blk-mq.c 69.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326 327

	blk_queue_exit(q);
328 329 330 331 332

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
333 334 335
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

336 337
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
338
{
339
	const int sched_tag = rq->internal_tag;
340 341
	struct request_queue *q = rq->q;

342
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
343
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
344 345

	wbt_done(q->rq_wb, &rq->issue_stat);
346
	rq->rq_flags = 0;
347

348
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 351 352
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
353
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
354
	blk_mq_sched_restart(hctx);
355
	blk_queue_exit(q);
356 357
}

358
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359
				     struct request *rq)
360 361 362 363
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
364 365 366 367 368 369
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370
}
O
Omar Sandoval 已提交
371
EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372 373 374

void blk_mq_free_request(struct request *rq)
{
375
	blk_mq_sched_put_request(rq);
376
}
J
Jens Axboe 已提交
377
EXPORT_SYMBOL_GPL(blk_mq_free_request);
378

379
inline void __blk_mq_end_request(struct request *rq, int error)
380
{
M
Ming Lei 已提交
381 382
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
383
	if (rq->end_io) {
J
Jens Axboe 已提交
384
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
385
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
386 387 388
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
389
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
390
	}
391
}
392
EXPORT_SYMBOL(__blk_mq_end_request);
393

394
void blk_mq_end_request(struct request *rq, int error)
395 396 397
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
398
	__blk_mq_end_request(rq, error);
399
}
400
EXPORT_SYMBOL(blk_mq_end_request);
401

402
static void __blk_mq_complete_request_remote(void *data)
403
{
404
	struct request *rq = data;
405

406
	rq->q->softirq_done_fn(rq);
407 408
}

409
static void __blk_mq_complete_request(struct request *rq)
410 411
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
412
	bool shared = false;
413 414
	int cpu;

415 416 417 418 419 420 421
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
422
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
423 424 425
		rq->q->softirq_done_fn(rq);
		return;
	}
426 427

	cpu = get_cpu();
C
Christoph Hellwig 已提交
428 429 430 431
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
432
		rq->csd.func = __blk_mq_complete_request_remote;
433 434
		rq->csd.info = rq;
		rq->csd.flags = 0;
435
		smp_call_function_single_async(ctx->cpu, &rq->csd);
436
	} else {
437
		rq->q->softirq_done_fn(rq);
438
	}
439 440
	put_cpu();
}
441 442 443 444 445 446 447 448 449

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
450
void blk_mq_complete_request(struct request *rq)
451
{
452 453 454
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
455
		return;
456
	if (!blk_mark_rq_complete(rq))
457
		__blk_mq_complete_request(rq);
458 459
}
EXPORT_SYMBOL(blk_mq_complete_request);
460

461 462 463 464 465 466
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

467
void blk_mq_start_request(struct request *rq)
468 469 470
{
	struct request_queue *q = rq->q;

471 472
	blk_mq_sched_started_request(rq);

473 474
	trace_block_rq_issue(q, rq);

475
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
476
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
477
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
478
		wbt_issue(q->rq_wb, &rq->issue_stat);
479 480
	}

481
	blk_add_timer(rq);
482

483 484 485 486 487 488
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

489 490 491 492 493 494
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
495 496 497 498
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
499 500 501 502 503 504 505 506 507

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
508
}
509
EXPORT_SYMBOL(blk_mq_start_request);
510

511 512
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
513
 * flag isn't set yet, so there may be race with timeout handler,
514 515 516 517 518 519
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
520
static void __blk_mq_requeue_request(struct request *rq)
521 522 523 524
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
525
	wbt_requeue(q->rq_wb, &rq->issue_stat);
526
	blk_mq_sched_requeue_request(rq);
527

528 529 530 531
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
532 533
}

534
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 536 537 538
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
539
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 541 542
}
EXPORT_SYMBOL(blk_mq_requeue_request);

543 544 545
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
546
		container_of(work, struct request_queue, requeue_work.work);
547 548 549 550 551 552 553 554 555
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 558
			continue;

559
		rq->rq_flags &= ~RQF_SOFTBARRIER;
560
		list_del_init(&rq->queuelist);
561
		blk_mq_sched_insert_request(rq, true, false, false, true);
562 563 564 565 566
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, false, false, false, true);
568 569
	}

570
	blk_mq_run_hw_queues(q, false);
571 572
}

573 574
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
575 576 577 578 579 580 581 582
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
583
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584 585 586

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
587
		rq->rq_flags |= RQF_SOFTBARRIER;
588 589 590 591 592
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
593 594 595

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
596 597 598 599 600
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
601
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 603 604
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

605 606 607 608 609 610 611 612
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

633 634
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
635 636
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
637
		return tags->rqs[tag];
638
	}
639 640

	return NULL;
641 642 643
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

644
struct blk_mq_timeout_data {
645 646
	unsigned long next;
	unsigned int next_set;
647 648
};

649
void blk_mq_rq_timed_out(struct request *req, bool reserved)
650
{
J
Jens Axboe 已提交
651
	const struct blk_mq_ops *ops = req->q->mq_ops;
652
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653 654 655 656 657 658 659

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
660
	 * both flags will get cleared. So check here again, and ignore
661 662
	 * a timeout event with a request that isn't active.
	 */
663 664
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
665

666
	if (ops->timeout)
667
		ret = ops->timeout(req, reserved);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
683
}
684

685 686 687 688
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
689

690
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
691
		return;
692

693 694 695 696 697 698 699 700 701 702 703 704 705
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
706 707
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
708
			blk_mq_rq_timed_out(rq, reserved);
709 710 711 712
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
713 714
}

715
static void blk_mq_timeout_work(struct work_struct *work)
716
{
717 718
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
719 720 721 722 723
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
724

725 726 727 728 729 730 731 732 733
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
734
	 * blk_freeze_queue_start, and the moment the last request is
735 736 737 738
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
739 740
		return;

741
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
742

743 744 745
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
746
	} else {
747 748
		struct blk_mq_hw_ctx *hctx;

749 750 751 752 753
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
754
	}
755
	blk_queue_exit(q);
756 757 758 759 760 761 762 763 764 765 766 767 768 769
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
770
		bool merged = false;
771 772 773 774 775 776 777

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

778 779 780 781
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
782
			break;
783 784 785
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
786
			break;
787 788
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
789
			break;
790 791
		default:
			continue;
792
		}
793 794 795 796

		if (merged)
			ctx->rq_merged++;
		return merged;
797 798 799 800 801
	}

	return false;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

820 821 822 823
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
824
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
825
{
826 827 828 829
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
830

831
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
832
}
833
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
834

835 836 837 838
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
839

840
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
841 842
}

843 844
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
845 846 847 848 849 850 851
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

852 853
	if (rq->tag != -1)
		goto done;
854

855 856 857
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

858 859
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
860 861 862 863
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
864 865 866
		data.hctx->tags->rqs[rq->tag] = rq;
	}

867 868 869 870
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
871 872
}

873 874
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
875 876 877 878 879 880 881 882 883 884
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

967
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
968
{
969
	struct blk_mq_hw_ctx *hctx;
970
	struct request *rq;
971
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
972

973 974 975
	if (list_empty(list))
		return false;

976 977 978
	/*
	 * Now process all the entries, sending them to the driver.
	 */
979
	errors = queued = 0;
980
	do {
981
		struct blk_mq_queue_data bd;
982

983
		rq = list_first_entry(list, struct request, queuelist);
984 985 986
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
987 988

			/*
989 990
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
991
			 */
992 993 994 995 996 997 998 999 1000
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001
				break;
1002
		}
1003

1004 1005
		list_del_init(&rq->queuelist);

1006
		bd.rq = rq;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1020 1021

		ret = q->mq_ops->queue_rq(hctx, &bd);
1022 1023 1024
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1025
			break;
1026
		case BLK_MQ_RQ_QUEUE_BUSY:
1027
			blk_mq_put_driver_tag_hctx(hctx, rq);
1028
			list_add(&rq->queuelist, list);
1029
			__blk_mq_requeue_request(rq);
1030 1031 1032 1033
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1034
			errors++;
1035
			rq->errors = -EIO;
1036
			blk_mq_end_request(rq, rq->errors);
1037 1038 1039 1040 1041
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1042
	} while (!list_empty(list));
1043

1044
	hctx->dispatched[queued_to_index(queued)]++;
1045 1046 1047 1048 1049

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1050
	if (!list_empty(list)) {
1051
		/*
1052 1053
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1054 1055 1056 1057
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1058
		spin_lock(&hctx->lock);
1059
		list_splice_init(list, &hctx->dispatch);
1060
		spin_unlock(&hctx->lock);
1061

1062
		/*
1063 1064 1065
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1066
		 *
1067 1068 1069 1070
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1071
		 *
1072 1073 1074 1075 1076 1077 1078 1079 1080
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
1081
		 */
1082 1083
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1084
			blk_mq_run_hw_queue(hctx, true);
1085
	}
1086

1087
	return (queued + errors) != 0;
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1099
		blk_mq_sched_dispatch_requests(hctx);
1100 1101
		rcu_read_unlock();
	} else {
1102 1103
		might_sleep();

1104
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1105
		blk_mq_sched_dispatch_requests(hctx);
1106 1107 1108 1109
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1110 1111 1112 1113 1114 1115 1116 1117
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1118 1119
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1120 1121

	if (--hctx->next_cpu_batch <= 0) {
1122
		int next_cpu;
1123 1124 1125 1126 1127 1128 1129 1130 1131

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1132
	return hctx->next_cpu;
1133 1134
}

1135 1136
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1137
{
1138 1139
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1140 1141
		return;

1142
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1143 1144
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1145
			__blk_mq_run_hw_queue(hctx);
1146
			put_cpu();
1147 1148
			return;
		}
1149

1150
		put_cpu();
1151
	}
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1171
}
O
Omar Sandoval 已提交
1172
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1173

1174
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1175 1176 1177 1178 1179
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1180
		if (!blk_mq_hctx_has_pending(hctx) ||
1181
		    blk_mq_hctx_stopped(hctx))
1182 1183
			continue;

1184
		blk_mq_run_hw_queue(hctx, async);
1185 1186
	}
}
1187
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1209 1210
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1211
	cancel_work(&hctx->run_work);
1212
	cancel_delayed_work(&hctx->delay_work);
1213 1214 1215 1216
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1227 1228 1229
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1230

1231
	blk_mq_run_hw_queue(hctx, false);
1232 1233 1234
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1255
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1256 1257 1258 1259
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1260 1261
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1262 1263 1264
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1265
static void blk_mq_run_work_fn(struct work_struct *work)
1266 1267 1268
{
	struct blk_mq_hw_ctx *hctx;

1269
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1270

1271 1272 1273
	__blk_mq_run_hw_queue(hctx);
}

1274 1275 1276 1277 1278 1279 1280 1281 1282
static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1295 1296
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1297

1298
	blk_mq_stop_hw_queue(hctx);
1299 1300
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1301 1302 1303
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1304 1305 1306
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1307
{
J
Jens Axboe 已提交
1308 1309
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1310 1311
	trace_block_rq_insert(hctx->queue, rq);

1312 1313 1314 1315
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1316
}
1317

1318 1319
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1320 1321 1322
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1323
	__blk_mq_insert_req_list(hctx, rq, at_head);
1324 1325 1326
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1327 1328
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1340
		BUG_ON(rq->mq_ctx != ctx);
1341
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1342
		__blk_mq_insert_req_list(hctx, rq, false);
1343
	}
1344
	blk_mq_hctx_mark_pending(hctx, ctx);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1381 1382 1383 1384
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1401 1402 1403
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1404 1405 1406 1407 1408
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1409
	blk_init_request_from_bio(rq, bio);
1410

1411
	blk_account_io_start(rq, true);
1412 1413
}

1414 1415 1416 1417 1418 1419
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1420 1421 1422
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1423
{
1424
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1425 1426 1427 1428 1429 1430 1431
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1432 1433
		struct request_queue *q = hctx->queue;

1434 1435 1436 1437 1438
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1439

1440
		spin_unlock(&ctx->lock);
1441
		__blk_mq_finish_request(hctx, ctx, rq);
1442
		return true;
1443
	}
1444
}
1445

1446 1447
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1448 1449 1450 1451
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1452 1453
}

1454
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1455
				      bool may_sleep)
1456 1457 1458 1459
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1460
		.last = true,
1461
	};
1462 1463 1464
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1465

1466
	if (q->elevator)
1467 1468
		goto insert;

1469 1470 1471 1472 1473
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1474 1475 1476 1477 1478 1479
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1480 1481
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1482
		return;
1483
	}
1484

1485 1486 1487 1488
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1489
		return;
1490
	}
1491

1492
	__blk_mq_requeue_request(rq);
1493
insert:
1494
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
1505 1506 1507 1508 1509
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1510 1511 1512 1513 1514
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1515
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1516
{
1517
	const int is_sync = op_is_sync(bio->bi_opf);
1518
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1519
	struct blk_mq_alloc_data data = { .flags = 0 };
1520
	struct request *rq;
1521
	unsigned int request_count = 0;
1522
	struct blk_plug *plug;
1523
	struct request *same_queue_rq = NULL;
1524
	blk_qc_t cookie;
J
Jens Axboe 已提交
1525
	unsigned int wb_acct;
1526 1527 1528 1529

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1530
		bio_io_error(bio);
1531
		return BLK_QC_T_NONE;
1532 1533
	}

1534 1535
	blk_queue_split(q, &bio, q->bio_split);

1536 1537 1538
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1539

1540 1541 1542
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1543 1544
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1545 1546 1547
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1548 1549
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1550
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1551 1552 1553
	}

	wbt_track(&rq->issue_stat, wb_acct);
1554

1555
	cookie = request_to_qc_t(data.hctx, rq);
1556

1557
	plug = current->plug;
1558 1559
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1560 1561 1562 1563 1564 1565 1566 1567
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1593
	} else if (plug && !blk_queue_nomerges(q)) {
1594 1595 1596
		blk_mq_bio_to_request(rq, bio);

		/*
1597
		 * We do limited plugging. If the bio can be merged, do that.
1598 1599
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1600 1601
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1602
		 */
1603 1604 1605 1606 1607 1608
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1609 1610
		blk_mq_put_ctx(data.ctx);

1611 1612 1613
		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1614 1615

		return cookie;
1616
	} else if (q->nr_hw_queues > 1 && is_sync) {
1617
		blk_mq_put_ctx(data.ctx);
1618 1619
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1620
		return cookie;
1621
	} else if (q->elevator) {
1622
		blk_mq_bio_to_request(rq, bio);
1623
		blk_mq_sched_insert_request(rq, false, true, true, true);
1624
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1625 1626
		blk_mq_run_hw_queue(data.hctx, true);

1627
	blk_mq_put_ctx(data.ctx);
1628
	return cookie;
1629 1630
}

1631 1632
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1633
{
1634
	struct page *page;
1635

1636
	if (tags->rqs && set->ops->exit_request) {
1637
		int i;
1638

1639
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1640 1641 1642
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1643
				continue;
J
Jens Axboe 已提交
1644
			set->ops->exit_request(set->driver_data, rq,
1645
						hctx_idx, i);
J
Jens Axboe 已提交
1646
			tags->static_rqs[i] = NULL;
1647
		}
1648 1649
	}

1650 1651
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1652
		list_del_init(&page->lru);
1653 1654 1655 1656 1657
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1658 1659
		__free_pages(page, page->private);
	}
1660
}
1661

1662 1663
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1664
	kfree(tags->rqs);
1665
	tags->rqs = NULL;
J
Jens Axboe 已提交
1666 1667
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1668

1669
	blk_mq_free_tags(tags);
1670 1671
}

1672 1673 1674 1675
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1676
{
1677
	struct blk_mq_tags *tags;
1678
	int node;
1679

1680 1681 1682 1683 1684
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1685
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1686 1687
	if (!tags)
		return NULL;
1688

1689
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1690
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1691
				 node);
1692 1693 1694 1695
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1696

J
Jens Axboe 已提交
1697 1698
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1699
				 node);
J
Jens Axboe 已提交
1700 1701 1702 1703 1704 1705
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1719 1720 1721 1722 1723
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1724 1725 1726

	INIT_LIST_HEAD(&tags->page_list);

1727 1728 1729 1730
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1731
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1732
				cache_line_size());
1733
	left = rq_size * depth;
1734

1735
	for (i = 0; i < depth; ) {
1736 1737 1738 1739 1740
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1741
		while (this_order && left < order_to_size(this_order - 1))
1742 1743 1744
			this_order--;

		do {
1745
			page = alloc_pages_node(node,
1746
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1747
				this_order);
1748 1749 1750 1751 1752 1753 1754 1755 1756
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1757
			goto fail;
1758 1759

		page->private = this_order;
1760
		list_add_tail(&page->lru, &tags->page_list);
1761 1762

		p = page_address(page);
1763 1764 1765 1766
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1767
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1768
		entries_per_page = order_to_size(this_order) / rq_size;
1769
		to_do = min(entries_per_page, depth - i);
1770 1771
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1772 1773 1774
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1775 1776
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1777
						rq, hctx_idx, i,
1778
						node)) {
J
Jens Axboe 已提交
1779
					tags->static_rqs[i] = NULL;
1780
					goto fail;
1781
				}
1782 1783
			}

1784 1785 1786 1787
			p += rq_size;
			i++;
		}
	}
1788
	return 0;
1789

1790
fail:
1791 1792
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1793 1794
}

J
Jens Axboe 已提交
1795 1796 1797 1798 1799
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1800
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1801
{
1802
	struct blk_mq_hw_ctx *hctx;
1803 1804 1805
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1806
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1807
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1808 1809 1810 1811 1812 1813 1814 1815 1816

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1817
		return 0;
1818

J
Jens Axboe 已提交
1819 1820 1821
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1822 1823

	blk_mq_run_hw_queue(hctx, true);
1824
	return 0;
1825 1826
}

1827
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1828
{
1829 1830
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1831 1832
}

1833
/* hctx->ctxs will be freed in queue's release handler */
1834 1835 1836 1837
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1838 1839
	unsigned flush_start_tag = set->queue_depth;

1840 1841
	blk_mq_tag_idle(hctx);

1842 1843 1844 1845 1846
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1847 1848
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1849 1850 1851
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1852 1853 1854
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1855
	blk_mq_remove_cpuhp(hctx);
1856
	blk_free_flush_queue(hctx->fq);
1857
	sbitmap_free(&hctx->ctx_map);
1858 1859
}

M
Ming Lei 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1869
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1870 1871 1872
	}
}

1873 1874 1875
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1876
{
1877
	int node;
1878
	unsigned flush_start_tag = set->queue_depth;
1879 1880 1881 1882 1883

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1884
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1885
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1886 1887 1888 1889 1890
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1891
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1892

1893
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1894 1895

	hctx->tags = set->tags[hctx_idx];
1896 1897

	/*
1898 1899
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1900
	 */
1901 1902 1903 1904
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1905

1906 1907
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1908
		goto free_ctxs;
1909

1910
	hctx->nr_ctx = 0;
1911

1912 1913 1914
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1915

1916 1917 1918
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

1919 1920
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
1921
		goto sched_exit_hctx;
1922

1923 1924 1925 1926 1927
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1928

1929 1930 1931
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1932
	return 0;
1933

1934 1935
 free_fq:
	kfree(hctx->fq);
1936 1937
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1938 1939 1940
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1941
 free_bitmap:
1942
	sbitmap_free(&hctx->ctx_map);
1943 1944 1945
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1946
	blk_mq_remove_cpuhp(hctx);
1947 1948
	return -1;
}
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1968
		hctx = blk_mq_map_queue(q, i);
1969

1970 1971 1972 1973 1974
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1975
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1976 1977 1978
	}
}

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2001 2002 2003 2004 2005
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2006 2007
}

2008 2009
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2010
{
2011
	unsigned int i, hctx_idx;
2012 2013
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2014
	struct blk_mq_tag_set *set = q->tag_set;
2015

2016 2017 2018 2019 2020
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2021
	queue_for_each_hw_ctx(q, hctx, i) {
2022
		cpumask_clear(hctx->cpumask);
2023 2024 2025 2026 2027 2028
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2029
	for_each_possible_cpu(i) {
2030
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2031
		if (!cpumask_test_cpu(i, online_mask))
2032 2033
			continue;

2034 2035
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2036 2037
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2038 2039 2040 2041 2042 2043
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2044
			q->mq_map[i] = 0;
2045 2046
		}

2047
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2048
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2049

2050
		cpumask_set_cpu(i, hctx->cpumask);
2051 2052 2053
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2054

2055 2056
	mutex_unlock(&q->sysfs_lock);

2057
	queue_for_each_hw_ctx(q, hctx, i) {
2058
		/*
2059 2060
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2061 2062
		 */
		if (!hctx->nr_ctx) {
2063 2064 2065 2066
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2067 2068 2069
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2070
			hctx->tags = NULL;
2071 2072 2073
			continue;
		}

M
Ming Lei 已提交
2074 2075 2076
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2077 2078 2079 2080 2081
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2082
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2083

2084 2085 2086
		/*
		 * Initialize batch roundrobin counts
		 */
2087 2088 2089
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2090 2091
}

2092
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2093 2094 2095 2096
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2108

2109 2110
	lockdep_assert_held(&set->tag_list_lock);

2111 2112
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2113
		queue_set_hctx_shared(q, shared);
2114 2115 2116 2117 2118 2119 2120 2121 2122
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2123 2124
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2125 2126 2127 2128 2129 2130
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2131
	mutex_unlock(&set->tag_list_lock);
2132 2133

	synchronize_rcu();
2134 2135 2136 2137 2138 2139 2140 2141
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2142 2143 2144 2145 2146 2147 2148 2149 2150

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2151
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2152

2153 2154 2155
	mutex_unlock(&set->tag_list_lock);
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2168 2169 2170
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2171
		kobject_put(&hctx->kobj);
2172
	}
2173

2174 2175
	q->mq_map = NULL;

2176 2177
	kfree(q->queue_hw_ctx);

2178 2179 2180 2181 2182 2183
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2184 2185 2186
	free_percpu(q->queue_ctx);
}

2187
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2203 2204
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2205
{
K
Keith Busch 已提交
2206 2207
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2208

K
Keith Busch 已提交
2209
	blk_mq_sysfs_unregister(q);
2210
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2211
		int node;
2212

K
Keith Busch 已提交
2213 2214 2215 2216
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2217 2218
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2219
		if (!hctxs[i])
K
Keith Busch 已提交
2220
			break;
2221

2222
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2223 2224 2225 2226 2227
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2228

2229
		atomic_set(&hctxs[i]->nr_active, 0);
2230
		hctxs[i]->numa_node = node;
2231
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2232 2233 2234 2235 2236 2237 2238 2239

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2240
	}
K
Keith Busch 已提交
2241 2242 2243 2244
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2245 2246
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2260 2261 2262
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2263 2264 2265 2266 2267
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2268 2269
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2270
		goto err_exit;
K
Keith Busch 已提交
2271

2272 2273 2274
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2275 2276 2277 2278 2279
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2280
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2281 2282 2283 2284

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2285

2286
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2287
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2288 2289 2290

	q->nr_queues = nr_cpu_ids;

2291
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2292

2293 2294 2295
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2296 2297
	q->sg_reserved_size = INT_MAX;

2298
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2299 2300 2301
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2302
	blk_queue_make_request(q, blk_mq_make_request);
2303

2304 2305 2306 2307 2308
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2309 2310 2311 2312 2313
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2314 2315
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2316

2317
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2318

2319
	get_online_cpus();
2320 2321
	mutex_lock(&all_q_mutex);

2322
	list_add_tail(&q->all_q_node, &all_q_list);
2323
	blk_mq_add_queue_tag_set(set, q);
2324
	blk_mq_map_swqueue(q, cpu_online_mask);
2325

2326
	mutex_unlock(&all_q_mutex);
2327
	put_online_cpus();
2328

2329 2330 2331 2332 2333 2334 2335 2336
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2337
	return q;
2338

2339
err_hctxs:
K
Keith Busch 已提交
2340
	kfree(q->queue_hw_ctx);
2341
err_percpu:
K
Keith Busch 已提交
2342
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2343 2344
err_exit:
	q->mq_ops = NULL;
2345 2346
	return ERR_PTR(-ENOMEM);
}
2347
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2348 2349 2350

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2351
	struct blk_mq_tag_set	*set = q->tag_set;
2352

2353 2354 2355 2356
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2357 2358
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2359
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2360 2361 2362
}

/* Basically redo blk_mq_init_queue with queue frozen */
2363 2364
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2365
{
2366
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2367

2368 2369
	blk_mq_sysfs_unregister(q);

2370 2371 2372 2373 2374 2375
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2376
	blk_mq_map_swqueue(q, online_mask);
2377

2378
	blk_mq_sysfs_register(q);
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2389 2390 2391 2392
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2393 2394 2395 2396 2397 2398 2399 2400
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2401
		blk_freeze_queue_start(q);
2402
	list_for_each_entry(q, &all_q_list, all_q_node)
2403 2404
		blk_mq_freeze_queue_wait(q);

2405
	list_for_each_entry(q, &all_q_list, all_q_node)
2406
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2407 2408 2409 2410

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2411
	mutex_unlock(&all_q_mutex);
2412 2413 2414 2415
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2416
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2432 2433 2434 2435
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2436 2437 2438 2439 2440 2441 2442
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2443 2444
}

2445 2446 2447 2448
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2449 2450
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2451 2452 2453 2454 2455 2456
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2457
		blk_mq_free_rq_map(set->tags[i]);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2497 2498 2499 2500 2501 2502 2503 2504
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2505 2506 2507 2508 2509 2510
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2511 2512
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2513 2514
	int ret;

B
Bart Van Assche 已提交
2515 2516
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2517 2518
	if (!set->nr_hw_queues)
		return -EINVAL;
2519
	if (!set->queue_depth)
2520 2521 2522 2523
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2524
	if (!set->ops->queue_rq)
2525 2526
		return -EINVAL;

2527 2528 2529 2530 2531
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2542 2543 2544 2545 2546
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2547

K
Keith Busch 已提交
2548
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2549 2550
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2551
		return -ENOMEM;
2552

2553 2554 2555
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2556 2557 2558
	if (!set->mq_map)
		goto out_free_tags;

2559
	ret = blk_mq_update_queue_map(set);
2560 2561 2562 2563 2564
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2565
		goto out_free_mq_map;
2566

2567 2568 2569
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2570
	return 0;
2571 2572 2573 2574 2575

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2576 2577
	kfree(set->tags);
	set->tags = NULL;
2578
	return ret;
2579 2580 2581 2582 2583 2584 2585
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2586 2587
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2588

2589 2590 2591
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2592
	kfree(set->tags);
2593
	set->tags = NULL;
2594 2595 2596
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2597 2598 2599 2600 2601 2602
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2603
	if (!set)
2604 2605
		return -EINVAL;

2606 2607 2608
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2609 2610
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2611 2612
		if (!hctx->tags)
			continue;
2613 2614 2615 2616
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2617 2618 2619 2620 2621 2622 2623 2624
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2625 2626 2627 2628 2629 2630 2631
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2632 2633 2634
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2635 2636 2637
	return ret;
}

K
Keith Busch 已提交
2638 2639 2640 2641
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

2642 2643
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2653
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2707
	if (!blk_poll_stats_enable(q))
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2718 2719 2720 2721
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2722 2723 2724 2725

	return ret;
}

2726
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2727
				     struct blk_mq_hw_ctx *hctx,
2728 2729 2730 2731
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2732
	unsigned int nsecs;
2733 2734
	ktime_t kt;

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2753 2754 2755 2756 2757 2758 2759 2760
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2761
	kt = nsecs;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2784 2785 2786 2787 2788
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2789 2790 2791 2792 2793 2794 2795
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2796
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2797 2798
		return true;

J
Jens Axboe 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2842 2843 2844 2845
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2846 2847 2848 2849 2850

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2861 2862
static int __init blk_mq_init(void)
{
2863 2864
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2865

2866 2867 2868
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2869 2870 2871
	return 0;
}
subsys_initcall(blk_mq_init);