framework.py 227.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'is_compiled_with_npu',
59
    'Variable',
60
    'require_version',
61
    'device_guard',
G
guofei 已提交
62 63
    'set_flags',
    'get_flags',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
72
_dygraph_tracer_ = None
73
_global_expected_place_ = None
74
_current_device = None
75
global_prog_seed = 0
76
_current_pipeline_stage = None
77
_global_flags_ = core.globals()
78

79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
187
def in_dygraph_mode():
L
lujun 已提交
188
    """
189

190 191 192 193 194 195 196
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
197 198

    Returns:
199
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
200 201 202 203

    Examples:
        .. code-block:: python

204 205 206 207 208 209 210 211
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
212 213

    """
L
lujun 已提交
214
    return _dygraph_tracer_ is not None
215 216


217 218 219
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
220
        ), "We don't support %s in imperative mode" % func.__name__
221 222 223 224 225 226 227 228
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
229 230 231 232 233 234 235 236 237
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
238
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
239 240 241 242 243
        return func(*args, **kwargs)

    return __impl__


244 245 246 247 248
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


249 250 251 252 253 254
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
255
# same base class.
256 257 258
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
259 260 261 262 263
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
264 265 266 267

    return __impl__


T
tangwei12 已提交
268 269
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


287 288
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
289
static_only = wrap_decorator(_static_only_)
290
fake_interface_only = wrap_decorator(_fake_interface_only_)
291 292


L
lujun 已提交
293 294
def _dygraph_tracer():
    return _dygraph_tracer_
295

W
Wu Yi 已提交
296

297 298 299 300
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
301
def _current_expected_place():
302 303 304
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
305 306 307 308 309 310 311 312 313 314 315
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
332 333


L
Leo Chen 已提交
334 335 336 337
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
338

L
Leo Chen 已提交
339 340 341 342 343 344 345 346 347 348 349 350
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
351
def _cpu_num():
352
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
353 354 355 356 357 358 359 360
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
361
        os.environ['CPU_NUM'] = str(1)
362
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
363 364 365 366 367 368 369 370 371 372
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
373 374


375 376 377 378 379 380 381 382 383
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


384 385 386 387 388 389 390 391 392
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


C
chengduo 已提交
448 449 450 451
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

452
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
453 454 455 456

    Examples:
        .. code-block:: python

457 458
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
459 460 461 462
    """
    return core.is_compiled_with_cuda()


463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
478
def cuda_places(device_ids=None):
L
lujun 已提交
479
    """
480 481 482 483
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
484
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
485 486

    If :code:`device_ids` is None, environment variable of
487
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
488
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
489
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
490
    If :code:`FLAGS_selected_gpus` is not set, all visible
491
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
492 493

    If :code:`device_ids` is not None, it should be the device
494
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
495
    the returned list would be 
C
Chen Weihang 已提交
496
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
497

498
    Parameters:
499
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
500 501

    Returns:
C
Chen Weihang 已提交
502
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
503 504 505 506

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
507 508
            import paddle
            import paddle.static as static
T
tangwei12 已提交
509

510 511
            # required: gpu
            
C
Chen Weihang 已提交
512 513 514
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
515 516

    """
S
sneaxiy 已提交
517 518 519
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
520
        device_ids = _cuda_ids()
S
sneaxiy 已提交
521 522 523 524 525
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


526 527 528 529
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
530 531 532 533 534 535 536 537 538 539 540
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
541 542 543 544 545 546 547
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
548

549 550
            # required: xpu

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
607
def cpu_places(device_count=None):
L
lujun 已提交
608
    """
C
Chen Weihang 已提交
609
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
610

S
add doc  
sneaxiy 已提交
611 612
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
613 614
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
615 616
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
617

618 619
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
620 621

    Returns:
C
Chen Weihang 已提交
622
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
623 624 625 626

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
627 628
            import paddle
            import paddle.static as static
T
tangwei12 已提交
629

C
Chen Weihang 已提交
630 631 632
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
633 634
    """

S
sneaxiy 已提交
635 636 637 638 639 640
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
641
    """
642
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
643 644 645

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
646 647 648 649
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
650

651 652
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
653 654

    Returns:
655
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
656 657 658 659

    Examples:
        .. code-block:: python

660
            import paddle.fluid as fluid
L
lujun 已提交
661 662 663 664 665
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
666 667 668
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
669 670
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
671 672


673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
699
@signature_safe_contextmanager
700 701
def name_scope(prefix=None):
    """
702 703
    :api_attr: Static Graph

704
    Generate hierarchical name prefix for the operators in Static Graph.
705

T
Tao Luo 已提交
706 707 708
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
709
        Don't use it in dygraph, since it will cause memory leak.
710 711

    Args:
T
Tao Luo 已提交
712
        prefix(str, optional): prefix. Default is none.
713 714 715

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
716

717 718 719
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
720
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
721
             b = a + 1
722
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
723
                c = b * 1
724
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
725
                d = c / 1
726 727 728
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
729 730 731
                g = f - 1

          # Op are created in the default main program.  
732
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
748 749
    """
    # TODO(panyx0718): Only [0-9a-z].
750
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
751 752 753
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
754
        assert prefix, "namescope prefix can not be empty."
755 756
        global _name_scope
        _name_scope = _name_scope.child(prefix)
757 758 759 760
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
761 762 763 764 765 766 767 768 769 770 771 772


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
773 774 775
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
776 777 778 779


def grad_var_name(var_name):
    """
780 781
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
782 783 784
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
785

786
def convert_np_dtype_to_dtype_(np_dtype):
787 788
    """
    Convert the data type in numpy to the data type in Paddle
789

790
    Args:
791
        np_dtype(np.dtype): the data type in numpy.
792

793 794
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
795 796

    """
797 798
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
799
        return core.VarDesc.VarType.FP32
800
    elif dtype == np.float64:
801
        return core.VarDesc.VarType.FP64
802
    elif dtype == np.float16:
803
        return core.VarDesc.VarType.FP16
804
    elif dtype == np.int32:
805
        return core.VarDesc.VarType.INT32
806
    elif dtype == np.int16:
807
        return core.VarDesc.VarType.INT16
808
    elif dtype == np.int64:
809
        return core.VarDesc.VarType.INT64
810
    elif dtype == np.bool:
811
        return core.VarDesc.VarType.BOOL
812
    elif dtype == np.uint16:
813 814 815
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
816 817
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
818 819
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
820 821 822 823
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
824
    else:
M
minqiyang 已提交
825
        raise ValueError("Not supported numpy dtype %s" % dtype)
826 827 828


def dtype_is_floating(dtype):
829 830 831
    """
    Check the data type is floating or not.
    Args:
832
        dtype(np.dtype|core.VarDesc.VarType): data type.
833 834 835 836 837
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
838
    if not isinstance(dtype, core.VarDesc.VarType):
839 840
        dtype = convert_np_dtype_to_dtype_(dtype)

841 842 843 844
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
845 846


Y
Yang Yang(Tony) 已提交
847
def _debug_string_(proto, throw_on_error=True):
848 849 850 851 852 853 854 855 856 857 858
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
859
    error_fields = list()
Y
Yang Yang(Tony) 已提交
860
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
861 862
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
863 864 865
    return proto.__str__()


866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
903
class Variable(object):
904
    """
J
Jiabin Yang 已提交
905
    **Notes**:
906
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
907

908 909
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
910 911 912
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
913
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
914 915
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
916

917
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
918
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
919

T
tianshuo78520a 已提交
920
    Most of a Variable's member variables can be set to be None. It mean
921
    it is not available or will be specified later.
922

923
    Examples:
924 925
        In Static Graph Mode:

926 927
        .. code-block:: python

928
            import paddle.fluid as fluid
929
            cur_program = fluid.Program()
930 931 932 933
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
934

J
Jiabin Yang 已提交
935
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
936 937 938 939 940 941 942 943 944

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

945 946
    """

Y
Yu Yang 已提交
947 948
    def __init__(self,
                 block,
Y
Yu Yang 已提交
949
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
950 951 952 953
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
954
                 capacity=None,
Q
QI JUN 已提交
955
                 persistable=None,
F
fengjiayi 已提交
956
                 error_clip=None,
Y
Yu Yang 已提交
957
                 stop_gradient=False,
F
fengjiayi 已提交
958
                 is_data=False,
H
Huihuang Zheng 已提交
959
                 need_check_feed=False,
H
hong 已提交
960
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
961
                 **kwargs):
Y
Yu Yang 已提交
962 963
        self.block = block
        if name is None:
Y
Yu Yang 已提交
964
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
965

Y
Yu Yang 已提交
966
        if dtype is not None:
967
            if not isinstance(dtype, core.VarDesc.VarType):
968
                dtype = convert_np_dtype_to_dtype_(dtype)
969

H
hong 已提交
970 971
        self.belong_to_optimizer = belong_to_optimizer

972 973 974 975 976
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
977

978 979 980
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
981

982 983 984
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
985 986
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
987 988
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
989

990
        if shape is not None:
991
            if is_new_var:
992 993 994 995 996 997
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
998 999
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1000 1001 1002 1003 1004 1005 1006
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1007 1008
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1009 1010 1011 1012 1013 1014 1015 1016 1017
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1018 1019
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1020 1021 1022 1023 1024 1025 1026 1027 1028
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1029 1030
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1031 1032
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1033

1034 1035
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1036

1037 1038 1039 1040 1041 1042 1043
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1044

1045 1046
        self.block.vars[name] = self
        self.op = None
1047
        self.stop_gradient = stop_gradient
1048
        self.is_data = is_data
Y
Yu Yang 已提交
1049

1050 1051 1052
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1053 1054
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1055

1056
        Returns:
J
Jiabin Yang 已提交
1057
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1058 1059 1060 1061

        Examples:
            .. code-block:: python

1062
                import paddle
1063

1064 1065 1066 1067
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1068

1069 1070
                # create a detached Variable
                y = x.detach()
1071
        """
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1087

1088
    @fake_interface_only
1089
    def numpy(self):
1090
        """
J
Jiabin Yang 已提交
1091
        **Notes**:
T
tianshuo78520a 已提交
1092
            **This API is ONLY available in Dygraph mode**
1093

J
Jiabin Yang 已提交
1094
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1095 1096 1097 1098 1099

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1100
            ndarray: dtype is same as current Variable
1101 1102 1103 1104 1105 1106

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1107
                from paddle.fluid.dygraph import Linear
1108 1109 1110 1111
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1112
                    linear = Linear(32, 64)
1113
                    data = to_variable(data)
1114
                    x = linear(data)
1115 1116 1117
                    print(x.numpy())

        """
1118
        pass
1119

1120
    @fake_interface_only
1121
    def backward(self, retain_graph=False):
1122
        """
J
Jiabin Yang 已提交
1123
        **Notes**:
T
tianshuo78520a 已提交
1124
            **This API is ONLY available in Dygraph mode**
1125

1126
        Run backward of current Graph which starts from current Tensor.
1127

J
Jiabin Yang 已提交
1128
        Args:
1129 1130 1131 1132
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1133

J
Jiabin Yang 已提交
1134 1135
        Returns:
            NoneType: None
1136 1137 1138 1139 1140

        Examples:
            .. code-block:: python

                import numpy as np
1141 1142
                import paddle
                paddle.disable_static()
1143 1144

                x = np.ones([2, 2], np.float32)
1145 1146 1147 1148 1149 1150 1151
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1152 1153
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1154
                loss.backward()
1155 1156

        """
1157
        pass
1158

1159
    @fake_interface_only
1160
    def gradient(self):
1161
        """
J
Jiabin Yang 已提交
1162
        **Notes**:
T
tianshuo78520a 已提交
1163
            **This API is ONLY available in Dygraph mode**
1164 1165 1166

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1167
        Returns:
1168
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1169 1170 1171 1172 1173 1174 1175

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1176
                # example1: return ndarray
1177 1178 1179 1180 1181 1182 1183 1184 1185
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1186
                    loss2.backward()
1187 1188
                    print(loss2.gradient())

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1202
        """
1203
        pass
1204

1205
    @fake_interface_only
1206
    def clear_gradient(self):
1207
        """
J
Jiabin Yang 已提交
1208
        **Notes**:
T
tianshuo78520a 已提交
1209
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1210 1211

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1212

J
Jiabin Yang 已提交
1213
        Clear  (set to ``0`` ) the Gradient of Current Variable
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1232
                    loss2.backward()
1233 1234 1235 1236 1237
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1238
        pass
X
Xin Pan 已提交
1239

1240 1241 1242 1243
    @fake_interface_only
    def register_hook(self, hook):
        pass

1244
    def __str__(self):
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1261 1262
                import paddle
                import paddle.static as static
1263

1264 1265 1266
                paddle.enable_static()

                cur_program = static.Program()
1267 1268 1269 1270 1271 1272
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1273 1274
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1275
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1276 1277
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1278 1279
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1280
        else:
1281 1282
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1283

1284
        if self.is_parameter:
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1295 1296 1297 1298 1299 1300 1301 1302
        from paddle.distributed.auto_parallel.context import get_default_distributed_context
        dist_context = get_default_distributed_context()
        var_dist_attr = dist_context.get_tensor_distributed_attr_for_program(
            self)
        if var_dist_attr is not None:
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=var_dist_attr)

1303
        return var_str
Y
Yang Yang(Tony) 已提交
1304

F
update  
fengjiayi 已提交
1305
    def to_string(self, throw_on_error, with_details=False):
1306 1307 1308
        """
        Get debug string.

J
Jiabin Yang 已提交
1309 1310 1311 1312 1313
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1314

1315 1316
        Returns:
            str: The debug string.
1317 1318 1319 1320 1321

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1322
                import paddle
1323

1324
                paddle.enable_static()
1325 1326 1327 1328 1329
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1330
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1331
                print("=============with detail===============")
1332
                print(new_variable.to_string(True, True))
1333
        """
F
update  
fengjiayi 已提交
1334 1335
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1336
        protostr = self.desc.serialize_to_string()
1337
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1338 1339
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1340
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1341
            for attr_name in additional_attr:
1342 1343 1344
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1345
        return res_str
1346 1347 1348

    __repr__ = __str__

1349
    @property
1350
    def stop_gradient(self):
J
Jiabin Yang 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1366 1367
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1368 1369 1370
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1371 1372
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1373 1374 1375 1376
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1377
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1378 1379
                assert (out1.gradient() == 0).all()
        """
1380
        return self.desc.stop_gradient()
1381

1382 1383
    @stop_gradient.setter
    def stop_gradient(self, s):
1384
        self.desc.set_stop_gradient(s)
1385

1386 1387
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1409
        return self.desc.persistable()
1410

Y
Yu Yang 已提交
1411 1412
    @persistable.setter
    def persistable(self, p):
1413
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1414

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1440 1441
    @property
    def name(self):
J
Jiabin Yang 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1458
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1459

1460 1461 1462 1463 1464 1465
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1466 1467
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1480 1481
    @name.setter
    def name(self, new_name):
1482
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1483

Y
Yu Yang 已提交
1484 1485
    @property
    def shape(self):
J
Jiabin Yang 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1503
        # convert to tuple, make it as same as numpy API.
1504
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1505 1506

    @property
F
fengjiayi 已提交
1507
    def dtype(self):
J
Jiabin Yang 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1524
        return self.desc.dtype()
Y
Yu Yang 已提交
1525 1526 1527

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1549 1550 1551
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1552
        return self.desc.lod_level()
Y
Yu Yang 已提交
1553

Y
Yu Yang 已提交
1554 1555
    @property
    def type(self):
J
Jiabin Yang 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1572
        return self.desc.type()
Y
Yu Yang 已提交
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1657
    def _set_error_clip(self, error_clip):
1658 1659 1660 1661 1662 1663 1664 1665 1666
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1667 1668
        self.error_clip = error_clip

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1709
            raise ValueError("slice step can not be zero")
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1785
    def _cloneVar(self, copy=False):
1786 1787
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1788 1789
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1790 1791 1792 1793
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1794
        new_var = self._cloneVar()
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1805
        new_var = self._cloneVar()
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1816
                return self._cloneVar(True)
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1835
                return self._cloneVar(True)
1836
            index = int(item)
1837
            if (index > 0 and index >= self.shape[axis]) \
1838 1839 1840 1841 1842 1843 1844
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1845
        return _getitem_impl_(self, item)
1846

1847
    def __setitem__(self, item, value):
1848
        return _setitem_impl_(self, item, value)
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
1996 1997 1998 1999
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2000 2001 2002 2003 2004 2005 2006
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2116

F
fengjiayi 已提交
2117 2118 2119
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2120

2121 2122
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2123 2124 2125 2126
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2127
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2128 2129 2130 2131 2132
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2133 2134 2135 2136
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2146
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2147 2148 2149 2150 2151 2152
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2153 2154 2155 2156 2157 2158 2159 2160
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2161 2162
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2163 2164
        return self.op_proto_map[type]

2165 2166
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2167
        custom_op_names = []
2168 2169 2170
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2171 2172 2173
                custom_op_names.append(proto.type)

        return custom_op_names
2174

2175 2176 2177 2178
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2179
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2180
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2181 2182
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2183 2184
        }

F
fengjiayi 已提交
2185

X
Xin Pan 已提交
2186
class Operator(object):
2187
    """
2188 2189 2190 2191 2192 2193 2194
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2195
        type(str): The type of operator. Default None.
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2216
        Block.append_op or Block._prepend_op instead.
2217 2218 2219 2220

    Examples:
        .. code-block:: python

2221
            import paddle.fluid as fluid
2222
            cur_program = fluid.Program()
2223 2224 2225 2226 2227
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2228
    """
2229
    OP_WITHOUT_KERNEL_SET = {
2230 2231
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2232
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2233 2234
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2235
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2236 2237
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2238
    }
2239

Y
Yu Yang 已提交
2240 2241
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2242
                 desc,
Y
Yu Yang 已提交
2243 2244 2245
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2246
                 attrs=None):
L
lujun 已提交
2247
        if in_dygraph_mode():
2248 2249
            if type is None:
                raise ValueError(
2250
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2251
            self._type = type
M
minqiyang 已提交
2252
            self.attrs = attrs if attrs else {}
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2267
                )] = self.block.program._op_role
2268 2269 2270

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2271 2272
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2273 2274 2275 2276 2277

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2278 2279 2280 2281 2282
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2283 2284 2285
                return
            if type is None:
                raise ValueError(
2286
                    "`type` to initialized an Operator can not be None.")
2287 2288
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2289 2290 2291 2292 2293 2294 2295
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2296 2297 2298 2299 2300 2301 2302

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2320 2321 2322 2323 2324
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2325

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2339
                        if not isinstance(in_args, (list, tuple)):
2340 2341 2342 2343 2344 2345
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2346
                        for index, arg in enumerate(in_args):
2347 2348 2349 2350
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2351
                            elif isinstance(arg, (Variable, core.VarBase)):
2352
                                in_arg_names.append(cpt.to_text(arg.name))
2353
                            else:
2354 2355 2356 2357
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2358 2359
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2384 2385 2386 2387
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2388
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2389
                        if not in_dygraph_mode():
2390 2391 2392 2393
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2412
    def _has_kernel(self, op_type):
2413 2414
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2415
    def to_string(self, throw_on_error):
2416
        """
2417 2418
        Get debug string.

2419
        Args:
2420 2421
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2422

2423 2424
        Returns:
            str: The debug string.
2425 2426

        """
2427
        protostr = self.desc.serialize_to_string()
2428
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2429 2430
        return _debug_string_(proto, throw_on_error)

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2463
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2516 2517 2518 2519 2520 2521 2522
        from paddle.distributed.auto_parallel.context import get_default_distributed_context
        dist_context = get_default_distributed_context()
        op_dist_attr = dist_context.get_op_distributed_attr_for_program(self)
        if op_dist_attr is not None:
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=op_dist_attr)

2523 2524
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2525 2526
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2527 2528 2529 2530 2531
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2532
    def __str__(self):
2533
        return self._to_readable_code()
2534 2535 2536

    __repr__ = __str__

F
fengjiayi 已提交
2537 2538
    @property
    def type(self):
2539
        return self.desc.type()
F
fengjiayi 已提交
2540 2541

    def input(self, name):
2542
        r"""
2543
        Get the input arguments according to the input parameter name.
2544

2545 2546
        Args:
            name(str): The input parameter name.
2547

2548 2549 2550
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2551
        """
F
fengjiayi 已提交
2552 2553
        return self.desc.input(name)

W
Wu Yi 已提交
2554
    def _rename_input(self, old_name, new_name):
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2565
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2566

W
Wu Yi 已提交
2567
    def _rename_output(self, old_name, new_name):
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2578
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2579

F
fengjiayi 已提交
2580 2581 2582 2583
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2584 2585 2586 2587 2588 2589 2590 2591
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2592
    def output(self, name):
2593
        r"""
2594
        Get output arguments by the output parameter name.
2595

2596 2597
        Args:
            name(str): The output parameter name.
2598

2599 2600 2601
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2602
        """
F
fengjiayi 已提交
2603 2604 2605 2606 2607 2608
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2609 2610 2611 2612 2613 2614 2615 2616
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2617
    def has_attr(self, name):
2618
        """
2619 2620
        Whether this Operator has the attribute with name or not.

2621
        Args:
2622
            name(str): the attribute name.
2623

2624 2625
        Returns:
            bool: True if has this attribute.
2626 2627

        """
F
fengjiayi 已提交
2628 2629 2630
        return self.desc.has_attr(name)

    def attr_type(self, name):
2631
        """
2632
        Get the type of attribute by attribute's name.
2633

2634 2635
        Args:
            name(str): the attribute name.
2636

2637 2638
        Returns:
            core.AttrType: the attribute type.
2639
        """
F
fengjiayi 已提交
2640 2641
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2642
    def _set_attr(self, name, val):
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2653 2654
        self._update_desc_attr(name, val)

2655 2656 2657
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2669 2670
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2671 2672
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2673
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2674 2675 2676 2677
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2678
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2679

F
fengjiayi 已提交
2680 2681 2682 2683 2684
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2685
        """
2686 2687
        Get the attribute by name.

2688
        Args:
2689
            name(str): the attribute name.
2690

2691 2692
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2693 2694
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2695
        return self.desc.attr(name)
Y
Yu Yang 已提交
2696

W
Wu Yi 已提交
2697
    def _block_attr_id(self, name):
2698
        """
G
gongweibao 已提交
2699
        Get the block attribute's id by name.
2700

2701 2702
        Args:
            name(str): the attribute name.
2703

2704 2705
        Returns:
            int: the block index.
2706
        """
W
Wu Yi 已提交
2707
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2708

W
Wu Yi 已提交
2709
    def _block_attr(self, name):
G
gongweibao 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2720
        id = self._block_attr_id(name)
G
gongweibao 已提交
2721 2722 2723
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2724
    def _blocks_attr(self, name):
G
gongweibao 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2735
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2736 2737 2738 2739 2740
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2741
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2752
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2753

J
JiayiFeng 已提交
2754
    def all_attrs(self):
F
fengjiayi 已提交
2755
        """
2756 2757 2758
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2759
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2760 2761 2762 2763
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2764 2765
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2766
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2767 2768 2769
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2770
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2771 2772 2773 2774
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2775 2776
        return attr_map

2777 2778 2779
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2780 2781 2782 2783

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2784 2785 2786
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2787 2788 2789 2790 2791 2792 2793 2794

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2795 2796
            return False

2797 2798 2799 2800 2801 2802
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2828

Y
Yu Yang 已提交
2829
class Block(object):
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2844
        use `Program._create_block()` to create a block.
2845 2846 2847 2848

    Examples:
        .. code-block:: python

2849 2850 2851
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2852 2853 2854 2855 2856 2857 2858 2859 2860
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2861
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2862
        self.desc = program.desc.block(idx)
2863
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2864
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2865
        self.program = program
2866
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2867

2868
    def __str__(self):
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2903
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2915

F
fengjiayi 已提交
2916 2917
    def to_string(self, throw_on_error, with_details=False):
        """
2918 2919
        Get debug string.

F
fengjiayi 已提交
2920 2921
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2922
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2923
            with_details(bool): more details about variables and parameters
2924 2925
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2926

2927 2928
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2929 2930 2931 2932
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2933
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2934 2935
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2936
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2937
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2938
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2939
            for op in self.ops:
F
fengjiayi 已提交
2940 2941
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2942 2943 2944
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2945 2946
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2947 2948
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2949 2950 2951

    __repr__ = __str__

Y
Yu Yang 已提交
2952 2953
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2954
        return self.desc.parent
Y
Yu Yang 已提交
2955

Y
Yu Yang 已提交
2956 2957 2958 2959
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2960
    def _set_forward_block_idx(self, idx):
2961 2962 2963 2964 2965 2966 2967 2968 2969
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2970
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2971

2972 2973 2974 2975 2976 2977 2978 2979
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2980 2981
    @property
    def idx(self):
Y
Yu Yang 已提交
2982
        return self.desc.id
Y
Yu Yang 已提交
2983

Q
Qiao Longfei 已提交
2984
    def var(self, name):
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2998
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2999 3000 3001
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3002 3003
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3004
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3005
        return v
Q
Qiao Longfei 已提交
3006

X
Xin Pan 已提交
3007
    def _find_var_recursive(self, name):
3008 3009 3010 3011 3012 3013 3014
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3015
            Variable: the Variable with the giving name. Or None if not found.
3016
        """
Y
Yu Yang 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3041
        return None
Y
Yu Yang 已提交
3042

X
Xin Pan 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3062

Q
Qiao Longfei 已提交
3063
    def all_parameters(self):
3064
        return list(self.iter_parameters())
3065

3066
    def iter_parameters(self):
M
minqiyang 已提交
3067
        return (item[1] for item in six.iteritems(self.vars)
3068
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3069

Y
Yu Yang 已提交
3070
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3071 3072 3073
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3074 3075 3076
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3077
        return var
Y
Yu Yang 已提交
3078

Q
Qiao Longfei 已提交
3079 3080 3081
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3082
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3083 3084
        """
        Rename variable in vars and ops' inputs and outputs
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3097
        """
M
minqiyang 已提交
3098 3099
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3100

T
typhoonzero 已提交
3101
        if not self.has_var(name):
3102
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3103 3104
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3105
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3106 3107 3108 3109 3110 3111
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3112
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3113 3114 3115 3116
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3117
        orig_var_type = v.type
M
minqiyang 已提交
3118
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3119
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3120
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3121
        if var_type == "Parameter":
L
Leo Chen 已提交
3122 3123
            if in_dygraph_mode():
                var = ParamBase(
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3134 3135
                var = Parameter(
                    self,
3136 3137 3138 3139 3140 3141 3142 3143 3144
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3145
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3146 3147
            var = Variable(
                self,
T
typhoonzero 已提交
3148
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3149 3150 3151 3152
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3153
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3154 3155 3156
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3157
        self._sync_with_cpp()
3158
        return var
T
typhoonzero 已提交
3159

3160 3161 3162
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3163
        self.desc._remove_var(cpt.to_bytes(name))
3164 3165
        del self.vars[name]

Y
Yu Yang 已提交
3166 3167
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3168
        param = None
L
Leo Chen 已提交
3169
        if in_dygraph_mode():
3170
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3171 3172
        else:
            param = Parameter(global_block, *args, **kwargs)
3173

3174
        if 'initializer' in kwargs:
3175 3176 3177 3178 3179

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3180
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3181
                        # are treated as initialization ops that cause error.
3182
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3183 3184 3185 3186 3187
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3188
                            continue
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3200
                # TODO already inited, do nothing, should log a warning
3201 3202 3203
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3204
        return param
Y
Yu Yang 已提交
3205

Y
Yu Yang 已提交
3206
    def append_op(self, *args, **kwargs):
3207 3208 3209 3210 3211 3212
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3213
        if in_dygraph_mode():
3214
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3215
            type = kwargs.get("type", None)
3216 3217 3218
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3219
                type=type,
M
minqiyang 已提交
3220 3221
                inputs=None,
                outputs=None,
3222
                attrs=attrs)
3223

M
minqiyang 已提交
3224 3225 3226
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3227
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3228 3229

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3230
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3231 3232
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3233
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3234
        else:
3235 3236
            from paddle.fluid.dygraph.base import param_guard

3237
            op_desc = self.desc.append_op()
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3251

M
minqiyang 已提交
3252
            self.ops.append(op)
M
minqiyang 已提交
3253

3254 3255
        return op

W
Wu Yi 已提交
3256
    def _insert_op(self, index, *args, **kwargs):
3257 3258 3259 3260 3261 3262 3263 3264 3265
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3266
        self._sync_with_cpp()
F
fangshuixun007 已提交
3267
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3286 3287 3288 3289 3290 3291 3292 3293 3294
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3295 3296
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3297
        self.desc._remove_op(index, index + 1)
3298 3299
        del self.ops[index]

W
Wu Yi 已提交
3300
    def _slice_ops(self, start, end):
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3311
        return self.ops[start:end]
Y
Yancey1989 已提交
3312

W
Wu Yi 已提交
3313
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3314
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3315 3316
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3317
            op = Operator(
J
Jiabin Yang 已提交
3318
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3319

J
Jiabin Yang 已提交
3320
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3321
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3322 3323
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3324
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3325
        else:
3326 3327 3328 3329 3330 3331 3332 3333
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3334
            self.ops.insert(0, op)
3335

Y
Yu Yang 已提交
3336 3337
        return op

W
Wu Yi 已提交
3338
    def _sync_with_cpp(self):
3339
        """
3340 3341
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3342
        """
Q
Qiao Longfei 已提交
3343 3344 3345
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3363

3364
        # sync variables removed from c++ end
3365
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3366
            if not self.desc.find_var(cpt.to_bytes(var)):
3367 3368
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3369
        # sync operators from cpp
3370 3371 3372 3373
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3390 3391 3392 3393 3394

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3395
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3396 3397 3398 3399 3400 3401 3402

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3416 3417 3418 3419
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3420
    def _copy_param_info_from(self, other):
3421
        """
3422 3423
        Copy the information of parameters from the other block.

3424
        Args:
3425 3426 3427 3428 3429
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3430 3431 3432 3433 3434

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3435 3436
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3437
        for p in other.iter_parameters():
3438 3439 3440
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3441 3442
                # if the Parameter is pruned, v may be None
                continue
3443
            assert isinstance(v, Variable)
3444
            new_p = None
L
Leo Chen 已提交
3445 3446
            if in_dygraph_mode():
                new_p = ParamBase(
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3458 3459
                new_p = Parameter(
                    block=self,
3460 3461 3462
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3463 3464
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3465 3466 3467 3468 3469 3470
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3471 3472
            self.vars[new_p.name] = new_p

3473
    def _clone_variable(self, var, force_persistable=True):
3474 3475
        """
        Clone a variable into current block.
3476

3477 3478
        Args:
            var: the variable to be cloned.
3479 3480 3481
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3482 3483

        Returns:
3484
            Variable: the new  variable cloned from 'var' in current block.
3485 3486
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3487 3488 3489 3490 3491
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3492 3493
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3494
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3495 3496 3497 3498 3499 3500
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3501
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3502 3503
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3504 3505 3506 3507 3508 3509 3510
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3511
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3512 3513
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3514
        return ret_var
3515

Y
Yu Yang 已提交
3516

3517 3518 3519 3520 3521 3522
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3634
    def remove_input_by_id(self, node_id):
3635 3636 3637 3638 3639 3640
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3641
        self.node.remove_input(node_id)
3642

3643
    def remove_input(self, node):
3644 3645 3646 3647
        """
        Remove a node from inputs.

        Args:
3648
            node(IrNode): the node being removed.
3649
        """
3650
        self.node.remove_input(node.node)
3651

3652
    def append_input(self, node):
3653 3654 3655 3656
        """
        Append a node in inputs.

        Args:
3657
            node(IrNode): the node being appended.
3658
        """
3659
        self.node.append_input(node.node)
3660 3661 3662 3663 3664 3665 3666 3667

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3668
    def remove_output_by_id(self, node_id):
3669 3670 3671 3672 3673 3674
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3675
        self.node.remove_output(node_id)
3676

3677
    def remove_output(self, node):
3678 3679 3680 3681
        """
        Remove a node from outputs.

        Args:
3682
            node(IrNode): the node being removed.
3683
        """
3684
        self.node.remove_output(node.node)
3685

3686
    def append_output(self, node):
3687 3688 3689 3690
        """
        Append a node in outputs.

        Args:
3691
            node(IrNode): the node being appended.
3692
        """
3693
        self.node.append_output(node.node)
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3741
            "The node variable description can not be None."
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3752
            "The node variable description can not be None."
3753 3754
        return self.node.var().persistable()

3755 3756 3757 3758 3759 3760 3761 3762
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3763
            "The node variable description can not be None."
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3774
            "The node variable description can not be None."
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3785
            "The node variable description can not be None."
3786 3787
        return self.node.var().shape()

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3835
            "The node operator description can not be None."
3836 3837
        self.node.op()._rename_input(old_input_name, new_input_name)

3838 3839 3840 3841 3842 3843 3844 3845 3846
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3847
            "The node operator description can not be None."
3848 3849
        self.node.op()._rename_output(old_output_name, new_output_name)

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3861
            "The node operator description can not be None."
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3875
            "The node operator description can not be None."
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3886
            "The node operator description can not be None."
3887 3888
        return self.node.op().set_type(new_type)

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3904
            "The node operator description can not be None."
3905 3906 3907 3908
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3909
                all(isinstance(v, Block) for v in val):
3910 3911
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3912
                isinstance(val, core.ProgramDesc):
3913 3914 3915 3916
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3917 3918 3919 3920 3921 3922 3923 3924
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3925
            "The node operator description can not be None."
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3936
            "The node operator description can not be None."
3937 3938
        return self.node.op().output_arg_names()

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3960 3961
class IrGraph(object):
    """
3962
    Python IrGraph. Beneath it is a core.Graph, which is used for
3963
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3964 3965
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3966 3967 3968 3969
    """

    def __init__(self, graph, for_test=False):
        """
3970 3971
        Construct an IrGraph using core.Graph.

3972 3973 3974 3975 3976 3977 3978 3979 3980
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3981 3982 3983 3984
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3985 3986 3987
        Warns:
            The method only clones the graph structure, not its attributes.

3988 3989 3990
        Returns:
            IrGraph: A new and duplicated graph.
        """
3991
        g = self.graph.clone()
3992 3993
        return IrGraph(g, self._for_test)

3994
    def is_test(self):
3995 3996 3997
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3998 3999
        return self._for_test

W
WangZhen 已提交
4000
    def all_nodes(self):
4001 4002 4003
        """
        Return all nodes included in the graph as a set.
        """
4004
        return {IrNode(node) for node in self.graph.nodes()}
4005

4006
    def all_var_nodes(self):
4007 4008 4009
        """
        Return all variable nodes included in the graph as a set.
        """
4010
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4011

4012
    def all_persistable_nodes(self):
4013 4014 4015
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4016 4017 4018 4019 4020
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4021
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4022

4023
    def all_op_nodes(self):
4024 4025 4026
        """
        Return all operator nodes included in the graph as a set.
        """
4027
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4028

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4046
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4058
            IrVarNode: the created persistable variable node.
4059
        """
4060 4061 4062 4063 4064
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4065
        return IrVarNode(self.graph.create_var_node(var_desc))
4066 4067

    def create_var_node(self, name, var_type, shape, var_dtype):
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4079
            IrVarNode: the created variable node.
4080 4081
        """

4082 4083 4084 4085
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4086
        return IrVarNode(self.graph.create_var_node(var_desc))
4087

4088 4089 4090 4091 4092 4093
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4094
    def create_var_node_from_desc(self, var_desc):
4095 4096 4097 4098 4099 4100 4101 4102
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4103
            IrVarNode: the created variable node.
4104
        """
4105
        return IrVarNode(self.graph.create_var_node(var_desc))
4106 4107

    def create_op_node(self, op_type, attrs, inputs, outputs):
4108 4109 4110 4111 4112 4113 4114
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4115
            outputs(dict): the outputs of the operator node.
4116 4117

        Returns:
4118
            IrOpNode: the created operator node.
4119
        """
4120 4121
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4122
        for attr, value in six.iteritems(attrs):
4123
            self._update_desc_attr(op_desc, attr, value)
4124
        for input_name, var_nodes in six.iteritems(inputs):
4125 4126 4127 4128
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4129
        for output_name, var_nodes in six.iteritems(outputs):
4130 4131 4132 4133
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4134
        return IrOpNode(self.graph.create_op_node(op_desc))
4135 4136

    def create_op_node_from_desc(self, op_desc):
4137 4138 4139 4140 4141 4142 4143
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4144
            IrOpNode: the created operator node.
4145
        """
4146
        return IrOpNode(self.graph.create_op_node(op_desc))
4147 4148

    def update_input_link(self, old_input_node, new_input_node, op_node):
4149 4150 4151 4152
        """
        Update the input's link of a operator node.

        Args:
4153 4154 4155
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4156
        """
4157
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4158
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4159
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4160 4161 4162 4163
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4164
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4165

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4176
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4177
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4178 4179 4180 4181 4182 4183
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4184
    def link_to(self, node_in, node_out):
4185 4186 4187 4188
        """
        Connect two nodes.

        Args:
4189 4190
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4191
        """
4192 4193 4194 4195
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4196 4197
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4198 4199

    def safe_remove_nodes(self, remove_nodes):
4200 4201 4202 4203 4204 4205 4206
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4207
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4208 4209 4210 4211
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4212 4213
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4214

Z
Zhen Wang 已提交
4215 4216 4217 4218 4219 4220 4221 4222
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4223
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4224 4225 4226 4227
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4228
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4229 4230 4231
                        ]
                    else:
                        var_nodes[each_var_name].append(
4232 4233
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4234 4235
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4236
    def has_circle(self):
4237 4238 4239 4240 4241 4242
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4243 4244 4245
        return core.has_circle(self.graph)

    def graph_num(self):
4246 4247 4248 4249 4250 4251
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4252 4253 4254
        return core.graph_num(self.graph)

    def topology_sort(self):
4255 4256 4257
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4258
        Notes: the `graph` can not contain a circle.
4259 4260

        Returns:
Z
Zhen Wang 已提交
4261
            list(IrNode): nodes in topology order.
4262
        """
4263
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4264
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4265 4266

    def build_adjacency_list(self):
4267 4268 4269 4270
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4271
            dict{IrNode: set(IrNode)}: the adjacency list.
4272
        """
4273 4274 4275 4276 4277
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4278

4279 4280 4281 4282 4283 4284 4285 4286
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4287
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4288 4289 4290 4291 4292
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4293 4294
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4295 4296 4297
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4298 4299 4300 4301 4302
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4303
        remove_ctr_vars = set()
4304
        if remove_ctr_var:
4305
            for node in self.all_var_nodes():
4306 4307 4308
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4309 4310
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4311 4312
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4313 4314 4315 4316 4317 4318
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4319 4320 4321 4322
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4323 4324
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4325 4326 4327 4328 4329 4330 4331
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4332 4333 4334
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4335
        WARN: When the graph includes backward operator nodes, the
4336 4337 4338 4339 4340 4341
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4342
        convert_pass = core.get_pass('graph_to_program_pass')
4343 4344
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4345 4346 4347 4348
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4349 4350 4351 4352 4353 4354 4355 4356
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4357 4358
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4359 4360
        return target_node

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4377
class Program(object):
D
dzhwinter 已提交
4378
    """
4379
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4380
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4381
    it will contain nested block.
4382

J
Jiabin Yang 已提交
4383 4384 4385
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4386

J
Jiabin Yang 已提交
4387
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4388
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4389 4390 4391 4392 4393 4394 4395
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4396
    **Notes**:
4397 4398 4399
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4400 4401

    Returns:
J
Jiabin Yang 已提交
4402
        Program: An empty Program.
D
dzhwinter 已提交
4403 4404

    Examples:
4405 4406
        .. code-block:: python

4407 4408 4409 4410
            import paddle
            import paddle.static as static

            paddle.enable_static()
4411

4412 4413 4414 4415 4416
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4417
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4418 4419 4420

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4421 4422 4423

    """

4424 4425
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4426 4427
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4428 4429
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4430
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4431
        self.__op_role_var = []
T
tangwei12 已提交
4432

4433 4434
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4435
        self._is_distributed = False
4436
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4437
        self._is_chief = False
4438 4439 4440
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4441
        self._endpoints = []
4442 4443 4444
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4445
        self._trainers_endpoints = []
4446
        # the distributed lookup table names
T
tangwei12 已提交
4447
        self._distributed_lookup_table = None
4448 4449 4450

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4451 4452
        self._use_lamb = False

4453 4454 4455
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4456

4457 4458 4459
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4460
        self._program_config = None
4461

H
hutuxian 已提交
4462 4463 4464
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4465 4466 4467
        # appending gradients times
        self._appending_grad_times = 0

4468 4469 4470 4471
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4472 4473
        # compiled program, i.e. Graph
        self._graph = None
4474 4475
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4476

4477
    def _find_var_class_kwargs(self, new_desc):
4478 4479 4480 4481 4482 4483 4484 4485
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4555
        assert block_num == self.desc.num_blocks()
4556 4557

        # clear old blocks and desc
4558 4559 4560 4561 4562 4563 4564 4565 4566
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4567

4568
        del desc
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4598 4599
                import paddle
                import paddle.static as static
4600

4601 4602 4603
                paddle.enable_static()

                prog = static.default_main_program()
4604 4605 4606 4607 4608
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4609
                prog1 = static.default_main_program()
4610 4611 4612 4613 4614 4615 4616 4617
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4618
    @property
4619
    def _op_role(self):
Y
yuyang18 已提交
4620 4621 4622 4623 4624 4625 4626 4627
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4628
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4629 4630 4631 4632
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4633 4634
        return self._current_role

4635 4636
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4637 4638 4639
        self._current_role = role

    @property
4640
    def _op_role_var(self):
Y
yuyang18 已提交
4641
        """
4642
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4643

4644
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4645 4646 4647

        Notes: This is a very low-level API. Users should not use it directly.
        """
4648
        return self.__op_role_var
Y
yuyang18 已提交
4649

4650
    @signature_safe_contextmanager
4651 4652 4653 4654 4655
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4656 4657 4658 4659
        try:
            yield
        finally:
            self._current_role = tmp_role
4660

S
rename  
sneaxiy 已提交
4661
    @signature_safe_contextmanager
W
Wu Yi 已提交
4662
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4663 4664 4665 4666 4667 4668 4669
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4670
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4671 4672 4673

        Examples:

4674
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4675
            >>> p, g = backward(...)
W
Wu Yi 已提交
4676
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4677 4678
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4679
        tmp_role = self._current_role
4680
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4681

Y
yuyang18 已提交
4682 4683
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4684
        self.__op_role_var = [
4685 4686 4687
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4688 4689 4690 4691 4692
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4693

S
rename  
sneaxiy 已提交
4694
    @signature_safe_contextmanager
X
Xin Pan 已提交
4695
    def _lr_schedule_guard(self, is_with_opt=False):
4696 4697 4698 4699 4700 4701 4702
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4703 4704 4705 4706
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4707 4708 4709

        Examples:

4710
            >>> import paddle.fluid as fluid
4711 4712 4713 4714
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4715 4716

        tmp_role = self._current_role
4717
        tmp_var = self.__op_role_var
4718

4719 4720
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4721 4722
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4723
        # TODO(typhoonzero): how to set target learning rate var
4724
        self.__op_role_var = []
4725 4726 4727 4728 4729
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4730

4731
    def __str__(self):
Y
yuyang18 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4761 4762
            import paddle
            import paddle.static as static
4763

4764 4765 4766
            paddle.enable_static()

            cur_program = static.Program()
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4778
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4779 4780 4781 4782
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4783
            program_str += '\n'
4784
        return program_str
Y
Yang Yang(Tony) 已提交
4785

F
fengjiayi 已提交
4786 4787 4788
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4789

J
Jiabin Yang 已提交
4790 4791 4792
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4793

J
Jiabin Yang 已提交
4794
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4795

H
haowang101779990 已提交
4796
        Returns:
J
Jiabin Yang 已提交
4797
            str: The debug string describe current Program.
Y
yuyang18 已提交
4798 4799

        Raises:
J
Jiabin Yang 已提交
4800
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4801

4802 4803 4804
        Examples:
            .. code-block:: python

4805 4806 4807 4808
                import paddle
                import paddle.static as static

                paddle.enable_static()
4809

4810 4811 4812
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4813
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4814
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4815
                print("program string without detail: {}".format(prog_string))
4816
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4817
        """
4818 4819 4820 4821 4822 4823 4824 4825 4826
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4827 4828 4829 4830 4831 4832
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4833 4834
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4835 4836
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4837

W
Wu Yi 已提交
4838
    def _get_desc(self):
Y
yuyang18 已提交
4839 4840 4841 4842 4843 4844 4845
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4846 4847
        return self.desc

X
version  
Xin Pan 已提交
4848 4849 4850
    def _version(self):
        return self.desc._version()

4851
    def clone(self, for_test=False):
Y
yuyang18 已提交
4852
        """
4853 4854 4855 4856
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4857

4858
        Create a new Program with forward content of original one when ``for_test=True``.
4859
        Create a new Program as same as the original one when ``for_test=False``.
4860

4861
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4862 4863 4864
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4865

4866 4867
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4868 4869
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4870
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4871

J
Jiabin Yang 已提交
4872
        For Example:
4873
          ::
L
Luo Tao 已提交
4874

4875 4876 4877 4878 4879 4880
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4881
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4882
            loss = paddle.mean(pred)
4883
            # Here we use clone before Momentum
4884 4885
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4886
            optimizer.minimize(loss)
4887

J
Jiabin Yang 已提交
4888
        Args:
4889

4890 4891
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4892

J
Jiabin Yang 已提交
4893
        Returns:
4894
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4895

Y
yuyang18 已提交
4896 4897 4898

        Examples:

4899 4900 4901 4902 4903 4904 4905
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4922
            1. To clone a test program, the sample code is:
4923 4924 4925
                .. code-block:: python

                    import six
4926 4927 4928 4929 4930 4931
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4944 4945
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4946 4947 4948

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4949 4950 4951
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4952
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4953 4954
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4955
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4956 4957
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4958
                            test_program = train_program.clone(for_test=True)
4959
                    print_prog(test_program)
J
Jiabin Yang 已提交
4960 4961 4962 4963

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4964
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4965 4966 4967 4968
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4969 4970 4971
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4972 4973 4974
                            sgd.minimize(avg_loss)


4975
            2. The clone method can be avoid if you create program for training and program for testing individually.
4976 4977 4978
                .. code-block:: python

                    import six
4979 4980 4981 4982 4983 4984
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4996

4997
                    def network():
4998
                        img = static.data(name='image', shape=[None, 784])
4999
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5000 5001
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5002
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5003 5004
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5005 5006
                        return avg_loss

5007 5008 5009 5010 5011
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5012
                            avg_loss = network()
5013
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5014
                            sgd.minimize(avg_loss)
5015
                    # the test startup program is not used.
5016 5017
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5018 5019
                            avg_loss = network()
                    print_prog(test_program_2)
5020

5021
            The two code snippets above will generate and print same programs.
5022
        """
5023

T
tangwei12 已提交
5024
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5025 5026 5027
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5028
        pruned_origin_block_id_map = None
5029
        if for_test:
5030 5031 5032 5033 5034 5035 5036 5037 5038
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5039
        else:
5040
            p = Program()
G
gongweibao 已提交
5041 5042
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5043
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5044 5045 5046
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5047 5048

            p._current_role = self._current_role
5049
            p.__op_role_var = self.__op_role_var
5050
            p._appending_grad_times = self._appending_grad_times
5051 5052
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5053

T
tangwei12 已提交
5054
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5055
            # its desc.
W
Wu Yi 已提交
5056
            p._sync_with_cpp()
5057

W
Wu Yi 已提交
5058
        p._copy_param_info_from(self)
5059
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5060
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5061
        return p
5062

5063
    def _prune(self, targets):
Y
yuyang18 已提交
5064 5065 5066 5067 5068 5069 5070 5071
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5072
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5073 5074 5075 5076
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5077
        """
5078
        return self._prune_with_input([], targets)
5079 5080

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5081
        """
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5092
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5093 5094 5095 5096 5097 5098
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5099
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5100 5101 5102
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5103 5104
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5105 5106
        if not isinstance(targets, list):
            targets = [targets]
5107 5108 5109

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5110 5111 5112
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5113

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5130 5131 5132 5133
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5134 5135 5136
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5137
                else:
5138 5139 5140
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5141 5142 5143 5144 5145 5146

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5147 5148 5149
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5160
                        # Skip optimize op except for optimize op in targets,
5161 5162 5163 5164 5165
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5166

5167
                if target_op is not None:
5168 5169 5170
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5171

5172
        res = Program()
5173 5174 5175
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5176 5177 5178
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5179
        res._sync_with_cpp()
5180 5181 5182 5183 5184

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5185 5186
        return res

X
Xin Pan 已提交
5187
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5188
        """
F
fengjiayi 已提交
5189 5190 5191 5192 5193
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5194
        3. change the :code:`is_test`
Y
yuyang18 已提交
5195 5196 5197
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5198
        Args:
X
Xin Pan 已提交
5199 5200
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5201

Y
yuyang18 已提交
5202 5203 5204 5205 5206 5207
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5208
        res = Program()
5209
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5210 5211 5212 5213

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5214
        if prune_read_op:
5215 5216 5217 5218 5219 5220 5221 5222 5223
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5224
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5225 5226

        # change all `is_test` attributes to True
M
minqiyang 已提交
5227
        for i in six.moves.range(res.desc.num_blocks()):
5228
            block = res.desc.block(i)
M
minqiyang 已提交
5229
            for j in six.moves.range(block.op_size()):
5230 5231
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5232
                    op._set_attr('is_test', True)
5233 5234 5235
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5236 5237 5238
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5239
        res._sync_with_cpp()
5240 5241
        return res

5242
    def _remove_training_info(self, clip_extra=True):
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5332 5333
        return res

5334 5335
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5336
        """
5337 5338 5339
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5340

5341 5342
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5343

J
Jiabin Yang 已提交
5344
        Args:
Y
yuyang18 已提交
5345

J
Jiabin Yang 已提交
5346
            binary_str_type (str): the binary prootbuf string.
5347

J
Jiabin Yang 已提交
5348 5349
        Returns:
            Program: A deserialized Program.
5350 5351 5352 5353

        Examples:
            .. code-block:: python

5354 5355 5356 5357
                import paddle
                import paddle.static as static

                paddle.enable_static()
5358

5359 5360 5361 5362
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5363

5364
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5365

5366
                    z = paddle.matmul(x=x, y=y)
5367

5368 5369
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5370

5371
                    print(static.default_main_program())
5372
                    print(prog_restored)
Y
yuyang18 已提交
5373
        """
5374 5375
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5376
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5377
        p._sync_with_cpp()
5378
        return p
Y
Yu Yang 已提交
5379

5380
    @staticmethod
5381
    def _construct_from_desc(desc):
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5397 5398
    @property
    def random_seed(self):
Y
yuyang18 已提交
5399
        """
J
Jiabin Yang 已提交
5400
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5401 5402
        the random seed from random device.

5403 5404
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5405 5406 5407

        Returns:
            int64: Random seed in current Program
5408

5409 5410 5411 5412

        Examples:
            .. code-block:: python

5413 5414 5415
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5416

5417 5418 5419
                paddle.enable_static()

                prog = static.default_main_program()
5420
                random_seed = prog.random_seed
5421
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5422 5423 5424
                print(random_seed)
                ## 0
                ## the default random seed is 0
5425

5426
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5427
                prog.random_seed = 1
5428
                z_var = F.dropout(x_var, 0.7)
5429

5430
                print(prog.random_seed)
5431 5432
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5433
        """
D
dzhwinter 已提交
5434 5435
        return self._seed

Q
qiaolongfei 已提交
5436 5437
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5438
        """
5439 5440
        The number of :ref:`api_guide_Block_en`  in this Program.

5441 5442
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5443 5444 5445

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5446

5447 5448 5449 5450

        Examples:
            .. code-block:: python

5451 5452 5453 5454
                import paddle
                import paddle.static as static

                paddle.enable_static()
5455

5456
                prog = static.default_main_program()
5457 5458
                num_blocks = prog.num_blocks
                print(num_blocks)
5459

5460 5461
                # print result:
                # 1
Y
yuyang18 已提交
5462
        """
Q
qiaolongfei 已提交
5463 5464
        return self.desc.num_blocks()

D
dzhwinter 已提交
5465 5466 5467
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5468 5469 5470
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5471 5472
        self._seed = seed

Y
Yu Yang 已提交
5473
    def __repr__(self):
5474
        return self.__str__()
5475

Y
Yu Yang 已提交
5476
    def global_block(self):
Y
yuyang18 已提交
5477
        """
5478 5479
        .. note::
            This API has no effect in Dygraph mode.
5480 5481 5482

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5483 5484
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5485

5486 5487 5488 5489

        Examples:
            .. code-block:: python

5490 5491 5492 5493
                import paddle
                import paddle.static as static

                paddle.enable_static()
5494

5495
                prog = static.default_main_program()
5496 5497
                gb_block = prog.global_block()
                print(gb_block)
5498

Y
yuyang18 已提交
5499
        """
Y
Yu Yang 已提交
5500 5501
        return self.blocks[0]

Q
Qiao Longfei 已提交
5502
    def block(self, index):
Y
yuyang18 已提交
5503
        """
5504 5505
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5506

5507 5508
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5509 5510
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5511

J
Jiabin Yang 已提交
5512 5513
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5514 5515 5516 5517

        Examples:
            .. code-block:: python

5518 5519 5520 5521
                import paddle
                import paddle.static as static

                paddle.enable_static()
5522

5523
                prog = static.default_main_program()
5524 5525
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5526
        """
Q
Qiao Longfei 已提交
5527 5528
        return self.blocks[index]

Y
Yu Yang 已提交
5529
    def current_block(self):
Y
yuyang18 已提交
5530
        """
5531 5532
        .. note::
            This API has no effect in Dygraph mode.
5533

J
Jiabin Yang 已提交
5534 5535
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5536

J
Jiabin Yang 已提交
5537 5538
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5539

5540 5541 5542
        Examples:
            .. code-block:: python

5543 5544 5545 5546
                import paddle
                import paddle.static as static

                paddle.enable_static()
5547

5548
                prog = static.default_main_program()
5549 5550
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5551
        """
Y
Yu Yang 已提交
5552 5553
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5554
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5555 5556 5557 5558 5559
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5560

Y
yuyang18 已提交
5561 5562 5563 5564 5565
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5566
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5567 5568 5569
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5570 5571 5572 5573
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5574
    def _rollback(self):
Y
yuyang18 已提交
5575 5576 5577 5578 5579
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5580 5581
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5582
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5593 5594 5595
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5596
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5597

W
Wu Yi 已提交
5598
    def _copy_param_info_from(self, other):
5599
        """
5600
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5601

Y
yuyang18 已提交
5602 5603 5604
        Notes: This is a very low level API. Users should not invoke it
        directly.

5605 5606 5607 5608 5609 5610 5611
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5612 5613 5614
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5615

W
Wu Yi 已提交
5616
        self.global_block()._copy_param_info_from(other.global_block())
5617

5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5629 5630 5631
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5632 5633
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5634
        self._parameters_on_pservers = other._parameters_on_pservers
5635
        self._endpoints = other._endpoints
5636
        self._ps_endpoint = other._ps_endpoint
5637 5638
        self._distributed_lookup_table = other._distributed_lookup_table

5639
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5640 5641
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5642

Y
yuyang18 已提交
5643 5644 5645
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5646 5647
        Args:
            other(Program): Other program
5648 5649 5650 5651
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5652 5653 5654 5655 5656

        Returns:
            None
        """
        if not isinstance(other, Program):
5657 5658 5659
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5660

5661 5662 5663 5664 5665
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5666 5667 5668

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5669 5670
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5671
            for var in list(block.vars.values()):
5672 5673 5674 5675 5676 5677 5678
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5679

5680
    def list_vars(self):
Y
yuyang18 已提交
5681
        """
5682
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5683

J
Jiabin Yang 已提交
5684
        Returns:
5685
            iterable Tensors: The Generator will yield every Tensor in this program.
5686 5687 5688 5689

        Examples:
            .. code-block:: python

5690 5691
                import paddle
                import paddle.static as static
5692

5693 5694 5695 5696 5697
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5698 5699
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5700

5701 5702
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5703
        """
5704
        for each_block in self.blocks:
5705
            for each_var in list(each_block.vars.values()):
5706 5707
                yield each_var

5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5718 5719 5720 5721
                import paddle
                import paddle.static as static

                paddle.enable_static()
5722

5723 5724
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5725
                hidden = static.nn.fc(x=data, size=10)
5726 5727
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5728 5729 5730 5731 5732 5733 5734

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5735 5736
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5914

5915
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5916
class Parameter(Variable):
5917
    """
5918
    Parameter is derived from Variable. A parameter is a persistable
5919
    Variable, and will be updated by optimizers after each iteration.
5920
    The training of a neural network is essentially the updating of
5921 5922
    its parameters.

5923
    Relative to a general Variable, a Parameter has several its own
5924 5925
    member variables:

5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5936 5937
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5938 5939
    """

5940 5941 5942 5943 5944 5945
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5946 5947 5948 5949 5950
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5951
        if len(shape) == 0:
5952 5953
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5954 5955 5956

        for each in shape:
            if each < 0:
5957 5958 5959
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5960 5961

        Variable.__init__(
5962 5963 5964 5965 5966 5967 5968
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5969 5970 5971 5972
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5973 5974
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5975
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5976

5977 5978
        self.need_clip = kwargs.get('need_clip', True)

5979 5980
        self.is_distributed = False

5981 5982
        self.is_parameter = True

F
fengjiayi 已提交
5983
    def __str__(self):
5984
        return self._to_readable_code()
F
fengjiayi 已提交
5985

F
update  
fengjiayi 已提交
5986 5987 5988
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5989

F
update  
fengjiayi 已提交
5990 5991 5992 5993 5994 5995 5996 5997
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5998 5999 6000 6001 6002 6003 6004 6005 6006
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6007 6008 6009 6010 6011 6012
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6013
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6014
            for attr_name in additional_attr:
6015 6016
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6017 6018
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6019 6020 6021 6022
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6023

6024 6025
class ParamBase(core.VarBase):
    """
6026 6027 6028
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6029 6030 6031
    The training of a neural network is essentially the updating of
    its ParamBase.

6032
    Relative to a general Tensor, a ParamBase has several its own
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6045 6046
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6077 6078
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6079 6080 6081 6082 6083 6084 6085

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6086 6087
        self.need_clip = kwargs.get('need_clip', True)

6088
        self.is_distributed = False
6089
        # self.block = default_main_program().global_block()
6090

6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6104
    def __str__(self):
6105
        """
6106
        Convert a ParamBase object to a readable string.
6107

6108
        Returns(str): A readable string.
6109 6110 6111 6112

        Examples:
            .. code-block:: python

6113
                import paddle
6114 6115 6116 6117 6118 6119 6120
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6121
        """
6122 6123
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6124

6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6155 6156 6157 6158 6159 6160
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6161 6162 6163
    __repr__ = __str__


Y
Yu Yang 已提交
6164
# program is a global instance.
Y
Yu Yang 已提交
6165 6166
_main_program_ = Program()
_startup_program_ = Program()
6167
_startup_program_._is_start_up_program_ = True
6168

6169

6170
def default_startup_program():
Y
Yu Yang 已提交
6171
    """
Y
yuyang18 已提交
6172 6173
    Get default/global startup program.

6174 6175
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6176

6177 6178
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6179

6180 6181
    Returns:
        Program: current default startup program.
6182

6183
    Returns type: 
6184 6185 6186 6187

    Examples:
        .. code-block:: python

6188
            import paddle
6189

6190
            paddle.enable_static()
6191 6192 6193 6194
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6195
    """
Y
Yu Yang 已提交
6196
    return _startup_program_
6197

6198

6199
def default_main_program():
Y
Yu Yang 已提交
6200
    """
6201
    This API can be used to get ``default main program`` which store the 
6202
    descriptions of Ops and tensors.
T
tangwei12 已提交
6203

6204
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6205
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6206

6207 6208
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6209
    :code:`default_main_program` when the program is not specified.
6210

6211
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6212

Y
Yu Yang 已提交
6213
    Returns:
6214
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6215 6216 6217 6218

    Examples:
        ..  code-block:: python

6219
            import paddle
6220

6221
            paddle.enable_static()
6222
            # Sample Network:
6223 6224 6225
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6226

6227 6228 6229
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6230
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6231
    """
Y
Yu Yang 已提交
6232
    return _main_program_
Y
Yu Yang 已提交
6233 6234 6235 6236 6237


def switch_main_program(program):
    """
    Switch the main program to a new program.
6238

Y
Yu Yang 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6253
    Switch the startup program to a new program
Y
Yu Yang 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6266
@signature_safe_contextmanager
Y
Yu Yang 已提交
6267 6268
def program_guard(main_program, startup_program=None):
    """
6269 6270
    :api_attr: Static Graph

6271 6272 6273
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6274

G
guofei 已提交
6275
    Args:
6276 6277
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6278 6279 6280 6281
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6282
    Examples:
6283
       .. code-block:: python
T
tangwei12 已提交
6284

6285
          import paddle
Y
yuyang18 已提交
6286

6287 6288 6289 6290 6291
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6292
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6293 6294 6295

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6296

Y
Yu Yang 已提交
6297
    Examples:
6298
       .. code-block:: python
Y
yuyang18 已提交
6299

6300
          import paddle
6301

6302 6303 6304 6305 6306
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6307

Y
Yu Yang 已提交
6308
    """
6309
    from .data_feeder import check_type
6310 6311
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6312 6313
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6314
        check_type(startup_program, 'startup_program', Program,
6315
                   'paddle.static.program_guard')
6316 6317
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6318
        startup_program = switch_startup_program(startup_program)
6319 6320 6321 6322 6323 6324
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6325 6326


W
Wu Yi 已提交
6327
def _get_var(name, program=None):
X
xuwei06 已提交
6328
    """
Y
yuyang18 已提交
6329
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6330

X
xuwei06 已提交
6331 6332 6333
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6334
        If None, default_global_program() will be used.
X
xuwei06 已提交
6335 6336 6337 6338 6339 6340 6341

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6342
    assert isinstance(program, Program)
X
xuwei06 已提交
6343 6344

    return program.global_block().var(name)
6345 6346


S
rename  
sneaxiy 已提交
6347
@signature_safe_contextmanager
L
lujun 已提交
6348 6349
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6350
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6351
    _dygraph_tracer_ = tracer
6352
    core._switch_tracer(tracer)
M
minqiyang 已提交
6353

6354 6355 6356
    try:
        yield
    finally:
6357 6358
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6359 6360


S
rename  
sneaxiy 已提交
6361
@signature_safe_contextmanager
L
lujun 已提交
6362
def _dygraph_place_guard(place):
6363 6364 6365
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6366

6367 6368
    _set_dygraph_tracer_expected_place(place)

6369 6370 6371
    try:
        yield
    finally:
6372
        _global_expected_place_ = tmp_place
6373
        _set_dygraph_tracer_expected_place(tmp_place)
6374 6375


6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6392 6393
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6394 6395 6396 6397 6398 6399 6400 6401 6402
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6403
            import paddle
6404

Z
Zhang Ting 已提交
6405 6406 6407
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6408
            if support_gpu:
Z
Zhang Ting 已提交
6409
                place = paddle.CUDAPlace(0)
6410 6411

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6412 6413 6414
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6415

Z
Zhang Ting 已提交
6416
            with paddle.static.device_guard("cpu"):
6417
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6418 6419
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6420
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6421
                out = paddle.reshape(data1, shape=shape)
6422

Z
Zhang Ting 已提交
6423 6424
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6425 6426 6427
            result = exe.run(fetch_list=[out])
    """

6428 6429 6430 6431 6432
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6433
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6434
        raise ValueError(
6435
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6436
            "when there is no need to specify device. But received %s" % device)
6437 6438
    if index:
        device = ":".join([device, index])
6439
    pre_device = switch_device(device)
6440 6441 6442 6443
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6444 6445 6446 6447 6448


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6449
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6450 6451 6452 6453 6454 6455 6456

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6457 6458
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6459 6460 6461 6462
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6463 6464
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6465 6466 6467 6468 6469 6470 6471 6472
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6473
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6484
            import paddle
G
guofei 已提交
6485 6486

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6487
            res = paddle.get_flags(flags)
G
guofei 已提交
6488 6489 6490 6491 6492 6493
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6494 6495
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6496 6497 6498 6499 6500 6501 6502
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6503 6504
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6505 6506 6507 6508 6509 6510 6511 6512
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6513 6514 6515 6516 6517 6518 6519


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6520
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6521 6522 6523 6524 6525 6526 6527 6528 6529
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6530

6531 6532 6533
    if (place == "device"):
        return core.Place()

6534
    # GPU
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6550 6551

    # XPU
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6575
    raise ValueError(
6576 6577
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret