i915_gem.c 132.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72 73 74 75
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
76 77 78 79 80 81 82 83
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86
				  u64 size)
87
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95
				     u64 size)
96
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108 109
	might_sleep();

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       I915_RESET_TIMEOUT);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143 144 145
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
146

147 148
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149
			    struct drm_file *file)
150
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153
	struct drm_i915_gem_get_aperture *args = data;
154
	struct i915_vma *vma;
155
	size_t pinned;
156

157
	pinned = 0;
158
	mutex_lock(&dev->struct_mutex);
159
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163
		if (i915_vma_is_pinned(vma))
164
			pinned += vma->node.size;
165
	mutex_unlock(&dev->struct_mutex);
166

167
	args->aper_size = ggtt->base.total;
168
	args->aper_available_size = args->aper_size - pinned;
169

170 171 172
	return 0;
}

173
static struct sg_table *
174
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175
{
176
	struct address_space *mapping = obj->base.filp->f_mapping;
177
	drm_dma_handle_t *phys;
178 179
	struct sg_table *st;
	struct scatterlist *sg;
180
	char *vaddr;
181
	int i;
182

183
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184
		return ERR_PTR(-EINVAL);
185

186 187 188 189 190 191 192 193 194 195 196
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
197 198 199 200 201
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
202 203 204 205
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
206 207 208 209 210 211

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

212
		put_page(page);
213 214 215
		vaddr += PAGE_SIZE;
	}

216
	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 218

	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 220 221 222
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
223 224 225

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
226 227
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
228 229 230 231 232
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
233

234
	sg_dma_address(sg) = phys->busaddr;
235 236
	sg_dma_len(sg) = obj->base.size;

237 238 239 240 241
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
242
	return st;
243 244 245
}

static void
246
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 248
				struct sg_table *pages,
				bool needs_clflush)
249
{
C
Chris Wilson 已提交
250
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251

C
Chris Wilson 已提交
252 253
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
254

255 256
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258
		drm_clflush_sg(pages);
259 260 261 262 263 264 265 266 267

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
268
	__i915_gem_object_release_shmem(obj, pages, false);
269

C
Chris Wilson 已提交
270
	if (obj->mm.dirty) {
271
		struct address_space *mapping = obj->base.filp->f_mapping;
272
		char *vaddr = obj->phys_handle->vaddr;
273 274 275
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 277 278 279 280 281 282 283 284 285 286 287 288
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
289
			if (obj->mm.madv == I915_MADV_WILLNEED)
290
				mark_page_accessed(page);
291
			put_page(page);
292 293
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
294
		obj->mm.dirty = false;
295 296
	}

297 298
	sg_free_table(pages);
	kfree(pages);
299 300

	drm_pci_free(obj->base.dev, obj->phys_handle);
301 302 303 304 305
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
306
	i915_gem_object_unpin_pages(obj);
307 308 309 310 311 312 313 314
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
454 455
	}

456
	if (excl && timeout >= 0)
457 458 459 460 461
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532 533
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
534
 */
535 536 537 538 539
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550 551
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558 559 560 561
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

562 563 564 565
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
566
	int ret;
567

568 569
	if (align > obj->base.size)
		return -EINVAL;
570

571
	if (obj->ops == &i915_gem_phys_ops)
572 573
		return 0;

C
Chris Wilson 已提交
574
	if (obj->mm.madv != I915_MADV_WILLNEED)
575 576 577 578 579
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
580 581 582 583
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

584
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 586
	if (obj->mm.pages)
		return -EBUSY;
587 588 589

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
590
	return i915_gem_object_pin_pages(obj);
591 592 593 594 595
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
596
		     struct drm_file *file)
597 598
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
599
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
600 601 602 603

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
604
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 606
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
607

608
	drm_clflush_virt_range(vaddr, args->size);
609
	i915_gem_chipset_flush(to_i915(obj->base.dev));
610

611
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612
	return 0;
613 614
}

615
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616
{
617
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 619 620 621
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
622
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623
	kmem_cache_free(dev_priv->objects, obj);
624 625
}

626 627
static int
i915_gem_create(struct drm_file *file,
628
		struct drm_i915_private *dev_priv,
629 630
		uint64_t size,
		uint32_t *handle_p)
631
{
632
	struct drm_i915_gem_object *obj;
633 634
	int ret;
	u32 handle;
635

636
	size = roundup(size, PAGE_SIZE);
637 638
	if (size == 0)
		return -EINVAL;
639 640

	/* Allocate the new object */
641
	obj = i915_gem_object_create(dev_priv, size);
642 643
	if (IS_ERR(obj))
		return PTR_ERR(obj);
644

645
	ret = drm_gem_handle_create(file, &obj->base, &handle);
646
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
647
	i915_gem_object_put(obj);
648 649
	if (ret)
		return ret;
650

651
	*handle_p = handle;
652 653 654
	return 0;
}

655 656 657 658 659 660
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
661
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662
	args->size = args->pitch * args->height;
663
	return i915_gem_create(file, to_i915(dev),
664
			       args->size, &args->handle);
665 666 667 668
}

/**
 * Creates a new mm object and returns a handle to it.
669 670 671
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
672 673 674 675 676
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
677
	struct drm_i915_private *dev_priv = to_i915(dev);
678
	struct drm_i915_gem_create *args = data;
679

680
	i915_gem_flush_free_objects(dev_priv);
681

682
	return i915_gem_create(file, dev_priv,
683
			       args->size, &args->handle);
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

712
static inline int
713 714
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

738 739 740 741 742 743
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744
				    unsigned int *needs_clflush)
745 746 747
{
	int ret;

748
	lockdep_assert_held(&obj->base.dev->struct_mutex);
749

750
	*needs_clflush = 0;
751 752
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
753

754 755 756 757 758
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
759 760 761
	if (ret)
		return ret;

C
Chris Wilson 已提交
762
	ret = i915_gem_object_pin_pages(obj);
763 764 765
	if (ret)
		return ret;

766 767
	i915_gem_object_flush_gtt_write_domain(obj);

768 769 770 771 772 773
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 775
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
776 777 778

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 780 781
		if (ret)
			goto err_unpin;

782
		*needs_clflush = 0;
783 784
	}

785
	/* return with the pages pinned */
786
	return 0;
787 788 789 790

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
791 792 793 794 795 796 797
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

798 799
	lockdep_assert_held(&obj->base.dev->struct_mutex);

800 801 802 803
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

804 805 806 807 808 809
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
810 811 812
	if (ret)
		return ret;

C
Chris Wilson 已提交
813
	ret = i915_gem_object_pin_pages(obj);
814 815 816
	if (ret)
		return ret;

817 818
	i915_gem_object_flush_gtt_write_domain(obj);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 837 838
		if (ret)
			goto err_unpin;

839 840 841 842 843 844 845
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
846
	obj->mm.dirty = true;
847
	/* return with the pages pinned */
848
	return 0;
849 850 851 852

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
853 854
}

855 856 857 858
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
859
	if (unlikely(swizzled)) {
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

877 878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
880
shmem_pread_slow(struct page *page, int offset, int length,
881 882 883 884 885 886 887 888
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
889
		shmem_clflush_swizzled_range(vaddr + offset, length,
890
					     page_do_bit17_swizzling);
891 892

	if (page_do_bit17_swizzling)
893
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894
	else
895
		ret = __copy_to_user(user_data, vaddr + offset, length);
896 897
	kunmap(page);

898
	return ret ? - EFAULT : 0;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
977 978
{
	void *vaddr;
979
	unsigned long unwritten;
980 981

	/* We can use the cpu mem copy function because this is X86. */
982 983 984 985 986 987 988 989 990
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
991 992 993 994
	return unwritten;
}

static int
995 996
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
997
{
998 999
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1000
	struct drm_mm_node node;
1001 1002 1003
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1004 1005
	int ret;

1006 1007 1008 1009 1010 1011 1012
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1013 1014 1015
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1016
		ret = i915_vma_put_fence(vma);
1017 1018 1019 1020 1021
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1022
	if (IS_ERR(vma)) {
1023
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024
		if (ret)
1025 1026
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1027 1028 1029 1030 1031 1032
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1033
	mutex_unlock(&i915->drm.struct_mutex);
1034

1035 1036 1037
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054
					       node.start, I915_CACHE_NONE, 0);
1055 1056 1057 1058
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1059 1060 1061

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1071
	mutex_lock(&i915->drm.struct_mutex);
1072 1073 1074 1075
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1076
				       node.start, node.size);
1077 1078
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1079
		i915_vma_unpin(vma);
1080
	}
1081 1082 1083
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1084

1085 1086 1087
	return ret;
}

1088 1089
/**
 * Reads data from the object referenced by handle.
1090 1091 1092
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1093 1094 1095 1096 1097
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098
		     struct drm_file *file)
1099 1100
{
	struct drm_i915_gem_pread *args = data;
1101
	struct drm_i915_gem_object *obj;
1102
	int ret;
1103

1104 1105 1106 1107
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1108
		       u64_to_user_ptr(args->data_ptr),
1109 1110 1111
		       args->size))
		return -EFAULT;

1112
	obj = i915_gem_object_lookup(file, args->handle);
1113 1114
	if (!obj)
		return -ENOENT;
1115

1116
	/* Bounds check source.  */
1117
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1118
		ret = -EINVAL;
1119
		goto out;
C
Chris Wilson 已提交
1120 1121
	}

C
Chris Wilson 已提交
1122 1123
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1124 1125 1126 1127
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1128
	if (ret)
1129
		goto out;
1130

1131
	ret = i915_gem_object_pin_pages(obj);
1132
	if (ret)
1133
		goto out;
1134

1135
	ret = i915_gem_shmem_pread(obj, args);
1136
	if (ret == -EFAULT || ret == -ENODEV)
1137
		ret = i915_gem_gtt_pread(obj, args);
1138

1139 1140
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1141
	i915_gem_object_put(obj);
1142
	return ret;
1143 1144
}

1145 1146
/* This is the fast write path which cannot handle
 * page faults in the source data
1147
 */
1148

1149 1150 1151 1152
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1153
{
1154
	void *vaddr;
1155
	unsigned long unwritten;
1156

1157
	/* We can use the cpu mem copy function because this is X86. */
1158 1159
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160
						      user_data, length);
1161 1162 1163 1164 1165 1166 1167
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1168 1169 1170 1171

	return unwritten;
}

1172 1173 1174
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1175
 * @obj: i915 GEM object
1176
 * @args: pwrite arguments structure
1177
 */
1178
static int
1179 1180
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1181
{
1182
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 1184
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1185 1186 1187
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1188
	int ret;
1189

1190 1191 1192
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1193

1194
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1195
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196
				       PIN_MAPPABLE | PIN_NONBLOCK);
1197 1198 1199
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1200
		ret = i915_vma_put_fence(vma);
1201 1202 1203 1204 1205
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1206
	if (IS_ERR(vma)) {
1207
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208
		if (ret)
1209 1210
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1211
	}
D
Daniel Vetter 已提交
1212 1213 1214 1215 1216

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1217 1218
	mutex_unlock(&i915->drm.struct_mutex);

1219
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220

1221 1222 1223 1224
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1225 1226
		/* Operation in this page
		 *
1227 1228 1229
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1230
		 */
1231
		u32 page_base = node.start;
1232 1233
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1244
		/* If we get a fault while copying data, then (presumably) our
1245 1246
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1247 1248
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1249
		 */
1250 1251 1252 1253
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1254
		}
1255

1256 1257 1258
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1259
	}
1260
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261 1262

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1263
out_unpin:
1264 1265 1266
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1267
				       node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_unlock:
1273
	intel_runtime_pm_put(i915);
1274
	mutex_unlock(&i915->drm.struct_mutex);
1275
	return ret;
1276 1277
}

1278
static int
1279
shmem_pwrite_slow(struct page *page, int offset, int length,
1280 1281 1282 1283
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1284
{
1285 1286
	char *vaddr;
	int ret;
1287

1288
	vaddr = kmap(page);
1289
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290
		shmem_clflush_swizzled_range(vaddr + offset, length,
1291
					     page_do_bit17_swizzling);
1292
	if (page_do_bit17_swizzling)
1293 1294
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1295
	else
1296
		ret = __copy_from_user(vaddr + offset, user_data, length);
1297
	if (needs_clflush_after)
1298
		shmem_clflush_swizzled_range(vaddr + offset, length,
1299
					     page_do_bit17_swizzling);
1300
	kunmap(page);
1301

1302
	return ret ? -EFAULT : 0;
1303 1304
}

1305 1306 1307 1308 1309
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1310
static int
1311 1312 1313 1314
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1315
{
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1348
	unsigned int needs_clflush;
1349 1350
	unsigned int offset, idx;
	int ret;
1351

1352
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 1354 1355
	if (ret)
		return ret;

1356 1357 1358 1359
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1360

1361 1362 1363
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1364

1365 1366 1367 1368 1369 1370 1371
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372

1373 1374 1375 1376 1377 1378
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1379

1380 1381 1382
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1383

1384 1385 1386 1387
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1388
		if (ret)
1389
			break;
1390

1391 1392 1393
		remain -= length;
		user_data += length;
		offset = 0;
1394
	}
1395

1396
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397
	i915_gem_obj_finish_shmem_access(obj);
1398
	return ret;
1399 1400 1401 1402
}

/**
 * Writes data to the object referenced by handle.
1403 1404 1405
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1406 1407 1408 1409 1410
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411
		      struct drm_file *file)
1412 1413
{
	struct drm_i915_gem_pwrite *args = data;
1414
	struct drm_i915_gem_object *obj;
1415 1416 1417 1418 1419 1420
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1421
		       u64_to_user_ptr(args->data_ptr),
1422 1423 1424
		       args->size))
		return -EFAULT;

1425
	obj = i915_gem_object_lookup(file, args->handle);
1426 1427
	if (!obj)
		return -ENOENT;
1428

1429
	/* Bounds check destination. */
1430
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1431
		ret = -EINVAL;
1432
		goto err;
C
Chris Wilson 已提交
1433 1434
	}

C
Chris Wilson 已提交
1435 1436
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1437 1438 1439 1440 1441
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1442 1443 1444
	if (ret)
		goto err;

1445
	ret = i915_gem_object_pin_pages(obj);
1446
	if (ret)
1447
		goto err;
1448

D
Daniel Vetter 已提交
1449
	ret = -EFAULT;
1450 1451 1452 1453 1454 1455
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1456
	if (!i915_gem_object_has_struct_page(obj) ||
1457
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1458 1459
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1460 1461
		 * textures). Fallback to the shmem path in that case.
		 */
1462
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1463

1464
	if (ret == -EFAULT || ret == -ENOSPC) {
1465 1466
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1467
		else
1468
			ret = i915_gem_shmem_pwrite(obj, args);
1469
	}
1470

1471
	i915_gem_object_unpin_pages(obj);
1472
err:
C
Chris Wilson 已提交
1473
	i915_gem_object_put(obj);
1474
	return ret;
1475 1476
}

1477
static inline enum fb_op_origin
1478 1479
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1480 1481
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1492
			break;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505
	list_move_tail(&obj->global_link, list);
1506 1507
}

1508
/**
1509 1510
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1511 1512 1513
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1514 1515 1516
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517
			  struct drm_file *file)
1518 1519
{
	struct drm_i915_gem_set_domain *args = data;
1520
	struct drm_i915_gem_object *obj;
1521 1522
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1523
	int err;
1524

1525
	/* Only handle setting domains to types used by the CPU. */
1526
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527 1528 1529 1530 1531 1532 1533 1534
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1535
	obj = i915_gem_object_lookup(file, args->handle);
1536 1537
	if (!obj)
		return -ENOENT;
1538

1539 1540 1541 1542
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1543
	err = i915_gem_object_wait(obj,
1544 1545 1546 1547
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1548
	if (err)
C
Chris Wilson 已提交
1549
		goto out;
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1561
		goto out;
1562 1563 1564

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1565
		goto out_unpin;
1566

1567
	if (read_domains & I915_GEM_DOMAIN_GTT)
1568
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569
	else
1570
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571

1572 1573
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1574

1575
	mutex_unlock(&dev->struct_mutex);
1576

1577 1578 1579
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1580
out_unpin:
1581
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1582 1583
out:
	i915_gem_object_put(obj);
1584
	return err;
1585 1586 1587 1588
}

/**
 * Called when user space has done writes to this buffer
1589 1590 1591
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1592 1593 1594
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595
			 struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_sw_finish *args = data;
1598
	struct drm_i915_gem_object *obj;
1599
	int err = 0;
1600

1601
	obj = i915_gem_object_lookup(file, args->handle);
1602 1603
	if (!obj)
		return -ENOENT;
1604 1605

	/* Pinned buffers may be scanout, so flush the cache */
1606 1607 1608 1609 1610 1611 1612
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1613

C
Chris Wilson 已提交
1614
	i915_gem_object_put(obj);
1615
	return err;
1616 1617 1618
}

/**
1619 1620 1621 1622 1623
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1624 1625 1626
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1637 1638 1639
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640
		    struct drm_file *file)
1641 1642
{
	struct drm_i915_gem_mmap *args = data;
1643
	struct drm_i915_gem_object *obj;
1644 1645
	unsigned long addr;

1646 1647 1648
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1649
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650 1651
		return -ENODEV;

1652 1653
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1654
		return -ENOENT;
1655

1656 1657 1658
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1659
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1660
		i915_gem_object_put(obj);
1661 1662 1663
		return -EINVAL;
	}

1664
	addr = vm_mmap(obj->base.filp, 0, args->size,
1665 1666
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1667 1668 1669 1670
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1671
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1672
			i915_gem_object_put(obj);
1673 1674
			return -EINTR;
		}
1675 1676 1677 1678 1679 1680 1681
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1682 1683

		/* This may race, but that's ok, it only gets set */
1684
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685
	}
C
Chris Wilson 已提交
1686
	i915_gem_object_put(obj);
1687 1688 1689 1690 1691 1692 1693 1694
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1695 1696
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1697
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1761 1762
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1763
		min_t(unsigned int, chunk,
1764
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765 1766 1767 1768 1769 1770 1771 1772

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1773 1774
/**
 * i915_gem_fault - fault a page into the GTT
1775
 * @vmf: fault info
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1787 1788 1789
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1790
 */
1791
int i915_gem_fault(struct vm_fault *vmf)
1792
{
1793
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1794
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1795
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796
	struct drm_device *dev = obj->base.dev;
1797 1798
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1800
	struct i915_vma *vma;
1801
	pgoff_t page_offset;
1802
	unsigned int flags;
1803
	int ret;
1804

1805
	/* We don't use vmf->pgoff since that has the fake offset */
1806
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807

C
Chris Wilson 已提交
1808 1809
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1810
	/* Try to flush the object off the GPU first without holding the lock.
1811
	 * Upon acquiring the lock, we will perform our sanity checks and then
1812 1813 1814
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1815 1816 1817 1818
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1819
	if (ret)
1820 1821
		goto err;

1822 1823 1824 1825
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1826 1827 1828 1829 1830
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1831

1832
	/* Access to snoopable pages through the GTT is incoherent. */
1833
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834
		ret = -EFAULT;
1835
		goto err_unlock;
1836 1837
	}

1838 1839 1840 1841 1842 1843 1844 1845
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1846
	/* Now pin it into the GTT as needed */
1847
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848 1849
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1850
		struct i915_ggtt_view view =
1851
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852

1853 1854 1855 1856 1857
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1858 1859
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1860 1861
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1862
		goto err_unlock;
C
Chris Wilson 已提交
1863
	}
1864

1865 1866
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1867
		goto err_unpin;
1868

1869
	ret = i915_vma_get_fence(vma);
1870
	if (ret)
1871
		goto err_unpin;
1872

1873
	/* Mark as being mmapped into userspace for later revocation */
1874
	assert_rpm_wakelock_held(dev_priv);
1875 1876 1877
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1878
	/* Finally, remap it using the new GTT offset */
1879
	ret = remap_io_mapping(area,
1880
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881 1882 1883
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1884

1885
err_unpin:
C
Chris Wilson 已提交
1886
	__i915_vma_unpin(vma);
1887
err_unlock:
1888
	mutex_unlock(&dev->struct_mutex);
1889 1890
err_rpm:
	intel_runtime_pm_put(dev_priv);
1891
	i915_gem_object_unpin_pages(obj);
1892
err:
1893
	switch (ret) {
1894
	case -EIO:
1895 1896 1897 1898 1899 1900 1901
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902 1903 1904
			ret = VM_FAULT_SIGBUS;
			break;
		}
1905
	case -EAGAIN:
D
Daniel Vetter 已提交
1906 1907 1908 1909
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1910
		 */
1911 1912
	case 0:
	case -ERESTARTSYS:
1913
	case -EINTR:
1914 1915 1916 1917 1918
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1919 1920
		ret = VM_FAULT_NOPAGE;
		break;
1921
	case -ENOMEM:
1922 1923
		ret = VM_FAULT_OOM;
		break;
1924
	case -ENOSPC:
1925
	case -EFAULT:
1926 1927
		ret = VM_FAULT_SIGBUS;
		break;
1928
	default:
1929
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930 1931
		ret = VM_FAULT_SIGBUS;
		break;
1932
	}
1933
	return ret;
1934 1935
}

1936 1937 1938 1939
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1940
 * Preserve the reservation of the mmapping with the DRM core code, but
1941 1942 1943 1944 1945 1946 1947 1948 1949
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1950
void
1951
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952
{
1953 1954
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1955 1956 1957
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1958 1959 1960 1961
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1962
	 */
1963
	lockdep_assert_held(&i915->drm.struct_mutex);
1964
	intel_runtime_pm_get(i915);
1965

1966
	if (list_empty(&obj->userfault_link))
1967
		goto out;
1968

1969
	list_del_init(&obj->userfault_link);
1970 1971
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1972 1973 1974 1975 1976 1977 1978 1979 1980

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1981 1982 1983

out:
	intel_runtime_pm_put(i915);
1984 1985
}

1986
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987
{
1988
	struct drm_i915_gem_object *obj, *on;
1989
	int i;
1990

1991 1992 1993 1994 1995 1996
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1997

1998 1999 2000
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2001 2002 2003
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2004 2005 2006 2007 2008 2009 2010 2011

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2022 2023 2024 2025 2026 2027 2028

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2029 2030
}

2031 2032
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2033
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2034
	int err;
2035

2036
	err = drm_gem_create_mmap_offset(&obj->base);
2037
	if (likely(!err))
2038
		return 0;
2039

2040 2041 2042 2043 2044
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2045

2046
		i915_gem_drain_freed_objects(dev_priv);
2047
		err = drm_gem_create_mmap_offset(&obj->base);
2048 2049 2050 2051
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2052

2053
	return err;
2054 2055 2056 2057 2058 2059 2060
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2061
int
2062 2063
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2064
		  uint32_t handle,
2065
		  uint64_t *offset)
2066
{
2067
	struct drm_i915_gem_object *obj;
2068 2069
	int ret;

2070
	obj = i915_gem_object_lookup(file, handle);
2071 2072
	if (!obj)
		return -ENOENT;
2073

2074
	ret = i915_gem_object_create_mmap_offset(obj);
2075 2076
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077

C
Chris Wilson 已提交
2078
	i915_gem_object_put(obj);
2079
	return ret;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2103
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 2105
}

D
Daniel Vetter 已提交
2106 2107 2108
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109
{
2110
	i915_gem_object_free_mmap_offset(obj);
2111

2112 2113
	if (obj->base.filp == NULL)
		return;
2114

D
Daniel Vetter 已提交
2115 2116 2117 2118 2119
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2120
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2121
	obj->mm.madv = __I915_MADV_PURGED;
2122
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2123
}
2124

2125
/* Try to discard unwanted pages */
2126
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2127
{
2128 2129
	struct address_space *mapping;

2130 2131 2132
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2133
	switch (obj->mm.madv) {
2134 2135 2136 2137 2138 2139 2140 2141 2142
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2143
	mapping = obj->base.filp->f_mapping,
2144
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2145 2146
}

2147
static void
2148 2149
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2150
{
2151 2152
	struct sgt_iter sgt_iter;
	struct page *page;
2153

2154
	__i915_gem_object_release_shmem(obj, pages, true);
2155

2156
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2157

2158
	if (i915_gem_object_needs_bit17_swizzle(obj))
2159
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2160

2161
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2162
		if (obj->mm.dirty)
2163
			set_page_dirty(page);
2164

C
Chris Wilson 已提交
2165
		if (obj->mm.madv == I915_MADV_WILLNEED)
2166
			mark_page_accessed(page);
2167

2168
		put_page(page);
2169
	}
C
Chris Wilson 已提交
2170
	obj->mm.dirty = false;
2171

2172 2173
	sg_free_table(pages);
	kfree(pages);
2174
}
C
Chris Wilson 已提交
2175

2176 2177 2178 2179 2180
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2181 2182
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2183 2184
}

2185 2186
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2187
{
2188
	struct sg_table *pages;
2189

C
Chris Wilson 已提交
2190
	if (i915_gem_object_has_pinned_pages(obj))
2191
		return;
2192

2193
	GEM_BUG_ON(obj->bind_count);
2194 2195 2196 2197
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2198
	mutex_lock_nested(&obj->mm.lock, subclass);
2199 2200
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2201

2202 2203 2204
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2205 2206
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2207

C
Chris Wilson 已提交
2208
	if (obj->mm.mapping) {
2209 2210
		void *ptr;

C
Chris Wilson 已提交
2211
		ptr = ptr_mask_bits(obj->mm.mapping);
2212 2213
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2214
		else
2215 2216
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2217
		obj->mm.mapping = NULL;
2218 2219
	}

2220 2221
	__i915_gem_object_reset_page_iter(obj);

2222 2223 2224
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2225 2226
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236 2237
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2238
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2239 2240 2241 2242 2243 2244 2245 2246
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2247
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2248 2249 2250 2251 2252 2253

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2254
static struct sg_table *
C
Chris Wilson 已提交
2255
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2256
{
2257
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2258 2259
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2260
	struct address_space *mapping;
2261 2262
	struct sg_table *st;
	struct scatterlist *sg;
2263
	struct sgt_iter sgt_iter;
2264
	struct page *page;
2265
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2266
	unsigned int max_segment;
I
Imre Deak 已提交
2267
	int ret;
C
Chris Wilson 已提交
2268
	gfp_t gfp;
2269

C
Chris Wilson 已提交
2270 2271 2272 2273
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2274 2275
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2276

2277
	max_segment = swiotlb_max_segment();
2278
	if (!max_segment)
2279
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2280

2281 2282
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2283
		return ERR_PTR(-ENOMEM);
2284

2285
rebuild_st:
2286 2287
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2288
		return ERR_PTR(-ENOMEM);
2289
	}
2290

2291 2292 2293 2294 2295
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2296
	mapping = obj->base.filp->f_mapping;
2297
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2298
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2299 2300 2301
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2302 2303
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2304 2305 2306 2307 2308
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2309 2310 2311 2312 2313 2314 2315
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2316
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2317 2318
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2319
				goto err_sg;
I
Imre Deak 已提交
2320
			}
C
Chris Wilson 已提交
2321
		}
2322 2323 2324
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2325 2326 2327 2328 2329 2330 2331 2332
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2333 2334 2335

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2336
	}
2337
	if (sg) /* loop terminated early; short sg table */
2338
		sg_mark_end(sg);
2339

2340 2341 2342
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2343
	ret = i915_gem_gtt_prepare_pages(obj, st);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2363

2364
	if (i915_gem_object_needs_bit17_swizzle(obj))
2365
		i915_gem_object_do_bit_17_swizzle(obj, st);
2366

2367
	return st;
2368

2369
err_sg:
2370
	sg_mark_end(sg);
2371
err_pages:
2372 2373
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2374 2375
	sg_free_table(st);
	kfree(st);
2376 2377 2378 2379 2380 2381 2382 2383 2384

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2385 2386 2387
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2388 2389 2390 2391 2392 2393
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2394
	lockdep_assert_held(&obj->mm.lock);
2395 2396 2397 2398 2399

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2400 2401 2402 2403 2404 2405 2406

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2407 2408 2409 2410 2411 2412
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2413 2414
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2426 2427
}

2428
/* Ensure that the associated pages are gathered from the backing storage
2429
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2430
 * multiple times before they are released by a single call to
2431
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2432 2433 2434
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2435
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2436
{
2437
	int err;
2438

2439 2440 2441
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2442

2443
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2444 2445 2446
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2447

2448 2449 2450
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2451

2452 2453
unlock:
	mutex_unlock(&obj->mm.lock);
2454
	return err;
2455 2456
}

2457
/* The 'mapping' part of i915_gem_object_pin_map() below */
2458 2459
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2460 2461
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2462
	struct sg_table *sgt = obj->mm.pages;
2463 2464
	struct sgt_iter sgt_iter;
	struct page *page;
2465 2466
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2467
	unsigned long i = 0;
2468
	pgprot_t pgprot;
2469 2470 2471
	void *addr;

	/* A single page can always be kmapped */
2472
	if (n_pages == 1 && type == I915_MAP_WB)
2473 2474
		return kmap(sg_page(sgt->sgl));

2475 2476 2477 2478 2479 2480
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2481

2482 2483
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2484 2485 2486 2487

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2488 2489 2490 2491 2492 2493 2494 2495 2496
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2497

2498 2499
	if (pages != stack_pages)
		drm_free_large(pages);
2500 2501 2502 2503 2504

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2505 2506
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2507
{
2508 2509 2510
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2511 2512
	int ret;

2513
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2514

2515
	ret = mutex_lock_interruptible(&obj->mm.lock);
2516 2517 2518
	if (ret)
		return ERR_PTR(ret);

2519 2520
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2521
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2522 2523 2524
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2525

2526 2527 2528
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2529 2530 2531
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2532

C
Chris Wilson 已提交
2533
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2534 2535 2536
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2537
			goto err_unpin;
2538
		}
2539 2540 2541 2542 2543 2544

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2545
		ptr = obj->mm.mapping = NULL;
2546 2547
	}

2548 2549 2550 2551
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2552
			goto err_unpin;
2553 2554
		}

C
Chris Wilson 已提交
2555
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2556 2557
	}

2558 2559
out_unlock:
	mutex_unlock(&obj->mm.lock);
2560 2561
	return ptr;

2562 2563 2564 2565 2566
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2567 2568
}

2569
static bool ban_context(const struct i915_gem_context *ctx)
2570
{
2571 2572
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2573 2574
}

2575
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2576
{
2577
	ctx->guilty_count++;
2578 2579 2580
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2581 2582

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2583
			 ctx->name, ctx->ban_score,
2584
			 yesno(i915_gem_context_is_banned(ctx)));
2585

2586
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2587 2588
		return;

2589 2590 2591
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2592 2593 2594 2595
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2596
	ctx->active_count++;
2597 2598
}

2599
struct drm_i915_gem_request *
2600
i915_gem_find_active_request(struct intel_engine_cs *engine)
2601
{
2602 2603
	struct drm_i915_gem_request *request;

2604 2605 2606 2607 2608 2609 2610 2611
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2612
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2613
		if (__i915_gem_request_completed(request))
2614
			continue;
2615

2616
		GEM_BUG_ON(request->engine != engine);
2617
		return request;
2618
	}
2619 2620 2621 2622

	return NULL;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2637
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2638 2639 2640
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2641
	int err = 0;
2642 2643

	/* Ensure irq handler finishes, and not run again. */
2644 2645 2646
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2647 2648
		tasklet_kill(&engine->irq_tasklet);

2649 2650 2651 2652 2653 2654 2655
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2656
	i915_gem_revoke_fences(dev_priv);
2657 2658

	return err;
2659 2660
}

2661
static void skip_request(struct drm_i915_gem_request *request)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2676 2677

	dma_fence_set_error(&request->fence, -EIO);
2678 2679
}

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2703 2704 2705 2706 2707 2708
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2741
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2742 2743 2744
{
	struct drm_i915_gem_request *request;

2745 2746 2747
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2748
	request = i915_gem_find_active_request(engine);
2749 2750 2751
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2752

2753 2754 2755 2756
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2757 2758 2759

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2760
}
2761

2762
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2763
{
2764
	struct intel_engine_cs *engine;
2765
	enum intel_engine_id id;
2766

2767 2768
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2769 2770
	i915_gem_retire_requests(dev_priv);

2771
	for_each_engine(engine, dev_priv, id)
2772 2773
		i915_gem_reset_engine(engine);

2774
	i915_gem_restore_fences(dev_priv);
2775 2776 2777 2778 2779 2780 2781

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2782 2783 2784 2785
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2786
	dma_fence_set_error(&request->fence, -EIO);
2787 2788
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2789 2790
}

2791
static void engine_set_wedged(struct intel_engine_cs *engine)
2792
{
2793 2794 2795
	struct drm_i915_gem_request *request;
	unsigned long flags;

2796 2797 2798 2799 2800 2801
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2802
	engine->submit_request = nop_submit_request;
2803

2804 2805 2806 2807 2808 2809
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2810 2811 2812 2813
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2814
	intel_engine_init_global_seqno(engine,
2815
				       intel_engine_last_submit(engine));
2816

2817 2818 2819 2820 2821 2822
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2823
	if (i915.enable_execlists) {
2824 2825 2826 2827
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2828 2829 2830
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2831 2832
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2833 2834

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2835
	}
2836 2837
}

2838
static int __i915_gem_set_wedged_BKL(void *data)
2839
{
2840
	struct drm_i915_private *i915 = data;
2841
	struct intel_engine_cs *engine;
2842
	enum intel_engine_id id;
2843

2844
	for_each_engine(engine, i915, id)
2845
		engine_set_wedged(engine);
2846 2847 2848 2849 2850 2851

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2852 2853
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2854

2855
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2856

2857
	i915_gem_context_lost(dev_priv);
2858
	i915_gem_retire_requests(dev_priv);
2859 2860

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2861 2862
}

2863
static void
2864 2865
i915_gem_retire_work_handler(struct work_struct *work)
{
2866
	struct drm_i915_private *dev_priv =
2867
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2868
	struct drm_device *dev = &dev_priv->drm;
2869

2870
	/* Come back later if the device is busy... */
2871
	if (mutex_trylock(&dev->struct_mutex)) {
2872
		i915_gem_retire_requests(dev_priv);
2873
		mutex_unlock(&dev->struct_mutex);
2874
	}
2875 2876 2877 2878 2879

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2880 2881
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2882 2883
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2884
				   round_jiffies_up_relative(HZ));
2885
	}
2886
}
2887

2888 2889 2890 2891
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2892
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2893
	struct drm_device *dev = &dev_priv->drm;
2894
	struct intel_engine_cs *engine;
2895
	enum intel_engine_id id;
2896 2897 2898 2899 2900
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2901 2902 2903 2904 2905 2906 2907
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2908
	if (READ_ONCE(dev_priv->gt.active_requests))
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2922 2923 2924 2925 2926 2927 2928
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2929
	if (dev_priv->gt.active_requests)
2930
		goto out_unlock;
2931

2932 2933 2934
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2935
	for_each_engine(engine, dev_priv, id)
2936
		i915_gem_batch_pool_fini(&engine->batch_pool);
2937

2938 2939 2940
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2941

2942 2943 2944 2945 2946
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2947

2948 2949 2950 2951
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2952
	}
2953 2954
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2965 2966 2967 2968 2969 2970

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2971 2972 2973
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2985 2986
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2987 2988 2989
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3014 3015
	ktime_t start;
	long ret;
3016

3017 3018 3019
	if (args->flags != 0)
		return -EINVAL;

3020
	obj = i915_gem_object_lookup(file, args->bo_handle);
3021
	if (!obj)
3022 3023
		return -ENOENT;

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3045 3046
	}

C
Chris Wilson 已提交
3047
	i915_gem_object_put(obj);
3048
	return ret;
3049 3050
}

3051
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3052
{
3053
	int ret, i;
3054

3055 3056 3057 3058 3059
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3060

3061 3062 3063 3064 3065 3066 3067
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3080 3081 3082
		if (ret)
			return ret;
	}
3083

3084
	return 0;
3085 3086
}

3087 3088
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3089 3090 3091 3092 3093
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3094
	if (!obj->mm.pages)
3095
		return;
3096

3097 3098 3099 3100
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3101
	if (obj->stolen || obj->phys_handle)
3102
		return;
3103

3104 3105 3106 3107 3108 3109 3110 3111
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3112 3113
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3114
		return;
3115
	}
3116

C
Chris Wilson 已提交
3117
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3118
	drm_clflush_sg(obj->mm.pages);
3119
	obj->cache_dirty = false;
3120 3121 3122 3123
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3124
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3125
{
3126
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3127

3128
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3129 3130
		return;

3131
	/* No actual flushing is required for the GTT write domain.  Writes
3132
	 * to it "immediately" go to main memory as far as we know, so there's
3133
	 * no chipset flush.  It also doesn't land in render cache.
3134 3135 3136 3137
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3138 3139 3140 3141 3142 3143 3144
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3145
	 */
3146
	wmb();
3147
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3148
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3149

3150
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3151

3152
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3153
	trace_i915_gem_object_change_domain(obj,
3154
					    obj->base.read_domains,
3155
					    I915_GEM_DOMAIN_GTT);
3156 3157 3158 3159
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3160
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3161
{
3162
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3163 3164
		return;

3165
	i915_gem_clflush_object(obj, obj->pin_display);
3166
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3167

3168
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3169
	trace_i915_gem_object_change_domain(obj,
3170
					    obj->base.read_domains,
3171
					    I915_GEM_DOMAIN_CPU);
3172 3173
}

3174 3175
/**
 * Moves a single object to the GTT read, and possibly write domain.
3176 3177
 * @obj: object to act on
 * @write: ask for write access or read only
3178 3179 3180 3181
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3182
int
3183
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3184
{
C
Chris Wilson 已提交
3185
	uint32_t old_write_domain, old_read_domains;
3186
	int ret;
3187

3188
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3189

3190 3191 3192 3193 3194 3195
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3196 3197 3198
	if (ret)
		return ret;

3199 3200 3201
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3202 3203 3204 3205 3206 3207 3208 3209
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3210
	ret = i915_gem_object_pin_pages(obj);
3211 3212 3213
	if (ret)
		return ret;

3214
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3215

3216 3217 3218 3219 3220 3221 3222
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3223 3224
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3225

3226 3227 3228
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3229
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3230
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3231
	if (write) {
3232 3233
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3234
		obj->mm.dirty = true;
3235 3236
	}

C
Chris Wilson 已提交
3237 3238 3239 3240
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3241
	i915_gem_object_unpin_pages(obj);
3242 3243 3244
	return 0;
}

3245 3246
/**
 * Changes the cache-level of an object across all VMA.
3247 3248
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3260 3261 3262
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3263
	struct i915_vma *vma;
3264
	int ret;
3265

3266 3267
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3268
	if (obj->cache_level == cache_level)
3269
		return 0;
3270

3271 3272 3273 3274 3275
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3276 3277
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3278 3279 3280
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3281
		if (i915_vma_is_pinned(vma)) {
3282 3283 3284 3285
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3298 3299
	}

3300 3301 3302 3303 3304 3305 3306
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3307
	if (obj->bind_count) {
3308 3309 3310 3311
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3312 3313 3314 3315 3316 3317
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3318 3319 3320
		if (ret)
			return ret;

3321 3322
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3339 3340 3341 3342 3343
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3344 3345 3346 3347 3348 3349 3350 3351
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3352 3353
		}

3354
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3355 3356 3357 3358 3359 3360 3361
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3362 3363
	}

3364 3365 3366 3367
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3368
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3369 3370 3371
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3372 3373 3374
	return 0;
}

B
Ben Widawsky 已提交
3375 3376
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3377
{
B
Ben Widawsky 已提交
3378
	struct drm_i915_gem_caching *args = data;
3379
	struct drm_i915_gem_object *obj;
3380
	int err = 0;
3381

3382 3383 3384 3385 3386 3387
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3388

3389 3390 3391 3392 3393 3394
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3395 3396 3397 3398
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3399 3400 3401 3402
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3403 3404 3405
out:
	rcu_read_unlock();
	return err;
3406 3407
}

B
Ben Widawsky 已提交
3408 3409
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3410
{
3411
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3412
	struct drm_i915_gem_caching *args = data;
3413 3414
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3415
	int ret = 0;
3416

B
Ben Widawsky 已提交
3417 3418
	switch (args->caching) {
	case I915_CACHING_NONE:
3419 3420
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3421
	case I915_CACHING_CACHED:
3422 3423 3424 3425 3426 3427
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3428
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3429 3430
			return -ENODEV;

3431 3432
		level = I915_CACHE_LLC;
		break;
3433
	case I915_CACHING_DISPLAY:
3434
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3435
		break;
3436 3437 3438 3439
	default:
		return -EINVAL;
	}

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3451
	if (ret)
3452
		goto out;
B
Ben Widawsky 已提交
3453

3454 3455 3456
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3457 3458 3459

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3460 3461 3462

out:
	i915_gem_object_put(obj);
3463 3464 3465
	return ret;
}

3466
/*
3467 3468 3469
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3470
 */
C
Chris Wilson 已提交
3471
struct i915_vma *
3472 3473
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3474
				     const struct i915_ggtt_view *view)
3475
{
C
Chris Wilson 已提交
3476
	struct i915_vma *vma;
3477
	u32 old_read_domains, old_write_domain;
3478 3479
	int ret;

3480 3481
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3482 3483 3484
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3485
	obj->pin_display++;
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3496
	ret = i915_gem_object_set_cache_level(obj,
3497 3498
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3499 3500
	if (ret) {
		vma = ERR_PTR(ret);
3501
		goto err_unpin_display;
C
Chris Wilson 已提交
3502
	}
3503

3504 3505
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3506 3507 3508 3509
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3510
	 */
3511
	vma = ERR_PTR(-ENOSPC);
3512
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3513 3514
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3531
	if (IS_ERR(vma))
3532
		goto err_unpin_display;
3533

3534 3535
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3536
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3537
	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3538 3539 3540
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3541

3542
	old_write_domain = obj->base.write_domain;
3543
	old_read_domains = obj->base.read_domains;
3544 3545 3546 3547

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3548
	obj->base.write_domain = 0;
3549
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3550 3551 3552

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3553
					    old_write_domain);
3554

C
Chris Wilson 已提交
3555
	return vma;
3556 3557

err_unpin_display:
3558
	obj->pin_display--;
C
Chris Wilson 已提交
3559
	return vma;
3560 3561 3562
}

void
C
Chris Wilson 已提交
3563
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3564
{
3565
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3566

C
Chris Wilson 已提交
3567
	if (WARN_ON(vma->obj->pin_display == 0))
3568 3569
		return;

3570
	if (--vma->obj->pin_display == 0)
3571
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3572

3573
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3574
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3575

C
Chris Wilson 已提交
3576
	i915_vma_unpin(vma);
3577 3578
}

3579 3580
/**
 * Moves a single object to the CPU read, and possibly write domain.
3581 3582
 * @obj: object to act on
 * @write: requesting write or read-only access
3583 3584 3585 3586
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3587
int
3588
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3589
{
C
Chris Wilson 已提交
3590
	uint32_t old_write_domain, old_read_domains;
3591 3592
	int ret;

3593
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3594

3595 3596 3597 3598 3599 3600
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3601 3602 3603
	if (ret)
		return ret;

3604 3605 3606
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3607
	i915_gem_object_flush_gtt_write_domain(obj);
3608

3609 3610
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3611

3612
	/* Flush the CPU cache if it's still invalid. */
3613
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3614
		i915_gem_clflush_object(obj, false);
3615

3616
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3617 3618 3619 3620 3621
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3622
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3623 3624 3625 3626 3627

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3628 3629
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3630
	}
3631

C
Chris Wilson 已提交
3632 3633 3634 3635
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3636 3637 3638
	return 0;
}

3639 3640 3641
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3642 3643 3644 3645
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3646 3647 3648
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3649
static int
3650
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3651
{
3652
	struct drm_i915_private *dev_priv = to_i915(dev);
3653
	struct drm_i915_file_private *file_priv = file->driver_priv;
3654
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3655
	struct drm_i915_gem_request *request, *target = NULL;
3656
	long ret;
3657

3658 3659 3660
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3661

3662
	spin_lock(&file_priv->mm.lock);
3663
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3664 3665
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3666

3667 3668 3669 3670 3671 3672 3673
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3674
		target = request;
3675
	}
3676
	if (target)
3677
		i915_gem_request_get(target);
3678
	spin_unlock(&file_priv->mm.lock);
3679

3680
	if (target == NULL)
3681
		return 0;
3682

3683 3684 3685
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3686
	i915_gem_request_put(target);
3687

3688
	return ret < 0 ? ret : 0;
3689 3690
}

C
Chris Wilson 已提交
3691
struct i915_vma *
3692 3693
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3694
			 u64 size,
3695 3696
			 u64 alignment,
			 u64 flags)
3697
{
3698 3699
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3700 3701
	struct i915_vma *vma;
	int ret;
3702

3703 3704
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3705
	vma = i915_vma_instance(obj, vm, view);
3706
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3707
		return vma;
3708 3709 3710 3711

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3712
			return ERR_PTR(-ENOSPC);
3713

3714 3715 3716 3717 3718 3719 3720 3721
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3722
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3741
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3742 3743 3744
				return ERR_PTR(-ENOSPC);
		}

3745 3746
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3747 3748 3749
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3750
		     !!(flags & PIN_MAPPABLE),
3751
		     i915_vma_is_map_and_fenceable(vma));
3752 3753
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3754
			return ERR_PTR(ret);
3755 3756
	}

C
Chris Wilson 已提交
3757 3758 3759
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3760

C
Chris Wilson 已提交
3761
	return vma;
3762 3763
}

3764
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3779 3780 3781 3782 3783 3784 3785 3786 3787
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3788 3789
}

3790
static __always_inline unsigned int
3791
__busy_set_if_active(const struct dma_fence *fence,
3792 3793
		     unsigned int (*flag)(unsigned int id))
{
3794
	struct drm_i915_gem_request *rq;
3795

3796 3797 3798 3799
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3800
	 *
3801
	 * Note we only report on the status of native fences.
3802
	 */
3803 3804 3805 3806 3807 3808 3809 3810 3811
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3812 3813
}

3814
static __always_inline unsigned int
3815
busy_check_reader(const struct dma_fence *fence)
3816
{
3817
	return __busy_set_if_active(fence, __busy_read_flag);
3818 3819
}

3820
static __always_inline unsigned int
3821
busy_check_writer(const struct dma_fence *fence)
3822
{
3823 3824 3825 3826
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3827 3828
}

3829 3830
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3831
		    struct drm_file *file)
3832 3833
{
	struct drm_i915_gem_busy *args = data;
3834
	struct drm_i915_gem_object *obj;
3835 3836
	struct reservation_object_list *list;
	unsigned int seq;
3837
	int err;
3838

3839
	err = -ENOENT;
3840 3841
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3842
	if (!obj)
3843
		goto out;
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3863

3864 3865
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3866

3867 3868 3869 3870
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3871

3872 3873 3874 3875 3876 3877
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3878
	}
3879

3880 3881 3882 3883
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3884 3885 3886
out:
	rcu_read_unlock();
	return err;
3887 3888 3889 3890 3891 3892
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3893
	return i915_gem_ring_throttle(dev, file_priv);
3894 3895
}

3896 3897 3898 3899
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3900
	struct drm_i915_private *dev_priv = to_i915(dev);
3901
	struct drm_i915_gem_madvise *args = data;
3902
	struct drm_i915_gem_object *obj;
3903
	int err;
3904 3905 3906 3907 3908 3909 3910 3911 3912

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3913
	obj = i915_gem_object_lookup(file_priv, args->handle);
3914 3915 3916 3917 3918 3919
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3920

C
Chris Wilson 已提交
3921
	if (obj->mm.pages &&
3922
	    i915_gem_object_is_tiled(obj) &&
3923
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3924 3925
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3926
			__i915_gem_object_unpin_pages(obj);
3927 3928 3929
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3930
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3931
			__i915_gem_object_pin_pages(obj);
3932 3933
			obj->mm.quirked = true;
		}
3934 3935
	}

C
Chris Wilson 已提交
3936 3937
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3938

C
Chris Wilson 已提交
3939
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3940
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3941 3942
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3943
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3944
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3945

3946
out:
3947
	i915_gem_object_put(obj);
3948
	return err;
3949 3950
}

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3961 3962
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3963
{
3964 3965
	mutex_init(&obj->mm.lock);

3966
	INIT_LIST_HEAD(&obj->global_link);
3967
	INIT_LIST_HEAD(&obj->userfault_link);
3968
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3969
	INIT_LIST_HEAD(&obj->vma_list);
3970
	INIT_LIST_HEAD(&obj->batch_pool_link);
3971

3972 3973
	obj->ops = ops;

3974 3975 3976
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3977
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3978
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3979 3980 3981 3982

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3983

3984
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3985 3986
}

3987
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3988 3989
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3990 3991 3992 3993
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3994
struct drm_i915_gem_object *
3995
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3996
{
3997
	struct drm_i915_gem_object *obj;
3998
	struct address_space *mapping;
D
Daniel Vetter 已提交
3999
	gfp_t mask;
4000
	int ret;
4001

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4013
	obj = i915_gem_object_alloc(dev_priv);
4014
	if (obj == NULL)
4015
		return ERR_PTR(-ENOMEM);
4016

4017
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4018 4019
	if (ret)
		goto fail;
4020

4021
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4022
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4023 4024 4025 4026 4027
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4028
	mapping = obj->base.filp->f_mapping;
4029
	mapping_set_gfp_mask(mapping, mask);
4030

4031
	i915_gem_object_init(obj, &i915_gem_object_ops);
4032

4033 4034
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4035

4036
	if (HAS_LLC(dev_priv)) {
4037
		/* On some devices, we can have the GPU use the LLC (the CPU
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4053 4054
	trace_i915_gem_object_create(obj);

4055
	return obj;
4056 4057 4058 4059

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4060 4061
}

4062 4063 4064 4065 4066 4067 4068 4069
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4070
	if (obj->mm.madv != I915_MADV_WILLNEED)
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4086 4087
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4088
{
4089
	struct drm_i915_gem_object *obj, *on;
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4106 4107
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4108

4109
		list_del(&obj->global_link);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4120

4121 4122
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4123
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4124 4125 4126 4127 4128
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4129
		reservation_object_fini(&obj->__builtin_resv);
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4152

4153 4154 4155 4156 4157 4158 4159
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4160

4161 4162 4163
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4164

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4179

4180 4181 4182
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4183

4184 4185 4186
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4187
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4188
		obj->mm.madv = I915_MADV_DONTNEED;
4189

4190 4191 4192 4193 4194 4195
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4196 4197
}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4209 4210 4211 4212 4213 4214
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4215 4216
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4217 4218
}

4219
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4220
{
4221
	struct drm_device *dev = &dev_priv->drm;
4222
	int ret;
4223

4224 4225
	intel_suspend_gt_powersave(dev_priv);

4226
	mutex_lock(&dev->struct_mutex);
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4240 4241 4242
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4243
	if (ret)
4244
		goto err;
4245

4246
	i915_gem_retire_requests(dev_priv);
4247
	GEM_BUG_ON(dev_priv->gt.active_requests);
4248

4249
	assert_kernel_context_is_current(dev_priv);
4250
	i915_gem_context_lost(dev_priv);
4251 4252
	mutex_unlock(&dev->struct_mutex);

4253
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4254
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4255 4256 4257 4258 4259 4260 4261 4262

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4263

4264 4265 4266
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4267
	WARN_ON(dev_priv->gt.awake);
4268
	WARN_ON(!intel_execlists_idle(dev_priv));
4269

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4289
	if (HAS_HW_CONTEXTS(dev_priv)) {
4290 4291 4292 4293
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4294
	return 0;
4295 4296 4297 4298

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4299 4300
}

4301
void i915_gem_resume(struct drm_i915_private *dev_priv)
4302
{
4303
	struct drm_device *dev = &dev_priv->drm;
4304

4305 4306
	WARN_ON(dev_priv->gt.awake);

4307
	mutex_lock(&dev->struct_mutex);
4308
	i915_gem_restore_gtt_mappings(dev_priv);
4309 4310 4311 4312 4313

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4314
	dev_priv->gt.resume(dev_priv);
4315 4316 4317 4318

	mutex_unlock(&dev->struct_mutex);
}

4319
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4320
{
4321
	if (INTEL_GEN(dev_priv) < 5 ||
4322 4323 4324 4325 4326 4327
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4328
	if (IS_GEN5(dev_priv))
4329 4330
		return;

4331
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4332
	if (IS_GEN6(dev_priv))
4333
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4334
	else if (IS_GEN7(dev_priv))
4335
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4336
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4337
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4338 4339
	else
		BUG();
4340
}
D
Daniel Vetter 已提交
4341

4342
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4343 4344 4345 4346 4347 4348 4349
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4350
static void init_unused_rings(struct drm_i915_private *dev_priv)
4351
{
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4364 4365 4366
	}
}

4367
int
4368
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4369
{
4370
	struct intel_engine_cs *engine;
4371
	enum intel_engine_id id;
C
Chris Wilson 已提交
4372
	int ret;
4373

4374 4375
	dev_priv->gt.last_init_time = ktime_get();

4376 4377 4378
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4379
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4380
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4381

4382
	if (IS_HASWELL(dev_priv))
4383
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4384
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4385

4386
	if (HAS_PCH_NOP(dev_priv)) {
4387
		if (IS_IVYBRIDGE(dev_priv)) {
4388 4389 4390
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4391
		} else if (INTEL_GEN(dev_priv) >= 7) {
4392 4393 4394 4395
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4396 4397
	}

4398
	i915_gem_init_swizzling(dev_priv);
4399

4400 4401 4402 4403 4404 4405
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4406
	init_unused_rings(dev_priv);
4407

4408
	BUG_ON(!dev_priv->kernel_context);
4409

4410
	ret = i915_ppgtt_init_hw(dev_priv);
4411 4412 4413 4414 4415 4416
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4417
	for_each_engine(engine, dev_priv, id) {
4418
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4419
		if (ret)
4420
			goto out;
D
Daniel Vetter 已提交
4421
	}
4422

4423
	intel_mocs_init_l3cc_table(dev_priv);
4424

4425
	/* We can't enable contexts until all firmware is loaded */
4426
	ret = intel_guc_setup(dev_priv);
4427 4428
	if (ret)
		goto out;
4429

4430 4431
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4432
	return ret;
4433 4434
}

4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4456
int i915_gem_init(struct drm_i915_private *dev_priv)
4457 4458 4459
{
	int ret;

4460
	mutex_lock(&dev_priv->drm.struct_mutex);
4461

4462
	if (!i915.enable_execlists) {
4463
		dev_priv->gt.resume = intel_legacy_submission_resume;
4464
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4465
	} else {
4466
		dev_priv->gt.resume = intel_lr_context_resume;
4467
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4468 4469
	}

4470 4471 4472 4473 4474 4475 4476 4477
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4478
	i915_gem_init_userptr(dev_priv);
4479 4480 4481 4482

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4483

4484
	ret = i915_gem_context_init(dev_priv);
4485 4486
	if (ret)
		goto out_unlock;
4487

4488
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4489
	if (ret)
4490
		goto out_unlock;
4491

4492
	ret = i915_gem_init_hw(dev_priv);
4493
	if (ret == -EIO) {
4494
		/* Allow engine initialisation to fail by marking the GPU as
4495 4496 4497 4498
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4499
		i915_gem_set_wedged(dev_priv);
4500
		ret = 0;
4501
	}
4502 4503

out_unlock:
4504
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4505
	mutex_unlock(&dev_priv->drm.struct_mutex);
4506

4507
	return ret;
4508 4509
}

4510
void
4511
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4512
{
4513
	struct intel_engine_cs *engine;
4514
	enum intel_engine_id id;
4515

4516
	for_each_engine(engine, dev_priv, id)
4517
		dev_priv->gt.cleanup_engine(engine);
4518 4519
}

4520 4521 4522
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4523
	int i;
4524 4525 4526 4527

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4528 4529 4530
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4531 4532 4533 4534
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4535
	if (intel_vgpu_active(dev_priv))
4536 4537 4538 4539
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4540 4541 4542 4543 4544 4545 4546
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4547
	i915_gem_restore_fences(dev_priv);
4548

4549
	i915_gem_detect_bit_6_swizzle(dev_priv);
4550 4551
}

4552
int
4553
i915_gem_load_init(struct drm_i915_private *dev_priv)
4554
{
4555
	int err = -ENOMEM;
4556

4557 4558
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4559 4560
		goto err_out;

4561 4562
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4563 4564
		goto err_objects;

4565 4566 4567 4568 4569
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4570 4571
		goto err_vmas;

4572 4573 4574 4575 4576 4577
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4578 4579
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4580
	err = i915_gem_timeline_init__global(dev_priv);
4581 4582
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4583
		goto err_dependencies;
4584

4585
	INIT_LIST_HEAD(&dev_priv->context_list);
4586 4587
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4588 4589
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4590
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4591
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4592
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4593
			  i915_gem_retire_work_handler);
4594
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4595
			  i915_gem_idle_work_handler);
4596
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4597
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4598

4599 4600
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4601
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4602

4603 4604
	dev_priv->mm.interruptible = true;

4605 4606
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4607
	spin_lock_init(&dev_priv->fb_tracking.lock);
4608 4609 4610

	return 0;

4611 4612
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4613 4614 4615 4616 4617 4618 4619 4620
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4621
}
4622

4623
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4624
{
4625 4626
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4627 4628 4629 4630 4631
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4632
	kmem_cache_destroy(dev_priv->dependencies);
4633 4634 4635
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4636 4637 4638

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4639 4640
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4654 4655 4656
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4657 4658 4659 4660 4661
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4672 4673 4674
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4675 4676
	 */

4677 4678
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4679

4680
	for (p = phases; *p; p++) {
4681
		list_for_each_entry(obj, *p, global_link) {
4682 4683 4684
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4685
	}
4686
	mutex_unlock(&dev_priv->drm.struct_mutex);
4687 4688 4689 4690

	return 0;
}

4691
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4692
{
4693
	struct drm_i915_file_private *file_priv = file->driver_priv;
4694
	struct drm_i915_gem_request *request;
4695 4696 4697 4698 4699

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4700
	spin_lock(&file_priv->mm.lock);
4701
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4702
		request->file_priv = NULL;
4703
	spin_unlock(&file_priv->mm.lock);
4704

4705
	if (!list_empty(&file_priv->rps.link)) {
4706
		spin_lock(&to_i915(dev)->rps.client_lock);
4707
		list_del(&file_priv->rps.link);
4708
		spin_unlock(&to_i915(dev)->rps.client_lock);
4709
	}
4710 4711 4712 4713 4714
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4715
	int ret;
4716

4717
	DRM_DEBUG("\n");
4718 4719 4720 4721 4722 4723

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4724
	file_priv->dev_priv = to_i915(dev);
4725
	file_priv->file = file;
4726
	INIT_LIST_HEAD(&file_priv->rps.link);
4727 4728 4729 4730

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4731
	file_priv->bsd_engine = -1;
4732

4733 4734 4735
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4736

4737
	return ret;
4738 4739
}

4740 4741
/**
 * i915_gem_track_fb - update frontbuffer tracking
4742 4743 4744
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4745 4746 4747 4748
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4749 4750 4751 4752
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4753 4754 4755 4756 4757 4758 4759 4760 4761
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4762
	if (old) {
4763 4764
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4765 4766 4767
	}

	if (new) {
4768 4769
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4770 4771 4772
	}
}

4773 4774
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4775
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4776 4777 4778 4779 4780 4781 4782
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4783
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4784
	if (IS_ERR(obj))
4785 4786 4787 4788 4789 4790
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4791
	ret = i915_gem_object_pin_pages(obj);
4792 4793 4794
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4795
	sg = obj->mm.pages;
4796
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4797
	obj->mm.dirty = true; /* Backing store is now out of date */
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4809
	i915_gem_object_put(obj);
4810 4811
	return ERR_PTR(ret);
}
4812 4813 4814 4815 4816 4817

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4818
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4819 4820 4821 4822 4823
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4824
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4949
	if (!obj->mm.dirty)
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}