framework.py 225.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_current_pipeline_stage = None
76
_global_flags_ = core.globals()
77

78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
186
def in_dygraph_mode():
L
lujun 已提交
187
    """
188

189 190 191 192 193 194 195
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
196 197

    Returns:
198
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
199 200 201 202

    Examples:
        .. code-block:: python

203 204 205 206 207 208 209 210
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
211 212

    """
L
lujun 已提交
213
    return _dygraph_tracer_ is not None
214 215


216 217 218
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
219
        ), "We don't support %s in imperative mode" % func.__name__
220 221 222 223 224 225 226 227
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
228 229 230 231 232 233 234 235 236
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
237
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
238 239 240 241 242
        return func(*args, **kwargs)

    return __impl__


243 244 245 246 247
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
254
# same base class.
255 256 257
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
258 259 260 261 262
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
263 264 265 266

    return __impl__


T
tangwei12 已提交
267 268
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


286 287
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
288
static_only = wrap_decorator(_static_only_)
289
fake_interface_only = wrap_decorator(_fake_interface_only_)
290 291


L
lujun 已提交
292 293
def _dygraph_tracer():
    return _dygraph_tracer_
294

W
Wu Yi 已提交
295

296 297 298 299
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
300
def _current_expected_place():
301 302 303
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
304 305 306 307 308 309 310 311 312 313 314
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
331 332


L
Leo Chen 已提交
333 334 335 336
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
337

L
Leo Chen 已提交
338 339 340 341 342 343 344 345 346 347 348 349
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
350
def _cpu_num():
351
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
352 353 354 355 356 357 358 359
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
360
        os.environ['CPU_NUM'] = str(1)
361
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
362 363 364 365 366 367 368 369 370 371
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
372 373


374 375 376 377 378 379 380 381 382
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


C
chengduo 已提交
423 424 425 426
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

427
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
428 429 430 431

    Examples:
        .. code-block:: python

432 433
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
434 435 436 437
    """
    return core.is_compiled_with_cuda()


438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
453
def cuda_places(device_ids=None):
L
lujun 已提交
454
    """
455 456 457 458
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
459
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
460 461

    If :code:`device_ids` is None, environment variable of
462
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
463
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
464
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
465
    If :code:`FLAGS_selected_gpus` is not set, all visible
466
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
467 468

    If :code:`device_ids` is not None, it should be the device
469
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
470
    the returned list would be 
C
Chen Weihang 已提交
471
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
472

473
    Parameters:
474
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
475 476

    Returns:
C
Chen Weihang 已提交
477
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
478 479 480 481

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
482 483
            import paddle
            import paddle.static as static
T
tangwei12 已提交
484

485 486
            # required: gpu
            
C
Chen Weihang 已提交
487 488 489
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
490 491

    """
S
sneaxiy 已提交
492 493 494
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
495
        device_ids = _cuda_ids()
S
sneaxiy 已提交
496 497 498 499 500
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


501 502 503 504
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
505 506 507 508 509 510 511 512 513 514 515
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
516 517 518 519 520 521 522
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
523

524 525
            # required: xpu

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
541
def cpu_places(device_count=None):
L
lujun 已提交
542
    """
C
Chen Weihang 已提交
543
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
544

S
add doc  
sneaxiy 已提交
545 546
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
547 548
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
549 550
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
551

552 553
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
554 555

    Returns:
C
Chen Weihang 已提交
556
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
557 558 559 560

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
561 562
            import paddle
            import paddle.static as static
T
tangwei12 已提交
563

C
Chen Weihang 已提交
564 565 566
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
567 568
    """

S
sneaxiy 已提交
569 570 571 572 573 574
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
575
    """
576
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
577 578 579

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
580 581 582 583
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
584

585 586
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
587 588

    Returns:
589
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
590 591 592 593

    Examples:
        .. code-block:: python

594
            import paddle.fluid as fluid
L
lujun 已提交
595 596 597 598 599
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
600 601 602
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
603 604
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
605 606


607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
633
@signature_safe_contextmanager
634 635
def name_scope(prefix=None):
    """
636 637
    :api_attr: Static Graph

638
    Generate hierarchical name prefix for the operators in Static Graph.
639

T
Tao Luo 已提交
640 641 642
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
643
        Don't use it in dygraph, since it will cause memory leak.
644 645

    Args:
T
Tao Luo 已提交
646
        prefix(str, optional): prefix. Default is none.
647 648 649

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
650

651 652 653
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
654
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
655
             b = a + 1
656
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
657
                c = b * 1
658
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
659
                d = c / 1
660 661 662
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
663 664 665
                g = f - 1

          # Op are created in the default main program.  
666
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
682 683
    """
    # TODO(panyx0718): Only [0-9a-z].
684
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
685 686 687
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
688
        assert prefix, "namescope prefix can not be empty."
689 690
        global _name_scope
        _name_scope = _name_scope.child(prefix)
691 692 693 694
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
695 696 697 698 699 700 701 702 703 704 705 706


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
707 708 709
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
710 711 712 713


def grad_var_name(var_name):
    """
714 715
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
716 717 718
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
719

720
def convert_np_dtype_to_dtype_(np_dtype):
721 722
    """
    Convert the data type in numpy to the data type in Paddle
723

724
    Args:
725
        np_dtype(np.dtype): the data type in numpy.
726

727 728
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
729 730

    """
731 732
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
733
        return core.VarDesc.VarType.FP32
734
    elif dtype == np.float64:
735
        return core.VarDesc.VarType.FP64
736
    elif dtype == np.float16:
737
        return core.VarDesc.VarType.FP16
738
    elif dtype == np.int32:
739
        return core.VarDesc.VarType.INT32
740
    elif dtype == np.int16:
741
        return core.VarDesc.VarType.INT16
742
    elif dtype == np.int64:
743
        return core.VarDesc.VarType.INT64
744
    elif dtype == np.bool:
745
        return core.VarDesc.VarType.BOOL
746
    elif dtype == np.uint16:
747 748 749
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
750 751
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
752 753
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
754 755 756 757
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
758
    else:
M
minqiyang 已提交
759
        raise ValueError("Not supported numpy dtype %s" % dtype)
760 761 762


def dtype_is_floating(dtype):
763 764 765
    """
    Check the data type is floating or not.
    Args:
766
        dtype(np.dtype|core.VarDesc.VarType): data type.
767 768 769 770 771
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
772
    if not isinstance(dtype, core.VarDesc.VarType):
773 774
        dtype = convert_np_dtype_to_dtype_(dtype)

775 776 777 778
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
779 780


Y
Yang Yang(Tony) 已提交
781
def _debug_string_(proto, throw_on_error=True):
782 783 784 785 786 787 788 789 790 791 792
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
793
    error_fields = list()
Y
Yang Yang(Tony) 已提交
794
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
795 796
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
797 798 799
    return proto.__str__()


800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
837
class Variable(object):
838
    """
J
Jiabin Yang 已提交
839
    **Notes**:
840
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
841

842 843
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
844 845 846
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
847
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
848 849
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
850

851
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
852
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
853

T
tianshuo78520a 已提交
854
    Most of a Variable's member variables can be set to be None. It mean
855
    it is not available or will be specified later.
856

857
    Examples:
858 859
        In Static Graph Mode:

860 861
        .. code-block:: python

862
            import paddle.fluid as fluid
863
            cur_program = fluid.Program()
864 865 866 867
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
868

J
Jiabin Yang 已提交
869
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
870 871 872 873 874 875 876 877 878

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

879 880
    """

Y
Yu Yang 已提交
881 882
    def __init__(self,
                 block,
Y
Yu Yang 已提交
883
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
884 885 886 887
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
888
                 capacity=None,
Q
QI JUN 已提交
889
                 persistable=None,
F
fengjiayi 已提交
890
                 error_clip=None,
Y
Yu Yang 已提交
891
                 stop_gradient=False,
F
fengjiayi 已提交
892
                 is_data=False,
H
Huihuang Zheng 已提交
893
                 need_check_feed=False,
H
hong 已提交
894
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
895
                 **kwargs):
Y
Yu Yang 已提交
896 897
        self.block = block
        if name is None:
Y
Yu Yang 已提交
898
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
899

