nn.py 382.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
D
dengkaipeng 已提交
97
    'spectral_norm',
X
Xin Pan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
111
    'roi_align',
X
Xin Pan 已提交
112 113 114 115
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
116
    'resize_nearest',
X
Xin Pan 已提交
117 118 119 120 121 122
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
123
    'selu',
X
Xin Pan 已提交
124 125 126
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
127
    'margin_rank_loss',
X
Xin Pan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
171
    'space_to_depth',
W
whs 已提交
172
    'affine_grid',
S
sneaxiy 已提交
173
    'sequence_reverse',
174
    'affine_channel',
B
barrierye 已提交
175
    'similarity_focus',
M
minqiyang 已提交
176
    'hash',
D
dengkaipeng 已提交
177
    'grid_sampler',
G
gmcather 已提交
178 179
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
180
    'bilinear_tensor_product',
C
chengduo 已提交
181 182
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
183
    'lstm',
S
shippingwang 已提交
184
    'shuffle_channel',
S
sneaxiy 已提交
185
    'py_func',
186
    'psroi_pool',
H
heqiaozhi 已提交
187
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
188
    'huber_loss',
Z
zhaozhehao 已提交
189
    'tree_conv',
C
ceci3 已提交
190
    'npair_loss',
Y
Yu Yang 已提交
191 192
]

J
jerrywgz 已提交
193 194
kIgnoreIndex = -100

Y
Yu Yang 已提交
195 196 197 198 199 200 201

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
202
       is_test=False,
203
       name=None):
Y
Yu Yang 已提交
204
    """
205
    **Fully Connected Layer**
Y
Yu Yang 已提交
206

207 208 209 210 211 212 213 214
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
215
    to the output as well.
C
caoying03 已提交
216

C
caoying03 已提交
217
    This process can be formulated as follows:
218 219 220

    .. math::

221
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
222 223 224

    In the above equation:

C
caoying03 已提交
225 226 227 228
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
229
    * :math:`Act`: The activation function.
C
caoying03 已提交
230
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
231 232

    Args:
R
ranqiu 已提交
233 234 235 236 237 238 239 240 241 242
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
243
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
244 245 246 247
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
248 249
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
250
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
251
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
252
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
253

254
    Returns:
F
fengjiayi 已提交
255
        Variable: The transformation result.
256 257

    Raises:
C
caoying03 已提交
258
        ValueError: If rank of the input tensor is less than 2.
259 260 261 262

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
263
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
264
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
265
    """
C
caoying03 已提交
266

C
caoying03 已提交
267
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
268 269 270 271

    dtype = helper.input_dtype()

    mul_results = []
272 273
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
274 275 276
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
277

Y
Yu Yang 已提交
278
        w = helper.create_parameter(
279
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
280
        tmp = helper.create_variable_for_type_inference(dtype)
281
        helper.append_op(
282 283 284
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
285
            outputs={"Out": tmp},
M
mozga-intel 已提交
286 287
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
288 289 290 291
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
292
    else:
X
Xin Pan 已提交
293
        pre_bias = helper.create_variable_for_type_inference(dtype)
294
        helper.append_op(
295 296 297
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
298
            attrs={"use_mkldnn": False})
299 300 301 302
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
303 304


305 306 307
def embedding(input,
              size,
              is_sparse=False,
308
              is_distributed=False,
309 310 311
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
312
    """
313 314
    **Embedding Layer**

315
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
316 317
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
318 319 320

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
321 322

    Args:
323 324 325 326 327
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
328
        is_distributed(bool): Whether to run lookup table from remote parameter server.
329 330
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
331
            with zeros whenever lookup encounters it in :attr:`input`. If
332
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
333 334
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
335
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
336

337 338 339
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
340

341 342
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
343

C
chengduoZH 已提交
344
          dict_size = len(dataset.ids)
345
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
346
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
347 348 349
    """

    helper = LayerHelper('embedding', **locals())
350
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
351 352
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
353 354
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
355
    tmp = helper.create_variable_for_type_inference(dtype)
356 357
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
358 359 360 361 362
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
363 364 365
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
366
            'remote_prefetch': remote_prefetch,
367 368
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
369 370 371
    return tmp


W
wopeizl 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
388

W
wopeizl 已提交
389 390 391 392 393 394 395 396 397 398 399
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
405

W
wopeizl 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
492 493


P
phlrain 已提交
494 495 496 497 498 499
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
500
         dropout_prob=0.0,
P
phlrain 已提交
501 502 503 504 505
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
506
    """
P
phlrain 已提交
507
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
508 509

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
510
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
511 512
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
513
    .. math::
M
minqiyang 已提交
514 515 516 517 518 519 520

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
521
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
522 523 524 525

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
526 527

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
528 529 530 531 532 533
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
534 535 536
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
537
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
538

M
minqiyang 已提交
539
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
540 541 542 543 544
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
545
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
546 547 548 549 550
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
551
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
552 553
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
554 555
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
556 557 558 559 560 561
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
562
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
563

L
liuhongyu 已提交
564 565

    Returns:
M
minqiyang 已提交
566 567
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
568
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
569

H
haowang101779990 已提交
570 571 572 573
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
575 576
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
577
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
593
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
594 595 596 597 598 599
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
600 601 602
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
662 663 664 665 666 667 668 669 670 671
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
672
                  proj_activation='tanh',
673
                  dtype='float32',
X
xuezhong 已提交
674 675 676 677 678
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
679 680 681
    """
    **Dynamic LSTMP Layer**

682 683 684 685 686 687
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
688 689 690 691 692

    The formula is as follows:

    .. math::

693
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
694

695
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
696

697
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
698

699
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
700

701
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
702

703
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
704

705
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
706

Y
Yibing Liu 已提交
707 708 709 710 711 712
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
713
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
714
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
715
          bias vector).
Y
Yibing Liu 已提交
716 717 718
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
719
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
720
    * :math:`h`: The hidden state.
721
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
722 723
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
724
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
725
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
726
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
727 728
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
729 730 731 732

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
733

Y
Yibing Liu 已提交
734 735 736 737 738 739 740 741 742 743 744 745
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
746
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
747 748
                               hidden-hidden weight and projection weight.

749 750
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
751 752
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
753 754
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
755
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
756 757 758 759 760

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
761
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
762 763 764 765 766 767
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
768
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
769 770 771
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
772
                                - The shape is (1 x 7D).
C
chengduo 已提交
773 774 775 776 777

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
778 779 780 781 782 783 784 785 786
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
787
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
788 789
                              default "tanh".
        proj_activation(str): The activation for projection output.
790
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
791
                              default "tanh".
Y
Yibing Liu 已提交
792
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
793 794
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
795 796 797 798 799 800 801 802 803 804 805
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
806 807

    Returns:
808 809 810 811
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
812 813

    Examples:
814

Y
Yibing Liu 已提交
815 816
        .. code-block:: python

817 818 819 820
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
821
            hidden_dim, proj_dim = 512, 256
822
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
823
                                     act=None, bias_attr=None)
824 825 826
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
827 828 829 830
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
831
    """
832

C
chengduo 已提交
833
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
834
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
835
    size = size // 4
Y
Yibing Liu 已提交
836 837 838 839 840 841 842 843 844 845
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
846 847 848 849 850 851
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
867

X
xuezhong 已提交
868 869 870 871 872
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
873 874
    helper.append_op(
        type='lstmp',
875
        inputs=inputs,
Y
Yibing Liu 已提交
876 877 878 879 880 881 882 883 884
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
885 886
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
887 888 889 890 891 892 893 894 895
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
896 897 898 899 900 901 902
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
903 904
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
905
    """
906
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
907

908 909 910
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
911

G
guosheng 已提交
912 913 914 915 916 917 918 919 920
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
921

G
guosheng 已提交
922
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
923

Q
Qiao Longfei 已提交
924 925 926

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
927 928 929 930 931 932 933 934 935 936 937 938
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
939
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
940 941
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
942 943 944 945
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
946
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
947 948

    Args:
949 950
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
951
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
952
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
953 954
            is the hidden size.
        size(int): The dimension of the gru cell.
955
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
956 957
            hidden-hidden weight matrix. Note:

958
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
959
              :math:`D` is the hidden size.
960
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
961
              The first part are weights of the update gate and reset gate with
962
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
963
              candidate hidden state with shape :math:`(D \\times D)`.
964 965 966 967 968

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
969
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
970
            the bias in the update gate, reset gate and candidate calculations.
971 972 973
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
974 975
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
976
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
977 978 979
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
980
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
981
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
982 983 984 985
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
986 987

    Returns:
G
guosheng 已提交
988
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
989
            and sequence length is the same with the input.
990

G
guosheng 已提交
991
    Examples:
992

G
guosheng 已提交
993 994
        .. code-block:: python

995 996 997 998
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
999
            hidden_dim = 512
1000
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1001
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1011
    batch_size = input.shape[0]
G
guosheng 已提交
1012
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1013
    if h_0:
G
guosheng 已提交
1014
        assert h_0.shape == (
Y
Yancey 已提交
1015 1016 1017
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1018

X
Xin Pan 已提交
1019 1020 1021 1022
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1036 1037
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1038 1039 1040 1041
        })
    return hidden


Y
Yu Yang 已提交
1042 1043 1044
def gru_unit(input,
             hidden,
             size,
1045 1046
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1047
             activation='tanh',
Q
Qiao Longfei 已提交
1048 1049
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1050
    """
1051 1052 1053
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1054
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1055
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1056

1057 1058
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1059

1060
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1061

1062
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1079 1080

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1081 1082 1083
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1084 1085
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1086 1087
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1088 1089 1090
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1091 1092 1093

    Args:
        input (Variable): The fc transformed input value of current step.
1094
        hidden (Variable): The hidden value of gru unit from previous step.
1095
        size (integer): The input dimension value.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1110
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1111
            the bias in the update gate, reset gate and candidate calculations.
1112 1113 1114
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1115 1116
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1117 1118 1119 1120
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1121

1122 1123 1124 1125 1126 1127
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1128

1129
             # assuming we have x_t_data and prev_hidden of size=10
1130
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1131 1132
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1145
    size = size // 3
Y
Yu Yang 已提交
1146 1147

    # create weight
1148 1149
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1150

X
Xin Pan 已提交
1151 1152 1153
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1154
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1155
    # create bias
1156
    if helper.bias_attr:
Y
Yu Yang 已提交
1157 1158 1159
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1160
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1161 1162 1163

    helper.append_op(
        type='gru_unit',
1164
        inputs=inputs,
Y
Yu Yang 已提交
1165 1166 1167 1168 1169 1170
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1171 1172
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1173 1174 1175 1176 1177
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1178
@templatedoc()
1179
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1180 1181 1182 1183 1184 1185 1186
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1187
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1188 1189 1190 1191
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1192 1193 1194
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1195 1196

    """
Y
Yu Yang 已提交
1197 1198 1199 1200 1201 1202
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1203 1204 1205 1206 1207 1208 1209 1210
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1226 1227 1228 1229
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1230

W
wopeizl 已提交
1231 1232
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1233

W
wopeizl 已提交
1234
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1235

W
wopeizl 已提交
1236
        label(${label_type}): ${label_comment}
1237

W
wopeizl 已提交
1238 1239
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1240

W
wopeizl 已提交
1241 1242
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1243

W
wopeizl 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1254
                "Transition": transition,
W
wopeizl 已提交
1255 1256
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1257

W
wopeizl 已提交
1258
    return viterbi_path
Y
Yu Yang 已提交
1259 1260


Y
yi.wu 已提交
1261
@templatedoc()
F
fengjiayi 已提交
1262
def cos_sim(X, Y):
Y
Yu Yang 已提交
1263
    """
Y
yi.wu 已提交
1264 1265 1266
    ${comment}

    Args:
1267 1268
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1269

Y
yi.wu 已提交
1270
    Returns:
1271
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1272
    """
F
fengjiayi 已提交
1273
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1274 1275 1276
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1287 1288 1289 1290 1291
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1292
            dropout_implementation="downgrade_in_infer"):
1293 1294 1295 1296 1297
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1298
    training. The dropout operator randomly sets (according to the given dropout
1299 1300 1301
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1302 1303
    dropout op can be removed from the program to make the program more efficient.

1304
    Args:
1305 1306
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1307 1308 1309 1310 1311 1312 1313
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1314 1315
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1316
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1317 1318 1319 1320 1321 1322

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1323
                                        2. upscale_in_train, upscale the outcome at training time
1324

H
haowang101779990 已提交
1325 1326
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1327

H
haowang101779990 已提交
1328 1329
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1330

M
minqiyang 已提交
1331

1332
    Returns:
1333
        Variable: A tensor variable is the shape with `x`.
1334 1335

    Examples:
1336

1337 1338
        .. code-block:: python

1339 1340
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1341 1342
    """

F
fengjiayi 已提交
1343
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1344 1345 1346
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1347 1348 1349 1350

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1351 1352 1353 1354 1355
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1356 1357 1358 1359
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1360 1361
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1362
        })
1363 1364 1365
    return out


J
jerrywgz 已提交
1366
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1367
    """
Y
Yibing Liu 已提交
1368 1369
    **Cross Entropy Layer**

1370 1371 1372
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1373 1374

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1375
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1376

Y
Yibing Liu 已提交
1377
        .. math::
Y
yangyaming 已提交
1378

Y
Yibing Liu 已提交
1379 1380 1381
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1382 1383
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1384 1385 1386 1387 1388

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1389
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1390 1391 1392
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1393 1394
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1395
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1396

Y
Yibing Liu 已提交
1397
    Args:
Y
yangyaming 已提交
1398
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1399 1400 1401 1402
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1403
        label (Variable|list): the ground truth which is a 2-D tensor. When
1404 1405 1406 1407
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1408
        soft_label (bool): a flag indicating whether to
1409
                                           interpretate the given labels as soft
1410
                                           labels. Default: `False`.
M
minqiyang 已提交
1411 1412
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1413
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1414 1415 1416 1417 1418

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1419 1420 1421
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1422

H
haowang101779990 已提交
1423 1424
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1425

H
haowang101779990 已提交
1426 1427
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1428 1429 1430 1431 1432 1433

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1434
    """
F
fengjiayi 已提交
1435
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1436
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1437 1438 1439 1440 1441
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1442 1443
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1444 1445 1446
    return out


F
frankwhzhang 已提交
1447
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1448 1449 1450
    """
    Bayesian Personalized Ranking Loss Operator.

1451
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1452 1453 1454 1455 1456 1457
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1458 1459 1460 1461 1462 1463
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1464 1465
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1466 1467 1468
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1469 1470 1471
    Examples:
        .. code-block:: python

1472
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1473
    """
1474 1475 1476 1477 1478 1479

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1480
                'Label': [label]},
1481 1482 1483 1484
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1485
def square_error_cost(input, label):
Y
Yu Yang 已提交
1486
    """
1487 1488
    **Square error cost layer**

1489 1490
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1505 1506
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1507 1508

    Returns:
G
guosheng 已提交
1509
        Variable: The tensor variable storing the element-wise squared error \
1510
                  difference of input and label.
1511 1512 1513 1514 1515 1516 1517 1518

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1519
    """
F
fengjiayi 已提交
1520
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1521
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1522 1523 1524 1525 1526 1527
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1528
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1529
    helper.append_op(
F
fengjiayi 已提交
1530 1531
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1532 1533 1534
    return square_out


Y
yi.wu 已提交
1535
@templatedoc()
Y
Yu Yang 已提交
1536 1537 1538 1539
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1540
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1541
    """
Y
yi.wu 已提交
1542
    **Chunk Evaluator**
Y
yi.wu 已提交
1543

Y
yangyaming 已提交
1544
    This function computes and outputs the precision, recall and
1545
    F1-score of chunk detection.
Y
yi.wu 已提交
1546

M
minqiyang 已提交
1547
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1548
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1549 1550 1551 1552 1553 1554

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1555

Y
yi.wu 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1581

Y
yi.wu 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1606
    Args:
1607 1608 1609 1610 1611
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1612

Y
yi.wu 已提交
1613
    Returns:
Y
update  
yi.wu 已提交
1614 1615 1616
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1617

Y
yi.wu 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1630
    """
F
fengjiayi 已提交
1631
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1632 1633

    # prepare output
X
Xin Pan 已提交
1634 1635 1636 1637 1638 1639 1640
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1641 1642 1643 1644 1645 1646 1647 1648

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1649 1650 1651 1652
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1653 1654 1655
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1656 1657
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1658
        })
1659 1660
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1661 1662


1663
@templatedoc()
Y
Yu Yang 已提交
1664 1665 1666 1667 1668 1669 1670
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1671 1672
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1673 1674 1675 1676
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1677 1678 1679 1680 1681 1682 1683

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1697

1698 1699
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1700 1701 1702 1703 1704 1705 1706
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1707
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1718
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1719 1720 1721 1722 1723 1724
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1725
def sequence_softmax(input, use_cudnn=False, name=None):
1726 1727 1728
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1729
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1746 1747 1748
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1761 1762
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1763
    softmax_out = helper.create_variable_for_type_inference(dtype)
1764 1765 1766 1767 1768 1769 1770 1771
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1772
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1773
    """
1774
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1775
    has the same shape as the input.
Q
qiaolongfei 已提交
1776

1777 1778 1779 1780 1781 1782
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1783
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1784 1785 1786 1787 1788 1789 1790

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1791
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1792 1793 1794 1795 1796 1797 1798 1799

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1800 1801
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1802 1803
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1816 1817
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1818
    softmax_out = helper.create_variable_for_type_inference(dtype)
1819 1820 1821 1822 1823 1824 1825 1826
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1827 1828 1829
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1830 1831
           stride=1,
           padding=0,
1832
           dilation=1,
Y
Yu Yang 已提交
1833 1834 1835
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1836
           use_cudnn=True,
1837 1838
           act=None,
           name=None):
Y
Yu Yang 已提交
1839
    """
C
chengduoZH 已提交
1840
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1841 1842
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1843
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1844 1845 1846 1847 1848 1849 1850
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1851 1852 1853
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1854

1855
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1856

C
chengduoZH 已提交
1857 1858
    .. math::

C
refine  
chengduoZH 已提交
1859
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1860

T
tensor-tang 已提交
1861
    Where:
C
chengduoZH 已提交
1862

1863 1864 1865 1866 1867
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1868
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1869 1870 1871

    Example:

1872 1873
        - Input:

W
weixing02 已提交
1874
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1875

W
weixing02 已提交
1876
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1877

1878
        - Output:
T
tensor-tang 已提交
1879

W
weixing02 已提交
1880
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1881

C
chengduoZH 已提交
1882
        Where
1883 1884

        .. math::
C
chengduoZH 已提交
1885

W
weixing02 已提交
1886 1887
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1888 1889

    Args:
1890
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1891
        num_filters(int): The number of filter. It is as same as the output
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1909 1910 1911 1912 1913
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1914
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1915 1916 1917 1918 1919
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1920 1921
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1922 1923
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1924
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1925
            will be named automatically. Default: None
C
chengduoZH 已提交
1926 1927

    Returns:
G
guosheng 已提交
1928
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1929 1930
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1931
    Raises:
1932 1933
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1934

C
chengduoZH 已提交
1935 1936 1937
    Examples:
        .. code-block:: python

1938 1939
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1940 1941 1942
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1943
    assert param_attr is not False, "param_attr should not be False here."
1944
    l_type = 'conv2d'
X
xzl 已提交
1945 1946
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1947
        l_type = 'depthwise_conv2d'
1948 1949 1950 1951

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1952 1953 1954 1955 1956
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1957
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1958

C
chengduoZH 已提交
1959 1960 1961
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1962
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1963

C
chengduoZH 已提交
1964 1965
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1966 1967

    input_shape = input.shape
M
minqiyang 已提交
1968
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1969 1970

    def _get_default_param_initializer():
C
chengduo 已提交
1971 1972
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1973 1974 1975 1976 1977 1978 1979 1980
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1981
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1997
    helper.append_op(
1998
        type=l_type,
Y
Yu Yang 已提交
1999 2000 2001 2002 2003
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2004 2005 2006
        attrs={
            'strides': stride,
            'paddings': padding,
2007
            'dilations': dilation,
C
chengduoZH 已提交
2008
            'groups': groups,
2009
            'use_cudnn': use_cudnn,
2010
            'use_mkldnn': False,
2011
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2012
        })
Y
Yu Yang 已提交
2013 2014 2015 2016 2017 2018

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2036 2037 2038 2039 2040 2041
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2051 2052
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2053 2054 2055
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2056
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2082
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2083 2084
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2085
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2086 2087
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2088
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2089 2090
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2091
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2092 2093 2094 2095 2096 2097
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2108 2109
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2110 2111
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2112
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2113
            will be named automatically. Default: None.
C
chengduoZH 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2126 2127
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2128 2129 2130
    """

    l_type = 'conv3d'
C
chengduo 已提交
2131
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2142
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2156 2157 2158
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2159 2160 2161 2162 2163 2164 2165 2166
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2167
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2182
            'use_mkldnn': False
C
chengduoZH 已提交
2183 2184
        })

2185
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2186 2187 2188 2189

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2190
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2191
    """
Y
yangyaming 已提交
2192 2193 2194
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2206
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2207 2208 2209 2210 2211
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2212
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2213 2214 2215 2216 2217 2218 2219

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2220 2221
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2222

L
Luo Tao 已提交
2223 2224
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2225
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2226
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2227
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2228 2229 2230 2231 2232 2233 2234

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2235

Y
yangyaming 已提交
2236
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2237 2238 2239 2240 2241
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2242 2243
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2244
    """
F
fengjiayi 已提交
2245
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2246
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2247 2248
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2249 2250 2251 2252 2253 2254

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2255 2256
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2257

Y
yangyaming 已提交
2258 2259 2260 2261 2262
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2263 2264 2265
    return pool_out


C
add doc  
chengduoZH 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2285
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2286 2287 2288 2289 2290
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2291
def sequence_first_step(input):
L
Luo Tao 已提交
2292
    """
L
Luo Tao 已提交
2293
    This function gets the first step of sequence.
L
Luo Tao 已提交
2294 2295 2296 2297

    .. code-block:: text

       x is a 1-level LoDTensor:
2298
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2299 2300 2301 2302 2303
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2304
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2305
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2306

L
Luo Tao 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2316

Y
yangyaming 已提交
2317
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2318 2319 2320
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2321 2322 2323
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2324
def sequence_last_step(input):
L
Luo Tao 已提交
2325
    """
L
Luo Tao 已提交
2326
    This function gets the last step of sequence.
L
Luo Tao 已提交
2327 2328 2329 2330

    .. code-block:: text

       x is a 1-level LoDTensor:
2331
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2332 2333 2334 2335 2336
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2337
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2338
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2339

L
Luo Tao 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2349

Y
yangyaming 已提交
2350
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2351 2352 2353
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2354 2355 2356
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2357 2358 2359 2360
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2361
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2362 2363 2364 2365 2366
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2367

H
haowang101779990 已提交
2368
              - Case:
Y
Yibing Liu 已提交
2369

2370
            Given the input Variable **input**:
2371

2372 2373 2374
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2375

2376
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2377

2378
            the output Variable will be
2379

2380 2381 2382
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2383

M
minqiyang 已提交
2384
    Note:
H
haowang101779990 已提交
2385
          The first dimension size of **input**, **offset** and **length**
2386
          should be equal. The **offset** should start from 0.
2387

Y
Yibing Liu 已提交
2388
    Args:
2389
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2390
                         sequences.
Y
Yibing Liu 已提交
2391 2392 2393 2394 2395 2396
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2397
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2408
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2409 2410 2411 2412
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2413
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2428
@templatedoc()
Y
Yu Yang 已提交
2429
def pool2d(input,
C
chengduoZH 已提交
2430 2431
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2432 2433
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2434
           global_pooling=False,
C
chengduoZH 已提交
2435
           use_cudnn=True,
2436
           ceil_mode=False,
2437 2438
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2439
    """
F
fengjiayi 已提交
2440
    ${comment}
2441 2442

    Args:
2443 2444 2445
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2446
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2447
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2448 2449
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2450
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2451 2452 2453 2454 2455 2456
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2457 2458 2459
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2460
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2461
                        layer will be named automatically.
2462
        exclusive (bool): Whether to exclude padding points in average pooling
2463
                          mode, default is true
F
fengjiayi 已提交
2464

2465
    Returns:
F
fengjiayi 已提交
2466
        Variable: The pooling result.
F
fengjiayi 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2479
          pool2d = fluid.layers.pool2d(
2480 2481 2482 2483
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2484
                            global_pooling=False)
Y
Yu Yang 已提交
2485 2486 2487 2488 2489
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2490

C
chengduoZH 已提交
2491 2492 2493 2494 2495
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2496 2497 2498 2499
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2500 2501
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2502

C
Add doc  
chengduoZH 已提交
2503
    l_type = 'pool2d'
2504 2505

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2506
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2507
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2508 2509

    helper.append_op(
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2521 2522
            "use_mkldnn": False,
            "exclusive": exclusive,
2523 2524 2525 2526 2527
        })

    return pool_out


D
dengkaipeng 已提交
2528
@templatedoc()
2529 2530 2531 2532 2533 2534 2535 2536
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2537 2538
           name=None,
           exclusive=True):
2539
    """
2540
    ${comment}
2541 2542

    Args:
D
dengkaipeng 已提交
2543 2544 2545 2546 2547
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2548 2549 2550 2551 2552
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2553 2554 2555 2556 2557 2558 2559
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2560
        exclusive (bool): Whether to exclude padding points in average pooling
2561
                          mode, default is true
2562

2563
    Returns:
2564
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2578 2579 2580 2581 2582
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2583

C
chengduoZH 已提交
2584 2585 2586 2587 2588
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2589 2590 2591
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2592

C
chengduoZH 已提交
2593 2594
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2595

2596 2597
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2598
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2599
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2600 2601

    helper.append_op(
2602
        type=l_type,
Y
Yu Yang 已提交
2603 2604 2605 2606 2607 2608 2609
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2610
            "paddings": pool_padding,
2611
            "use_cudnn": use_cudnn,
2612
            "ceil_mode": ceil_mode,
2613 2614
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2615 2616 2617 2618 2619
        })

    return pool_out


2620 2621 2622 2623 2624 2625 2626
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2627 2628 2629 2630 2631 2632 2633
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2634

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2648 2649 2650 2651 2652 2653 2654 2655 2656

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2657 2658
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2673
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2674
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2675
          # of input data into m * n grids averagely and performs poolings in each
2676 2677
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2678
          #
2679 2680 2681 2682 2683 2684 2685 2686
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2687 2688
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2689
          pool_out = fluid.layers.adaptive_pool2d(
2690 2691
                            input=data,
                            pool_size=[3, 3],
2692
                            pool_type='avg')
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2703
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2729
    return (pool_out, mask) if require_index else pool_out
2730 2731 2732 2733 2734 2735 2736 2737 2738


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2739 2740 2741 2742 2743 2744 2745
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2764 2765 2766

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2767 2768 2769
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2770
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2771
            it must contain three integers, (Depth, Height, Width).
2772
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2773 2774
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2789 2790
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2791
          # of input data into l * m * n grids averagely and performs poolings in each
2792 2793
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2794
          #
2795 2796 2797 2798 2799 2800 2801 2802 2803
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2804
          #                 output[:, :, i, j, k] =
2805 2806
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2807 2808
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2809
          pool_out, mask = fluid.layers.adaptive_pool3d(
2810
                            input=data,
D
dengkaipeng 已提交
2811
                            pool_size=[3, 3, 3],
2812
                            pool_type='avg')
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2823
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2849
    return (pool_out, mask) if require_index else pool_out
2850 2851


Y
Yu Yang 已提交
2852 2853 2854 2855 2856 2857 2858
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2859
               data_layout='NCHW',
Y
Yang Yang 已提交
2860
               in_place=False,
2861 2862
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2863
               moving_variance_name=None,
2864
               do_model_average_for_mean_and_var=False,
2865 2866
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2867
    """
Q
qiaolongfei 已提交
2868 2869 2870 2871
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2872

Q
qiaolongfei 已提交
2873
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2874

Q
qiaolongfei 已提交
2875 2876
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2877 2878 2879
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2906
    Args:
Q
qiaolongfei 已提交
2907
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2908 2909 2910 2911
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2912 2913 2914 2915 2916 2917 2918 2919
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2920
        data_layout(string, default NCHW): NCHW|NHWC
2921
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2922 2923 2924 2925
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2926
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2927
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2928 2929 2930 2931 2932
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2933 2934

    Returns:
Q
qiaolongfei 已提交
2935
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2936 2937 2938 2939 2940 2941 2942

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2943
    """
C
chengduo 已提交
2944
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2945 2946 2947
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2948 2949 2950 2951
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2969 2970 2971
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2972 2973

    bias = helper.create_parameter(
2974
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2975 2976
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2977
        bias.stop_gradient = True
Y
Yu Yang 已提交
2978

2979 2980
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2981 2982 2983
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2984
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2985
        shape=param_shape,
W
Wu Yi 已提交
2986
        dtype=dtype)
2987 2988 2989 2990 2991 2992
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2993
            trainable=False,
W
wanghaoshuang 已提交
2994
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2995
        shape=param_shape,
W
Wu Yi 已提交
2996
        dtype=dtype)
2997
    variance.stop_gradient = True
Y
Yu Yang 已提交
2998 2999 3000 3001 3002 3003

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3004 3005 3006 3007
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3008

X
Xin Pan 已提交
3009 3010
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3028 3029 3030 3031
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3032
            "data_layout": data_layout,
X
Xin Pan 已提交
3033
            "use_mkldnn": False,
3034 3035
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3036
        })
Y
Yu Yang 已提交
3037 3038 3039 3040

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3160
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3161 3162 3163 3164

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3165
@templatedoc()
G
guosheng 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3176
    ${comment}
G
guosheng 已提交
3177 3178 3179

    The formula is as follows:

Y
yuyang18 已提交
3180
    ..  math::
G
guosheng 已提交
3181 3182 3183 3184 3185 3186 3187

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3188 3189 3190 3191 3192 3193 3194 3195
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3196

G
guosheng 已提交
3197 3198
    Args:
        input(Variable): The input tensor variable.
3199
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3200
            normalization. Default True.
3201
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3202 3203
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3204
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3205
            Default 1.
3206
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3207
            division by zero. Default 1e-05.
G
guosheng 已提交
3208
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3209 3210
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3211 3212
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3213
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3214 3215
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3216
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3217
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3218
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3219 3220 3221
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3222 3223

    Returns:
Y
yuyang18 已提交
3224
        ${y_comment}
G
guosheng 已提交
3225 3226 3227

    Examples:

Y
yuyang18 已提交
3228 3229 3230
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3246
    if shift:
G
guosheng 已提交
3247 3248 3249 3250 3251 3252
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3253 3254 3255 3256 3257
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3285
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3333 3334
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3352
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3353 3354 3355
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3356
    This layer calculates the spectral normalization value of weight parameters of
3357
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3358
    Parameters. Calculations are showed as follows.
3359

D
dengkaipeng 已提交
3360 3361 3362
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3363
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3376
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3377 3378 3379 3380

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3381

D
dengkaipeng 已提交
3382
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3383 3384
                

D
dengkaipeng 已提交
3385 3386 3387 3388
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3389 3390 3391
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3392 3393 3394
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3395
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3396 3397 3398 3399 3400 3401 3402 3403

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3404
    dtype = weight.dtype
D
dengkaipeng 已提交
3405 3406 3407

    # create intput and parameters
    inputs = {'Weight': weight}
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3426 3427

    # create output
3428
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3429 3430

    helper.append_op(
3431
        type="spectral_norm",
D
Dun 已提交
3432
        inputs=inputs,
3433 3434 3435 3436 3437 3438
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3439

3440
    return out
D
Dun 已提交
3441 3442


Y
Yu Yang 已提交
3443 3444 3445 3446
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3447 3448 3449
                     padding=0,
                     stride=1,
                     dilation=1,
3450
                     groups=None,
C
caoying03 已提交
3451
                     param_attr=None,
3452
                     bias_attr=None,
C
chengduoZH 已提交
3453
                     use_cudnn=True,
3454
                     act=None,
C
caoying03 已提交
3455
                     name=None):
Y
Yu Yang 已提交
3456
    """
3457 3458 3459 3460 3461 3462 3463 3464
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3465 3466
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3467 3468 3469
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3470 3471 3472 3473 3474

    For each input :math:`X`, the equation is:

    .. math::

3475
        Out = \sigma (W \\ast X + b)
3476

3477
    Where:
3478 3479 3480

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3481 3482 3483 3484
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3485

3486 3487 3488 3489
    Example:

        - Input:

3490
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3491

3492
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3493 3494 3495

        - Output:

3496
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3497 3498

        Where
Y
Yu Yang 已提交
3499

3500 3501
        .. math::

3502 3503
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3504 3505
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3506 3507

    Args:
3508 3509 3510 3511
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3512 3513 3514 3515
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3544
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3545 3546 3547
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3548
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3549
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3550 3551

    Returns:
3552
        Variable: The tensor variable storing the convolution transpose result.
3553 3554

    Raises:
3555 3556
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3557 3558 3559 3560

    Examples:
       .. code-block:: python

3561 3562
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3563
    """
C
chengduo 已提交
3564
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3565 3566 3567 3568 3569 3570 3571 3572
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3573 3574 3575
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3576 3577 3578
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3579

C
chengduoZH 已提交
3580 3581
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3582

Y
Yu Yang 已提交
3583 3584 3585 3586 3587
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3588

Y
Yu Yang 已提交
3589 3590
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3591

C
chengduoZH 已提交
3592
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3593
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3594
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3595
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3596
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3597 3598 3599
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3600

3601 3602 3603 3604 3605 3606 3607
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3608
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3609
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3610

Y
Yu Yang 已提交
3611 3612 3613
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3614
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3615
    helper.append_op(
3616
        type=op_type,
Y
Yu Yang 已提交
3617 3618
        inputs={'Input': [input],
                'Filter': [img_filter]},
3619
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3620
        attrs={
3621
            'output_size': output_size,
3622 3623 3624 3625 3626
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3627 3628
        })

3629 3630 3631
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3632 3633


3634
def conv3d_transpose(input,
Y
Yu Yang 已提交
3635 3636 3637
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3638 3639 3640
                     padding=0,
                     stride=1,
                     dilation=1,
3641
                     groups=None,
C
caoying03 已提交
3642
                     param_attr=None,
3643
                     bias_attr=None,
C
chengduoZH 已提交
3644
                     use_cudnn=True,
3645
                     act=None,
C
caoying03 已提交
3646
                     name=None):
Y
Yu Yang 已提交
3647
    """
3648
    **Convlution3D transpose layer**
3649

3650
    The convolution3D transpose layer calculates the output based on the input,
3651
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3652 3653 3654 3655 3656 3657
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3658 3659 3660
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3661 3662 3663 3664 3665

    For each input :math:`X`, the equation is:

    .. math::

3666
        Out = \sigma (W \\ast X + b)
3667 3668 3669

    In the above equation:

3670 3671
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3672 3673 3674 3675
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3676

3677 3678 3679 3680
    Example:

        - Input:

3681
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3682

3683
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3684 3685 3686

        - Output:

3687
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3688 3689

        Where
Y
Yu Yang 已提交
3690

3691 3692
        .. math::

3693 3694 3695
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3696 3697

    Args:
3698
        input(Variable): The input image with [N, C, D, H, W] format.
3699 3700 3701
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3702
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3703 3704
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3705
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3706 3707 3708
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3709 3710
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3711
        stride(int|tuple): The stride size. If stride is a tuple, it must
3712 3713
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3714
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3715 3716 3717
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3718 3719 3720 3721 3722
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3732 3733
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3734 3735
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3736 3737
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3738 3739

    Returns:
3740
        Variable: The tensor variable storing the convolution transpose result.
3741 3742

    Raises:
3743 3744
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3745 3746 3747 3748

    Examples:
       .. code-block:: python

3749 3750
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3751
    """
C
chengduo 已提交
3752
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3753 3754
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3755
    if not isinstance(input, Variable):
3756
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3757 3758
    input_channel = input.shape[1]

3759 3760 3761
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3762

C
chengduoZH 已提交
3763 3764 3765
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3766 3767 3768 3769 3770 3771
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3772 3773 3774
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3775

3776
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3777
                         padding[0] - 1) // dilation[0] + 1
3778
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3779
                         padding[1] - 1) // dilation[1] + 1
3780
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3781
                         padding[2] - 1) // dilation[2] + 1
3782
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3783
    else:
3784 3785
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3786

3787
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3788
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3789 3790 3791
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3792
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3793
    helper.append_op(
3794
        type=l_type,
Y
Yu Yang 已提交
3795 3796
        inputs={'Input': [input],
                'Filter': [img_filter]},
3797
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3798 3799 3800 3801
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3802
            'groups': groups,
C
chengduoZH 已提交
3803 3804
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3805

3806 3807
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3808
    return out
Y
yangyaming 已提交
3809 3810


Y
yangyaming 已提交
3811
def sequence_expand(x, y, ref_level=-1, name=None):
3812
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3813 3814 3815 3816
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3817 3818 3819 3820 3821

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3822
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3823
                x.data = [[a], [b], [c], [d]]
3824 3825 3826
                x.dims = [4, 1]

            y is a LoDTensor:
3827 3828
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3829

Y
yangyaming 已提交
3830
            ref_level: 0
3831

Y
yangyaming 已提交
3832
            then output is a 1-level LoDTensor:
3833
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3834
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3835 3836 3837 3838
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3839
                x.data = [[a], [b], [c]]
3840 3841 3842
                x.dims = [3, 1]

            y is a LoDTensor:
3843
                y.lod = [[2, 0, 3]]
3844

Y
yangyaming 已提交
3845
            ref_level: -1
3846

Y
yangyaming 已提交
3847 3848 3849
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3850 3851 3852
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3853 3854
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3855
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3856
                        will be named automatically.
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3867
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3868
    """
Y
yangyaming 已提交
3869
    helper = LayerHelper('sequence_expand', input=x, **locals())
3870
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3871
    tmp = helper.create_variable_for_type_inference(dtype)
3872
    helper.append_op(
Y
yangyaming 已提交
3873 3874 3875 3876 3877
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3878
    return tmp
3879 3880


C
chengduo 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3937
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3938 3939 3940 3941 3942 3943 3944 3945
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3946
@templatedoc()
3947
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3948 3949 3950 3951 3952
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3953 3954 3955
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3956
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3957 3958 3959 3960
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3961 3962 3963
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3964

F
fengjiayi 已提交
3965
    Returns:
M
minqiyang 已提交
3966
        Variable: The padded sequence batch and the original lengths before
3967
                  padding. All sequences has the same length.
M
minqiyang 已提交
3968

F
fengjiayi 已提交
3969 3970 3971 3972 3973 3974 3975
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3976
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3977
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3978 3979 3980 3981 3982
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3983 3984
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3985 3986 3987 3988

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3989 3990 3991 3992 3993 3994
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3995 3996
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3997
        attrs={'padded_length': maxlen})
3998
    return out, length
F
fengjiayi 已提交
3999 4000


4001
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4002
    """
4003
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4004

4005 4006
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4016 4017 4018
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4019
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4020 4021 4022 4023 4024 4025

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4026
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4027 4028 4029 4030 4031 4032

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4033 4034
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4049
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4061 4062 4063 4064 4065 4066 4067
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4068
                is_accumulated=True,
4069 4070
                name=None,
                return_parent_idx=False):
4071
    """
4072 4073
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4074 4075 4076

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4077 4078

    This layer does the search in beams for one time step. Specifically, it
4079 4080 4081
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4093 4094 4095 4096

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4097

4098
    Args:
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4122 4123
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4124 4125
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4126 4127 4128 4129
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4130

4131
    Returns:
4132 4133 4134 4135
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4136 4137 4138 4139

    Examples:
        .. code-block:: python

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4157
    helper = LayerHelper('beam_search', **locals())
4158 4159 4160 4161 4162 4163
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4164

X
Xin Pan 已提交
4165 4166 4167
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4168 4169 4170 4171 4172
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4173 4174 4175

    helper.append_op(
        type='beam_search',
4176
        inputs=inputs,
Q
Qiao Longfei 已提交
4177 4178 4179
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4180
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4181 4182 4183 4184 4185 4186
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4187
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4188
        })
4189 4190 4191 4192
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4193 4194


4195 4196 4197 4198 4199 4200 4201
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4202

4203 4204 4205 4206 4207 4208 4209 4210 4211
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4212

4213 4214 4215 4216 4217 4218
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4219

4220 4221
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4222

4223 4224 4225 4226 4227 4228
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4229 4230
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4246 4247 4248 4249
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4250
              param_attr=None,
C
caoying03 已提交
4251 4252
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4253 4254 4255 4256
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4257
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4258

4259
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4260

4261
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4262

4263
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4264 4265 4266

            h_t & = o_t tanh(c_t)

4267 4268 4269 4270 4271 4272
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4273 4274 4275

        .. math::

4276
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4277 4278 4279 4280 4281 4282 4283 4284

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4285
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4286 4287

    Args:
Y
yangyaming 已提交
4288 4289 4290 4291 4292 4293
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4294
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4307 4308
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4309 4310

    Returns:
Y
yangyaming 已提交
4311
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4312 4313

    Raises:
4314 4315 4316 4317
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4318 4319 4320 4321 4322 4323

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4324
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4325
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4326
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4343
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4344 4345 4346 4347
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4348 4349
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4350 4351 4352
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4353
    size = cell_t_prev.shape[1]
4354
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4355 4356
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4357
                param_attr=param_attr,
4358
                bias_attr=bias_attr)
Y
yangyaming 已提交
4359
    dtype = x_t.dtype
X
Xin Pan 已提交
4360 4361
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4371
    return h, c
G
guosheng 已提交
4372 4373


C
caoying03 已提交
4374
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4375
    """
Y
yangyaming 已提交
4376
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4377 4378 4379

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4380
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4381 4382
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4383 4384
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4385
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4386
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4387
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4388 4389
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4390 4391 4392

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4393

G
guosheng 已提交
4394 4395 4396 4397 4398 4399
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4400
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4401 4402 4403 4404
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4405 4406 4407 4408

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4409
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4410 4411 4412
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4413 4414
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4415
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4416 4417
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4418 4419 4420 4421 4422
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4423
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4424 4425 4426 4427
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4428 4429


C
caoying03 已提交
4430
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4431
    """
Y
Yibing Liu 已提交
4432
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4433 4434 4435

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4436 4437 4438
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4439
            must be in the range :math:`[-rank(input), rank(input))`. If
4440
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4441
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4442 4443
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4444
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4445
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4446
                       will be named automatically.
G
guosheng 已提交
4447 4448

    Returns:
Y
Yibing Liu 已提交
4449
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4450

G
guosheng 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4461 4462
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4463 4464 4465 4466 4467 4468 4469

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4470 4471
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4472
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4473 4474
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4475 4476 4477 4478 4479
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4480
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4481 4482 4483 4484
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4485 4486


C
caoying03 已提交
4487
def reduce_max(input, dim=None, keep_dim=False, name=None):
4488
    """
Y
yangyaming 已提交
4489
    Computes the maximum of tensor elements over the given dimension.
4490 4491 4492

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4493
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4494 4495 4496
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4497
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4498 4499
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4500
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4501 4502
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4503 4504 4505

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4506

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4518 4519 4520 4521 4522 4523 4524

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4525 4526
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4527
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4528 4529
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4530 4531 4532 4533 4534
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4535
            'dim': dim if dim != None else [0],
4536 4537 4538 4539 4540 4541
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4542
def reduce_min(input, dim=None, keep_dim=False, name=None):
4543
    """
Y
yangyaming 已提交
4544
    Computes the minimum of tensor elements over the given dimension.
4545 4546 4547

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4548
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4549 4550 4551
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4552
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4553 4554
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4555
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4556 4557
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4558 4559 4560

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4561

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4573 4574 4575 4576 4577 4578 4579

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4580 4581
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4582
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4583 4584
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4585 4586 4587 4588 4589
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4590
            'dim': dim if dim != None else [0],
4591 4592 4593 4594
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4595 4596


4597 4598 4599 4600 4601 4602
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4603
        dim (list|int|None): The dimensions along which the product is performed. If
4604 4605
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4606 4607
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4608 4609 4610
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4611
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4612
            layer will be named automatically.
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4627
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4628
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4629 4630 4631 4632 4633 4634 4635

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4636 4637
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4638
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4639 4640
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4641 4642 4643 4644 4645
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4646
            'dim': dim if dim != None else [0],
4647 4648 4649 4650 4651 4652
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4653
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4654
    """
C
caoying03 已提交
4655
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4656 4657 4658

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4659 4660 4661 4662 4663
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4664
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4665
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4666
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4667 4668
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4669 4670

    Returns:
D
dzhwinter 已提交
4671
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4681 4682
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4698
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4721
    .. math::
4722 4723

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4724 4725 4726 4727 4728

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4729
        x(Variable|list): The input tensor to l2_normalize layer.
4730
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4731 4732
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4733
        epsilon(float): The epsilon value is used to avoid division by zero, \
4734
            the defalut value is 1e-10.
4735
        name(str|None): A name for this layer(optional). If set None, the layer \
4736
            will be named automatically.
C
caoying03 已提交
4737 4738

    Returns:
4739
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4740 4741

    Examples:
4742

C
caoying03 已提交
4743 4744
        .. code-block:: python

4745 4746 4747 4748
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4749 4750
    """

F
fengjiayi 已提交
4751 4752
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4753 4754
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4755 4756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4757
    helper.append_op(
4758 4759 4760 4761
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4762
        attrs={
4763 4764
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4765 4766
        })
    return out
4767 4768


S
sneaxiy 已提交
4769
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4770
    """
Y
ying 已提交
4771 4772 4773 4774
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4775

C
chengduoZH 已提交
4776
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4777
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4778

4779 4780 4781 4782 4783
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4784
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4785

C
chengduoZH 已提交
4786
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4787
      performs in the following way.
G
guosheng 已提交
4788

4789
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4790
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4791
        last two dimensions and a batched matrix multiply supporting broadcast
4792
        applies on the two tensors.
G
guosheng 已提交
4793

Y
ying 已提交
4794 4795
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4796
    removed after matrix multiplication.
G
guosheng 已提交
4797 4798 4799

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4800 4801 4802
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4803
        alpha (float): The scale of output. Default 1.0.
4804
        name(str|None): A name for this layer(optional). If set None, the layer
4805
            will be named automatically.
G
guosheng 已提交
4806 4807

    Returns:
4808
        Variable: The product Tensor variable.
G
guosheng 已提交
4809

G
guosheng 已提交
4810 4811 4812
    Examples:
        .. code-block:: python

4813
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4814 4815
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4816

4817 4818
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4819

4820 4821
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4822

4823 4824
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4825 4826 4827 4828

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4829 4830
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4831

Y
ying 已提交
4832
            # x: [M], y: [N]
4833
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4834
    """
Y
ying 已提交
4835 4836 4837 4838 4839 4840 4841

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4842
            y_shape = y_shape + [1]
Y
ying 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

C
chengduo 已提交
4852
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4853 4854
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
C
chengduo 已提交
4855 4856
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4857 4858 4859

    __check_input(x, y)

4860
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4861
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4862
    helper.append_op(
4863 4864 4865 4866
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4867 4868 4869
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4870
            'alpha': float(alpha),
S
sneaxiy 已提交
4871
        })
4872
    return out
4873 4874


4875
def topk(input, k, name=None):
Q
qingqing01 已提交
4876 4877 4878 4879
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4880
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4881 4882 4883 4884 4885 4886
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4908 4909 4910
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4911
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4912
                 of input.
4913
        name(str|None): A name for this layer(optional). If set None, the layer
4914
                       will be named automatically.
F
fengjiayi 已提交
4915
                       Default: None
Q
qingqing01 已提交
4916 4917

    Returns:
4918 4919 4920
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4921
        within the last dimension of input.
Q
qingqing01 已提交
4922

F
fengjiayi 已提交
4923 4924
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4925 4926 4927 4928 4929 4930 4931

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4932 4933
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4934 4935 4936 4937 4938 4939
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4940 4941
    helper.append_op(
        type="top_k",
W
whs 已提交
4942
        inputs=inputs,
Q
qingqing01 已提交
4943 4944
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4945
        attrs=attrs)
Q
qingqing01 已提交
4946 4947 4948 4949 4950
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4951
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4952
    """
Y
ying 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4962

Y
ying 已提交
4963
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4964

4965
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4966 4967
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4968
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4969

4970
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4971 4972
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4973

4974 4975 4976
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4977
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4978
                          the length of reference string.
4979
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4980
                                     calculating edit distance.
4981
        name (str): The name of this layer. It is optional.
4982

W
wanghaoshuang 已提交
4983
    Returns:
W
wanghaoshuang 已提交
4984
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4985 4986 4987 4988

    Examples:
        .. code-block:: python

T
tink2123 已提交
4989 4990
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4991
            cost = fluid.layers.edit_distance(input=x,label=y)
4992
    """
4993
    helper = LayerHelper("edit_distance", **locals())
4994

4995
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4996
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4997 4998
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4999 5000 5001 5002 5003

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5004
            attrs={"tokens": ignored_tokens})
5005 5006 5007 5008 5009
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5010
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5011
            attrs={"tokens": ignored_tokens})
5012 5013
        label = erased_label

5014
    # edit distance op
X
Xin Pan 已提交
5015 5016
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5017 5018 5019 5020
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5021 5022
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5023 5024
        attrs={"normalized": normalized})

5025
    return edit_distance_out, sequence_num
5026 5027 5028 5029 5030


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5031

Y
ying 已提交
5032 5033 5034 5035
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5053
        input.lod = [[4, 4]]
M
minqiyang 已提交
5054

W
whs 已提交
5055
        Computation:
5056

W
whs 已提交
5057 5058 5059 5060 5061 5062
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5063 5064 5065 5066 5067

        output.data = [[2],
                       [1],
                       [3]]

5068
        output.lod = [[2, 1]]
5069

W
whs 已提交
5070

5071 5072
    Args:

Y
ying 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5082
        name (str): The name of this layer. It is optional.
5083 5084

    Returns:
H
haowang101779990 已提交
5085 5086 5087
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5088
                  LoD [[]] and dims [1, 1].
5089 5090 5091 5092 5093

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5094

5095
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5096
    """
5097
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5098
    _, topk_indices = topk(input, k=1)
5099 5100

    # ctc align op
X
Xin Pan 已提交
5101
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5102 5103 5104
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5105
        outputs={"Output": [ctc_out]},
5106 5107
        attrs={"merge_repeated": True,
               "blank": blank})
5108
    return ctc_out
5109 5110


W
Wu Yi 已提交
5111
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5112
    """
5113 5114
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5115
    to compute Connectionist Temporal Classification (CTC) loss.
5116 5117
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5118 5119 5120
    input tensor.

    Args:
5121
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5122 5123 5124 5125
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5126
       label (Variable): The ground truth of variable-length sequence,
5127 5128 5129
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5130 5131
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5132 5133 5134
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5135
         follewed by a mean_op.
W
Wu Yi 已提交
5136
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5137 5138

    Returns:
5139 5140
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5141 5142

    Examples:
5143

W
wanghaoshuang 已提交
5144
        .. code-block:: python
5145

5146 5147 5148
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5149 5150

    """
F
fengjiayi 已提交
5151
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5152 5153
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5154 5155 5156 5157 5158 5159
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5160 5161 5162 5163 5164
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5165
    return loss_out
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5181 5182 5183
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5184 5185 5186 5187 5188
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5189

5190
            out.lod  = [[0, 1, 3]]
5191 5192 5193 5194

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5195 5196 5197 5198 5199 5200 5201
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5202 5203 5204

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5205 5206

    Returns:
5207

5208 5209 5210 5211 5212
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5213
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5214
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5215 5216
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5217
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5218 5219 5220 5221 5222 5223
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5224 5225


5226 5227 5228 5229
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5230 5231 5232 5233 5234 5235
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5236
        num_neg_samples=None,
5237 5238 5239
        name=None,
        sampler="uniform",
        custom_dist=None,
5240 5241
        seed=0,
        is_sparse=False):
5242 5243 5244 5245 5246 5247 5248
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5249 5250
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5251
            sample is 1.0.
C
chengduo 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5261
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5262 5263
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5264 5265 5266
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5267
        custom_dist (float[]): A float[] with size=num_total_classes.
5268 5269 5270 5271
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5272
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5273

5274
    Returns:
Y
Yibing Liu 已提交
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5302 5303 5304 5305 5306 5307 5308 5309 5310

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5311

5312
    """
Y
Yang Yu 已提交
5313 5314 5315
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5316 5317

    dim = input.shape[1]
Y
Yang Yu 已提交
5318 5319 5320 5321 5322 5323
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5324
    inputs = {}
C
chengduo 已提交
5325 5326 5327 5328 5329 5330 5331
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5332 5333 5334
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5335

5336 5337 5338 5339
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5340 5341 5342 5343 5344 5345 5346

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5347 5348 5349 5350 5351 5352 5353 5354 5355
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5356
            if normal_prob - 1.0 > 0:
5357
                bigs.append((i, normal_prob))
5358
            elif 1.0 - normal_prob > 0:
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5374
            if big_left - 1.0 > 0:
5375
                bigs.append((big_idx, big_left))
5376
            elif 1.0 - big_left > 0:
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5406 5407 5408 5409
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5410 5411 5412 5413 5414
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5415 5416 5417 5418
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5419

Y
Yang Yu 已提交
5420 5421
    attrs = {
        'num_total_classes': int(num_total_classes),
5422 5423
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5424
        'sampler': sampler,
5425 5426
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5427
    }
Y
Yang Yu 已提交
5428 5429 5430

    helper.append_op(
        type='nce',
C
chengduo 已提交
5431
        inputs=inputs,
Y
Yang Yu 已提交
5432 5433 5434 5435 5436 5437
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5438
    return cost / (num_neg_samples + 1)
5439 5440


C
chengduo 已提交
5441 5442
def hsigmoid(input,
             label,
5443
             num_classes,
C
chengduo 已提交
5444 5445
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5446
             name=None,
5447 5448 5449
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5450
             is_sparse=False):
W
weixing02 已提交
5451 5452
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5453
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5454
    complete binary tree, or you can use is_custom to pass your own tree to
5455
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5456 5457 5458 5459 5460 5461
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5462
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5463
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5464

5465 5466
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5467 5468 5469 5470
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5471
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5472
       related to the same batch of inputs.
5473

W
weixing02 已提交
5474
    Args:
M
minqiyang 已提交
5475
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5476 5477 5478 5479
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5480 5481
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5482
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5494
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5495
            it should be in leaf -> root order
M
minqiyang 已提交
5496 5497 5498
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5499
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5500
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5501
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5502
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5503
             of W and input will be sparse.
W
weixing02 已提交
5504 5505

    Returns:
J
JiabinYang 已提交
5506
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5507 5508 5509 5510 5511

    Examples:

        .. code-block:: python

G
guosheng 已提交
5512 5513 5514
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5515 5516 5517 5518
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5519 5520
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5521
    dim = input.shape[1]
5522
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5523 5524 5525
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5526 5527 5528 5529
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5530 5531
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5532 5533 5534
    else:
        pass

J
JiabinYang 已提交
5535
    weights = None
5536 5537 5538 5539
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5540
    if not is_custom:
J
JiabinYang 已提交
5541 5542 5543 5544 5545 5546 5547 5548
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5549
            shape=[num_classes, dim],
J
JiabinYang 已提交
5550 5551
            is_bias=False,
            dtype=input.dtype)
5552 5553 5554
    inputs = {
        "X": input,
        "W": weights,
5555
        "PathTable": path_table,
5556
        "PathCode": path_code,
5557 5558
        "Label": label
    }
W
weixing02 已提交
5559
    if helper.bias_attr:
5560
        if not is_custom:
J
JiabinYang 已提交
5561 5562
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5563
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5564 5565 5566 5567 5568 5569
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5570
                shape=[num_classes, 1],
J
JiabinYang 已提交
5571 5572 5573
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5574 5575
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5576
        inputs=inputs,
W
weixing02 已提交
5577
        outputs={"Out": out,
5578 5579 5580 5581 5582 5583 5584
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5585 5586 5587
    return out


Y
fix ci.  
ying 已提交
5588
def transpose(x, perm, name=None):
Y
ying 已提交
5589 5590 5591 5592 5593 5594 5595
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5596 5597 5598
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5599 5600 5601 5602 5603 5604 5605

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5606
            # use append_batch_size=False to avoid prepending extra
5607
            # batch size in shape
5608
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5609
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5610
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5611 5612
    """

Y
fix ci.  
ying 已提交
5613
    if len(perm) != len(x.shape):
Y
ying 已提交
5614 5615 5616
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5617 5618 5619 5620 5621 5622
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5623 5624

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5625 5626
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5627
    helper.append_op(
5628
        type='transpose2',
Y
fix ci.  
ying 已提交
5629
        inputs={'X': [x]},
5630 5631
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5632 5633
        attrs={'axis': perm})
    return out
5634 5635


5636 5637 5638 5639 5640 5641 5642
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5643
    """
5644 5645 5646 5647 5648 5649 5650
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5679 5680 5681 5682 5683 5684 5685 5686 5687
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5688 5689 5690
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5691 5692 5693 5694 5695
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5723 5724 5725
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5738
            output.dims = {8, 8}
5739

5740
            output.lod = [[4, 4]]
5741

T
Tink_Y 已提交
5742
    Examples:
5743 5744 5745

        .. code-block:: python

5746 5747
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5748 5749

    """
W
wanghaoshuang 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5760 5761 5762 5763 5764 5765 5766
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5767
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5768
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5769
    helper.append_op(
5770
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5771
    return out
5772 5773


Y
yuyang18 已提交
5774
@templatedoc()
5775
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5776 5777
    """
    ${comment}
5778 5779

    Args:
Y
yuyang18 已提交
5780
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5781 5782
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5783 5784 5785 5786 5787
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5788
        ${out_comment}.
5789 5790

    Examples:
Y
yuyang18 已提交
5791 5792 5793 5794
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5795 5796 5797 5798 5799 5800
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5801
    out = helper.create_variable_for_type_inference(dtype)
5802 5803 5804 5805 5806
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5807
    return helper.append_activation(out)
5808 5809


Y
yuyang18 已提交
5810
@templatedoc()
5811 5812
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5813 5814 5815 5816 5817 5818 5819
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5820 5821

    Args:
Y
yuyang18 已提交
5822 5823
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5824 5825

    Returns:
Y
yuyang18 已提交
5826
        ${out_comment}.
5827 5828
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5829 5830 5831 5832 5833

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5834
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5835 5836 5837 5838 5839 5840
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5841 5842


5843 5844 5845
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5846
                               ignore_index=kIgnoreIndex,
5847
                               numeric_stable_mode=True,
5848
                               return_softmax=False):
5849 5850
    """
    **Softmax With Cross Entropy Operator.**
5851

5852 5853 5854 5855
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5856

5857 5858 5859
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5860

5861 5862 5863
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5864

5865
    The equation is as follows:
5866

5867
    1) Hard label (one-hot label, so every sample has exactly one class)
5868

5869 5870 5871 5872
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5873

5874 5875 5876
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5877

5878 5879 5880 5881
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5882 5883 5884
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5885

H
haowang101779990 已提交
5886
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5887

H
haowang101779990 已提交
5888
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5889

H
haowang101779990 已提交
5890
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5891 5892 5893

    and then cross entropy loss is calculated by softmax and label.

5894 5895 5896 5897 5898 5899 5900 5901
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5902 5903
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5904
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5905 5906 5907
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5908 5909 5910
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5911
                                    stable algorithm. Default: True
5912
        return_softmax (bool): A flag indicating whether to return the softmax
5913
                               along with the cross entropy loss. Default: False
5914

5915
    Returns:
H
haowang101779990 已提交
5916 5917 5918 5919 5920
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5921 5922 5923 5924 5925 5926 5927

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5928 5929
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5930 5931
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5932 5933
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5934 5935 5936 5937 5938 5939
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5940 5941 5942 5943 5944
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5945 5946 5947 5948

    if return_softmax:
        return loss, softmax

5949 5950 5951
    return loss


5952 5953 5954
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
5955
                                       num_true=1,
5956
                                       remove_accidental_hits=True,
X
xuezhong 已提交
5957 5958 5959
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
5960
                                       seed=0):
X
xuezhong 已提交
5961 5962 5963 5964 5965
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
5966
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
5967 5968 5969 5970 5971 5972 5973 5974
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
5975
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
5976 5977 5978 5979 5980 5981 5982 5983
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
5984
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
5996
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
5997 5998 5999 6000 6001
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6002
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6003
            logits.
X
xuezhong 已提交
6004 6005 6006 6007 6008
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6009 6010 6011
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6032 6033
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6034 6035 6036 6037 6038

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6039
            'Labels': label,
X
xuezhong 已提交
6040 6041
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6042 6043 6044 6045
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6046
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6047 6048 6049
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6050
            'use_customized_samples': use_customized_samples,
6051
            'uniq': True,
X
xuezhong 已提交
6052 6053 6054 6055
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6056 6057
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6058 6059 6060 6061 6062 6063
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6064 6065
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6066
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6067
                'Label': sampled_softlabel},
X
xuezhong 已提交
6068 6069 6070
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6071
            'soft_label': True,
X
xuezhong 已提交
6072 6073 6074
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6075
    return loss / num_true
X
xuezhong 已提交
6076 6077


6078 6079
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6080 6081
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6082
    For each instance, it computes the smooth L1 loss element by element first
6083
    and then sums all the losses. So the shape of ouput Variable is
6084
    [batch_size, 1].
6085

6086 6087
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6088
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6089
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6090
            L1 loss op with same shape as :attr:`x`.
6091
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6092 6093
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6094
            by this tensor element by element.
6095
        outside_weight (Variable|None): A tensor with rank at least 2. This
6096 6097
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6098
            element by element.
6099
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6100 6101
           scalar with default value 1.0.

6102
    Returns:
6103
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6104 6105 6106 6107 6108

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6109 6110
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6111
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6112
            out = fluid.layers.smooth_l1(x=fc, y=label)
6113
    """
6114

6115
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6116 6117
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6130 6131 6132 6133


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6134
    This layer creates the one-hot representations for input indices.
6135 6136

    Args:
Y
Yibing Liu 已提交
6137 6138
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6139 6140

    Returns:
Y
Yibing Liu 已提交
6141
        Variable: The one-hot representations of input.
6142 6143

    Examples:
C
caoying03 已提交
6144
        .. code-block:: python
6145

Y
Yibing Liu 已提交
6146 6147
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6148 6149
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6150
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6151 6152 6153 6154 6155 6156
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6157 6158


Y
Yu Yang 已提交
6159
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6160
    """
Y
yi.wu 已提交
6161 6162 6163
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6164 6165 6166 6167 6168 6169

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6170 6171
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6172 6173 6174 6175 6176 6177

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6178 6179
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6180 6181
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6182 6183 6184 6185 6186
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6187
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6188
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6189 6190
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6191
            outputs={'Out': [counter]},
M
minqiyang 已提交
6192 6193
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6194 6195 6196
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6197 6198


6199
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6200
    """
C
caoying03 已提交
6201 6202
    Gives a new shape to the input Tensor without changing its data.

6203 6204 6205 6206 6207
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6208

6209
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6210

6211 6212 6213 6214
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6215
    2. 0 means the actual dimension value is going to be copied from the
6216 6217 6218 6219
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6220 6221

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6222
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6223
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6224

6225
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6226 6227
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6228 6229
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6230
    dimensions.
C
caoying03 已提交
6231

6232
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6233 6234 6235 6236
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6237 6238

    Args:
6239
        x(variable): The input tensor.
C
caoying03 已提交
6240 6241
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6242 6243 6244 6245 6246
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6247 6248
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6249 6250 6251
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6252
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6253
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6254

6255
    Returns:
G
guosheng 已提交
6256 6257 6258 6259
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6260

X
Xin Pan 已提交
6261 6262 6263
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6264 6265
    Examples:
        .. code-block:: python
G
guosheng 已提交
6266

6267
            data = fluid.layers.data(
6268
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6269
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6270
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6271 6272 6273
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6274
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6275 6276 6277 6278 6279
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6280

6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6296
    helper = LayerHelper("reshape2", **locals())
6297 6298
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6299
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6300
    helper.append_op(
6301
        type="reshape2",
X
Xin Pan 已提交
6302
        inputs=inputs,
D
dzhwinter 已提交
6303
        attrs={"shape": shape},
6304 6305
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6306

D
dzhwinter 已提交
6307
    return helper.append_activation(out)
6308

6309

6310
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6311
    """
M
minqiyang 已提交
6312 6313 6314
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6315
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6316

H
haowang101779990 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6338

Y
Yibing Liu 已提交
6339
    Args:
6340
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6341
        axes (list): List of integers, indicating the dimensions to be squeezed.
6342
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6343 6344 6345 6346 6347 6348 6349 6350

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6351
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6352 6353
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6354 6355
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6356
    helper.append_op(
6357
        type="squeeze2",
6358
        inputs={"X": input},
Y
Yibing Liu 已提交
6359
        attrs={"axes": axes},
6360 6361
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6362

6363 6364 6365
    return out


6366
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6367
    """
M
minqiyang 已提交
6368 6369 6370
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6371

M
minqiyang 已提交
6372
    For example:
H
haowang101779990 已提交
6373 6374 6375

    .. code-block:: text

M
minqiyang 已提交
6376
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6377
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6378

Y
Yibing Liu 已提交
6379
    Args:
6380
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6381
        axes (list): List of integers, indicating the dimensions to be inserted.
6382
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6383 6384 6385 6386 6387 6388 6389 6390

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6391
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6392 6393
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6394 6395
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6396
    helper.append_op(
6397
        type="unsqueeze2",
6398
        inputs={"X": input},
Y
Yibing Liu 已提交
6399
        attrs={"axes": axes},
6400 6401
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6402

6403 6404
    return out

6405

Y
yangyaming 已提交
6406
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6407
    """
Y
Yibing Liu 已提交
6408
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6409 6410 6411 6412
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6413
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6414 6415 6416 6417 6418 6419

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6420
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6421 6422 6423
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6424
            target_lod: [4, 2]
Y
yangyaming 已提交
6425 6426

            then we get a 1-level LoDTensor:
6427
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6428 6429 6430 6431 6432 6433
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6434
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6435 6436 6437 6438
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6439
                y.data = [[2, 4]]
Y
yangyaming 已提交
6440 6441 6442
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6443
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6444 6445 6446 6447 6448 6449
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6450
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6451 6452 6453 6454
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6455
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6456 6457 6458 6459
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6460
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6461 6462 6463 6464 6465
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6466
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6467
                           from :attr:`y`.
Y
yangyaming 已提交
6468
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6469
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6470 6471

    Returns:
Y
Yibing Liu 已提交
6472
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6473 6474

    Raises:
Y
Yibing Liu 已提交
6475
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6485
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6511
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6540 6541
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6554 6555 6556
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6570 6571 6572 6573


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6574
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6575
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6576

G
guosheng 已提交
6577 6578 6579 6580
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6603
                         The length of :attr:paddings must be
G
guosheng 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6614

G
guosheng 已提交
6615 6616 6617 6618 6619 6620
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6621
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6622 6623 6624 6625 6626 6627 6628
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6629 6630


C
chengduo 已提交
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6662 6663
		And
            pad_value = -1,
C
chengduo 已提交
6664

T
Tink_Y 已提交
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6700
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6710 6711 6712 6713 6714 6715 6716
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6717 6718
    called label-smoothing regularization (LSR).

6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6742
                              be :math:`(1, class\_num)`.
6743 6744
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6745
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6765
    smooth_label = helper.create_variable_for_type_inference(dtype)
6766 6767 6768 6769 6770 6771 6772
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6773 6774


W
wopeizl 已提交
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6811 6812


J
jerrywgz 已提交
6813 6814 6815 6816 6817 6818
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6819 6820
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6837 6838 6839
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6840 6841 6842 6843 6844 6845
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6846
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6887 6888
        .. code-block:: python

W
whs 已提交
6889 6890 6891 6892
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6893
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6894 6895 6896 6897 6898 6899
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6900 6901


6902 6903 6904 6905
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6906
                 resample='BILINEAR',
6907 6908
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6909
                 align_mode=1):
6910
    """
Q
qiaolongfei 已提交
6911
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6912

6913
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6914 6915 6916
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6917

6918
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6919

6920
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6921

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6932
    Align_corners and align_mode are optinal parameters,the calculation method 
6933 6934 6935 6936
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6937
    .. code-block:: text
6938

T
Tink_Y 已提交
6939
        For scale:
6940
          
T
Tink_Y 已提交
6941
            if align_corners = True && out_size > 1 :
6942

T
Tink_Y 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6954

T
Tink_Y 已提交
6955 6956
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6957

T
Tink_Y 已提交
6958 6959
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6960

T
Tink_Y 已提交
6961 6962
          else:
              align_corners = True
6963

T
Tink_Y 已提交
6964 6965
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6966

T
Tink_Y 已提交
6967 6968
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6969

T
Tink_Y 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6980

T
Tink_Y 已提交
6981 6982 6983 6984
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6985

T
Tink_Y 已提交
6986 6987
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6988 6989 6990 6991 6992 6993 6994 6995 6996

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6997
    Args:
6998
        input (Variable): The input tensor of image resize layer,
6999 7000
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7001
        out_shape(list|tuple|Variable|None): Output shape of image resize
7002 7003
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7004
        scale(float|None): The multiplier for the input height or width.
7005 7006 7007
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7008 7009
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7010
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7011
                       currently.
7012
                       Default: 'BILINEAR'
7013 7014 7015
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7016
                                :attr:`out_shape` and :attr:`scale` specifying
7017 7018 7019 7020 7021 7022 7023
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7024 7025
                                constructing stage.
                                Default: None
7026 7027 7028 7029
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7030
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7031 7032
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7033 7034

    Returns:
Q
update  
qiaolongfei 已提交
7035 7036
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7037

7038 7039 7040
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7041
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7042 7043 7044
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7045 7046
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7047

7048 7049 7050
    Examples:
        .. code-block:: python

7051
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7052
    """
7053 7054 7055 7056
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7057 7058
    if resample not in resample_methods:
        raise ValueError(
7059
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7060
        )
7061
    resample_type = resample_methods[resample]
7062 7063 7064 7065 7066 7067

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7068
    if out_shape is None and scale is None:
7069
        raise ValueError("One of out_shape and scale must not be None.")
7070
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7071
    dtype = helper.input_dtype()
7072 7073 7074 7075

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7076 7077 7078
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7079
    if out_shape is not None:
7080 7081 7082 7083
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7084
            inputs['OutSize'] = out_shape
7085 7086 7087 7088 7089 7090 7091 7092
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7093 7094 7095 7096
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7097 7098 7099 7100 7101
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7102
    out = helper.create_variable_for_type_inference(dtype)
7103
    helper.append_op(
7104
        type='{}_interp'.format(resample_type),
7105
        inputs=inputs,
7106
        outputs={"Out": out},
7107 7108 7109 7110 7111 7112 7113
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7114
    return out
F
stash  
fengjiayi 已提交
7115 7116


7117
@templatedoc(op_type="bilinear_interp")
7118 7119 7120 7121
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7122 7123
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7124
                    align_mode=1):
7125
    """
7126 7127
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7128 7129
    in priority order.

7130 7131 7132 7133
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7134 7135
    again in the other direction.

7136
    For details of bilinear interpolation, please refer to Wikipedia:
7137
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7138

T
tink2123 已提交
7139
    Align_corners and align_mode are optinal parameters,the calculation 
7140 7141 7142 7143
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7144
    .. code-block:: text
7145

T
Tink_Y 已提交
7146
        For scale:
7147
          
T
Tink_Y 已提交
7148
            if align_corners = True && out_size > 1 :
7149

T
Tink_Y 已提交
7150 7151 7152 7153 7154
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7155

T
Tink_Y 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7166 7167


T
Tink_Y 已提交
7168
          else:
T
tink2123 已提交
7169

T
Tink_Y 已提交
7170 7171
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7172

T
Tink_Y 已提交
7173 7174
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7175 7176 7177



Y
yuyang18 已提交
7178 7179 7180 7181
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7182

Y
yuyang18 已提交
7183 7184 7185 7186 7187
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7188 7189 7190
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7191
                                :attr:`out_shape` and :attr:`scale` specifying
7192 7193 7194 7195 7196 7197 7198
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7199 7200
                                constructing stage.
                                Default: None
7201 7202
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7203 7204 7205

    Returns:
        ${out_comment}.
7206 7207 7208 7209 7210

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7211 7212
    """

7213 7214
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7215 7216


7217
@templatedoc(op_type="nearest_interp")
7218 7219 7220 7221
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7222 7223
                   actual_shape=None,
                   align_corners=True):
7224
    """
7225
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7226 7227
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7228 7229
    out_shape and scale in priority order.

7230 7231
    Example:

T
Tink_Y 已提交
7232 7233 7234 7235 7236
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7237

T
Tink_Y 已提交
7238 7239 7240 7241 7242 7243 7244 7245
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7246
          
T
Tink_Y 已提交
7247 7248
          if:
              align_corners = False
7249

T
Tink_Y 已提交
7250 7251
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7252

T
Tink_Y 已提交
7253 7254
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7255

T
Tink_Y 已提交
7256 7257
          else:
              align_corners = True
7258

T
Tink_Y 已提交
7259 7260
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7261

T
Tink_Y 已提交
7262 7263
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7264 7265


7266
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7267
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7268 7269 7270 7271 7272

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7273

Y
yuyang18 已提交
7274 7275 7276 7277 7278
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7279 7280 7281
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7282
                                :attr:`out_shape` and :attr:`scale` specifying
7283 7284 7285 7286 7287 7288 7289
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7290 7291
                                constructing stage.
                                Default: None
7292
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7293 7294 7295

    Returns:
        ${out_comment}.
7296 7297 7298 7299 7300

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7301 7302
    """

7303 7304
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7305 7306 7307 7308


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7309 7310 7311
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7312 7313 7314 7315 7316 7317 7318
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7319
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7320

7321
    Returns:
Q
update  
qiaolongfei 已提交
7322
        Variable: The output is a 4-D tensor of the shape
7323
        (num_batches, channls, out_h, out_w).
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7334 7335 7336
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7337 7338 7339
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7340 7341
def gather(input, index):
    """
Q
qiaolongfei 已提交
7342 7343
    **Gather Layer**

7344
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7345 7346 7347 7348
    of X indexed by `index` and concatenate them together.

    .. math::

7349
        Out = X[Index]
W
whs 已提交
7350 7351 7352 7353 7354 7355 7356


    .. code-block:: text


                Given:

7357 7358
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7369
        input (Variable): The source input with rank>=1.
W
whs 已提交
7370 7371 7372 7373 7374 7375
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7376

W
whs 已提交
7377 7378 7379 7380 7381 7382
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7383
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7384 7385 7386 7387 7388 7389 7390 7391
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7423
    out = helper.create_variable_for_type_inference(dtype)
7424 7425 7426 7427 7428 7429 7430 7431 7432
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7433 7434 7435 7436 7437 7438 7439 7440 7441
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7442

Q
Qingsheng Li 已提交
7443
    Given the following input:
H
haowang101779990 已提交
7444

Q
Qingsheng Li 已提交
7445
    .. code-block:: text
H
haowang101779990 已提交
7446

Q
Qingsheng Li 已提交
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7459

Q
Qingsheng Li 已提交
7460
    .. code-block:: text
H
haowang101779990 已提交
7461

Q
Qingsheng Li 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7477
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7488
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7511

7512 7513 7514
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7515
    """
F
stash  
fengjiayi 已提交
7516
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7517
    dtype = x.dtype
X
Xin Pan 已提交
7518
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7519
    if seed is None:
7520
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7521
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7522
    if isinstance(seed, int):
F
fengjiayi 已提交
7523 7524 7525 7526 7527
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7528 7529 7530 7531
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7532
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7533 7534
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7535 7536
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7537
    return out
W
whs 已提交
7538 7539


7540
def log(x, name=None):
W
wanghaoshuang 已提交
7541 7542 7543 7544 7545
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7546
        Out = \\ln(x)
W
wanghaoshuang 已提交
7547 7548

    Args:
7549
        x (Variable): Input tensor.
7550 7551
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7552 7553 7554 7555 7556 7557 7558 7559

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7560
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7561 7562
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7563
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7564
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7565
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7566 7567 7568
    return out


7569
def relu(x, name=None):
W
wanghaoshuang 已提交
7570 7571
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7572
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7573 7574 7575 7576
    the tensor elementwise.

    .. math::

7577
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7578 7579

    Args:
7580
        x (Variable): The input tensor.
7581 7582
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7583 7584 7585 7586 7587 7588 7589 7590

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7591
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7592 7593
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7594
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7595
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7596 7597
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7598
    return out
7599 7600


C
chengduo 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7642 7643 7644
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7645 7646 7647 7648
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7649
    .. math::
7650

H
haowang101779990 已提交
7651
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7652

7653
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7654 7655 7656 7657 7658
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7659
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7660
                           Its shape should be the same as input.
7661
        num_classes (int): The possible number of labels.
W
whs 已提交
7662 7663

    Returns:
M
minqiyang 已提交
7664 7665
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7666
                     Three variables:
M
minqiyang 已提交
7667

H
haowang101779990 已提交
7668 7669 7670
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7671 7672 7673 7674

    Examples:

        .. code-block:: python
7675

W
whs 已提交
7676 7677 7678 7679
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7680 7681 7682
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7683 7684
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7685 7686
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7687
        outputs={
W
whs 已提交
7688 7689 7690
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7691 7692 7693
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7762
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7763 7764 7765 7766 7767

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7768
            isinstance(shape, Variable)):
7769 7770 7771 7772 7773
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7774
    out = helper.create_variable_for_type_inference(x.dtype)
7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7792 7793


W
whs 已提交
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7811

W
whs 已提交
7812
              out_shape = [2, 3, 5, 5]
7813

W
whs 已提交
7814
          Step 1:
7815

W
whs 已提交
7816 7817 7818
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7819

W
whs 已提交
7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7865
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7866
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7879

W
whs 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7891
            isinstance(out_shape, Variable)):
W
whs 已提交
7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7913 7914
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7915

7916 7917
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7918
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7919 7920 7921
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7922

7923 7924
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7925

H
haowang101779990 已提交
7926 7927
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7928 7929
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7930

H
haowang101779990 已提交
7931 7932 7933 7934 7935 7936 7937 7938
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7939 7940 7941

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7976
    out = helper.create_variable_for_type_inference("float32")
7977 7978 7979 7980 7981 7982 7983 7984

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7985 7986


M
minqiyang 已提交
7987 7988
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7989
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7990
    which compares left score and right score passed in.
M
minqiyang 已提交
7991
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7992 7993 7994

    .. math::

H
haowang101779990 已提交
7995
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7996 7997

    Args:
M
minqiyang 已提交
7998
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7999 8000
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8001
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8002 8003
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8004

M
minqiyang 已提交
8005
    Returns:
M
minqiyang 已提交
8006
       Variable: The ranking loss.
H
haowang101779990 已提交
8007

M
minqiyang 已提交
8008
    Raises:
M
minqiyang 已提交
8009
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8010

M
minqiyang 已提交
8011
    Examples:
H
haowang101779990 已提交
8012

M
minqiyang 已提交
8013
        .. code-block:: python
H
haowang101779990 已提交
8014

M
minqiyang 已提交
8015 8016 8017 8018 8019
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8020
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8021 8022 8023 8024 8025 8026
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8027 8028
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8052
        .. code-block:: text
W
whs 已提交
8053

T
Tink_Y 已提交
8054
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8055

T
Tink_Y 已提交
8056 8057
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8058

T
Tink_Y 已提交
8059
	      Case 0:
M
minqiyang 已提交
8060

T
Tink_Y 已提交
8061 8062 8063
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8064

T
Tink_Y 已提交
8065 8066 8067
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8068

T
Tink_Y 已提交
8069
	      Case 1:
M
minqiyang 已提交
8070

T
Tink_Y 已提交
8071 8072
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8073

T
Tink_Y 已提交
8074 8075 8076
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8077

T
Tink_Y 已提交
8078
	      Case 2:
M
minqiyang 已提交
8079

T
Tink_Y 已提交
8080 8081
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8082

T
Tink_Y 已提交
8083 8084 8085
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8086 8087


W
whs 已提交
8088 8089
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8090
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8114
    out = helper.create_variable_for_type_inference(dtype)
8115 8116 8117 8118 8119 8120 8121 8122 8123
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8124
    helper.append_op(
8125
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8126 8127 8128 8129

    return out


8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8142 8143 8144 8145 8146

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8147 8148
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8149 8150
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8151
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8172 8173 8174 8175 8176

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8177 8178
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8179 8180
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8181
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8202 8203 8204 8205 8206

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8207 8208
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8209 8210
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8211
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8233 8234 8235 8236 8237

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8238
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8239
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8240 8241
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8242
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8265 8266 8267 8268 8269

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8270 8271
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8272 8273
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8274
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8296 8297 8298 8299 8300

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8301 8302
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8303 8304
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8305
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8306 8307 8308 8309 8310 8311 8312 8313
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8314 8315 8316 8317
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8318 8319
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8320 8321 8322

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8323
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8324
          weight (alpha).
J
jerrywgz 已提交
8325
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8326 8327 8328
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8329
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8330
          will be named automatically.
J
jerrywgz 已提交
8331 8332 8333 8334 8335 8336 8337 8338

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8339
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8353
        attr=helper.param_attr,
J
jerrywgz 已提交
8354 8355 8356 8357
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8358
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8359 8360 8361 8362 8363 8364 8365 8366 8367
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8378
    Returns:
8379
        output(${out_type}): ${out_comment}
8380 8381 8382

    Examples:

8383
    .. code-block:: python
8384

H
haowang101779990 已提交
8385 8386
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8387 8388
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8389
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8408
    Returns:
8409
        output(${out_type}): ${out_comment}
8410 8411 8412 8413 8414

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8415 8416
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8417 8418
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8419
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8437
    Returns:
8438
        output(${out_type}): ${out_comment}
8439 8440 8441 8442 8443

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8444 8445
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8446 8447
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8448
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8449 8450 8451 8452 8453 8454 8455 8456
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8457 8458 8459 8460
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8461

H
haowang101779990 已提交
8462
    For Example:
M
minqiyang 已提交
8463

H
haowang101779990 已提交
8464
    .. code-block:: text
8465

H
haowang101779990 已提交
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8487 8488 8489

    Args:
        x (Variable): A tensor of rank >= axis.
8490 8491
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8492 8493 8494 8495 8496 8497 8498 8499
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8500 8501 8502
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8503 8504 8505 8506
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8507
        ValueError: If axis is not in range [0, rank(x)].
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8524 8525
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8526
    helper.append_op(
8527
        type='flatten2',
8528
        inputs={"X": x},
8529 8530
        outputs={'Out': out,
                 'XShape': x_shape},
8531 8532
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8533 8534


C
chenweihang 已提交
8535
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8536
    """
C
chenweihang 已提交
8537
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8538
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8539 8540
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8541

H
haowang101779990 已提交
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8559 8560

    Args:
C
chenweihang 已提交
8561 8562 8563
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8575 8576
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8577 8578 8579 8580 8581 8582
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8583
    return out
8584

8585

S
sneaxiy 已提交
8586 8587 8588 8589 8590 8591 8592 8593 8594
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8595

S
sneaxiy 已提交
8596
    .. math::
8597

S
sneaxiy 已提交
8598 8599 8600
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8601
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8602 8603 8604 8605
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8606 8607 8608
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8609 8610
    Returns:
        Variable: The output sequence mask.
8611

S
sneaxiy 已提交
8612 8613
    """

Q
qingqing01 已提交
8614
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8615
    if name is None:
X
Xin Pan 已提交
8616
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8617
    else:
X
Xin Pan 已提交
8618
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8619

Q
qingqing01 已提交
8620 8621 8622
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8623 8624
        outputs={'Y': out},
        attrs={
8625
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8626 8627 8628
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8629 8630


X
Xin Pan 已提交
8631
def stack(x, axis=0):
S
sneaxiy 已提交
8632 8633 8634 8635
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8636 8637 8638 8639 8640 8641 8642

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8643
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8644
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8645

C
chengduozh 已提交
8646 8647
    For Example:

C
chengduozh 已提交
8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8686
    Args:
8687
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8688
        axis (int|None): The axis along which all inputs are stacked.
8689

S
sneaxiy 已提交
8690 8691
    Returns:
        Variable: The stacked variable.
8692

S
sneaxiy 已提交
8693 8694
    """

X
Xin Pan 已提交
8695 8696 8697 8698 8699 8700
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8701
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8702
    helper.append_op(
S
sneaxiy 已提交
8703 8704
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8705

X
Xin Pan 已提交
8706
    return out
D
dzhwinter 已提交
8707 8708 8709 8710 8711 8712 8713


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8714

D
dzhwinter 已提交
8715 8716 8717
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8718
    raised.
D
dzhwinter 已提交
8719 8720

    Args:
M
minqiyang 已提交
8721
        x (Variable): Input variable.
D
dzhwinter 已提交
8722 8723
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8724

D
dzhwinter 已提交
8725 8726
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8727

D
dzhwinter 已提交
8728 8729 8730 8731 8732 8733 8734 8735 8736 8737
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8738
    for _ in range(num):
X
Xin Pan 已提交
8739
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8740 8741 8742 8743 8744 8745 8746 8747

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8760

W
whs 已提交
8761 8762 8763 8764
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8765

W
whs 已提交
8766
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8767

W
whs 已提交
8768
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8769

W
whs 已提交
8770 8771 8772 8773
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8774

W
whs 已提交
8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8791
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8792 8793 8794 8795 8796 8797
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8798 8799


G
fix  
gongweibao 已提交
8800 8801 8802
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8803
@templatedoc()
G
fix  
gongweibao 已提交
8804 8805 8806 8807 8808 8809 8810 8811 8812
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8813
    ${comment}
G
fix  
gongweibao 已提交
8814 8815

    Args:
G
gongweibao 已提交
8816 8817 8818
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8819
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8820 8821 8822
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8823 8824
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8825
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8826

8827 8828 8829 8830 8831
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8832 8833 8834
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8835
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8852 8853


G
gongweibao 已提交
8854
@templatedoc()
X
Xin Pan 已提交
8855
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8856
    """
G
gongweibao 已提交
8857
    ${comment}
G
fix  
gongweibao 已提交
8858 8859

    Args:
G
gongweibao 已提交
8860 8861 8862 8863
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8864 8865 8866
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8867
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8868

8869 8870 8871 8872
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8873 8874 8875
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8876
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8887
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8888 8889 8890 8891 8892
        })

    return out


G
gongweibao 已提交
8893
@templatedoc()
G
fix  
gongweibao 已提交
8894
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8895
    """
G
gongweibao 已提交
8896
    ${comment}
G
fix  
gongweibao 已提交
8897 8898

    Args:
G
gongweibao 已提交
8899 8900 8901 8902
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8903
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8904 8905

    Returns:
G
gongweibao 已提交
8906
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8907

8908 8909 8910 8911 8912 8913 8914 8915 8916 8917
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8918 8919 8920
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8921
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8933
@templatedoc()
G
fix  
gongweibao 已提交
8934 8935 8936 8937 8938 8939 8940 8941 8942
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8943
    ${comment}
G
fix  
gongweibao 已提交
8944 8945

    Args:
G
gongweibao 已提交
8946 8947
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8948
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8949 8950 8951 8952
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8953
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8954 8955

    Returns:
G
gongweibao 已提交
8956
        out (Variable): ${out_comment}
8957 8958 8959 8960 8961 8962 8963 8964

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8965 8966 8967
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8968
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8987
@templatedoc()
X
Xin Pan 已提交
8988
def sum(x):
G
fix  
gongweibao 已提交
8989
    """
G
gongweibao 已提交
8990
    ${comment}
G
fix  
gongweibao 已提交
8991 8992

    Args:
G
gongweibao 已提交
8993
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8994 8995

    Returns:
G
gongweibao 已提交
8996
        out (Variable): ${out_comment}
8997 8998 8999 9000 9001 9002

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9003 9004 9005
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9006 9007
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9008 9009 9010 9011
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9012
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9013 9014 9015 9016

    return out


G
gongweibao 已提交
9017
@templatedoc()
G
fix  
gongweibao 已提交
9018 9019
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9020
    ${comment}
G
fix  
gongweibao 已提交
9021 9022

    Args:
G
gongweibao 已提交
9023 9024 9025 9026
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9027 9028

    Returns:
G
gongweibao 已提交
9029
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9030

9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9042 9043 9044
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9045 9046
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9060 9061
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9062
    Get the shape of the input.
G
fix  
gongweibao 已提交
9063 9064

    Args:
C
chengduozh 已提交
9065
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9066 9067

    Returns:
C
fix doc  
chengduozh 已提交
9068
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9069

9070 9071 9072 9073 9074 9075
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9076 9077 9078
    """

    helper = LayerHelper('shape', **locals())
9079
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9080
    helper.append_op(
G
fix  
gongweibao 已提交
9081
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9082 9083

    return out
G
merge  
gongweibao 已提交
9084 9085


S
sneaxiy 已提交
9086 9087 9088 9089 9090 9091 9092 9093
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9094 9095
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9096
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9097 9098 9099
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9100

S
sneaxiy 已提交
9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9112
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9113 9114 9115 9116 9117 9118 9119 9120
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9121
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9122
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9123 9124 9125 9126 9127 9128

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9129
    if name is None:
X
Xin Pan 已提交
9130
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9131 9132 9133
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9134 9135 9136 9137 9138 9139 9140 9141 9142 9143

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9144
    return helper.append_activation(out)
S
sneaxiy 已提交
9145 9146


X
Xin Pan 已提交
9147
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9148 9149 9150
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9151
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9152 9153 9154
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9155
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9156 9157 9158
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9159
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9160 9161 9162
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9163
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9164 9165 9166
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9167
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9168 9169 9170
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9171
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9183 9184
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9185
        ])
M
minqiyang 已提交
9186 9187


9188
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9189 9190
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9191 9192
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9193 9194 9195

    if out is None:
        if name is None:
X
Xin Pan 已提交
9196
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9212
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9224 9225 9226 9227 9228 9229 9230 9231 9232

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9233 9234 9235 9236 9237 9238 9239
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9240
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9252 9253 9254 9255 9256 9257 9258 9259 9260

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9261 9262 9263 9264 9265 9266 9267
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9268
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9280 9281 9282 9283 9284 9285 9286 9287 9288

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9289 9290 9291 9292 9293 9294 9295
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9296
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9297 9298 9299 9300 9301 9302 9303 9304 9305 9306
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9307 9308 9309 9310 9311 9312 9313

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9314 9315 9316 9317
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9333 9334 9335 9336 9337 9338 9339

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9340 9341 9342 9343 9344
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9345 9346 9347 9348
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9372 9373 9374 9375 9376 9377 9378

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9379 9380 9381 9382 9383
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9384 9385 9386 9387
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9388 9389 9390 9391 9392 9393 9394 9395

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9414
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9415 9416 9417 9418 9419 9420 9421 9422 9423 9424
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9467
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9468 9469 9470 9471 9472 9473 9474 9475 9476
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9477 9478
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9479 9480 9481 9482 9483 9484
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9485 9486 9487
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9488 9489
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9490 9491 9492 9493 9494 9495
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9496
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9497
        name(basestring|None): Name of the output.
9498 9499
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9500 9501 9502

    Returns:
        out(${out_type}): ${out_comment}
9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9517 9518 9519 9520 9521
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9522
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9523 9524 9525 9526 9527 9528 9529 9530
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9531 9532
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9553
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9554 9555 9556 9557 9558 9559 9560 9561 9562 9563
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9564 9565


J
JiabinYang 已提交
9566
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9567
    """
J
JiabinYang 已提交
9568
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9569 9570 9571

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9572
    The attr blocksize indicates the input block size.
9573 9574

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9575
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9576 9577

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9578
    (but keeping all data)
J
JiabinYang 已提交
9579

J
JiabinYang 已提交
9580
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9581
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9582 9583 9584 9585 9586
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9587
    Args:
J
JiabinYang 已提交
9588
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9589
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9590 9591

    Returns:
J
JiabinYang 已提交
9592
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9593 9594

    Raises:
J
JiabinYang 已提交
9595
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9596 9597 9598 9599 9600 9601

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9602
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9603
                x=data, blocksize=2)
J
JiabinYang 已提交
9604 9605
    """

J
JiabinYang 已提交
9606
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9607

J
JiabinYang 已提交
9608 9609
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9610 9611

    if name is None:
J
JiabinYang 已提交
9612 9613
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9614 9615 9616 9617 9618
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9619
        type="space_to_depth",
J
JiabinYang 已提交
9620
        inputs={"X": x},
J
JiabinYang 已提交
9621
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9622
        outputs={"Out": out})
J
JiabinYang 已提交
9623 9624
    return out

J
JiabinYang 已提交
9625

S
sneaxiy 已提交
9626 9627
@templatedoc()
def sequence_reverse(x, name=None):
9628
    """
S
sneaxiy 已提交
9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9640
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9641 9642 9643 9644 9645 9646 9647 9648 9649 9650
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9651 9652


9653 9654 9655 9656 9657 9658
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9659

9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9679
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9692 9693


B
barrierye 已提交
9694
def similarity_focus(input, axis, indexes, name=None):
9695
    """
B
barrierye 已提交
9696
    SimilarityFocus Operator
B
barrierye 已提交
9697 9698

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9699

9700 9701 9702
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9703
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9704 9705 9706 9707 9708 9709 9710
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9711
       each index.
B
barrierye 已提交
9712 9713 9714 9715
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9765
    Args:
9766
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9767
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9768
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9769
            1, 2 or 3.
B
barrierye 已提交
9770
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9771 9772

    Returns:
H
haowang101779990 已提交
9773 9774
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9775

B
barrierye 已提交
9776 9777
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9778

B
barrierye 已提交
9779
            data = fluid.layers.data(
B
barrierye 已提交
9780 9781
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9782

B
barrierye 已提交
9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9795 9796 9797 9798 9799
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9800 9801 9802 9803 9804 9805 9806
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9807 9808


M
minqiyang 已提交
9809 9810
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9811 9812
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9813 9814
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9853
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9854
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9855 9856 9857 9858 9859 9860

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9861

M
minqiyang 已提交
9862 9863 9864
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9865 9866
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9867 9868
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9869 9870 9871 9872 9873 9874 9875
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9876 9877


D
dengkaipeng 已提交
9878
@templatedoc()
9879 9880
def grid_sampler(x, grid, name=None):
    """
9881
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9882
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9883 9884 9885 9886
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9887
    interpolation value of 4 nearest corner points.
9888

H
haowang101779990 已提交
9889
    .. code-block:: text
9890

H
haowang101779990 已提交
9891 9892
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9893

H
haowang101779990 已提交
9894 9895
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9896

H
haowang101779990 已提交
9897 9898 9899
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9900

H
haowang101779990 已提交
9901 9902 9903 9904 9905 9906 9907 9908 9909
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9910

H
haowang101779990 已提交
9911 9912 9913 9914
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9915

H
haowang101779990 已提交
9916 9917 9918 9919
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9920

H
haowang101779990 已提交
9921 9922 9923 9924
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9925

H
haowang101779990 已提交
9926 9927
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9928 9929

    Args:
9930 9931 9932
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9933 9934

    Returns:
H
haowang101779990 已提交
9935
        Variable: Output of shape [N, C, H, W] data samples input X
9936 9937
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9938 9939 9940 9941 9942 9943 9944 9945
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9946

D
dengkaipeng 已提交
9947 9948 9949 9950 9951 9952 9953 9954 9955
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9956
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9957 9958
    ipts = {'X': x, 'Grid': grid}

9959
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9960 9961 9962
    return out


G
gmcather 已提交
9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10029
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10030 10031 10032 10033 10034 10035 10036
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10037

H
heqiaozhi 已提交
10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10052 10053 10054 10055
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10056
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10057 10058
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10059
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10060 10061

    .. math::
H
haowang101779990 已提交
10062 10063 10064
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10065 10066

    Where:
H
haowang101779990 已提交
10067 10068
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10083

G
gmcather 已提交
10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10100 10101 10102 10103 10104 10105 10106 10107 10108 10109


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10110
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10111

Q
Qiao Longfei 已提交
10112
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10113 10114 10115
    For example:

    .. math::
H
haowang101779990 已提交
10116
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10117

Q
Qiao Longfei 已提交
10118
    In this formula:
10119 10120
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10121
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10122
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10123 10124 10125
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10126 10127
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10128 10129 10130
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10131
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10132
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10133
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10134 10135 10136 10137
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10138
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10139 10140 10141 10142

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10143
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10144 10145
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10146
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10147 10148 10149 10150

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10151
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10192 10193


S
shippingwang 已提交
10194
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10195 10196
    """
    **Shuffle Channel Operator**
10197

S
shippingwang 已提交
10198 10199 10200 10201 10202 10203
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10204
    
S
shippingwang 已提交
10205
    .. code-block:: text
10206

S
shippingwang 已提交
10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10235
    Args: 
S
shippingwang 已提交
10236 10237
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10238 10239

    Returns:
S
shippingwang 已提交
10240 10241
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10242 10243

    Raises:
S
shippingwang 已提交
10244
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10245 10246 10247

    Examples:
        .. code-block:: python
10248 10249

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10250
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10251 10252 10253
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10254
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10255 10256 10257 10258 10259 10260 10261 10262 10263

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10264
    return out
S
Add  
shippingwang 已提交
10265 10266


S
sneaxiy 已提交
10267
class PyFuncRegistry(object):
S
sneaxiy 已提交
10268 10269 10270
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10271
        if func is None or not callable(func):
S
sneaxiy 已提交
10272 10273 10274
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10275
        # find named args using reflection
S
sneaxiy 已提交
10276 10277 10278 10279 10280 10281 10282
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10283 10284 10285
        '''
        Why record self here?

M
minqiyang 已提交
10286 10287
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10288
           to find the registered function corresponding
M
minqiyang 已提交
10289
           to :code:`idx`.
S
sneaxiy 已提交
10290

M
minqiyang 已提交
10291 10292
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10293
           whose reference count is 1 would cause
M
minqiyang 已提交
10294
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10295 10296
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10297
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10312 10313 10314 10315 10316 10317 10318 10319 10320
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10321

S
sneaxiy 已提交
10322 10323
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10324 10325

        ret = []
S
sneaxiy 已提交
10326 10327 10328
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10329 10330
                continue

S
sneaxiy 已提交
10331 10332
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10333

S
sneaxiy 已提交
10334 10335 10336
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10337

S
sneaxiy 已提交
10338
        return tuple(ret)
S
sneaxiy 已提交
10339 10340


S
sneaxiy 已提交
10341 10342 10343 10344
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10345

S
sneaxiy 已提交
10346 10347 10348 10349 10350 10351 10352 10353
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10354
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10355

S
sneaxiy 已提交
10356 10357
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10358 10359 10360 10361
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10362
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10363
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10364 10365
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10366 10367 10368 10369 10370
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10371
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10372
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10373
                                       None means no backward. Default None.
S
sneaxiy 已提交
10374
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10375
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10376 10377
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10378
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10379 10380 10381

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10382 10383

    Examples:
M
minqiyang 已提交
10384

S
sneaxiy 已提交
10385 10386 10387 10388 10389
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10390
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10391 10392
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10393
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10394 10395 10396
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10397
        >>>
S
sneaxiy 已提交
10398 10399 10400 10401 10402
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10403
        >>>     print(x)
S
sneaxiy 已提交
10404 10405 10406 10407 10408 10409
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10410
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10411 10412
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10413 10414
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10415 10416 10417 10418 10419 10420 10421 10422
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10423
    """
S
sneaxiy 已提交
10424
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10425 10426 10427
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10428
        x = [x]
S
sneaxiy 已提交
10429 10430
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10431

S
sneaxiy 已提交
10432 10433 10434
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10435
        out_list = [out]
S
sneaxiy 已提交
10436
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10437
        out_list = out
S
sneaxiy 已提交
10438 10439 10440
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10441

S
sneaxiy 已提交
10442 10443
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10444
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10445 10446

    for each_out in out_list:
S
sneaxiy 已提交
10447 10448
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10449 10450
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10451

S
sneaxiy 已提交
10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10467 10468 10469 10470

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10471 10472
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10473 10474 10475
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10476
        })
S
sneaxiy 已提交
10477
    return out
S
sneaxiy 已提交
10478 10479 10480


# For debug usage
S
sneaxiy 已提交
10481 10482 10483 10484
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10537

M
minqiyang 已提交
10538

M
minqiyang 已提交
10539
def huber_loss(input, label, delta):
10540
    """
M
minqiyang 已提交
10541 10542 10543
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10544 10545 10546 10547

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10548
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10549 10550 10551 10552

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10553
        huber\_loss = 0.5 * (label - input) * (label - input)
10554 10555 10556 10557 10558 10559 10560


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10561
        delta (float): The parameter of huber loss, which controls
10562 10563 10564
                       the range of outliers

    Returns:
M
minqiyang 已提交
10565
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10566 10567 10568 10569 10570

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10571
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10572
    """
M
minqiyang 已提交
10573
    helper = LayerHelper('huber_loss', **locals())
10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10655 10656 10657 10658 10659


def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10660

C
ceci3 已提交
10661
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10662 10663

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10664
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10665 10666 10667 10668 10669
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10670 10671
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10672 10673 10674 10675 10676 10677 10678

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10679 10680 10681 10682 10683 10684 10685 10686
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

    from .control_flow import equal
    from .ops import square

    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
    softmax_value = softmax(similarity_matrix)
    cross_entropy = -1 * reduce_sum(labels * log(softmax_value), 0)
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss