memcontrol.c 152.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

135
struct mem_cgroup_tree_per_node {
136 137 138 139 140 141 142 143 144 145
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
146 147 148 149 150
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
151

152 153 154
/*
 * cgroup_event represents events which userspace want to receive.
 */
155
struct mem_cgroup_event {
156
	/*
157
	 * memcg which the event belongs to.
158
	 */
159
	struct mem_cgroup *memcg;
160 161 162 163 164 165 166 167
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
168 169 170 171 172
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
173
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
174
			      struct eventfd_ctx *eventfd, const char *args);
175 176 177 178 179
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
180
	void (*unregister_event)(struct mem_cgroup *memcg,
181
				 struct eventfd_ctx *eventfd);
182 183 184 185 186 187 188 189 190 191
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

192 193
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194

195 196
/* Stuffs for move charges at task migration. */
/*
197
 * Types of charges to be moved.
198
 */
199 200 201
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202

203 204
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
205
	spinlock_t	  lock; /* for from, to */
206
	struct mm_struct  *mm;
207 208
	struct mem_cgroup *from;
	struct mem_cgroup *to;
209
	unsigned long flags;
210
	unsigned long precharge;
211
	unsigned long moved_charge;
212
	unsigned long moved_swap;
213 214 215
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
216
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 218
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
219

220 221 222 223
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
224
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226

227 228
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
230
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 233 234
	NR_CHARGE_TYPE,
};

235
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
236 237 238 239
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
240
	_KMEM,
V
Vladimir Davydov 已提交
241
	_TCP,
G
Glauber Costa 已提交
242 243
};

244 245
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
247 248
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
249

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

263 264 265 266 267
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

268
#ifndef CONFIG_SLOB
269
/*
270
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
271 272 273 274 275
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
276
 *
277 278
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
279
 */
280 281
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
282

283 284 285 286 287 288 289 290 291 292 293 294 295
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

296 297 298 299 300 301
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
302
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 304
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
305
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 307 308
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
309
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310

311 312 313 314 315 316
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
317
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318
EXPORT_SYMBOL(memcg_kmem_enabled_key);
319

320
#endif /* !CONFIG_SLOB */
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

339
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 341 342 343 344
		memcg = root_mem_cgroup;

	return &memcg->css;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

373 374
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375
{
376
	int nid = page_to_nid(page);
377

378
	return memcg->nodeinfo[nid];
379 380
}

381 382
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
383
{
384
	return soft_limit_tree.rb_tree_per_node[nid];
385 386
}

387
static struct mem_cgroup_tree_per_node *
388 389 390 391
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

392
	return soft_limit_tree.rb_tree_per_node[nid];
393 394
}

395 396
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
397
					 unsigned long new_usage_in_excess)
398 399 400
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
401
	struct mem_cgroup_per_node *mz_node;
402 403 404 405 406 407 408 409 410

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
411
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

427 428
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
429 430 431 432 433 434 435
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466 467 468 469
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470
		mz = mem_cgroup_page_nodeinfo(memcg, page);
471
		excess = soft_limit_excess(memcg);
472 473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
477 478 479
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
480 481
			/* if on-tree, remove it */
			if (mz->on_tree)
482
				__mem_cgroup_remove_exceeded(mz, mctz);
483 484 485 486
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
487
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488
			spin_unlock_irqrestore(&mctz->lock, flags);
489 490 491 492 493 494
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
495 496 497
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
498

499
	for_each_node(nid) {
500 501 502
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
		mem_cgroup_remove_exceeded(mz, mctz);
503 504 505
	}
}

506 507
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 509
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_node *mz;
511 512 513 514 515 516 517

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

518
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 520 521 522 523
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
524
	__mem_cgroup_remove_exceeded(mz, mctz);
525
	if (!soft_limit_excess(mz->memcg) ||
526
	    !css_tryget_online(&mz->memcg->css))
527 528 529 530 531
		goto retry;
done:
	return mz;
}

532 533
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534
{
535
	struct mem_cgroup_per_node *mz;
536

537
	spin_lock_irq(&mctz->lock);
538
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539
	spin_unlock_irq(&mctz->lock);
540 541 542
	return mz;
}

543
/*
544 545
 * Return page count for single (non recursive) @memcg.
 *
546 547 548 549 550
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
551
 * a periodic synchronization of counter in memcg's counter.
552 553 554 555 556 557 558 559 560
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
561
 * common workload, threshold and synchronization as vmstat[] should be
562 563
 * implemented.
 */
564 565
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566
{
567
	long val = 0;
568 569
	int cpu;

570
	/* Per-cpu values can be negative, use a signed accumulator */
571
	for_each_possible_cpu(cpu)
572
		val += per_cpu(memcg->stat->count[idx], cpu);
573 574 575 576 577 578
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
579 580 581
	return val;
}

582
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 584 585 586 587
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->events[idx], cpu);
590 591 592
	return val;
}

593
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594
					 struct page *page,
595
					 bool compound, int nr_pages)
596
{
597 598 599 600
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
601
	if (PageAnon(page))
602
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603
				nr_pages);
604
	else
605
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606
				nr_pages);
607

608 609
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 611
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
612
	}
613

614 615
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
616
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617
	else {
618
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 620
		nr_pages = -nr_pages; /* for event */
	}
621

622
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 624
}

625 626
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
627
{
628
	unsigned long nr = 0;
629 630
	struct mem_cgroup_per_node *mz;
	enum lru_list lru;
631

632
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633

634 635 636 637 638
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		mz = mem_cgroup_nodeinfo(memcg, nid);
		nr += mz->lru_size[lru];
639 640
	}
	return nr;
641
}
642

643
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644
			unsigned int lru_mask)
645
{
646
	unsigned long nr = 0;
647
	int nid;
648

649
	for_each_node_state(nid, N_MEMORY)
650 651
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
652 653
}

654 655
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
656 657 658
{
	unsigned long val, next;

659
	val = __this_cpu_read(memcg->stat->nr_page_events);
660
	next = __this_cpu_read(memcg->stat->targets[target]);
661
	/* from time_after() in jiffies.h */
662 663 664 665 666
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
667 668 669
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
670 671 672 673 674 675 676 677
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
678
	}
679
	return false;
680 681 682 683 684 685
}

/*
 * Check events in order.
 *
 */
686
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 688
{
	/* threshold event is triggered in finer grain than soft limit */
689 690
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
691
		bool do_softlimit;
692
		bool do_numainfo __maybe_unused;
693

694 695
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
696 697 698 699
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
700
		mem_cgroup_threshold(memcg);
701 702
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
703
#if MAX_NUMNODES > 1
704
		if (unlikely(do_numainfo))
705
			atomic_inc(&memcg->numainfo_events);
706
#endif
707
	}
708 709
}

710
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711
{
712 713 714 715 716 717 718 719
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

720
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721
}
M
Michal Hocko 已提交
722
EXPORT_SYMBOL(mem_cgroup_from_task);
723

724
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725
{
726
	struct mem_cgroup *memcg = NULL;
727

728 729
	rcu_read_lock();
	do {
730 731 732 733 734 735
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
736
			memcg = root_mem_cgroup;
737 738 739 740 741
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
742
	} while (!css_tryget_online(&memcg->css));
743
	rcu_read_unlock();
744
	return memcg;
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
764
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765
				   struct mem_cgroup *prev,
766
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
767
{
M
Michal Hocko 已提交
768
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769
	struct cgroup_subsys_state *css = NULL;
770
	struct mem_cgroup *memcg = NULL;
771
	struct mem_cgroup *pos = NULL;
772

773 774
	if (mem_cgroup_disabled())
		return NULL;
775

776 777
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
778

779
	if (prev && !reclaim)
780
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
781

782 783
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
784
			goto out;
785
		return root;
786
	}
K
KAMEZAWA Hiroyuki 已提交
787

788
	rcu_read_lock();
M
Michal Hocko 已提交
789

790
	if (reclaim) {
791
		struct mem_cgroup_per_node *mz;
792

793
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 795 796 797 798
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

799
		while (1) {
800
			pos = READ_ONCE(iter->position);
801 802
			if (!pos || css_tryget(&pos->css))
				break;
803
			/*
804 805 806 807 808 809
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
810
			 */
811 812
			(void)cmpxchg(&iter->position, pos, NULL);
		}
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
830
		}
K
KAMEZAWA Hiroyuki 已提交
831

832 833 834 835 836 837
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
838

839 840
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
841

842 843
		if (css_tryget(css))
			break;
844

845
		memcg = NULL;
846
	}
847 848 849

	if (reclaim) {
		/*
850 851 852
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
853
		 */
854 855
		(void)cmpxchg(&iter->position, pos, memcg);

856 857 858 859 860 861 862
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
863
	}
864

865 866
out_unlock:
	rcu_read_unlock();
867
out:
868 869 870
	if (prev && prev != root)
		css_put(&prev->css);

871
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
872
}
K
KAMEZAWA Hiroyuki 已提交
873

874 875 876 877 878 879 880
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
881 882 883 884 885 886
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
887

888 889 890 891
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
892 893
	struct mem_cgroup_per_node *mz;
	int nid;
894 895 896 897
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
898 899 900 901 902
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
903 904 905 906 907
			}
		}
	}
}

908 909 910 911 912 913
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
914
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915
	     iter != NULL;				\
916
	     iter = mem_cgroup_iter(root, iter, NULL))
917

918
#define for_each_mem_cgroup(iter)			\
919
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920
	     iter != NULL;				\
921
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
922

923
/**
924
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925
 * @page: the page
926
 * @zone: zone of the page
927 928 929 930
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
931
 */
M
Mel Gorman 已提交
932
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
933
{
934
	struct mem_cgroup_per_node *mz;
935
	struct mem_cgroup *memcg;
936
	struct lruvec *lruvec;
937

938
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
939
		lruvec = &pgdat->lruvec;
940 941
		goto out;
	}
942

943
	memcg = page->mem_cgroup;
944
	/*
945
	 * Swapcache readahead pages are added to the LRU - and
946
	 * possibly migrated - before they are charged.
947
	 */
948 949
	if (!memcg)
		memcg = root_mem_cgroup;
950

951
	mz = mem_cgroup_page_nodeinfo(memcg, page);
952 953 954 955 956 957 958
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
959 960
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
961
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
962
}
963

964
/**
965 966 967 968
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
969
 *
970 971 972
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
973
 */
974
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975
				int nr_pages)
976
{
977
	struct mem_cgroup_per_node *mz;
978
	unsigned long *lru_size;
979 980
	long size;
	bool empty;
981 982 983 984

	if (mem_cgroup_disabled())
		return;

985
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986
	lru_size = mz->lru_size + lru;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1002
}
1003

1004
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005
{
1006
	struct mem_cgroup *task_memcg;
1007
	struct task_struct *p;
1008
	bool ret;
1009

1010
	p = find_lock_task_mm(task);
1011
	if (p) {
1012
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 1014 1015 1016 1017 1018 1019
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1020
		rcu_read_lock();
1021 1022
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1023
		rcu_read_unlock();
1024
	}
1025 1026
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1027 1028 1029
	return ret;
}

1030
/**
1031
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1032
 * @memcg: the memory cgroup
1033
 *
1034
 * Returns the maximum amount of memory @mem can be charged with, in
1035
 * pages.
1036
 */
1037
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038
{
1039 1040 1041
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1042

1043
	count = page_counter_read(&memcg->memory);
1044
	limit = READ_ONCE(memcg->memory.limit);
1045 1046 1047
	if (count < limit)
		margin = limit - count;

1048
	if (do_memsw_account()) {
1049
		count = page_counter_read(&memcg->memsw);
1050
		limit = READ_ONCE(memcg->memsw.limit);
1051 1052
		if (count <= limit)
			margin = min(margin, limit - count);
1053 1054
		else
			margin = 0;
1055 1056 1057
	}

	return margin;
1058 1059
}

1060
/*
Q
Qiang Huang 已提交
1061
 * A routine for checking "mem" is under move_account() or not.
1062
 *
Q
Qiang Huang 已提交
1063 1064 1065
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1066
 */
1067
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068
{
1069 1070
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1071
	bool ret = false;
1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1081

1082 1083
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1084 1085
unlock:
	spin_unlock(&mc.lock);
1086 1087 1088
	return ret;
}

1089
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 1091
{
	if (mc.moving_task && current != mc.moving_task) {
1092
		if (mem_cgroup_under_move(memcg)) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1105
#define K(x) ((x) << (PAGE_SHIFT-10))
1106
/**
1107
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 1109 1110 1111 1112 1113 1114 1115
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1116 1117
	struct mem_cgroup *iter;
	unsigned int i;
1118 1119 1120

	rcu_read_lock();

1121 1122 1123 1124 1125 1126 1127 1128
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1129
	pr_cont_cgroup_path(memcg->css.cgroup);
1130
	pr_cont("\n");
1131 1132 1133

	rcu_read_unlock();

1134 1135 1136 1137 1138 1139 1140 1141 1142
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143 1144

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1145 1146
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1147 1148 1149
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151
				continue;
1152
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 1154 1155 1156 1157 1158 1159 1160 1161
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1162 1163
}

1164 1165 1166 1167
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1168
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 1170
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1171 1172
	struct mem_cgroup *iter;

1173
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1174
		num++;
1175 1176 1177
	return num;
}

D
David Rientjes 已提交
1178 1179 1180
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1181
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1182
{
1183
	unsigned long limit;
1184

1185
	limit = memcg->memory.limit;
1186
	if (mem_cgroup_swappiness(memcg)) {
1187
		unsigned long memsw_limit;
1188
		unsigned long swap_limit;
1189

1190
		memsw_limit = memcg->memsw.limit;
1191 1192 1193
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1194 1195
	}
	return limit;
D
David Rientjes 已提交
1196 1197
}

1198
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199
				     int order)
1200
{
1201 1202 1203
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1204
		.memcg = memcg,
1205 1206 1207
		.gfp_mask = gfp_mask,
		.order = order,
	};
1208 1209 1210 1211 1212 1213
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1214 1215
	mutex_lock(&oom_lock);

1216
	/*
1217 1218 1219
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1220
	 */
1221
	if (task_will_free_mem(current)) {
1222
		mark_oom_victim(current);
1223
		wake_oom_reaper(current);
1224
		goto unlock;
1225 1226
	}

1227
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229
	for_each_mem_cgroup_tree(iter, memcg) {
1230
		struct css_task_iter it;
1231 1232
		struct task_struct *task;

1233 1234
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1235
			switch (oom_scan_process_thread(&oc, task)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1246
				css_task_iter_end(&it);
1247 1248 1249
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1250 1251
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1252
				goto unlock;
1253 1254 1255 1256
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1269
		}
1270
		css_task_iter_end(&it);
1271 1272
	}

1273 1274
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1275
		oom_kill_process(&oc, chosen, points, totalpages,
1276
				 "Memory cgroup out of memory");
1277 1278 1279
	}
unlock:
	mutex_unlock(&oom_lock);
1280
	return chosen;
1281 1282
}

1283 1284
#if MAX_NUMNODES > 1

1285 1286
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1287
 * @memcg: the target memcg
1288 1289 1290 1291 1292 1293 1294
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1295
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 1297
		int nid, bool noswap)
{
1298
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 1300 1301
		return true;
	if (noswap || !total_swap_pages)
		return false;
1302
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 1304 1305 1306
		return true;
	return false;

}
1307 1308 1309 1310 1311 1312 1313

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1314
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 1316
{
	int nid;
1317 1318 1319 1320
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1321
	if (!atomic_read(&memcg->numainfo_events))
1322
		return;
1323
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 1325 1326
		return;

	/* make a nodemask where this memcg uses memory from */
1327
	memcg->scan_nodes = node_states[N_MEMORY];
1328

1329
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1330

1331 1332
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1333
	}
1334

1335 1336
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1351
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 1353 1354
{
	int node;

1355 1356
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1357

1358
	node = next_node_in(node, memcg->scan_nodes);
1359
	/*
1360 1361 1362
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1363 1364 1365 1366
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1367
	memcg->last_scanned_node = node;
1368 1369 1370
	return node;
}
#else
1371
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 1373 1374 1375 1376
{
	return 0;
}
#endif

1377
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378
				   pg_data_t *pgdat,
1379 1380 1381 1382 1383 1384 1385 1386 1387
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1388
		.pgdat = pgdat,
1389 1390 1391
		.priority = 0,
	};

1392
	excess = soft_limit_excess(root_memcg);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1418
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419
					pgdat, &nr_scanned);
1420
		*total_scanned += nr_scanned;
1421
		if (!soft_limit_excess(root_memcg))
1422
			break;
1423
	}
1424 1425
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1426 1427
}

1428 1429 1430 1431 1432 1433
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1434 1435
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1436 1437 1438 1439
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1440
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1441
{
1442
	struct mem_cgroup *iter, *failed = NULL;
1443

1444 1445
	spin_lock(&memcg_oom_lock);

1446
	for_each_mem_cgroup_tree(iter, memcg) {
1447
		if (iter->oom_lock) {
1448 1449 1450 1451 1452
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1453 1454
			mem_cgroup_iter_break(memcg, iter);
			break;
1455 1456
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1457
	}
K
KAMEZAWA Hiroyuki 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1470
		}
1471 1472
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473 1474 1475 1476

	spin_unlock(&memcg_oom_lock);

	return !failed;
1477
}
1478

1479
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480
{
K
KAMEZAWA Hiroyuki 已提交
1481 1482
	struct mem_cgroup *iter;

1483
	spin_lock(&memcg_oom_lock);
1484
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485
	for_each_mem_cgroup_tree(iter, memcg)
1486
		iter->oom_lock = false;
1487
	spin_unlock(&memcg_oom_lock);
1488 1489
}

1490
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 1492 1493
{
	struct mem_cgroup *iter;

1494
	spin_lock(&memcg_oom_lock);
1495
	for_each_mem_cgroup_tree(iter, memcg)
1496 1497
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1498 1499
}

1500
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 1502 1503
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1504 1505
	/*
	 * When a new child is created while the hierarchy is under oom,
1506
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1507
	 */
1508
	spin_lock(&memcg_oom_lock);
1509
	for_each_mem_cgroup_tree(iter, memcg)
1510 1511 1512
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1513 1514
}

K
KAMEZAWA Hiroyuki 已提交
1515 1516
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1517
struct oom_wait_info {
1518
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522 1523 1524
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1525 1526
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1527 1528 1529
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1531

1532 1533
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1534 1535 1536 1537
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1538
static void memcg_oom_recover(struct mem_cgroup *memcg)
1539
{
1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1549
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 1551
}

1552
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553
{
1554
	if (!current->memcg_may_oom)
1555
		return;
K
KAMEZAWA Hiroyuki 已提交
1556
	/*
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1569
	 */
1570
	css_get(&memcg->css);
T
Tejun Heo 已提交
1571 1572 1573
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1574 1575 1576 1577
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578
 * @handle: actually kill/wait or just clean up the OOM state
1579
 *
1580 1581
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1582
 *
1583
 * Memcg supports userspace OOM handling where failed allocations must
1584 1585 1586 1587
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588
 * the end of the page fault to complete the OOM handling.
1589 1590
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1591
 * completed, %false otherwise.
1592
 */
1593
bool mem_cgroup_oom_synchronize(bool handle)
1594
{
T
Tejun Heo 已提交
1595
	struct mem_cgroup *memcg = current->memcg_in_oom;
1596
	struct oom_wait_info owait;
1597
	bool locked;
1598 1599 1600

	/* OOM is global, do not handle */
	if (!memcg)
1601
		return false;
1602

1603
	if (!handle || oom_killer_disabled)
1604
		goto cleanup;
1605 1606 1607 1608 1609 1610

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1611

1612
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1623 1624
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1625
	} else {
1626
		schedule();
1627 1628 1629 1630 1631
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1632 1633 1634 1635 1636 1637 1638 1639
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1640
cleanup:
T
Tejun Heo 已提交
1641
	current->memcg_in_oom = NULL;
1642
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1643
	return true;
1644 1645
}

1646
/**
1647 1648
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1649
 *
1650 1651
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1652
 */
J
Johannes Weiner 已提交
1653
void lock_page_memcg(struct page *page)
1654 1655
{
	struct mem_cgroup *memcg;
1656
	unsigned long flags;
1657

1658 1659 1660 1661 1662
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1663 1664 1665
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1666
		return;
1667
again:
1668
	memcg = page->mem_cgroup;
1669
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1670
		return;
1671

Q
Qiang Huang 已提交
1672
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1673
		return;
1674

1675
	spin_lock_irqsave(&memcg->move_lock, flags);
1676
	if (memcg != page->mem_cgroup) {
1677
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 1679
		goto again;
	}
1680 1681 1682 1683

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1684
	 * the task who has the lock for unlock_page_memcg().
1685 1686 1687
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1688

J
Johannes Weiner 已提交
1689
	return;
1690
}
1691
EXPORT_SYMBOL(lock_page_memcg);
1692

1693
/**
1694
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1695
 * @page: the page
1696
 */
J
Johannes Weiner 已提交
1697
void unlock_page_memcg(struct page *page)
1698
{
J
Johannes Weiner 已提交
1699 1700
	struct mem_cgroup *memcg = page->mem_cgroup;

1701 1702 1703 1704 1705 1706 1707 1708
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1709

1710
	rcu_read_unlock();
1711
}
1712
EXPORT_SYMBOL(unlock_page_memcg);
1713

1714 1715 1716 1717
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1718
#define CHARGE_BATCH	32U
1719 1720
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1721
	unsigned int nr_pages;
1722
	struct work_struct work;
1723
	unsigned long flags;
1724
#define FLUSHING_CACHED_CHARGE	0
1725 1726
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727
static DEFINE_MUTEX(percpu_charge_mutex);
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1739
 */
1740
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 1742
{
	struct memcg_stock_pcp *stock;
1743
	bool ret = false;
1744

1745
	if (nr_pages > CHARGE_BATCH)
1746
		return ret;
1747

1748
	stock = &get_cpu_var(memcg_stock);
1749
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1750
		stock->nr_pages -= nr_pages;
1751 1752
		ret = true;
	}
1753 1754 1755 1756 1757
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1758
 * Returns stocks cached in percpu and reset cached information.
1759 1760 1761 1762 1763
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1764
	if (stock->nr_pages) {
1765
		page_counter_uncharge(&old->memory, stock->nr_pages);
1766
		if (do_memsw_account())
1767
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1768
		css_put_many(&old->css, stock->nr_pages);
1769
		stock->nr_pages = 0;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1780
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1781
	drain_stock(stock);
1782
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1783 1784 1785
}

/*
1786
 * Cache charges(val) to local per_cpu area.
1787
 * This will be consumed by consume_stock() function, later.
1788
 */
1789
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1790 1791 1792
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1793
	if (stock->cached != memcg) { /* reset if necessary */
1794
		drain_stock(stock);
1795
		stock->cached = memcg;
1796
	}
1797
	stock->nr_pages += nr_pages;
1798 1799 1800 1801
	put_cpu_var(memcg_stock);
}

/*
1802
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803
 * of the hierarchy under it.
1804
 */
1805
static void drain_all_stock(struct mem_cgroup *root_memcg)
1806
{
1807
	int cpu, curcpu;
1808

1809 1810 1811
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1812 1813
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1814
	curcpu = get_cpu();
1815 1816
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1817
		struct mem_cgroup *memcg;
1818

1819 1820
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1821
			continue;
1822
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1823
			continue;
1824 1825 1826 1827 1828 1829
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1830
	}
1831
	put_cpu();
A
Andrew Morton 已提交
1832
	put_online_cpus();
1833
	mutex_unlock(&percpu_charge_mutex);
1834 1835
}

1836
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1837 1838 1839 1840 1841 1842
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1843
	if (action == CPU_ONLINE)
1844 1845
		return NOTIFY_OK;

1846
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1847
		return NOTIFY_OK;
1848

1849 1850 1851 1852 1853
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1874 1875 1876 1877 1878 1879 1880
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881
	struct mem_cgroup *memcg;
1882 1883 1884 1885

	if (likely(!nr_pages))
		return;

1886 1887
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 1889 1890 1891
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1892 1893
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1894
{
1895
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1896
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897
	struct mem_cgroup *mem_over_limit;
1898
	struct page_counter *counter;
1899
	unsigned long nr_reclaimed;
1900 1901
	bool may_swap = true;
	bool drained = false;
1902

1903
	if (mem_cgroup_is_root(memcg))
1904
		return 0;
1905
retry:
1906
	if (consume_stock(memcg, nr_pages))
1907
		return 0;
1908

1909
	if (!do_memsw_account() ||
1910 1911
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912
			goto done_restock;
1913
		if (do_memsw_account())
1914 1915
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916
	} else {
1917
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918
		may_swap = false;
1919
	}
1920

1921 1922 1923 1924
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1935
		goto force;
1936 1937 1938 1939

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1940
	if (!gfpflags_allow_blocking(gfp_mask))
1941
		goto nomem;
1942

1943 1944
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1945 1946
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1947

1948
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1949
		goto retry;
1950

1951
	if (!drained) {
1952
		drain_all_stock(mem_over_limit);
1953 1954 1955 1956
		drained = true;
		goto retry;
	}

1957 1958
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1968
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1969 1970 1971 1972 1973 1974 1975 1976
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1977 1978 1979
	if (nr_retries--)
		goto retry;

1980
	if (gfp_mask & __GFP_NOFAIL)
1981
		goto force;
1982

1983
	if (fatal_signal_pending(current))
1984
		goto force;
1985

1986 1987
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1988 1989
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1990
nomem:
1991
	if (!(gfp_mask & __GFP_NOFAIL))
1992
		return -ENOMEM;
1993 1994 1995 1996 1997 1998 1999
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2000
	if (do_memsw_account())
2001 2002 2003 2004
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2005 2006

done_restock:
2007
	css_get_many(&memcg->css, batch);
2008 2009
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2010

2011
	/*
2012 2013
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2014
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 2016 2017 2018
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2019 2020
	 */
	do {
2021
		if (page_counter_read(&memcg->memory) > memcg->high) {
2022 2023 2024 2025 2026
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2027
			current->memcg_nr_pages_over_high += batch;
2028 2029 2030
			set_notify_resume(current);
			break;
		}
2031
	} while ((memcg = parent_mem_cgroup(memcg)));
2032 2033

	return 0;
2034
}
2035

2036
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2037
{
2038 2039 2040
	if (mem_cgroup_is_root(memcg))
		return;

2041
	page_counter_uncharge(&memcg->memory, nr_pages);
2042
	if (do_memsw_account())
2043
		page_counter_uncharge(&memcg->memsw, nr_pages);
2044

2045
	css_put_many(&memcg->css, nr_pages);
2046 2047
}

2048 2049 2050 2051
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2052
	spin_lock_irq(zone_lru_lock(zone));
2053 2054 2055
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2056
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2071
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2072 2073 2074 2075
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2076
	spin_unlock_irq(zone_lru_lock(zone));
2077 2078
}

2079
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2080
			  bool lrucare)
2081
{
2082
	int isolated;
2083

2084
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2085 2086 2087 2088 2089

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2090 2091
	if (lrucare)
		lock_page_lru(page, &isolated);
2092

2093 2094
	/*
	 * Nobody should be changing or seriously looking at
2095
	 * page->mem_cgroup at this point:
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2107
	page->mem_cgroup = memcg;
2108

2109 2110
	if (lrucare)
		unlock_page_lru(page, isolated);
2111
}
2112

2113
#ifndef CONFIG_SLOB
2114
static int memcg_alloc_cache_id(void)
2115
{
2116 2117 2118
	int id, size;
	int err;

2119
	id = ida_simple_get(&memcg_cache_ida,
2120 2121 2122
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2123

2124
	if (id < memcg_nr_cache_ids)
2125 2126 2127 2128 2129 2130
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2131
	down_write(&memcg_cache_ids_sem);
2132 2133

	size = 2 * (id + 1);
2134 2135 2136 2137 2138
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2139
	err = memcg_update_all_caches(size);
2140 2141
	if (!err)
		err = memcg_update_all_list_lrus(size);
2142 2143 2144 2145 2146
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2147
	if (err) {
2148
		ida_simple_remove(&memcg_cache_ida, id);
2149 2150 2151 2152 2153 2154 2155
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2156
	ida_simple_remove(&memcg_cache_ida, id);
2157 2158
}

2159
struct memcg_kmem_cache_create_work {
2160 2161 2162 2163 2164
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2165
static void memcg_kmem_cache_create_func(struct work_struct *w)
2166
{
2167 2168
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2169 2170
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2171

2172
	memcg_create_kmem_cache(memcg, cachep);
2173

2174
	css_put(&memcg->css);
2175 2176 2177 2178 2179 2180
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2181 2182
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2183
{
2184
	struct memcg_kmem_cache_create_work *cw;
2185

2186
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2187
	if (!cw)
2188
		return;
2189 2190

	css_get(&memcg->css);
2191 2192 2193

	cw->memcg = memcg;
	cw->cachep = cachep;
2194
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2195 2196 2197 2198

	schedule_work(&cw->work);
}

2199 2200
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2201 2202 2203 2204
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2205
	 * in __memcg_schedule_kmem_cache_create will recurse.
2206 2207 2208 2209 2210 2211 2212
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2213
	current->memcg_kmem_skip_account = 1;
2214
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2215
	current->memcg_kmem_skip_account = 0;
2216
}
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2229 2230 2231
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2232 2233 2234
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2235
 *
2236 2237 2238 2239
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2240
 */
2241
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2242 2243
{
	struct mem_cgroup *memcg;
2244
	struct kmem_cache *memcg_cachep;
2245
	int kmemcg_id;
2246

2247
	VM_BUG_ON(!is_root_cache(cachep));
2248

2249
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2250 2251
		return cachep;

2252
	if (current->memcg_kmem_skip_account)
2253 2254
		return cachep;

2255
	memcg = get_mem_cgroup_from_mm(current->mm);
2256
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2257
	if (kmemcg_id < 0)
2258
		goto out;
2259

2260
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2261 2262
	if (likely(memcg_cachep))
		return memcg_cachep;
2263 2264 2265 2266 2267 2268 2269 2270 2271

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2272 2273 2274
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2275
	 */
2276
	memcg_schedule_kmem_cache_create(memcg, cachep);
2277
out:
2278
	css_put(&memcg->css);
2279
	return cachep;
2280 2281
}

2282 2283 2284 2285 2286
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2287 2288
{
	if (!is_root_cache(cachep))
2289
		css_put(&cachep->memcg_params.memcg->css);
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2303
{
2304 2305
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2306 2307
	int ret;

2308
	ret = try_charge(memcg, gfp, nr_pages);
2309
	if (ret)
2310
		return ret;
2311 2312 2313 2314 2315

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2316 2317
	}

2318
	page->mem_cgroup = memcg;
2319

2320
	return 0;
2321 2322
}

2323 2324 2325 2326 2327 2328 2329 2330 2331
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2332
{
2333
	struct mem_cgroup *memcg;
2334
	int ret = 0;
2335

2336 2337 2338
	if (memcg_kmem_bypass())
		return 0;

2339
	memcg = get_mem_cgroup_from_mm(current->mm);
2340
	if (!mem_cgroup_is_root(memcg))
2341
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2342
	css_put(&memcg->css);
2343
	return ret;
2344
}
2345 2346 2347 2348 2349 2350
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2351
{
2352
	struct mem_cgroup *memcg = page->mem_cgroup;
2353
	unsigned int nr_pages = 1 << order;
2354 2355 2356 2357

	if (!memcg)
		return;

2358
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2359

2360 2361 2362
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2363
	page_counter_uncharge(&memcg->memory, nr_pages);
2364
	if (do_memsw_account())
2365
		page_counter_uncharge(&memcg->memsw, nr_pages);
2366

2367
	page->mem_cgroup = NULL;
2368
	css_put_many(&memcg->css, nr_pages);
2369
}
2370
#endif /* !CONFIG_SLOB */
2371

2372 2373 2374 2375
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2376
 * zone_lru_lock and migration entries setup in all page mappings.
2377
 */
2378
void mem_cgroup_split_huge_fixup(struct page *head)
2379
{
2380
	int i;
2381

2382 2383
	if (mem_cgroup_disabled())
		return;
2384

2385
	for (i = 1; i < HPAGE_PMD_NR; i++)
2386
		head[i].mem_cgroup = head->mem_cgroup;
2387

2388
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2389
		       HPAGE_PMD_NR);
2390
}
2391
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2392

A
Andrew Morton 已提交
2393
#ifdef CONFIG_MEMCG_SWAP
2394 2395
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2396
{
2397 2398
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2399
}
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2412
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2413 2414 2415
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2416
				struct mem_cgroup *from, struct mem_cgroup *to)
2417 2418 2419
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2420 2421
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2422 2423 2424

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2425
		mem_cgroup_swap_statistics(to, true);
2426 2427 2428 2429 2430 2431
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2432
				struct mem_cgroup *from, struct mem_cgroup *to)
2433 2434 2435
{
	return -EINVAL;
}
2436
#endif
K
KAMEZAWA Hiroyuki 已提交
2437

2438
static DEFINE_MUTEX(memcg_limit_mutex);
2439

2440
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2441
				   unsigned long limit)
2442
{
2443 2444 2445
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2446
	int retry_count;
2447
	int ret;
2448 2449 2450 2451 2452 2453

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2454 2455
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2456

2457
	oldusage = page_counter_read(&memcg->memory);
2458

2459
	do {
2460 2461 2462 2463
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2464 2465 2466 2467

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2468
			ret = -EINVAL;
2469 2470
			break;
		}
2471 2472 2473 2474
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2475 2476 2477 2478

		if (!ret)
			break;

2479 2480
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2481
		curusage = page_counter_read(&memcg->memory);
2482
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2483
		if (curusage >= oldusage)
2484 2485 2486
			retry_count--;
		else
			oldusage = curusage;
2487 2488
	} while (retry_count);

2489 2490
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2491

2492 2493 2494
	return ret;
}

L
Li Zefan 已提交
2495
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2496
					 unsigned long limit)
2497
{
2498 2499 2500
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2501
	int retry_count;
2502
	int ret;
2503

2504
	/* see mem_cgroup_resize_res_limit */
2505 2506 2507 2508 2509 2510
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2511 2512 2513 2514
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2515 2516 2517 2518

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2519 2520 2521
			ret = -EINVAL;
			break;
		}
2522 2523 2524 2525
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2526 2527 2528 2529

		if (!ret)
			break;

2530 2531
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2532
		curusage = page_counter_read(&memcg->memsw);
2533
		/* Usage is reduced ? */
2534
		if (curusage >= oldusage)
2535
			retry_count--;
2536 2537
		else
			oldusage = curusage;
2538 2539
	} while (retry_count);

2540 2541
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2542

2543 2544 2545
	return ret;
}

2546
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2547 2548 2549 2550
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2551
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2552 2553
	unsigned long reclaimed;
	int loop = 0;
2554
	struct mem_cgroup_tree_per_node *mctz;
2555
	unsigned long excess;
2556 2557 2558 2559 2560
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2561
	mctz = soft_limit_tree_node(pgdat->node_id);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2576
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577 2578 2579
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2580
		spin_lock_irq(&mctz->lock);
2581
		__mem_cgroup_remove_exceeded(mz, mctz);
2582 2583 2584 2585 2586 2587

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2588 2589 2590
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2591
		excess = soft_limit_excess(mz->memcg);
2592 2593 2594 2595 2596 2597 2598 2599 2600
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2601
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2602
		spin_unlock_irq(&mctz->lock);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2620 2621 2622 2623 2624 2625
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2626 2627
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2628 2629 2630 2631 2632 2633
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2634 2635
}

2636
/*
2637
 * Reclaims as many pages from the given memcg as possible.
2638 2639 2640 2641 2642 2643 2644
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2645 2646
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2647
	/* try to free all pages in this cgroup */
2648
	while (nr_retries && page_counter_read(&memcg->memory)) {
2649
		int progress;
2650

2651 2652 2653
		if (signal_pending(current))
			return -EINTR;

2654 2655
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2656
		if (!progress) {
2657
			nr_retries--;
2658
			/* maybe some writeback is necessary */
2659
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2660
		}
2661 2662

	}
2663 2664

	return 0;
2665 2666
}

2667 2668 2669
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2670
{
2671
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672

2673 2674
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2675
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 2677
}

2678 2679
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2680
{
2681
	return mem_cgroup_from_css(css)->use_hierarchy;
2682 2683
}

2684 2685
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2686 2687
{
	int retval = 0;
2688
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2689
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690

2691
	if (memcg->use_hierarchy == val)
2692
		return 0;
2693

2694
	/*
2695
	 * If parent's use_hierarchy is set, we can't make any modifications
2696 2697 2698 2699 2700 2701
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2702
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703
				(val == 1 || val == 0)) {
2704
		if (!memcg_has_children(memcg))
2705
			memcg->use_hierarchy = val;
2706 2707 2708 2709
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2710

2711 2712 2713
	return retval;
}

2714
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 2716
{
	struct mem_cgroup *iter;
2717
	int i;
2718

2719
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720

2721 2722 2723 2724
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2725 2726
}

2727
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 2729
{
	struct mem_cgroup *iter;
2730
	int i;
2731

2732
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733

2734 2735 2736 2737
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2738 2739
}

2740
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741
{
2742
	unsigned long val = 0;
2743

2744
	if (mem_cgroup_is_root(memcg)) {
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2756
	} else {
2757
		if (!swap)
2758
			val = page_counter_read(&memcg->memory);
2759
		else
2760
			val = page_counter_read(&memcg->memsw);
2761
	}
2762
	return val;
2763 2764
}

2765 2766 2767 2768 2769 2770 2771
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2772

2773
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774
			       struct cftype *cft)
B
Balbir Singh 已提交
2775
{
2776
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777
	struct page_counter *counter;
2778

2779
	switch (MEMFILE_TYPE(cft->private)) {
2780
	case _MEM:
2781 2782
		counter = &memcg->memory;
		break;
2783
	case _MEMSWAP:
2784 2785
		counter = &memcg->memsw;
		break;
2786
	case _KMEM:
2787
		counter = &memcg->kmem;
2788
		break;
V
Vladimir Davydov 已提交
2789
	case _TCP:
2790
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2791
		break;
2792 2793 2794
	default:
		BUG();
	}
2795 2796 2797 2798

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2799
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800
		if (counter == &memcg->memsw)
2801
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2814
}
2815

2816
#ifndef CONFIG_SLOB
2817
static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 2819 2820
{
	int memcg_id;

2821 2822 2823
	if (cgroup_memory_nokmem)
		return 0;

2824
	BUG_ON(memcg->kmemcg_id >= 0);
2825
	BUG_ON(memcg->kmem_state);
2826

2827
	memcg_id = memcg_alloc_cache_id();
2828 2829
	if (memcg_id < 0)
		return memcg_id;
2830

2831
	static_branch_inc(&memcg_kmem_enabled_key);
2832
	/*
2833
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2834
	 * kmemcg_id. Setting the id after enabling static branching will
2835 2836 2837
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2838
	memcg->kmemcg_id = memcg_id;
2839
	memcg->kmem_state = KMEM_ONLINE;
2840 2841

	return 0;
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2877
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878 2879 2880 2881 2882 2883 2884
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2885 2886
	rcu_read_unlock();

2887 2888 2889 2890 2891 2892 2893
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2894 2895 2896 2897
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2898 2899 2900 2901 2902 2903
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2904
#else
2905
static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2917
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918
				   unsigned long limit)
2919
{
2920
	int ret;
2921 2922 2923 2924 2925

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2926
}
2927

V
Vladimir Davydov 已提交
2928 2929 2930 2931 2932 2933
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2934
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2935 2936 2937
	if (ret)
		goto out;

2938
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2956
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2957 2958 2959 2960 2961 2962
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2963 2964 2965 2966
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2967 2968
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2969
{
2970
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971
	unsigned long nr_pages;
2972 2973
	int ret;

2974
	buf = strstrip(buf);
2975
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 2977
	if (ret)
		return ret;
2978

2979
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980
	case RES_LIMIT:
2981 2982 2983 2984
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2985 2986 2987
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988
			break;
2989 2990
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991
			break;
2992 2993 2994
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2995 2996 2997
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
2998
		}
2999
		break;
3000 3001 3002
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3003 3004
		break;
	}
3005
	return ret ?: nbytes;
B
Balbir Singh 已提交
3006 3007
}

3008 3009
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3010
{
3011
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012
	struct page_counter *counter;
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3024
	case _TCP:
3025
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3026
		break;
3027 3028 3029
	default:
		BUG();
	}
3030

3031
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032
	case RES_MAX_USAGE:
3033
		page_counter_reset_watermark(counter);
3034 3035
		break;
	case RES_FAILCNT:
3036
		counter->failcnt = 0;
3037
		break;
3038 3039
	default:
		BUG();
3040
	}
3041

3042
	return nbytes;
3043 3044
}

3045
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 3047
					struct cftype *cft)
{
3048
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 3050
}

3051
#ifdef CONFIG_MMU
3052
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 3054
					struct cftype *cft, u64 val)
{
3055
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056

3057
	if (val & ~MOVE_MASK)
3058
		return -EINVAL;
3059

3060
	/*
3061 3062 3063 3064
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3065
	 */
3066
	memcg->move_charge_at_immigrate = val;
3067 3068
	return 0;
}
3069
#else
3070
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 3072 3073 3074 3075
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3076

3077
#ifdef CONFIG_NUMA
3078
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079
{
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3092
	int nid;
3093
	unsigned long nr;
3094
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3105 3106
	}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3122 3123 3124 3125 3126 3127
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3128
static int memcg_stat_show(struct seq_file *m, void *v)
3129
{
3130
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131
	unsigned long memory, memsw;
3132 3133
	struct mem_cgroup *mi;
	unsigned int i;
3134

3135 3136 3137 3138
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3139 3140
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3141
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143
			continue;
3144
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146
	}
L
Lee Schermerhorn 已提交
3147

3148 3149 3150 3151 3152 3153 3154 3155
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3156
	/* Hierarchical information */
3157 3158 3159 3160
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3161
	}
3162 3163
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3164
	if (do_memsw_account())
3165 3166
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3167

3168
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169
		unsigned long long val = 0;
3170

3171
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172
			continue;
3173 3174
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193
	}
K
KAMEZAWA Hiroyuki 已提交
3194

K
KOSAKI Motohiro 已提交
3195 3196
#ifdef CONFIG_DEBUG_VM
	{
3197 3198
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3199
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3200 3201 3202
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3203 3204 3205
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3206

3207 3208 3209 3210 3211
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3212 3213 3214 3215
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3216 3217 3218
	}
#endif

3219 3220 3221
	return 0;
}

3222 3223
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3224
{
3225
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3226

3227
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3228 3229
}

3230 3231
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3232
{
3233
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3234

3235
	if (val > 100)
K
KOSAKI Motohiro 已提交
3236 3237
		return -EINVAL;

3238
	if (css->parent)
3239 3240 3241
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3242

K
KOSAKI Motohiro 已提交
3243 3244 3245
	return 0;
}

3246 3247 3248
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3249
	unsigned long usage;
3250 3251 3252 3253
	int i;

	rcu_read_lock();
	if (!swap)
3254
		t = rcu_dereference(memcg->thresholds.primary);
3255
	else
3256
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257 3258 3259 3260

	if (!t)
		goto unlock;

3261
	usage = mem_cgroup_usage(memcg, swap);
3262 3263

	/*
3264
	 * current_threshold points to threshold just below or equal to usage.
3265 3266 3267
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3268
	i = t->current_threshold;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3292
	t->current_threshold = i - 1;
3293 3294 3295 3296 3297 3298
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3299 3300
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3301
		if (do_memsw_account())
3302 3303 3304 3305
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3306 3307 3308 3309 3310 3311 3312
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3313 3314 3315 3316 3317 3318 3319
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3320 3321
}

3322
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3323 3324 3325
{
	struct mem_cgroup_eventfd_list *ev;

3326 3327
	spin_lock(&memcg_oom_lock);

3328
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3329
		eventfd_signal(ev->eventfd, 1);
3330 3331

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3332 3333 3334
	return 0;
}

3335
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3336
{
K
KAMEZAWA Hiroyuki 已提交
3337 3338
	struct mem_cgroup *iter;

3339
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3340
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3341 3342
}

3343
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3344
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345
{
3346 3347
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3348 3349
	unsigned long threshold;
	unsigned long usage;
3350
	int i, size, ret;
3351

3352
	ret = page_counter_memparse(args, "-1", &threshold);
3353 3354 3355 3356
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3357

3358
	if (type == _MEM) {
3359
		thresholds = &memcg->thresholds;
3360
		usage = mem_cgroup_usage(memcg, false);
3361
	} else if (type == _MEMSWAP) {
3362
		thresholds = &memcg->memsw_thresholds;
3363
		usage = mem_cgroup_usage(memcg, true);
3364
	} else
3365 3366 3367
		BUG();

	/* Check if a threshold crossed before adding a new one */
3368
	if (thresholds->primary)
3369 3370
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3371
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372 3373

	/* Allocate memory for new array of thresholds */
3374
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375
			GFP_KERNEL);
3376
	if (!new) {
3377 3378 3379
		ret = -ENOMEM;
		goto unlock;
	}
3380
	new->size = size;
3381 3382

	/* Copy thresholds (if any) to new array */
3383 3384
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385
				sizeof(struct mem_cgroup_threshold));
3386 3387
	}

3388
	/* Add new threshold */
3389 3390
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3391 3392

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 3395 3396
			compare_thresholds, NULL);

	/* Find current threshold */
3397
	new->current_threshold = -1;
3398
	for (i = 0; i < size; i++) {
3399
		if (new->entries[i].threshold <= usage) {
3400
			/*
3401 3402
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3403 3404
			 * it here.
			 */
3405
			++new->current_threshold;
3406 3407
		} else
			break;
3408 3409
	}

3410 3411 3412 3413 3414
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3415

3416
	/* To be sure that nobody uses thresholds */
3417 3418 3419 3420 3421 3422 3423 3424
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3425
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3426 3427
	struct eventfd_ctx *eventfd, const char *args)
{
3428
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3429 3430
}

3431
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3432 3433
	struct eventfd_ctx *eventfd, const char *args)
{
3434
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3435 3436
}

3437
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3438
	struct eventfd_ctx *eventfd, enum res_type type)
3439
{
3440 3441
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3442
	unsigned long usage;
3443
	int i, j, size;
3444 3445

	mutex_lock(&memcg->thresholds_lock);
3446 3447

	if (type == _MEM) {
3448
		thresholds = &memcg->thresholds;
3449
		usage = mem_cgroup_usage(memcg, false);
3450
	} else if (type == _MEMSWAP) {
3451
		thresholds = &memcg->memsw_thresholds;
3452
		usage = mem_cgroup_usage(memcg, true);
3453
	} else
3454 3455
		BUG();

3456 3457 3458
	if (!thresholds->primary)
		goto unlock;

3459 3460 3461 3462
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3463 3464 3465
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3466 3467 3468
			size++;
	}

3469
	new = thresholds->spare;
3470

3471 3472
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3473 3474
		kfree(new);
		new = NULL;
3475
		goto swap_buffers;
3476 3477
	}

3478
	new->size = size;
3479 3480

	/* Copy thresholds and find current threshold */
3481 3482 3483
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3484 3485
			continue;

3486
		new->entries[j] = thresholds->primary->entries[i];
3487
		if (new->entries[j].threshold <= usage) {
3488
			/*
3489
			 * new->current_threshold will not be used
3490 3491 3492
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3493
			++new->current_threshold;
3494 3495 3496 3497
		}
		j++;
	}

3498
swap_buffers:
3499 3500
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3501

3502
	rcu_assign_pointer(thresholds->primary, new);
3503

3504
	/* To be sure that nobody uses thresholds */
3505
	synchronize_rcu();
3506 3507 3508 3509 3510 3511

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3512
unlock:
3513 3514
	mutex_unlock(&memcg->thresholds_lock);
}
3515

3516
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3517 3518
	struct eventfd_ctx *eventfd)
{
3519
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3520 3521
}

3522
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3523 3524
	struct eventfd_ctx *eventfd)
{
3525
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3526 3527
}

3528
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3529
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3530 3531 3532 3533 3534 3535 3536
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3537
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3538 3539 3540 3541 3542

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3543
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3544
		eventfd_signal(eventfd, 1);
3545
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3546 3547 3548 3549

	return 0;
}

3550
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3551
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3552 3553 3554
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3555
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3556

3557
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3558 3559 3560 3561 3562 3563
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3564
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3565 3566
}

3567
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568
{
3569
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570

3571
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573 3574 3575
	return 0;
}

3576
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577 3578
	struct cftype *cft, u64 val)
{
3579
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580 3581

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3582
	if (!css->parent || !((val == 0) || (val == 1)))
3583 3584
		return -EINVAL;

3585
	memcg->oom_kill_disable = val;
3586
	if (!val)
3587
		memcg_oom_recover(memcg);
3588

3589 3590 3591
	return 0;
}

3592 3593 3594 3595 3596 3597 3598
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3609 3610 3611 3612 3613
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3624 3625 3626
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3627 3628
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3629 3630 3631
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3632 3633 3634
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3635
 *
3636 3637 3638 3639 3640
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3641
 */
3642 3643 3644
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3645 3646 3647 3648 3649 3650 3651 3652
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653 3654 3655
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3656 3657 3658 3659 3660

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3661
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662 3663 3664 3665
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3677 3678 3679 3680
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3681 3682
#endif	/* CONFIG_CGROUP_WRITEBACK */

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3696 3697 3698 3699 3700
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3701
static void memcg_event_remove(struct work_struct *work)
3702
{
3703 3704
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3705
	struct mem_cgroup *memcg = event->memcg;
3706 3707 3708

	remove_wait_queue(event->wqh, &event->wait);

3709
	event->unregister_event(memcg, event->eventfd);
3710 3711 3712 3713 3714 3715

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3716
	css_put(&memcg->css);
3717 3718 3719 3720 3721 3722 3723
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3724 3725
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3726
{
3727 3728
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3729
	struct mem_cgroup *memcg = event->memcg;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3742
		spin_lock(&memcg->event_list_lock);
3743 3744 3745 3746 3747 3748 3749 3750
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3751
		spin_unlock(&memcg->event_list_lock);
3752 3753 3754 3755 3756
	}

	return 0;
}

3757
static void memcg_event_ptable_queue_proc(struct file *file,
3758 3759
		wait_queue_head_t *wqh, poll_table *pt)
{
3760 3761
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3762 3763 3764 3765 3766 3767

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3768 3769
 * DO NOT USE IN NEW FILES.
 *
3770 3771 3772 3773 3774
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3775 3776
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3777
{
3778
	struct cgroup_subsys_state *css = of_css(of);
3779
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780
	struct mem_cgroup_event *event;
3781 3782 3783 3784
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3785
	const char *name;
3786 3787 3788
	char *endp;
	int ret;

3789 3790 3791
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3792 3793
	if (*endp != ' ')
		return -EINVAL;
3794
	buf = endp + 1;
3795

3796
	cfd = simple_strtoul(buf, &endp, 10);
3797 3798
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3799
	buf = endp + 1;
3800 3801 3802 3803 3804

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3805
	event->memcg = memcg;
3806
	INIT_LIST_HEAD(&event->list);
3807 3808 3809
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3835 3836 3837 3838 3839
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3840 3841
	 *
	 * DO NOT ADD NEW FILES.
3842
	 */
A
Al Viro 已提交
3843
	name = cfile.file->f_path.dentry->d_name.name;
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3855 3856
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3857 3858 3859 3860 3861
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3862
	/*
3863 3864 3865
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3866
	 */
A
Al Viro 已提交
3867
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868
					       &memory_cgrp_subsys);
3869
	ret = -EINVAL;
3870
	if (IS_ERR(cfile_css))
3871
		goto out_put_cfile;
3872 3873
	if (cfile_css != css) {
		css_put(cfile_css);
3874
		goto out_put_cfile;
3875
	}
3876

3877
	ret = event->register_event(memcg, event->eventfd, buf);
3878 3879 3880 3881 3882
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3883 3884 3885
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3886 3887 3888 3889

	fdput(cfile);
	fdput(efile);

3890
	return nbytes;
3891 3892

out_put_css:
3893
	css_put(css);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3906
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3907
	{
3908
		.name = "usage_in_bytes",
3909
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3911
	},
3912 3913
	{
		.name = "max_usage_in_bytes",
3914
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915
		.write = mem_cgroup_reset,
3916
		.read_u64 = mem_cgroup_read_u64,
3917
	},
B
Balbir Singh 已提交
3918
	{
3919
		.name = "limit_in_bytes",
3920
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921
		.write = mem_cgroup_write,
3922
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3923
	},
3924 3925 3926
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927
		.write = mem_cgroup_write,
3928
		.read_u64 = mem_cgroup_read_u64,
3929
	},
B
Balbir Singh 已提交
3930 3931
	{
		.name = "failcnt",
3932
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933
		.write = mem_cgroup_reset,
3934
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3935
	},
3936 3937
	{
		.name = "stat",
3938
		.seq_show = memcg_stat_show,
3939
	},
3940 3941
	{
		.name = "force_empty",
3942
		.write = mem_cgroup_force_empty_write,
3943
	},
3944 3945 3946 3947 3948
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3949
	{
3950
		.name = "cgroup.event_control",		/* XXX: for compat */
3951
		.write = memcg_write_event_control,
3952
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953
	},
K
KOSAKI Motohiro 已提交
3954 3955 3956 3957 3958
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3959 3960 3961 3962 3963
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3964 3965
	{
		.name = "oom_control",
3966
		.seq_show = mem_cgroup_oom_control_read,
3967
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3968 3969
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3970 3971 3972
	{
		.name = "pressure_level",
	},
3973 3974 3975
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3976
		.seq_show = memcg_numa_stat_show,
3977 3978
	},
#endif
3979 3980 3981
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982
		.write = mem_cgroup_write,
3983
		.read_u64 = mem_cgroup_read_u64,
3984 3985 3986 3987
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988
		.read_u64 = mem_cgroup_read_u64,
3989 3990 3991 3992
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993
		.write = mem_cgroup_reset,
3994
		.read_u64 = mem_cgroup_read_u64,
3995 3996 3997 3998
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999
		.write = mem_cgroup_reset,
4000
		.read_u64 = mem_cgroup_read_u64,
4001
	},
4002 4003 4004
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4005 4006 4007 4008
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4009 4010
	},
#endif
V
Vladimir Davydov 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4034
	{ },	/* terminate */
4035
};
4036

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

static void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	atomic_inc(&memcg->id.ref);
}

static void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	if (atomic_dec_and_test(&memcg->id.ref)) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4091
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4092 4093
{
	struct mem_cgroup_per_node *pn;
4094
	int tmp = node;
4095 4096 4097 4098 4099 4100 4101 4102
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4103 4104
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4105
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4106 4107
	if (!pn)
		return 1;
4108

4109 4110 4111 4112 4113
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4114
	memcg->nodeinfo[node] = pn;
4115 4116 4117
	return 0;
}

4118
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4119
{
4120
	kfree(memcg->nodeinfo[node]);
4121 4122
}

4123
static void mem_cgroup_free(struct mem_cgroup *memcg)
4124
{
4125
	int node;
4126

4127
	memcg_wb_domain_exit(memcg);
4128
	for_each_node(node)
4129
		free_mem_cgroup_per_node_info(memcg, node);
4130
	free_percpu(memcg->stat);
4131
	kfree(memcg);
4132
}
4133

4134
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4135
{
4136
	struct mem_cgroup *memcg;
4137
	size_t size;
4138
	int node;
B
Balbir Singh 已提交
4139

4140 4141 4142 4143
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4144
	if (!memcg)
4145 4146
		return NULL;

4147 4148 4149 4150 4151 4152
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4153 4154 4155
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4156

B
Bob Liu 已提交
4157
	for_each_node(node)
4158
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4159
			goto fail;
4160

4161 4162
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4163

4164
	INIT_WORK(&memcg->high_work, high_work_func);
4165 4166 4167 4168
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4169
	vmpressure_init(&memcg->vmpressure);
4170 4171
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4172
	memcg->socket_pressure = jiffies;
4173
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4174 4175
	memcg->kmemcg_id = -1;
#endif
4176 4177 4178
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4179
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4180 4181
	return memcg;
fail:
4182 4183
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4184 4185
	mem_cgroup_free(memcg);
	return NULL;
4186 4187
}

4188 4189
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190
{
4191 4192 4193
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4194

4195 4196 4197
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4198

4199 4200 4201 4202 4203 4204 4205 4206
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4207
		page_counter_init(&memcg->memory, &parent->memory);
4208
		page_counter_init(&memcg->swap, &parent->swap);
4209 4210
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4211
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212
	} else {
4213
		page_counter_init(&memcg->memory, NULL);
4214
		page_counter_init(&memcg->swap, NULL);
4215 4216
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4217
		page_counter_init(&memcg->tcpmem, NULL);
4218 4219 4220 4221 4222
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4223
		if (parent != root_mem_cgroup)
4224
			memory_cgrp_subsys.broken_hierarchy = true;
4225
	}
4226

4227 4228 4229 4230 4231 4232
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4233
	error = memcg_online_kmem(memcg);
4234 4235
	if (error)
		goto fail;
4236

4237
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238
		static_branch_inc(&memcg_sockets_enabled_key);
4239

4240 4241 4242
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4243
	return ERR_PTR(-ENOMEM);
4244 4245
}

4246
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247
{
4248 4249 4250
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4251
	return 0;
B
Balbir Singh 已提交
4252 4253
}

4254
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4255
{
4256
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
	struct mem_cgroup_event *event, *tmp;
4258 4259 4260 4261 4262 4263

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4264 4265
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4266 4267 4268
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4269
	spin_unlock(&memcg->event_list_lock);
4270

4271
	memcg_offline_kmem(memcg);
4272
	wb_memcg_offline(memcg);
4273 4274

	mem_cgroup_id_put(memcg);
4275 4276
}

4277 4278 4279 4280 4281 4282 4283
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4284
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4285
{
4286
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4287

4288
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4289
		static_branch_dec(&memcg_sockets_enabled_key);
4290

4291
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4292
		static_branch_dec(&memcg_sockets_enabled_key);
4293

4294 4295 4296
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4297
	memcg_free_kmem(memcg);
4298
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4299 4300
}

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4318 4319 4320 4321 4322
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4323 4324
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4325
	memcg->soft_limit = PAGE_COUNTER_MAX;
4326
	memcg_wb_domain_size_changed(memcg);
4327 4328
}

4329
#ifdef CONFIG_MMU
4330
/* Handlers for move charge at task migration. */
4331
static int mem_cgroup_do_precharge(unsigned long count)
4332
{
4333
	int ret;
4334

4335 4336
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4337
	if (!ret) {
4338 4339 4340
		mc.precharge += count;
		return ret;
	}
4341 4342

	/* Try charges one by one with reclaim */
4343
	while (count--) {
4344
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4345 4346
		if (ret)
			return ret;
4347
		mc.precharge++;
4348
		cond_resched();
4349
	}
4350
	return 0;
4351 4352 4353 4354
}

union mc_target {
	struct page	*page;
4355
	swp_entry_t	ent;
4356 4357 4358
};

enum mc_target_type {
4359
	MC_TARGET_NONE = 0,
4360
	MC_TARGET_PAGE,
4361
	MC_TARGET_SWAP,
4362 4363
};

D
Daisuke Nishimura 已提交
4364 4365
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4366
{
D
Daisuke Nishimura 已提交
4367
	struct page *page = vm_normal_page(vma, addr, ptent);
4368

D
Daisuke Nishimura 已提交
4369 4370 4371
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4372
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4373
			return NULL;
4374 4375 4376 4377
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4378 4379 4380 4381 4382 4383
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4384
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4385
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4386
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4387 4388 4389 4390
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4391
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4392
		return NULL;
4393 4394 4395 4396
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4397
	page = find_get_page(swap_address_space(ent), ent.val);
4398
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4399 4400 4401 4402
		entry->val = ent.val;

	return page;
}
4403 4404
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4405
			pte_t ptent, swp_entry_t *entry)
4406 4407 4408 4409
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4410

4411 4412 4413 4414 4415 4416 4417 4418 4419
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4420
	if (!(mc.flags & MOVE_FILE))
4421 4422 4423
		return NULL;

	mapping = vma->vm_file->f_mapping;
4424
	pgoff = linear_page_index(vma, addr);
4425 4426

	/* page is moved even if it's not RSS of this task(page-faulted). */
4427 4428
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4429 4430 4431 4432
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4433
			if (do_memsw_account())
4434 4435 4436 4437 4438 4439 4440
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4441
#endif
4442 4443 4444
	return page;
}

4445 4446 4447
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4448
 * @compound: charge the page as compound or small page
4449 4450 4451
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4452
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4453 4454 4455 4456 4457
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4458
				   bool compound,
4459 4460 4461 4462
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4463
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4464
	int ret;
4465
	bool anon;
4466 4467 4468

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4469
	VM_BUG_ON(compound && !PageTransHuge(page));
4470 4471

	/*
4472
	 * Prevent mem_cgroup_migrate() from looking at
4473
	 * page->mem_cgroup of its source page while we change it.
4474
	 */
4475
	ret = -EBUSY;
4476 4477 4478 4479 4480 4481 4482
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4483 4484
	anon = PageAnon(page);

4485 4486
	spin_lock_irqsave(&from->move_lock, flags);

4487
	if (!anon && page_mapped(page)) {
4488 4489 4490 4491 4492 4493
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4530
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4531
	memcg_check_events(to, page);
4532
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4533 4534 4535 4536 4537 4538 4539 4540
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4560
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4561 4562 4563
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4564
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4565 4566 4567 4568 4569
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4570
		page = mc_handle_swap_pte(vma, ptent, &ent);
4571
	else if (pte_none(ptent))
4572
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4573 4574

	if (!page && !ent.val)
4575
		return ret;
4576 4577
	if (page) {
		/*
4578
		 * Do only loose check w/o serialization.
4579
		 * mem_cgroup_move_account() checks the page is valid or
4580
		 * not under LRU exclusion.
4581
		 */
4582
		if (page->mem_cgroup == mc.from) {
4583 4584 4585 4586 4587 4588 4589
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4590 4591
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4592
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4593 4594 4595
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4596 4597 4598 4599
	}
	return ret;
}

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4613
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4614
	if (!(mc.flags & MOVE_ANON))
4615
		return ret;
4616
	if (page->mem_cgroup == mc.from) {
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4633 4634 4635 4636
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4637
	struct vm_area_struct *vma = walk->vma;
4638 4639 4640
	pte_t *pte;
	spinlock_t *ptl;

4641 4642
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4643 4644
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4645
		spin_unlock(ptl);
4646
		return 0;
4647
	}
4648

4649 4650
	if (pmd_trans_unstable(pmd))
		return 0;
4651 4652
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4653
		if (get_mctgt_type(vma, addr, *pte, NULL))
4654 4655 4656 4657
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4658 4659 4660
	return 0;
}

4661 4662 4663 4664
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4665 4666 4667 4668
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4669
	down_read(&mm->mmap_sem);
4670
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4671
	up_read(&mm->mmap_sem);
4672 4673 4674 4675 4676 4677 4678 4679 4680

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4681 4682 4683 4684 4685
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4686 4687
}

4688 4689
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4690
{
4691 4692 4693
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4694
	/* we must uncharge all the leftover precharges from mc.to */
4695
	if (mc.precharge) {
4696
		cancel_charge(mc.to, mc.precharge);
4697 4698 4699 4700 4701 4702 4703
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4704
		cancel_charge(mc.from, mc.moved_charge);
4705
		mc.moved_charge = 0;
4706
	}
4707 4708 4709
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4710
		if (!mem_cgroup_is_root(mc.from))
4711
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4712

4713
		/*
4714 4715
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4716
		 */
4717
		if (!mem_cgroup_is_root(mc.to))
4718 4719
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4720
		css_put_many(&mc.from->css, mc.moved_swap);
4721

L
Li Zefan 已提交
4722
		/* we've already done css_get(mc.to) */
4723 4724
		mc.moved_swap = 0;
	}
4725 4726 4727 4728 4729 4730 4731
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4732 4733
	struct mm_struct *mm = mc.mm;

4734 4735 4736 4737 4738 4739
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4740
	spin_lock(&mc.lock);
4741 4742
	mc.from = NULL;
	mc.to = NULL;
4743
	mc.mm = NULL;
4744
	spin_unlock(&mc.lock);
4745 4746

	mmput(mm);
4747 4748
}

4749
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4750
{
4751
	struct cgroup_subsys_state *css;
4752
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4753
	struct mem_cgroup *from;
4754
	struct task_struct *leader, *p;
4755
	struct mm_struct *mm;
4756
	unsigned long move_flags;
4757
	int ret = 0;
4758

4759 4760
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4761 4762
		return 0;

4763 4764 4765 4766 4767 4768 4769
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4770
	cgroup_taskset_for_each_leader(leader, css, tset) {
4771 4772
		WARN_ON_ONCE(p);
		p = leader;
4773
		memcg = mem_cgroup_from_css(css);
4774 4775 4776 4777
	}
	if (!p)
		return 0;

4778 4779 4780 4781 4782 4783 4784 4785 4786
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4803
		mc.mm = mm;
4804 4805 4806 4807 4808 4809 4810 4811 4812
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4813 4814
	} else {
		mmput(mm);
4815 4816 4817 4818
	}
	return ret;
}

4819
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4820
{
4821 4822
	if (mc.to)
		mem_cgroup_clear_mc();
4823 4824
}

4825 4826 4827
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4828
{
4829
	int ret = 0;
4830
	struct vm_area_struct *vma = walk->vma;
4831 4832
	pte_t *pte;
	spinlock_t *ptl;
4833 4834 4835
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4836

4837 4838
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4839
		if (mc.precharge < HPAGE_PMD_NR) {
4840
			spin_unlock(ptl);
4841 4842 4843 4844 4845 4846
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4847
				if (!mem_cgroup_move_account(page, true,
4848
							     mc.from, mc.to)) {
4849 4850 4851 4852 4853 4854 4855
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4856
		spin_unlock(ptl);
4857
		return 0;
4858 4859
	}

4860 4861
	if (pmd_trans_unstable(pmd))
		return 0;
4862 4863 4864 4865
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4866
		swp_entry_t ent;
4867 4868 4869 4870

		if (!mc.precharge)
			break;

4871
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4872 4873
		case MC_TARGET_PAGE:
			page = target.page;
4874 4875 4876 4877 4878 4879 4880 4881
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4882 4883
			if (isolate_lru_page(page))
				goto put;
4884 4885
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4886
				mc.precharge--;
4887 4888
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4889 4890
			}
			putback_lru_page(page);
4891
put:			/* get_mctgt_type() gets the page */
4892 4893
			put_page(page);
			break;
4894 4895
		case MC_TARGET_SWAP:
			ent = target.ent;
4896
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4897
				mc.precharge--;
4898 4899 4900
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4901
			break;
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4916
		ret = mem_cgroup_do_precharge(1);
4917 4918 4919 4920 4921 4922 4923
		if (!ret)
			goto retry;
	}

	return ret;
}

4924
static void mem_cgroup_move_charge(void)
4925
{
4926 4927
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4928
		.mm = mc.mm,
4929
	};
4930 4931

	lru_add_drain_all();
4932
	/*
4933 4934 4935
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4936 4937 4938
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4939
retry:
4940
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4952 4953 4954 4955 4956
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4957
	up_read(&mc.mm->mmap_sem);
4958
	atomic_dec(&mc.from->moving_account);
4959 4960
}