Y
Yu Yang 已提交
900
        if dtype is not None:
901
            if not isinstance(dtype, core.VarDesc.VarType):
902
                dtype = convert_np_dtype_to_dtype_(dtype)
903

H
hong 已提交
904 905
        self.belong_to_optimizer = belong_to_optimizer

906 907 908 909 910
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
911

912 913 914
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
915

916 917 918
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
919 920
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
921 922
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
923

924
        if shape is not None:
925
            if is_new_var:
926 927 928 929 930 931
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
932 933
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
934 935 936 937 938 939 940
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
941 942
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
943 944 945 946 947 948 949 950 951
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
952 953
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
954 955 956 957 958 959 960 961 962
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
963 964
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
965 966
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
967

968 969
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
970

971 972 973 974 975 976 977
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
978

979 980
        self.block.vars[name] = self
        self.op = None
981
        self.stop_gradient = stop_gradient
982
        self.is_data = is_data
Y
Yu Yang 已提交
983

984 985 986
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
987 988
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
989

990
        Returns:
J
Jiabin Yang 已提交
991
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
992 993 994 995

        Examples:
            .. code-block:: python

996
                import paddle
997

998 999 1000 1001
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1002

1003 1004
                # create a detached Variable
                y = x.detach()
1005
        """
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1021

1022
    @fake_interface_only
1023
    def numpy(self):
1024
        """
J
Jiabin Yang 已提交
1025
        **Notes**:
T
tianshuo78520a 已提交
1026
            **This API is ONLY available in Dygraph mode**
1027

J
Jiabin Yang 已提交
1028
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1029 1030 1031 1032 1033

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1034
            ndarray: dtype is same as current Variable
1035 1036 1037 1038 1039 1040

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1041
                from paddle.fluid.dygraph import Linear
1042 1043 1044 1045
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1046
                    linear = Linear(32, 64)
1047
                    data = to_variable(data)
1048
                    x = linear(data)
1049 1050 1051
                    print(x.numpy())

        """
1052
        pass
1053

1054
    @fake_interface_only
1055
    def backward(self, retain_graph=False):
1056
        """
J
Jiabin Yang 已提交
1057
        **Notes**:
T
tianshuo78520a 已提交
1058
            **This API is ONLY available in Dygraph mode**
1059

1060
        Run backward of current Graph which starts from current Tensor.
1061

J
Jiabin Yang 已提交
1062
        Args:
1063 1064 1065 1066
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1067

J
Jiabin Yang 已提交
1068 1069
        Returns:
            NoneType: None
1070 1071 1072 1073 1074

        Examples:
            .. code-block:: python

                import numpy as np
1075 1076
                import paddle
                paddle.disable_static()
1077 1078

                x = np.ones([2, 2], np.float32)
1079 1080 1081 1082 1083 1084 1085
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1086 1087
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1088
                loss.backward()
1089 1090

        """
1091
        pass
1092

1093
    @fake_interface_only
1094
    def gradient(self):
1095
        """
J
Jiabin Yang 已提交
1096
        **Notes**:
T
tianshuo78520a 已提交
1097
            **This API is ONLY available in Dygraph mode**
1098 1099 1100

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1101
        Returns:
1102
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1103 1104 1105 1106 1107 1108 1109

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1110
                # example1: return ndarray
1111 1112 1113 1114 1115 1116 1117 1118 1119
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1120
                    loss2.backward()
1121 1122
                    print(loss2.gradient())

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1136
        """
1137
        pass
1138

1139
    @fake_interface_only
1140
    def clear_gradient(self):
1141
        """
J
Jiabin Yang 已提交
1142
        **Notes**:
T
tianshuo78520a 已提交
1143
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1144 1145

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1146

J
Jiabin Yang 已提交
1147
        Clear  (set to ``0`` ) the Gradient of Current Variable
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1166
                    loss2.backward()
1167 1168 1169 1170 1171
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1172
        pass
X
Xin Pan 已提交
1173

1174 1175 1176 1177
    @fake_interface_only
    def register_hook(self, hook):
        pass

1178
    def __str__(self):
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1195 1196
                import paddle
                import paddle.static as static
1197

1198 1199 1200
                paddle.enable_static()

                cur_program = static.Program()
1201 1202 1203 1204 1205 1206
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1207 1208
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1209
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1210 1211
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1212 1213
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1214
        else:
1215 1216
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1217

1218
        if self.is_parameter:
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1229 1230 1231 1232 1233 1234 1235 1236
        from paddle.distributed.auto_parallel.context import get_default_distributed_context
        dist_context = get_default_distributed_context()
        var_dist_attr = dist_context.get_tensor_distributed_attr_for_program(
            self)
        if var_dist_attr is not None:
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=var_dist_attr)

1237
        return var_str
Y
Yang Yang(Tony) 已提交
1238

F
update  
fengjiayi 已提交
1239
    def to_string(self, throw_on_error, with_details=False):
1240 1241 1242
        """
        Get debug string.

J
Jiabin Yang 已提交
1243 1244 1245 1246 1247
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1248

1249 1250
        Returns:
            str: The debug string.
1251 1252 1253 1254 1255

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1256
                import paddle
1257

1258
                paddle.enable_static()
1259 1260 1261 1262 1263
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1264
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1265
                print("=============with detail===============")
1266
                print(new_variable.to_string(True, True))
1267
        """
F
update  
fengjiayi 已提交
1268 1269
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1270
        protostr = self.desc.serialize_to_string()
1271
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1272 1273
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1274
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1275
            for attr_name in additional_attr:
1276 1277 1278
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1279
        return res_str
1280 1281 1282

    __repr__ = __str__

1283
    @property
1284
    def stop_gradient(self):
J
Jiabin Yang 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1300 1301
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1302 1303 1304
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1305 1306
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1307 1308 1309 1310
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1311
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1312 1313
                assert (out1.gradient() == 0).all()
        """
1314
        return self.desc.stop_gradient()
1315

1316 1317
    @stop_gradient.setter
    def stop_gradient(self, s):
1318
        self.desc.set_stop_gradient(s)
1319

1320 1321
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1343
        return self.desc.persistable()
1344

Y
Yu Yang 已提交
1345 1346
    @persistable.setter
    def persistable(self, p):
1347
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1374 1375
    @property
    def name(self):
J
Jiabin Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1392
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1393

1394 1395 1396 1397 1398 1399
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1400 1401
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1414 1415
    @name.setter
    def name(self, new_name):
1416
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1417

Y
Yu Yang 已提交
1418 1419
    @property
    def shape(self):
J
Jiabin Yang 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1437
        # convert to tuple, make it as same as numpy API.
1438
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1439 1440

    @property
F
fengjiayi 已提交
1441
    def dtype(self):
J
Jiabin Yang 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1458
        return self.desc.dtype()
Y
Yu Yang 已提交
1459 1460 1461

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1483 1484 1485
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1486
        return self.desc.lod_level()
Y
Yu Yang 已提交
1487

Y
Yu Yang 已提交
1488 1489
    @property
    def type(self):
J
Jiabin Yang 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1506
        return self.desc.type()
Y
Yu Yang 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1591
    def _set_error_clip(self, error_clip):
1592 1593 1594 1595 1596 1597 1598 1599 1600
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1601 1602
        self.error_clip = error_clip

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1643
            raise ValueError("slice step can not be zero")
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1719
    def _cloneVar(self, copy=False):
1720 1721
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1722 1723
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1724 1725 1726 1727
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1728
        new_var = self._cloneVar()
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1739
        new_var = self._cloneVar()
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1750
                return self._cloneVar(True)
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1769
                return self._cloneVar(True)
1770
            index = int(item)
1771
            if (index > 0 and index >= self.shape[axis]) \
1772 1773 1774 1775 1776 1777 1778
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1779
        return _getitem_impl_(self, item)
1780

1781
    def __setitem__(self, item, value):
1782
        return _setitem_impl_(self, item, value)
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2046

F
fengjiayi 已提交
2047 2048 2049
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2050

2051 2052
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2053 2054 2055 2056
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2057
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2058 2059 2060 2061 2062
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2063 2064 2065 2066
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2076
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2077 2078 2079 2080 2081 2082
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2083 2084 2085 2086 2087 2088 2089 2090
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2091 2092
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2093 2094
        return self.op_proto_map[type]

2095 2096
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2097
        custom_op_names = []
2098 2099 2100
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2101 2102 2103
                custom_op_names.append(proto.type)

        return custom_op_names
2104

2105 2106 2107 2108
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2109
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2110
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2111 2112
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2113 2114
        }

F
fengjiayi 已提交
2115

X
Xin Pan 已提交
2116
class Operator(object):
2117
    """
2118 2119 2120 2121 2122 2123 2124
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2125
        type(str): The type of operator. Default None.
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2146
        Block.append_op or Block._prepend_op instead.
2147 2148 2149 2150

    Examples:
        .. code-block:: python

2151
            import paddle.fluid as fluid
2152
            cur_program = fluid.Program()
2153 2154 2155 2156 2157
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2158
    """
2159
    OP_WITHOUT_KERNEL_SET = {
2160 2161
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2162
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2163 2164
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2165
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2166 2167
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2168
    }
2169

Y
Yu Yang 已提交
2170 2171
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2172
                 desc,
Y
Yu Yang 已提交
2173 2174 2175
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2176
                 attrs=None):
L
lujun 已提交
2177
        if in_dygraph_mode():
2178 2179
            if type is None:
                raise ValueError(
2180
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2181
            self._type = type
M
minqiyang 已提交
2182
            self.attrs = attrs if attrs else {}
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2197
                )] = self.block.program._op_role
2198 2199 2200

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2201 2202
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2203 2204 2205 2206 2207

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2208 2209 2210 2211 2212
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2213 2214 2215
                return
            if type is None:
                raise ValueError(
2216
                    "`type` to initialized an Operator can not be None.")
2217 2218
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2219 2220 2221 2222 2223 2224 2225
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2226 2227 2228 2229 2230 2231 2232

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2250 2251 2252 2253 2254
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2269
                        if not isinstance(in_args, (list, tuple)):
2270 2271 2272 2273 2274 2275
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2276
                        for index, arg in enumerate(in_args):
2277 2278 2279 2280
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2281
                            elif isinstance(arg, (Variable, core.VarBase)):
2282
                                in_arg_names.append(cpt.to_text(arg.name))
2283
                            else:
2284 2285 2286 2287
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2288 2289
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2314 2315 2316 2317
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2318
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2319
                        if not in_dygraph_mode():
2320 2321 2322 2323
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2342
    def _has_kernel(self, op_type):
2343 2344
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2345
    def to_string(self, throw_on_error):
2346
        """
2347 2348
        Get debug string.

2349
        Args:
2350 2351
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2352

2353 2354
        Returns:
            str: The debug string.
2355 2356

        """
2357
        protostr = self.desc.serialize_to_string()
2358
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2359 2360
        return _debug_string_(proto, throw_on_error)

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2393
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2446 2447 2448 2449 2450 2451 2452
        from paddle.distributed.auto_parallel.context import get_default_distributed_context
        dist_context = get_default_distributed_context()
        op_dist_attr = dist_context.get_op_distributed_attr_for_program(self)
        if op_dist_attr is not None:
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=op_dist_attr)

2453 2454
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2455 2456
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2457 2458 2459 2460 2461
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2462
    def __str__(self):
2463
        return self._to_readable_code()
2464 2465 2466

    __repr__ = __str__

F
fengjiayi 已提交
2467 2468
    @property
    def type(self):
2469
        return self.desc.type()
F
fengjiayi 已提交
2470 2471

    def input(self, name):
2472
        r"""
2473
        Get the input arguments according to the input parameter name.
2474

2475 2476
        Args:
            name(str): The input parameter name.
2477

2478 2479 2480
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2481
        """
F
fengjiayi 已提交
2482 2483
        return self.desc.input(name)

W
Wu Yi 已提交
2484
    def _rename_input(self, old_name, new_name):
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2495
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2496

W
Wu Yi 已提交
2497
    def _rename_output(self, old_name, new_name):
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2508
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2509

F
fengjiayi 已提交
2510 2511 2512 2513
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2514 2515 2516 2517 2518 2519 2520 2521
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2522
    def output(self, name):
2523
        r"""
2524
        Get output arguments by the output parameter name.
2525

2526 2527
        Args:
            name(str): The output parameter name.
2528

2529 2530 2531
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2532
        """
F
fengjiayi 已提交
2533 2534 2535 2536 2537 2538
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2539 2540 2541 2542 2543 2544 2545 2546
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2547
    def has_attr(self, name):
2548
        """
2549 2550
        Whether this Operator has the attribute with name or not.

2551
        Args:
2552
            name(str): the attribute name.
2553

2554 2555
        Returns:
            bool: True if has this attribute.
2556 2557

        """
F
fengjiayi 已提交
2558 2559 2560
        return self.desc.has_attr(name)

    def attr_type(self, name):
2561
        """
2562
        Get the type of attribute by attribute's name.
2563

2564 2565
        Args:
            name(str): the attribute name.
2566

2567 2568
        Returns:
            core.AttrType: the attribute type.
2569
        """
F
fengjiayi 已提交
2570 2571
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2572
    def _set_attr(self, name, val):
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2583 2584
        self._update_desc_attr(name, val)

2585 2586 2587
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2599 2600
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2601 2602
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2603
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2604 2605 2606 2607
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2608
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2609

F
fengjiayi 已提交
2610 2611 2612 2613 2614
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2615
        """
2616 2617
        Get the attribute by name.

2618
        Args:
2619
            name(str): the attribute name.
2620

2621 2622
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2623 2624
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2625
        return self.desc.attr(name)
Y
Yu Yang 已提交
2626

W
Wu Yi 已提交
2627
    def _block_attr_id(self, name):
2628
        """
G
gongweibao 已提交
2629
        Get the block attribute's id by name.
2630

2631 2632
        Args:
            name(str): the attribute name.
2633

2634 2635
        Returns:
            int: the block index.
2636
        """
W
Wu Yi 已提交
2637
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2638

W
Wu Yi 已提交
2639
    def _block_attr(self, name):
G
gongweibao 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2650
        id = self._block_attr_id(name)
G
gongweibao 已提交
2651 2652 2653
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2654
    def _blocks_attr(self, name):
G
gongweibao 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2665
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2666 2667 2668 2669 2670
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2671
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2682
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2683

J
JiayiFeng 已提交
2684
    def all_attrs(self):
F
fengjiayi 已提交
2685
        """
2686 2687 2688
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2689
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2690 2691 2692 2693
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2694 2695
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2696
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2697 2698 2699
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2700
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2701 2702 2703 2704
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2705 2706
        return attr_map

2707 2708 2709
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2710 2711 2712 2713

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2714 2715 2716
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2717 2718 2719 2720 2721 2722 2723 2724

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2725 2726
            return False

2727 2728 2729 2730 2731 2732
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2758

Y
Yu Yang 已提交
2759
class Block(object):
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2774
        use `Program._create_block()` to create a block.
2775 2776 2777 2778

    Examples:
        .. code-block:: python

2779 2780 2781
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2782 2783 2784 2785 2786 2787 2788 2789 2790
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2791
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2792
        self.desc = program.desc.block(idx)
2793
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2794
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2795
        self.program = program
2796
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2797

2798
    def __str__(self):
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2833
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2845

F
fengjiayi 已提交
2846 2847
    def to_string(self, throw_on_error, with_details=False):
        """
2848 2849
        Get debug string.

F
fengjiayi 已提交
2850 2851
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2852
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2853
            with_details(bool): more details about variables and parameters
2854 2855
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2856

2857 2858
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2859 2860 2861 2862
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2863
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2864 2865
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2866
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2867
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2868
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2869
            for op in self.ops:
F
fengjiayi 已提交
2870 2871
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2872 2873 2874
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2875 2876
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2877 2878
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2879 2880 2881

    __repr__ = __str__

Y
Yu Yang 已提交
2882 2883
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2884
        return self.desc.parent
Y
Yu Yang 已提交
2885

Y
Yu Yang 已提交
2886 2887 2888 2889
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2890
    def _set_forward_block_idx(self, idx):
2891 2892 2893 2894 2895 2896 2897 2898 2899
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2900
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2901

2902 2903 2904 2905 2906 2907 2908 2909
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2910 2911
    @property
    def idx(self):
Y
Yu Yang 已提交
2912
        return self.desc.id
Y
Yu Yang 已提交
2913

Q
Qiao Longfei 已提交
2914
    def var(self, name):
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2928
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2929 2930 2931
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2932 2933
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2934
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2935
        return v
Q
Qiao Longfei 已提交
2936

X
Xin Pan 已提交
2937
    def _find_var_recursive(self, name):
2938 2939 2940 2941 2942 2943 2944
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2945
            Variable: the Variable with the giving name. Or None if not found.
2946
        """
Y
Yu Yang 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2971
        return None
Y
Yu Yang 已提交
2972

X
Xin Pan 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2992

Q
Qiao Longfei 已提交
2993
    def all_parameters(self):
2994
        return list(self.iter_parameters())
2995

2996
    def iter_parameters(self):
M
minqiyang 已提交
2997
        return (item[1] for item in six.iteritems(self.vars)
2998
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2999

Y
Yu Yang 已提交
3000
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3001 3002 3003
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3004 3005 3006
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3007
        return var
Y
Yu Yang 已提交
3008

Q
Qiao Longfei 已提交
3009 3010 3011
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3012
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3013 3014
        """
        Rename variable in vars and ops' inputs and outputs
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3027
        """
M
minqiyang 已提交
3028 3029
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3030

T
typhoonzero 已提交
3031
        if not self.has_var(name):
3032
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3033 3034
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3035
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3036 3037 3038 3039 3040 3041
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3042
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3043 3044 3045 3046
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3047
        orig_var_type = v.type
M
minqiyang 已提交
3048
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3049
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3050
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3051
        if var_type == "Parameter":
L
Leo Chen 已提交
3052 3053
            if in_dygraph_mode():
                var = ParamBase(
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3064 3065
                var = Parameter(
                    self,
3066 3067 3068 3069 3070 3071 3072 3073 3074
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3075
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3076 3077
            var = Variable(
                self,
T
typhoonzero 已提交
3078
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3079 3080 3081 3082
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3083
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3084 3085 3086
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3087
        self._sync_with_cpp()
3088
        return var
T
typhoonzero 已提交
3089

3090 3091 3092
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3093
        self.desc._remove_var(cpt.to_bytes(name))
3094 3095
        del self.vars[name]

Y
Yu Yang 已提交
3096 3097
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3098
        param = None
L
Leo Chen 已提交
3099
        if in_dygraph_mode():
3100
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3101 3102
        else:
            param = Parameter(global_block, *args, **kwargs)
3103

3104
        if 'initializer' in kwargs:
3105 3106 3107 3108 3109

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3110
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3111
                        # are treated as initialization ops that cause error.
3112
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3113 3114 3115 3116 3117
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3118
                            continue
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3130
                # TODO already inited, do nothing, should log a warning
3131 3132 3133
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3134
        return param
Y
Yu Yang 已提交
3135

Y
Yu Yang 已提交
3136
    def append_op(self, *args, **kwargs):
3137 3138 3139 3140 3141 3142
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3143
        if in_dygraph_mode():
3144
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3145
            type = kwargs.get("type", None)
3146 3147 3148
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3149
                type=type,
M
minqiyang 已提交
3150 3151
                inputs=None,
                outputs=None,
3152
                attrs=attrs)
3153

M
minqiyang 已提交
3154 3155 3156
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3157
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3158 3159

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3160
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3161 3162
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3163
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3164
        else:
3165 3166
            from paddle.fluid.dygraph.base import param_guard

3167
            op_desc = self.desc.append_op()
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3181

M
minqiyang 已提交
3182
            self.ops.append(op)
M
minqiyang 已提交
3183

3184 3185
        return op

W
Wu Yi 已提交
3186
    def _insert_op(self, index, *args, **kwargs):
3187 3188 3189 3190 3191 3192 3193 3194 3195
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3196
        self._sync_with_cpp()
F
fangshuixun007 已提交
3197
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3216 3217 3218 3219 3220 3221 3222 3223 3224
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3225 3226
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3227
        self.desc._remove_op(index, index + 1)
3228 3229
        del self.ops[index]

W
Wu Yi 已提交
3230
    def _slice_ops(self, start, end):
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3241
        return self.ops[start:end]
Y
Yancey1989 已提交
3242

W
Wu Yi 已提交
3243
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3244
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3245 3246
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3247
            op = Operator(
J
Jiabin Yang 已提交
3248
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3249

J
Jiabin Yang 已提交
3250
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3251
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3252 3253
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3254
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3255
        else:
3256 3257 3258 3259 3260 3261 3262 3263
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3264
            self.ops.insert(0, op)
3265

Y
Yu Yang 已提交
3266 3267
        return op

W
Wu Yi 已提交
3268
    def _sync_with_cpp(self):
3269
        """
3270 3271
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3272
        """
Q
Qiao Longfei 已提交
3273 3274 3275
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3293

3294
        # sync variables removed from c++ end
3295
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3296
            if not self.desc.find_var(cpt.to_bytes(var)):
3297 3298
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3299
        # sync operators from cpp
3300 3301 3302 3303
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3320 3321 3322 3323 3324

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3325
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3326 3327 3328 3329 3330 3331 3332

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3346 3347 3348 3349
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3350
    def _copy_param_info_from(self, other):
3351
        """
3352 3353
        Copy the information of parameters from the other block.

3354
        Args:
3355 3356 3357 3358 3359
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3360 3361 3362 3363 3364

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3365 3366
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3367
        for p in other.iter_parameters():
3368 3369 3370
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3371 3372
                # if the Parameter is pruned, v may be None
                continue
3373
            assert isinstance(v, Variable)
3374
            new_p = None
L
Leo Chen 已提交
3375 3376
            if in_dygraph_mode():
                new_p = ParamBase(
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3388 3389
                new_p = Parameter(
                    block=self,
3390 3391 3392
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3393 3394
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3395 3396 3397 3398 3399 3400
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3401 3402
            self.vars[new_p.name] = new_p

3403
    def _clone_variable(self, var, force_persistable=True):
3404 3405
        """
        Clone a variable into current block.
3406

3407 3408
        Args:
            var: the variable to be cloned.
3409 3410 3411
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3412 3413

        Returns:
3414
            Variable: the new  variable cloned from 'var' in current block.
3415 3416
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3417 3418 3419 3420 3421
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3422 3423
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3424
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3425 3426 3427 3428 3429 3430
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3431
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3432 3433
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3434 3435 3436 3437 3438 3439 3440
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3441
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3442 3443
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3444
        return ret_var
3445

Y
Yu Yang 已提交
3446

3447 3448 3449 3450 3451 3452
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3564
    def remove_input_by_id(self, node_id):
3565 3566 3567 3568 3569 3570
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3571
        self.node.remove_input(node_id)
3572

3573
    def remove_input(self, node):
3574 3575 3576 3577
        """
        Remove a node from inputs.

        Args:
3578
            node(IrNode): the node being removed.
3579
        """
3580
        self.node.remove_input(node.node)
3581

3582
    def append_input(self, node):
3583 3584 3585 3586
        """
        Append a node in inputs.

        Args:
3587
            node(IrNode): the node being appended.
3588
        """
3589
        self.node.append_input(node.node)
3590 3591 3592 3593 3594 3595 3596 3597

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3598
    def remove_output_by_id(self, node_id):
3599 3600 3601 3602 3603 3604
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3605
        self.node.remove_output(node_id)
3606

3607
    def remove_output(self, node):
3608 3609 3610 3611
        """
        Remove a node from outputs.

        Args:
3612
            node(IrNode): the node being removed.
3613
        """
3614
        self.node.remove_output(node.node)
3615

3616
    def append_output(self, node):
3617 3618 3619 3620
        """
        Append a node in outputs.

        Args:
3621
            node(IrNode): the node being appended.
3622
        """
3623
        self.node.append_output(node.node)
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3671
            "The node variable description can not be None."
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3682
            "The node variable description can not be None."
3683 3684
        return self.node.var().persistable()

3685 3686 3687 3688 3689 3690 3691 3692
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3693
            "The node variable description can not be None."
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3704
            "The node variable description can not be None."
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3715
            "The node variable description can not be None."
3716 3717
        return self.node.var().shape()

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3765
            "The node operator description can not be None."
3766 3767
        self.node.op()._rename_input(old_input_name, new_input_name)

3768 3769 3770 3771 3772 3773 3774 3775 3776
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3777
            "The node operator description can not be None."
3778 3779
        self.node.op()._rename_output(old_output_name, new_output_name)

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3791
            "The node operator description can not be None."
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3805
            "The node operator description can not be None."
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3816
            "The node operator description can not be None."
3817 3818
        return self.node.op().set_type(new_type)

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3834
            "The node operator description can not be None."
3835 3836 3837 3838
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3839
                all(isinstance(v, Block) for v in val):
3840 3841
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3842
                isinstance(val, core.ProgramDesc):
3843 3844 3845 3846
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3847 3848 3849 3850 3851 3852 3853 3854
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3855
            "The node operator description can not be None."
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3866
            "The node operator description can not be None."
3867 3868
        return self.node.op().output_arg_names()

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3890 3891
class IrGraph(object):
    """
3892
    Python IrGraph. Beneath it is a core.Graph, which is used for
3893
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3894 3895
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3896 3897 3898 3899
    """

    def __init__(self, graph, for_test=False):
        """
3900 3901
        Construct an IrGraph using core.Graph.

3902 3903 3904 3905 3906 3907 3908 3909 3910
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3911 3912 3913 3914
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3915 3916 3917
        Warns:
            The method only clones the graph structure, not its attributes.

3918 3919 3920
        Returns:
            IrGraph: A new and duplicated graph.
        """
3921
        g = self.graph.clone()
3922 3923
        return IrGraph(g, self._for_test)

3924
    def is_test(self):
3925 3926 3927
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3928 3929
        return self._for_test

W
WangZhen 已提交
3930
    def all_nodes(self):
3931 3932 3933
        """
        Return all nodes included in the graph as a set.
        """
3934
        return {IrNode(node) for node in self.graph.nodes()}
3935

3936
    def all_var_nodes(self):
3937 3938 3939
        """
        Return all variable nodes included in the graph as a set.
        """
3940
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3941

3942
    def all_persistable_nodes(self):
3943 3944 3945
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3946 3947 3948 3949 3950
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3951
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3952

3953
    def all_op_nodes(self):
3954 3955 3956
        """
        Return all operator nodes included in the graph as a set.
        """
3957
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3958

3959
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3971
            IrVarNode: the created persistable variable node.
3972
        """
3973 3974 3975 3976 3977
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3978
        return IrVarNode(self.graph.create_var_node(var_desc))
3979 3980

    def create_var_node(self, name, var_type, shape, var_dtype):
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3992
            IrVarNode: the created variable node.
3993 3994
        """

3995 3996 3997 3998
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3999
        return IrVarNode(self.graph.create_var_node(var_desc))
4000

4001 4002 4003 4004 4005 4006
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4007
    def create_var_node_from_desc(self, var_desc):
4008 4009 4010 4011 4012 4013 4014 4015
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4016
            IrVarNode: the created variable node.
4017
        """
4018
        return IrVarNode(self.graph.create_var_node(var_desc))
4019 4020

    def create_op_node(self, op_type, attrs, inputs, outputs):
4021 4022 4023 4024 4025 4026 4027
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4028
            outputs(dict): the outputs of the operator node.
4029 4030

        Returns:
4031
            IrOpNode: the created operator node.
4032
        """
4033 4034
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4035
        for attr, value in six.iteritems(attrs):
4036
            self._update_desc_attr(op_desc, attr, value)
4037
        for input_name, var_nodes in six.iteritems(inputs):
4038 4039 4040 4041
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4042
        for output_name, var_nodes in six.iteritems(outputs):
4043 4044 4045 4046
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4047
        return IrOpNode(self.graph.create_op_node(op_desc))
4048 4049

    def create_op_node_from_desc(self, op_desc):
4050 4051 4052 4053 4054 4055 4056
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4057
            IrOpNode: the created operator node.
4058
        """
4059
        return IrOpNode(self.graph.create_op_node(op_desc))
4060 4061

    def update_input_link(self, old_input_node, new_input_node, op_node):
4062 4063 4064 4065
        """
        Update the input's link of a operator node.

        Args:
4066 4067 4068
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4069
        """
4070
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4071
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4072
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4073 4074 4075 4076
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4077
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4089
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4090
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4091 4092 4093 4094 4095 4096
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4097
    def link_to(self, node_in, node_out):
4098 4099 4100 4101
        """
        Connect two nodes.

        Args:
4102 4103
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4104
        """
4105
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
4106
            'The two arguments(node_in&node_out) must be in the graph nodes.'
4107 4108
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4109 4110

    def safe_remove_nodes(self, remove_nodes):
4111 4112 4113 4114 4115 4116 4117
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4118
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4119 4120 4121 4122
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4123 4124
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4125

Z
Zhen Wang 已提交
4126 4127 4128 4129 4130 4131 4132 4133
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4134
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4135 4136 4137 4138
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4139
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4140 4141 4142
                        ]
                    else:
                        var_nodes[each_var_name].append(
4143 4144
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4145 4146
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4147
    def has_circle(self):
4148 4149 4150 4151 4152 4153
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4154 4155 4156
        return core.has_circle(self.graph)

    def graph_num(self):
4157 4158 4159 4160 4161 4162
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4163 4164 4165
        return core.graph_num(self.graph)

    def topology_sort(self):
4166 4167 4168
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4169
        Notes: the `graph` can not contain a circle.
4170 4171

        Returns:
Z
Zhen Wang 已提交
4172
            list(IrNode): nodes in topology order.
4173
        """
4174
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4175
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4176 4177

    def build_adjacency_list(self):
4178 4179 4180 4181
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4182
            dict{IrNode: set(IrNode)}: the adjacency list.
4183
        """
4184 4185 4186 4187 4188
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4189

4190 4191 4192 4193 4194 4195 4196 4197
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4198
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4199 4200 4201 4202 4203
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4204 4205
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4206 4207 4208
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4209 4210 4211 4212 4213
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4214
        remove_ctr_vars = set()
4215
        if remove_ctr_var:
4216
            for node in self.all_var_nodes():
4217 4218 4219
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4220 4221
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4222 4223
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4224 4225 4226 4227 4228 4229
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4230 4231 4232 4233
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4234 4235
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4236 4237 4238 4239 4240 4241 4242
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4243 4244 4245
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4246
        WARN: When the graph includes backward operator nodes, the
4247 4248 4249 4250 4251 4252
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4253
        convert_pass = core.get_pass('graph_to_program_pass')
4254 4255
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4256 4257 4258 4259
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4287
class Program(object):
D
dzhwinter 已提交
4288
    """
4289
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4290
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4291
    it will contain nested block.
4292

J
Jiabin Yang 已提交
4293 4294 4295
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4296

J
Jiabin Yang 已提交
4297
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4298
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4299 4300 4301 4302 4303 4304 4305
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4306
    **Notes**:
4307 4308 4309
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4310 4311

    Returns:
J
Jiabin Yang 已提交
4312
        Program: An empty Program.
D
dzhwinter 已提交
4313 4314

    Examples:
4315 4316
        .. code-block:: python

4317 4318 4319 4320
            import paddle
            import paddle.static as static

            paddle.enable_static()
4321

4322 4323 4324 4325 4326
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4327
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4328 4329 4330

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4331 4332 4333

    """

4334 4335
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4336 4337
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4338 4339
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4340
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4341
        self.__op_role_var = []
T
tangwei12 已提交
4342

4343 4344
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4345
        self._is_distributed = False
4346
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4347
        self._is_chief = False
4348 4349 4350
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4351
        self._endpoints = []
4352 4353 4354
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4355
        self._trainers_endpoints = []
4356
        # the distributed lookup table names
T
tangwei12 已提交
4357
        self._distributed_lookup_table = None
4358 4359 4360

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4361 4362
        self._use_lamb = False

4363 4364 4365
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4366

4367 4368 4369
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4370
        self._program_config = None
4371

H
hutuxian 已提交
4372 4373 4374
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4375 4376 4377
        # appending gradients times
        self._appending_grad_times = 0

4378 4379 4380 4381
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4382 4383
        # compiled program, i.e. Graph
        self._graph = None
4384 4385
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4386

4387
    def _find_var_class_kwargs(self, new_desc):
4388 4389 4390 4391 4392 4393 4394 4395
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4465
        assert block_num == self.desc.num_blocks()
4466 4467

        # clear old blocks and desc
4468 4469 4470 4471 4472 4473 4474 4475 4476
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4477

4478
        del desc
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4508 4509
                import paddle
                import paddle.static as static
4510

4511 4512 4513
                paddle.enable_static()

                prog = static.default_main_program()
4514 4515 4516 4517 4518
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4519
                prog1 = static.default_main_program()
4520 4521 4522 4523 4524 4525 4526 4527
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4528
    @property
4529
    def _op_role(self):
Y
yuyang18 已提交
4530 4531 4532 4533 4534 4535 4536 4537
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4538
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4539 4540 4541 4542
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4543 4544
        return self._current_role

4545 4546
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4547 4548 4549
        self._current_role = role

    @property
4550
    def _op_role_var(self):
Y
yuyang18 已提交
4551
        """
4552
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4553

4554
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4555 4556 4557

        Notes: This is a very low-level API. Users should not use it directly.
        """
4558
        return self.__op_role_var
Y
yuyang18 已提交
4559

4560
    @signature_safe_contextmanager
4561 4562 4563 4564 4565
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4566 4567 4568 4569
        try:
            yield
        finally:
            self._current_role = tmp_role
4570

S
rename  
sneaxiy 已提交
4571
    @signature_safe_contextmanager
W
Wu Yi 已提交
4572
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4573 4574 4575 4576 4577 4578 4579
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4580
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4581 4582 4583

        Examples:

4584
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4585
            >>> p, g = backward(...)
W
Wu Yi 已提交
4586
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4587 4588
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4589
        tmp_role = self._current_role
4590
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4591

Y
yuyang18 已提交
4592 4593
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4594
        self.__op_role_var = [
4595 4596 4597
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4598 4599 4600 4601 4602
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4603

S
rename  
sneaxiy 已提交
4604
    @signature_safe_contextmanager
X
Xin Pan 已提交
4605
    def _lr_schedule_guard(self, is_with_opt=False):
4606 4607 4608 4609 4610 4611 4612
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4613 4614 4615 4616
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4617 4618 4619

        Examples:

4620
            >>> import paddle.fluid as fluid
4621 4622 4623 4624
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4625 4626

        tmp_role = self._current_role
4627
        tmp_var = self.__op_role_var
4628

4629 4630
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4631 4632
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4633
        # TODO(typhoonzero): how to set target learning rate var
4634
        self.__op_role_var = []
4635 4636 4637 4638 4639
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4640

4641
    def __str__(self):
Y
yuyang18 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4671 4672
            import paddle
            import paddle.static as static
4673

4674 4675 4676
            paddle.enable_static()

            cur_program = static.Program()
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4688
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4689 4690 4691 4692
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4693
            program_str += '\n'
4694
        return program_str
Y
Yang Yang(Tony) 已提交
4695

F
fengjiayi 已提交
4696 4697 4698
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4699

J
Jiabin Yang 已提交
4700 4701 4702
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4703

J
Jiabin Yang 已提交
4704
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4705

H
haowang101779990 已提交
4706
        Returns:
J
Jiabin Yang 已提交
4707
            str: The debug string describe current Program.
Y
yuyang18 已提交
4708 4709

        Raises:
J
Jiabin Yang 已提交
4710
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4711

4712 4713 4714
        Examples:
            .. code-block:: python

4715 4716 4717 4718
                import paddle
                import paddle.static as static

                paddle.enable_static()
4719

4720 4721 4722
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4723
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4724
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4725
                print("program string without detail: {}".format(prog_string))
4726
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4727
        """
4728 4729 4730 4731 4732 4733 4734 4735 4736
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4737 4738 4739 4740 4741 4742
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4743 4744
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4745 4746
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4747

W
Wu Yi 已提交
4748
    def _get_desc(self):
Y
yuyang18 已提交
4749 4750 4751 4752 4753 4754 4755
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4756 4757
        return self.desc

X
version  
Xin Pan 已提交
4758 4759 4760
    def _version(self):
        return self.desc._version()

4761
    def clone(self, for_test=False):
Y
yuyang18 已提交
4762
        """
4763 4764 4765 4766
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4767

4768
        Create a new Program with forward content of original one when ``for_test=True``.
4769
        Create a new Program as same as the original one when ``for_test=False``.
4770

4771
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4772 4773 4774
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4775

4776 4777
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4778 4779
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4780
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4781

J
Jiabin Yang 已提交
4782
        For Example:
4783
          ::
L
Luo Tao 已提交
4784

4785 4786 4787 4788 4789 4790
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4791
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4792
            loss = paddle.mean(pred)
4793
            # Here we use clone before Momentum
4794 4795
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4796
            optimizer.minimize(loss)
4797

J
Jiabin Yang 已提交
4798
        Args:
4799

4800 4801
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4802

J
Jiabin Yang 已提交
4803
        Returns:
4804
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4805

Y
yuyang18 已提交
4806 4807 4808

        Examples:

4809 4810 4811 4812 4813 4814 4815
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4832
            1. To clone a test program, the sample code is:
4833 4834 4835
                .. code-block:: python

                    import six
4836 4837 4838 4839 4840 4841
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4854 4855
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4856 4857 4858

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4859 4860 4861
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4862
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4863 4864
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4865
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4866 4867
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4868
                            test_program = train_program.clone(for_test=True)
4869
                    print_prog(test_program)
J
Jiabin Yang 已提交
4870 4871 4872 4873

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4874
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4875 4876 4877 4878
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4879 4880 4881
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4882 4883 4884
                            sgd.minimize(avg_loss)


4885
            2. The clone method can be avoid if you create program for training and program for testing individually.
4886 4887 4888
                .. code-block:: python

                    import six
4889 4890 4891 4892 4893 4894
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4906

4907
                    def network():
4908
                        img = static.data(name='image', shape=[None, 784])
4909
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4910 4911
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4912
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4913 4914
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4915 4916
                        return avg_loss

4917 4918 4919 4920 4921
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4922
                            avg_loss = network()
4923
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4924
                            sgd.minimize(avg_loss)
4925
                    # the test startup program is not used.
4926 4927
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4928 4929
                            avg_loss = network()
                    print_prog(test_program_2)
4930

4931
            The two code snippets above will generate and print same programs.
4932
        """
4933

T
tangwei12 已提交
4934
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4935 4936 4937
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4938
        pruned_origin_block_id_map = None
4939
        if for_test:
4940 4941 4942 4943 4944 4945 4946 4947 4948
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4949
        else:
4950
            p = Program()
G
gongweibao 已提交
4951 4952
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4953
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4954 4955 4956
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4957 4958

            p._current_role = self._current_role
4959
            p.__op_role_var = self.__op_role_var
4960
            p._appending_grad_times = self._appending_grad_times
4961 4962
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4963

T
tangwei12 已提交
4964
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4965
            # its desc.
W
Wu Yi 已提交
4966
            p._sync_with_cpp()
4967

W
Wu Yi 已提交
4968
        p._copy_param_info_from(self)
4969
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4970
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4971
        return p
4972

4973
    def _prune(self, targets):
Y
yuyang18 已提交
4974 4975 4976 4977 4978 4979 4980 4981
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4982
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4983 4984 4985 4986
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4987
        """
4988
        return self._prune_with_input([], targets)
4989 4990

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4991
        """
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5002
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5003 5004 5005 5006 5007 5008
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5009
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5010 5011 5012
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5013 5014
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5015 5016
        if not isinstance(targets, list):
            targets = [targets]
5017 5018 5019

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5020 5021 5022
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5040 5041 5042 5043
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5044 5045 5046
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5047
                else:
5048 5049 5050
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5051 5052 5053 5054 5055 5056

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5057 5058 5059
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5070
                        # Skip optimize op except for optimize op in targets,
5071 5072 5073 5074 5075
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5076

5077 5078 5079 5080 5081 5082 5083 5084
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5085

5086
        res = Program()
5087 5088 5089
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5090 5091 5092
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5093
        res._sync_with_cpp()
5094 5095 5096 5097 5098

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5099 5100
        return res

X
Xin Pan 已提交
5101
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5102
        """
F
fengjiayi 已提交
5103 5104 5105 5106 5107
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5108
        3. change the :code:`is_test`
Y
yuyang18 已提交
5109 5110 5111
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5112
        Args:
X
Xin Pan 已提交
5113 5114
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5115

Y
yuyang18 已提交
5116 5117 5118 5119 5120 5121
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5122
        res = Program()
5123
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5124 5125 5126 5127

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5128
        if prune_read_op:
5129 5130 5131 5132 5133 5134 5135 5136 5137
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5138
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5139 5140

        # change all `is_test` attributes to True
M
minqiyang 已提交
5141
        for i in six.moves.range(res.desc.num_blocks()):
5142
            block = res.desc.block(i)
M
minqiyang 已提交
5143
            for j in six.moves.range(block.op_size()):
5144 5145
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5146
                    op._set_attr('is_test', True)
5147 5148 5149
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5150 5151 5152
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5153
        res._sync_with_cpp()
5154 5155
        return res

5156
    def _remove_training_info(self, clip_extra=True):
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5246 5247
        return res

5248 5249
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5250
        """
5251 5252 5253
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5254

5255 5256
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5257

J
Jiabin Yang 已提交
5258
        Args:
Y
yuyang18 已提交
5259

J
Jiabin Yang 已提交
5260
            binary_str_type (str): the binary prootbuf string.
5261

J
Jiabin Yang 已提交
5262 5263
        Returns:
            Program: A deserialized Program.
5264 5265 5266 5267

        Examples:
            .. code-block:: python

5268 5269 5270 5271
                import paddle
                import paddle.static as static

                paddle.enable_static()
5272

5273 5274 5275 5276
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5277

5278
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5279

5280
                    z = paddle.matmul(x=x, y=y)
5281

5282 5283
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5284

5285
                    print(static.default_main_program())
5286
                    print(prog_restored)
Y
yuyang18 已提交
5287
        """
5288 5289
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5290
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5291
        p._sync_with_cpp()
5292
        return p
Y
Yu Yang 已提交
5293

5294
    @staticmethod
5295
    def _construct_from_desc(desc):
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5311 5312
    @property
    def random_seed(self):
Y
yuyang18 已提交
5313
        """
J
Jiabin Yang 已提交
5314
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5315 5316
        the random seed from random device.

5317 5318
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5319 5320 5321

        Returns:
            int64: Random seed in current Program
5322

5323 5324 5325 5326

        Examples:
            .. code-block:: python

5327 5328 5329
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5330

5331 5332 5333
                paddle.enable_static()

                prog = static.default_main_program()
5334
                random_seed = prog.random_seed
5335
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5336 5337 5338
                print(random_seed)
                ## 0
                ## the default random seed is 0
5339

5340
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5341
                prog.random_seed = 1
5342
                z_var = F.dropout(x_var, 0.7)
5343

5344
                print(prog.random_seed)
5345 5346
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5347
        """
D
dzhwinter 已提交
5348 5349
        return self._seed

Q
qiaolongfei 已提交
5350 5351
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5352
        """
5353 5354
        The number of :ref:`api_guide_Block_en`  in this Program.

5355 5356
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5357 5358 5359

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5360

5361 5362 5363 5364

        Examples:
            .. code-block:: python

5365 5366 5367 5368
                import paddle
                import paddle.static as static

                paddle.enable_static()
5369

5370
                prog = static.default_main_program()
5371 5372
                num_blocks = prog.num_blocks
                print(num_blocks)
5373

5374 5375
                # print result:
                # 1
Y
yuyang18 已提交
5376
        """
Q
qiaolongfei 已提交
5377 5378
        return self.desc.num_blocks()

D
dzhwinter 已提交
5379 5380 5381
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5382 5383 5384
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5385 5386
        self._seed = seed

Y
Yu Yang 已提交
5387
    def __repr__(self):
5388
        return self.__str__()
5389

Y
Yu Yang 已提交
5390
    def global_block(self):
Y
yuyang18 已提交
5391
        """
5392 5393
        .. note::
            This API has no effect in Dygraph mode.
5394 5395 5396

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5397 5398
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5399

5400 5401 5402 5403

        Examples:
            .. code-block:: python

5404 5405 5406 5407
                import paddle
                import paddle.static as static

                paddle.enable_static()
5408

5409
                prog = static.default_main_program()
5410 5411
                gb_block = prog.global_block()
                print(gb_block)
5412

Y
yuyang18 已提交
5413
        """
Y
Yu Yang 已提交
5414 5415
        return self.blocks[0]

Q
Qiao Longfei 已提交
5416
    def block(self, index):
Y
yuyang18 已提交
5417
        """
5418 5419
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5420

5421 5422
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5423 5424
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5425

J
Jiabin Yang 已提交
5426 5427
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5428 5429 5430 5431

        Examples:
            .. code-block:: python

5432 5433 5434 5435
                import paddle
                import paddle.static as static

                paddle.enable_static()
5436

5437
                prog = static.default_main_program()
5438 5439
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5440
        """
Q
Qiao Longfei 已提交
5441 5442
        return self.blocks[index]

Y
Yu Yang 已提交
5443
    def current_block(self):
Y
yuyang18 已提交
5444
        """
5445 5446
        .. note::
            This API has no effect in Dygraph mode.
5447

J
Jiabin Yang 已提交
5448 5449
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5450

J
Jiabin Yang 已提交
5451 5452
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5453

5454 5455 5456
        Examples:
            .. code-block:: python

5457 5458 5459 5460
                import paddle
                import paddle.static as static

                paddle.enable_static()
5461

5462
                prog = static.default_main_program()
5463 5464
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5465
        """
Y
Yu Yang 已提交
5466 5467
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5468
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5469 5470 5471 5472 5473
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5474

Y
yuyang18 已提交
5475 5476 5477 5478 5479
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5480
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5481 5482 5483
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5484 5485 5486 5487
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5488
    def _rollback(self):
Y
yuyang18 已提交
5489 5490 5491 5492 5493
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5494 5495
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5496
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5507 5508 5509
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5510
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5511

W
Wu Yi 已提交
5512
    def _copy_param_info_from(self, other):
5513
        """
5514
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5515

Y
yuyang18 已提交
5516 5517 5518
        Notes: This is a very low level API. Users should not invoke it
        directly.

5519 5520 5521 5522 5523 5524 5525
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5526 5527 5528
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5529

W
Wu Yi 已提交
5530
        self.global_block()._copy_param_info_from(other.global_block())
5531

5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5543 5544 5545
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5546 5547
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5548
        self._parameters_on_pservers = other._parameters_on_pservers
5549
        self._endpoints = other._endpoints
5550
        self._ps_endpoint = other._ps_endpoint
5551 5552
        self._distributed_lookup_table = other._distributed_lookup_table

5553
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5554 5555
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5556

Y
yuyang18 已提交
5557 5558 5559
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5560 5561
        Args:
            other(Program): Other program
5562 5563 5564 5565
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5566 5567 5568 5569 5570

        Returns:
            None
        """
        if not isinstance(other, Program):
5571 5572 5573
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5574

5575 5576 5577 5578 5579
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5580 5581 5582

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5583 5584
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5585
            for var in list(block.vars.values()):
5586 5587 5588 5589 5590 5591 5592
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5593

5594
    def list_vars(self):
Y
yuyang18 已提交
5595
        """
5596
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5597

J
Jiabin Yang 已提交
5598
        Returns:
5599
            iterable Tensors: The Generator will yield every Tensor in this program.
5600 5601 5602 5603

        Examples:
            .. code-block:: python

5604 5605
                import paddle
                import paddle.static as static
5606

5607 5608 5609 5610 5611
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5612 5613
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5614

5615 5616
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5617
        """
5618
        for each_block in self.blocks:
5619
            for each_var in list(each_block.vars.values()):
5620 5621
                yield each_var

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5632 5633 5634 5635
                import paddle
                import paddle.static as static

                paddle.enable_static()
5636

5637 5638
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5639
                hidden = static.nn.fc(x=data, size=10)
5640 5641
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5642 5643 5644 5645 5646 5647 5648

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5649 5650
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5828

5829
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5830
class Parameter(Variable):
5831
    """
5832
    Parameter is derived from Variable. A parameter is a persistable
5833
    Variable, and will be updated by optimizers after each iteration.
5834
    The training of a neural network is essentially the updating of
5835 5836
    its parameters.

5837
    Relative to a general Variable, a Parameter has several its own
5838 5839
    member variables:

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5850 5851
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5852 5853
    """

5854 5855 5856 5857 5858 5859
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5860 5861 5862 5863 5864
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5865
        if len(shape) == 0:
5866 5867
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5868 5869 5870

        for each in shape:
            if each < 0:
5871 5872 5873
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5874 5875

        Variable.__init__(
5876 5877 5878 5879 5880 5881 5882
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5883 5884 5885 5886
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5887 5888
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5889
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5890

5891 5892
        self.need_clip = kwargs.get('need_clip', True)

5893 5894
        self.is_distributed = False

5895 5896
        self.is_parameter = True

F
fengjiayi 已提交
5897
    def __str__(self):
5898
        return self._to_readable_code()
F
fengjiayi 已提交
5899

F
update  
fengjiayi 已提交
5900 5901 5902
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5903

F
update  
fengjiayi 已提交
5904 5905 5906 5907 5908 5909 5910 5911
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5912 5913 5914 5915 5916 5917 5918 5919 5920
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5921 5922 5923 5924 5925 5926
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5927
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5928
            for attr_name in additional_attr:
5929 5930
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5931 5932
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5933 5934 5935 5936
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5937

5938 5939
class ParamBase(core.VarBase):
    """
5940 5941 5942
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5943 5944 5945
    The training of a neural network is essentially the updating of
    its ParamBase.

5946
    Relative to a general Tensor, a ParamBase has several its own
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5959 5960
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5991 5992
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5993 5994 5995 5996 5997 5998 5999

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6000 6001
        self.need_clip = kwargs.get('need_clip', True)

6002
        self.is_distributed = False
6003
        # self.block = default_main_program().global_block()
6004

6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6018
    def __str__(self):
6019
        """
6020
        Convert a ParamBase object to a readable string.
6021

6022
        Returns(str): A readable string.
6023 6024 6025 6026

        Examples:
            .. code-block:: python

6027
                import paddle
6028 6029 6030 6031 6032 6033 6034
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6035
        """
6036 6037
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6038

6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6050

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6069 6070 6071 6072 6073 6074 6075
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6076 6077 6078
    __repr__ = __str__


Y
Yu Yang 已提交
6079
# program is a global instance.
Y
Yu Yang 已提交
6080 6081
_main_program_ = Program()
_startup_program_ = Program()
6082
_startup_program_._is_start_up_program_ = True
6083

6084

6085
def default_startup_program():
Y
Yu Yang 已提交
6086
    """
Y
yuyang18 已提交
6087 6088
    Get default/global startup program.

6089 6090
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6091

6092 6093
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6094

6095 6096
    Returns:
        Program: current default startup program.
6097

6098
    Returns type: 
6099 6100 6101 6102

    Examples:
        .. code-block:: python

6103
            import paddle
6104

6105
            paddle.enable_static()
6106 6107 6108 6109
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6110
    """
Y
Yu Yang 已提交
6111
    return _startup_program_
6112

6113

6114
def default_main_program():
Y
Yu Yang 已提交
6115
    """
6116
    This API can be used to get ``default main program`` which store the 
6117
    descriptions of Ops and tensors.
T
tangwei12 已提交
6118

6119
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6120
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6121

6122 6123
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6124
    :code:`default_main_program` when the program is not specified.
6125

6126
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6127

Y
Yu Yang 已提交
6128
    Returns:
6129
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6130 6131 6132 6133

    Examples:
        ..  code-block:: python

6134
            import paddle
6135

6136
            paddle.enable_static()
6137
            # Sample Network:
6138 6139 6140
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6141

6142 6143 6144
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6145
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6146
    """
Y
Yu Yang 已提交
6147
    return _main_program_
Y
Yu Yang 已提交
6148 6149 6150 6151 6152


def switch_main_program(program):
    """
    Switch the main program to a new program.
6153

Y
Yu Yang 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6168
    Switch the startup program to a new program
Y
Yu Yang 已提交
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6181
@signature_safe_contextmanager
Y
Yu Yang 已提交
6182 6183
def program_guard(main_program, startup_program=None):
    """
6184 6185
    :api_attr: Static Graph

6186 6187 6188
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6189

G
guofei 已提交
6190
    Args:
6191 6192
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6193 6194 6195 6196
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6197
    Examples:
6198
       .. code-block:: python
T
tangwei12 已提交
6199

6200
          import paddle
Y
yuyang18 已提交
6201

6202 6203 6204 6205 6206
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6207
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6208 6209 6210

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6211

Y
Yu Yang 已提交
6212
    Examples:
6213
       .. code-block:: python
Y
yuyang18 已提交
6214

6215
          import paddle
6216

6217 6218 6219 6220 6221
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6222

Y
Yu Yang 已提交
6223
    """
6224
    from .data_feeder import check_type
6225 6226
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6227 6228
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6229
        check_type(startup_program, 'startup_program', Program,
6230
                   'paddle.static.program_guard')
6231 6232
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6233
        startup_program = switch_startup_program(startup_program)
6234 6235 6236 6237 6238 6239
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6240 6241


W
Wu Yi 已提交
6242
def _get_var(name, program=None):
X
xuwei06 已提交
6243
    """
Y
yuyang18 已提交
6244
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6245

X
xuwei06 已提交
6246 6247 6248
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6249
        If None, default_global_program() will be used.
X
xuwei06 已提交
6250 6251 6252 6253 6254 6255 6256

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6257
    assert isinstance(program, Program)
X
xuwei06 已提交
6258 6259

    return program.global_block().var(name)
6260 6261


S
rename  
sneaxiy 已提交
6262
@signature_safe_contextmanager
L
lujun 已提交
6263 6264
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6265
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6266
    _dygraph_tracer_ = tracer
6267
    core._switch_tracer(tracer)
M
minqiyang 已提交
6268

6269 6270 6271
    try:
        yield
    finally:
6272 6273
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6274 6275


S
rename  
sneaxiy 已提交
6276
@signature_safe_contextmanager
L
lujun 已提交
6277
def _dygraph_place_guard(place):
6278 6279 6280
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6281

6282 6283
    _set_dygraph_tracer_expected_place(place)

6284 6285 6286
    try:
        yield
    finally:
6287
        _global_expected_place_ = tmp_place
6288
        _set_dygraph_tracer_expected_place(tmp_place)
6289 6290


6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6307 6308
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6309 6310 6311 6312 6313 6314 6315 6316 6317
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6318
            import paddle
6319

Z
Zhang Ting 已提交
6320 6321 6322
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6323
            if support_gpu:
Z
Zhang Ting 已提交
6324
                place = paddle.CUDAPlace(0)
6325 6326

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6327 6328 6329
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6330

Z
Zhang Ting 已提交
6331
            with paddle.static.device_guard("cpu"):
6332
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6333 6334
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6335
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6336
                out = paddle.reshape(data1, shape=shape)
6337

Z
Zhang Ting 已提交
6338 6339
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6340 6341 6342
            result = exe.run(fetch_list=[out])
    """

6343 6344 6345 6346 6347
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6348
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6349
        raise ValueError(
6350
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6351
            "when there is no need to specify device. But received %s" % device)
6352 6353
    if index:
        device = ":".join([device, index])
6354
    pre_device = switch_device(device)
6355 6356 6357 6358
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6359 6360 6361 6362 6363


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6364
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6365 6366 6367 6368 6369 6370 6371

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6372 6373
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6374 6375 6376 6377
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6378 6379
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6380 6381 6382 6383 6384 6385 6386 6387
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6388
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6399
            import paddle
G
guofei 已提交
6400 6401

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6402
            res = paddle.get_flags(flags)
G
guofei 已提交
6403 6404 6405 6406 6407 6408
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6409 6410
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6411 6412 6413 6414 6415 6416 6417
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6418 6419
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6420 6421 6422 6423 6424 6425 6426 6427
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6428 6429 6430 6431 6432 6433 6434


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6435
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6436 6437 6438 6439 6440 6441 6442 6443 6444
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6445

6446 6447 6448
    if (place == "device"):
        return core.Place()

6449
    # GPU
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6465 6466

    # XPU
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6490
    raise ValueError(
6491 6492
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret