4979 4980 4981 4982 4983 4984

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

4985 4986 4987
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4988

4989
	return ret;
4990 4991
}

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5033
static unsigned long
5034
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5035
{
5036
	struct drm_i915_private *dev_priv =
5037
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5038
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5039
	struct drm_i915_gem_object *obj;
5040
	unsigned long count;
5041
	bool unlock;
5042

5043 5044
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5045

5046
	count = 0;
5047
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5048
		if (obj->pages_pin_count == 0)
5049
			count += obj->base.size >> PAGE_SHIFT;
5050 5051

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5052 5053
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5054
			count += obj->base.size >> PAGE_SHIFT;
5055
	}
5056

5057 5058
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5059

5060
	return count;
5061
}
5062 5063 5064 5065 5066 5067 5068 5069

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5070 5071
	if (!dev_priv->mm.aliasing_ppgtt ||
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		vm = &dev_priv->gtt.base;

	BUG_ON(list_empty(&o->vma_list));
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5089
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5090 5091 5092 5093 5094 5095 5096
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5097
	struct i915_vma *vma;
5098

5099 5100
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5112 5113
	if (!dev_priv->mm.aliasing_ppgtt ||
	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
		vm = &dev_priv->gtt.base;

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5125
static unsigned long
5126
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5127 5128
{
	struct drm_i915_private *dev_priv =
5129
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5130 5131
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5132
	bool unlock;
5133

5134 5135
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5136

5137 5138 5139 5140 5141
	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
	if (freed < sc->nr_to_scan)
		freed += __i915_gem_shrink(dev_priv,
					   sc->nr_to_scan - freed,
					   false);
5142 5143
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5144

5145 5146
	return freed;
}
5147

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
	unsigned long pinned, bound, unbound, freed;
	bool was_interruptible;
	bool unlock;

	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
		schedule_timeout_killable(1);
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

	freed = i915_gem_shrink_all(dev_priv);

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
		freed, pinned);
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

	*(unsigned long *)ptr += freed;
	return NOTIFY_DONE;
}

5212 5213 5214 5215
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

5216 5217 5218
	/* This WARN has probably outlived its usefulness (callers already
	 * WARN if they don't find the GGTT vma they expect). When removing,
	 * remember to remove the pre-check in is_pin_display() as well */
5219 5220 5221 5222
	if (WARN_ON(list_empty(&obj->vma_list)))
		return NULL;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5223
	if (vma->vm != obj_to_ggtt(obj))
5224 5225 5226 5227
		return NULL;

	return vma;
}