4961
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4962
{
4963 4964
	if (mc.to) {
		mem_cgroup_move_charge();
4965
		mem_cgroup_clear_mc();
4966
	}
B
Balbir Singh 已提交
4967
}
4968
#else	/* !CONFIG_MMU */
4969
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4970 4971 4972
{
	return 0;
}
4973
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4974 4975
{
}
4976
static void mem_cgroup_move_task(void)
4977 4978 4979
{
}
#endif
B
Balbir Singh 已提交
4980

4981 4982
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4983 4984
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4985
 */
4986
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4987 4988
{
	/*
4989
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4990 4991 4992
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4993
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4994 4995 4996
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4997 4998
}

4999 5000 5001
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5002 5003 5004
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5005 5006 5007 5008 5009
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5010
	unsigned long low = READ_ONCE(memcg->low);
5011 5012

	if (low == PAGE_COUNTER_MAX)
5013
		seq_puts(m, "max\n");
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5028
	err = page_counter_memparse(buf, "max", &low);
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040
	unsigned long high = READ_ONCE(memcg->high);
5041 5042

	if (high == PAGE_COUNTER_MAX)
5043
		seq_puts(m, "max\n");
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5054
	unsigned long nr_pages;
5055 5056 5057 5058
	unsigned long high;
	int err;

	buf = strstrip(buf);
5059
	err = page_counter_memparse(buf, "max", &high);
5060 5061 5062 5063 5064
	if (err)
		return err;

	memcg->high = high;

5065 5066 5067 5068 5069
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5070
	memcg_wb_domain_size_changed(memcg);
5071 5072 5073 5074 5075 5076
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077
	unsigned long max = READ_ONCE(memcg->memory.limit);
5078 5079

	if (max == PAGE_COUNTER_MAX)
5080
		seq_puts(m, "max\n");
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5091 5092
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5093 5094 5095 5096
	unsigned long max;
	int err;

	buf = strstrip(buf);
5097
	err = page_counter_memparse(buf, "max", &max);
5098 5099 5100
	if (err)
		return err;

5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5131

5132
	memcg_wb_domain_size_changed(memcg);
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5148 5149 5150
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5151 5152
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5166 5167 5168
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5169
	seq_printf(m, "anon %llu\n",
5170
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5171
	seq_printf(m, "file %llu\n",
5172
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5173 5174
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5175 5176 5177
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5178
	seq_printf(m, "sock %llu\n",
5179
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5180 5181

	seq_printf(m, "file_mapped %llu\n",
5182
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5183
	seq_printf(m, "file_dirty %llu\n",
5184
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5185
	seq_printf(m, "file_writeback %llu\n",
5186
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5198 5199 5200 5201 5202
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5203 5204 5205
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5206
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5207
	seq_printf(m, "pgmajfault %lu\n",
5208
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5209 5210 5211 5212

	return 0;
}

5213 5214 5215
static struct cftype memory_files[] = {
	{
		.name = "current",
5216
		.flags = CFTYPE_NOT_ON_ROOT,
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5240
		.file_offset = offsetof(struct mem_cgroup, events_file),
5241 5242
		.seq_show = memory_events_show,
	},
5243 5244 5245 5246 5247
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5248 5249 5250
	{ }	/* terminate */
};

5251
struct cgroup_subsys memory_cgrp_subsys = {
5252
	.css_alloc = mem_cgroup_css_alloc,
5253
	.css_online = mem_cgroup_css_online,
5254
	.css_offline = mem_cgroup_css_offline,
5255
	.css_released = mem_cgroup_css_released,
5256
	.css_free = mem_cgroup_css_free,
5257
	.css_reset = mem_cgroup_css_reset,
5258 5259
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5260
	.post_attach = mem_cgroup_move_task,
5261
	.bind = mem_cgroup_bind,
5262 5263
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5264
	.early_init = 0,
B
Balbir Singh 已提交
5265
};
5266

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5289
	if (page_counter_read(&memcg->memory) >= memcg->low)
5290 5291 5292 5293 5294 5295 5296 5297
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5298
		if (page_counter_read(&memcg->memory) >= memcg->low)
5299 5300 5301 5302 5303
			return false;
	}
	return true;
}

5304 5305 5306 5307 5308 5309
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5310
 * @compound: charge the page as compound or small page
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5323 5324
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5325 5326
{
	struct mem_cgroup *memcg = NULL;
5327
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5341
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5342
		if (page->mem_cgroup)
5343
			goto out;
5344

5345
		if (do_swap_account) {
5346 5347 5348 5349 5350 5351 5352 5353 5354
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5373
 * @compound: charge the page as compound or small page
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5386
			      bool lrucare, bool compound)
5387
{
5388
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5403 5404 5405
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5406
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5407 5408
	memcg_check_events(memcg, page);
	local_irq_enable();
5409

5410
	if (do_memsw_account() && PageSwapCache(page)) {
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5425
 * @compound: charge the page as compound or small page
5426 5427 5428
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5429 5430
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5431
{
5432
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5447 5448
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5449 5450
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5451
{
5452
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5453 5454
	unsigned long flags;

5455
	if (!mem_cgroup_is_root(memcg)) {
5456
		page_counter_uncharge(&memcg->memory, nr_pages);
5457
		if (do_memsw_account())
5458
			page_counter_uncharge(&memcg->memsw, nr_pages);
5459 5460
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5461 5462
		memcg_oom_recover(memcg);
	}
5463 5464 5465 5466 5467 5468

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5469
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5470 5471
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5472 5473

	if (!mem_cgroup_is_root(memcg))
5474
		css_put_many(&memcg->css, nr_pages);
5475 5476 5477 5478 5479 5480 5481 5482
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5483
	unsigned long nr_kmem = 0;
5484 5485 5486 5487
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5488 5489 5490 5491
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5492 5493 5494 5495 5496 5497 5498 5499
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5500
		if (!page->mem_cgroup)
5501 5502 5503 5504
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5505
		 * page->mem_cgroup at this point, we have fully
5506
		 * exclusive access to the page.
5507 5508
		 */

5509
		if (memcg != page->mem_cgroup) {
5510
			if (memcg) {
5511
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5512 5513 5514
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5515
			}
5516
			memcg = page->mem_cgroup;
5517 5518
		}

5519 5520
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5521

5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
		} else
			nr_kmem += 1 << compound_order(page);
5533

5534
		page->mem_cgroup = NULL;
5535 5536 5537
	} while (next != page_list);

	if (memcg)
5538
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5539
			       nr_huge, nr_kmem, page);
5540 5541
}

5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5554
	/* Don't touch page->lru of any random page, pre-check: */
5555
	if (!page->mem_cgroup)
5556 5557
		return;

5558 5559 5560
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5561

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5573

5574 5575
	if (!list_empty(page_list))
		uncharge_list(page_list);
5576 5577 5578
}

/**
5579 5580 5581
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5582
 *
5583 5584
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5585 5586 5587
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5588
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5589
{
5590
	struct mem_cgroup *memcg;
5591 5592
	unsigned int nr_pages;
	bool compound;
5593
	unsigned long flags;
5594 5595 5596 5597

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5598 5599
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5600 5601 5602 5603 5604

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5605
	if (newpage->mem_cgroup)
5606 5607
		return;

5608
	/* Swapcache readahead pages can get replaced before being charged */
5609
	memcg = oldpage->mem_cgroup;
5610
	if (!memcg)
5611 5612
		return;

5613 5614 5615 5616 5617 5618 5619 5620
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5621

5622
	commit_charge(newpage, memcg, false);
5623

5624
	local_irq_save(flags);
5625 5626
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5627
	local_irq_restore(flags);
5628 5629
}

5630
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5653 5654
	if (memcg == root_mem_cgroup)
		goto out;
5655
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5656 5657
		goto out;
	if (css_tryget_online(&memcg->css))
5658
		sk->sk_memcg = memcg;
5659
out:
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5680
	gfp_t gfp_mask = GFP_KERNEL;
5681

5682
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5683
		struct page_counter *fail;
5684

5685 5686
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5687 5688
			return true;
		}
5689 5690
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5691
		return false;
5692
	}
5693

5694 5695 5696 5697
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5698 5699
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5700 5701 5702 5703
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5714
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5715
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5716 5717
		return;
	}
5718

5719 5720
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5721 5722
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5723 5724
}

5725 5726 5727 5728 5729 5730 5731 5732 5733
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5734 5735
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5736 5737 5738 5739
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5740

5741
/*
5742 5743 5744 5745 5746 5747
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5748 5749 5750
 */
static int __init mem_cgroup_init(void)
{
5751 5752
	int cpu, node;

5753
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5765 5766
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5767 5768 5769
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5770 5771 5772
	return 0;
}
subsys_initcall(mem_cgroup_init);
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5790
	if (!do_memsw_account())
5791 5792 5793 5794 5795 5796 5797 5798
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5799
	mem_cgroup_id_get(memcg);
5800 5801 5802 5803 5804 5805 5806 5807 5808
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5809 5810 5811 5812 5813 5814 5815
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5816
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5817
	memcg_check_events(memcg, page);
5818 5819 5820

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5821 5822
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

5851
	mem_cgroup_id_get(memcg);
5852 5853 5854 5855 5856 5857 5858
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5859 5860 5861 5862
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5863
 * Drop the swap charge associated with @entry.
5864 5865 5866 5867 5868 5869
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5870
	if (!do_swap_account)
5871 5872 5873 5874
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5875
	memcg = mem_cgroup_from_id(id);
5876
	if (memcg) {
5877 5878 5879 5880 5881 5882
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5883
		mem_cgroup_swap_statistics(memcg, false);
5884
		mem_cgroup_id_put(memcg);
5885 5886 5887 5888
	}
	rcu_read_unlock();
}

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6029 6030
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6031 6032 6033 6034 6035 6036 6037 6038
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */