nn.py 400.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
27
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
76 77
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
78 79
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
80
    'sequence_slice',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
93
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
94 95 96 97 98
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
99
    'group_norm',
D
dengkaipeng 已提交
100
    'spectral_norm',
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
114
    'roi_align',
X
Xin Pan 已提交
115 116 117 118
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
119
    'resize_nearest',
X
Xin Pan 已提交
120 121 122 123 124 125
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
126
    'selu',
X
Xin Pan 已提交
127 128 129
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
130
    'margin_rank_loss',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
164
    'rank',
X
Xin Pan 已提交
165 166 167 168 169 170 171 172 173 174
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
175
    'space_to_depth',
W
whs 已提交
176
    'affine_grid',
S
sneaxiy 已提交
177
    'sequence_reverse',
178
    'affine_channel',
B
barrierye 已提交
179
    'similarity_focus',
M
minqiyang 已提交
180
    'hash',
D
dengkaipeng 已提交
181
    'grid_sampler',
G
gmcather 已提交
182 183
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
184
    'bilinear_tensor_product',
C
chengduo 已提交
185 186
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
187
    'lstm',
S
shippingwang 已提交
188
    'shuffle_channel',
189
    'temporal_shift',
S
sneaxiy 已提交
190
    'py_func',
191
    'psroi_pool',
H
heqiaozhi 已提交
192
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
193
    'huber_loss',
D
dengkaipeng 已提交
194
    'kldiv_loss',
Z
zhaozhehao 已提交
195
    'tree_conv',
C
ceci3 已提交
196
    'npair_loss',
R
ruri 已提交
197
    'pixel_shuffle',
198
    'fsp_matrix',
Y
Yu Yang 已提交
199 200
]

J
jerrywgz 已提交
201 202
kIgnoreIndex = -100

Y
Yu Yang 已提交
203 204 205 206 207 208 209

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
210
       is_test=False,
211
       name=None):
Y
Yu Yang 已提交
212
    """
213
    **Fully Connected Layer**
Y
Yu Yang 已提交
214

215
    This function creates a fully connected layer in the network. It can take
216
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
217
    Args in detail). It creates a variable called weights for each input tensor,
218 219 220 221
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
222
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
223 224
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
225

226
    When the input is single tensor:
C
caoying03 已提交
227

228 229 230 231 232
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
233 234 235

    .. math::

236
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
237 238 239

    In the above equation:

240 241 242
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
243
    * :math:`b`: The bias parameter created by this layer (if needed).
244
    * :math:`Act`: The activation function.
C
caoying03 已提交
245
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
246

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
265
    Args:
R
ranqiu 已提交
266 267 268 269 270 271 272 273 274 275
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
276
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
277 278 279 280
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
281 282
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
283
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
284
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
285
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
286

287
    Returns:
F
fengjiayi 已提交
288
        Variable: The transformation result.
289 290

    Raises:
C
caoying03 已提交
291
        ValueError: If rank of the input tensor is less than 2.
292 293 294 295

    Examples:
        .. code-block:: python

296
          # when input is single tensor
F
fengjiayi 已提交
297
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
298
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
299 300 301 302 303

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
304
    """
C
caoying03 已提交
305
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
306 307 308 309

    dtype = helper.input_dtype()

    mul_results = []
310 311
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
312 313 314
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
315

Y
Yu Yang 已提交
316
        w = helper.create_parameter(
317
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
318
        tmp = helper.create_variable_for_type_inference(dtype)
319
        helper.append_op(
320 321 322
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
323
            outputs={"Out": tmp},
M
mozga-intel 已提交
324 325
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
326 327 328 329
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
330
    else:
X
Xin Pan 已提交
331
        pre_bias = helper.create_variable_for_type_inference(dtype)
332
        helper.append_op(
333 334 335
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
336
            attrs={"use_mkldnn": False})
337 338 339 340
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
341 342


343 344 345
def embedding(input,
              size,
              is_sparse=False,
346
              is_distributed=False,
347 348 349
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
350
    """
351 352
    **Embedding Layer**

353
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
354 355
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
356 357 358

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
359 360

    Args:
361 362 363 364 365
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
366
        is_distributed(bool): Whether to run lookup table from remote parameter server.
367 368
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
369
            with zeros whenever lookup encounters it in :attr:`input`. If
370
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
371 372
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
373
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
374

375 376 377
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
378

379 380
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
381

C
chengduoZH 已提交
382
          dict_size = len(dataset.ids)
383
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
384
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
385 386 387
    """

    helper = LayerHelper('embedding', **locals())
388
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
389 390
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
391 392
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
393
    tmp = helper.create_variable_for_type_inference(dtype)
394 395
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
396 397 398 399 400
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
401 402 403
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
404
            'remote_prefetch': remote_prefetch,
405 406
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
407 408 409
    return tmp


W
wopeizl 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
426

W
wopeizl 已提交
427 428 429 430 431 432 433 434 435 436 437
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
438

W
wopeizl 已提交
439 440 441 442
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
443

W
wopeizl 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
487
    assert in_dygraph_mode(
488
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
532 533


P
phlrain 已提交
534 535 536 537 538 539
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
540
         dropout_prob=0.0,
P
phlrain 已提交
541 542 543 544 545
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
546
    """
P
phlrain 已提交
547
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
548 549

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
550
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
551 552
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
553
    .. math::
M
minqiyang 已提交
554 555 556 557 558 559 560

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
561
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
562 563 564 565

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
566 567

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
568 569 570 571 572 573
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
574 575 576
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
577
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
578

M
minqiyang 已提交
579
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
580 581 582 583 584
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
585
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
586 587 588 589 590
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
591
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
592 593
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
594 595
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
596 597 598 599 600 601
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
602
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
603

L
liuhongyu 已提交
604 605

    Returns:
M
minqiyang 已提交
606 607
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
608
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
609

H
haowang101779990 已提交
610 611 612 613
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
614
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
615 616
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
617
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
633
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
634 635 636 637 638 639
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
640 641 642
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
702 703 704 705 706 707 708 709 710 711
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
712
                  proj_activation='tanh',
713
                  dtype='float32',
X
xuezhong 已提交
714 715 716 717 718
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
719 720 721
    """
    **Dynamic LSTMP Layer**

722 723 724 725 726 727
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
728 729 730 731 732

    The formula is as follows:

    .. math::

733
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
734

735
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
736

737
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
738

739
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
740

741
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
742

743
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
744

745
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
746

Y
Yibing Liu 已提交
747 748 749 750 751 752
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
753
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
754
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
755
          bias vector).
Y
Yibing Liu 已提交
756 757 758
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
759
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
760
    * :math:`h`: The hidden state.
761
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
762 763
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
764
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
765
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
766
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
767 768
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
769 770 771 772

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
773

Y
Yibing Liu 已提交
774 775 776 777 778 779 780 781 782 783 784 785
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
786
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
787 788
                               hidden-hidden weight and projection weight.

789 790
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
791 792
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
793 794
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
795
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
796 797 798 799 800

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
801
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
802 803 804 805 806 807
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
808
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
809 810 811
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
812
                                - The shape is (1 x 7D).
C
chengduo 已提交
813 814 815 816 817

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
827
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
828 829
                              default "tanh".
        proj_activation(str): The activation for projection output.
830
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
831
                              default "tanh".
Y
Yibing Liu 已提交
832
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
833 834
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
835 836 837 838 839 840 841 842 843 844 845
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
846 847

    Returns:
848 849 850 851
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
852 853

    Examples:
854

Y
Yibing Liu 已提交
855 856
        .. code-block:: python

857 858 859 860
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
861
            hidden_dim, proj_dim = 512, 256
862
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
863
                                     act=None, bias_attr=None)
864 865 866
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
867 868 869 870
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
871
    """
872

L
lujun 已提交
873
    assert in_dygraph_mode(
874 875
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
876
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
877
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
878
    size = size // 4
Y
Yibing Liu 已提交
879 880 881 882 883 884 885 886 887 888
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
889 890 891 892 893 894
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
910

X
xuezhong 已提交
911 912 913 914 915
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
916 917
    helper.append_op(
        type='lstmp',
918
        inputs=inputs,
Y
Yibing Liu 已提交
919 920 921 922 923 924 925 926 927
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
928 929
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
930 931 932 933 934 935 936 937 938
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
939 940 941 942 943 944 945
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
946 947
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
948
    """
949
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
950

951 952 953
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
954

G
guosheng 已提交
955 956 957 958 959 960 961 962 963
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
964

G
guosheng 已提交
965
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
966

Q
Qiao Longfei 已提交
967 968 969

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
970 971 972 973 974 975 976 977 978 979 980 981
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
982
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
983 984
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
985 986 987 988
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
989
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
990 991

    Args:
992 993
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
994
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
995
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
996 997
            is the hidden size.
        size(int): The dimension of the gru cell.
998
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
999 1000
            hidden-hidden weight matrix. Note:

1001
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1002
              :math:`D` is the hidden size.
1003
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1004
              The first part are weights of the update gate and reset gate with
1005
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1006
              candidate hidden state with shape :math:`(D \\times D)`.
1007 1008 1009 1010 1011

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1012
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1013
            the bias in the update gate, reset gate and candidate calculations.
1014 1015 1016
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1017 1018
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1019
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1020 1021 1022
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1023
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1024
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1025 1026 1027 1028
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1029 1030

    Returns:
G
guosheng 已提交
1031
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1032
            and sequence length is the same with the input.
1033

G
guosheng 已提交
1034
    Examples:
1035

G
guosheng 已提交
1036 1037
        .. code-block:: python

1038 1039 1040 1041
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1042
            hidden_dim = 512
1043
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1044
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1045 1046
    """

L
lujun 已提交
1047
    assert in_dygraph_mode(
1048 1049
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1050 1051 1052 1053 1054 1055 1056
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1057
    batch_size = input.shape[0]
G
guosheng 已提交
1058
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1059
    if h_0:
G
guosheng 已提交
1060
        assert h_0.shape == (
Y
Yancey 已提交
1061 1062 1063
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1064

X
Xin Pan 已提交
1065 1066 1067 1068
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1082 1083
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1084 1085 1086 1087
        })
    return hidden


Y
Yu Yang 已提交
1088 1089 1090
def gru_unit(input,
             hidden,
             size,
1091 1092
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1093
             activation='tanh',
Q
Qiao Longfei 已提交
1094 1095
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1096
    """
1097 1098 1099
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1100
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1101
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1102

1103 1104
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1105

1106
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1107

1108
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1125 1126

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1127 1128 1129
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1130 1131
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1132 1133
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1134 1135 1136
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1137 1138 1139

    Args:
        input (Variable): The fc transformed input value of current step.
1140
        hidden (Variable): The hidden value of gru unit from previous step.
1141
        size (integer): The input dimension value.
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1156
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1157
            the bias in the update gate, reset gate and candidate calculations.
1158 1159 1160
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1161 1162
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1163 1164 1165 1166
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1167

1168 1169 1170 1171 1172 1173
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1174

1175
             # assuming we have x_t_data and prev_hidden of size=10
1176
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1177 1178
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1191
    size = size // 3
Y
Yu Yang 已提交
1192 1193

    # create weight
1194 1195
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1196

X
Xin Pan 已提交
1197 1198 1199
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1200
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1201
    # create bias
1202
    if helper.bias_attr:
Y
Yu Yang 已提交
1203 1204 1205
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1206
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1207 1208 1209

    helper.append_op(
        type='gru_unit',
1210
        inputs=inputs,
Y
Yu Yang 已提交
1211 1212 1213 1214 1215 1216
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1217 1218
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1219 1220 1221 1222 1223
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1224
@templatedoc()
1225
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1226 1227 1228 1229 1230 1231 1232
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1233
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1234 1235 1236 1237
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1238 1239 1240
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1241 1242

    """
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1249 1250 1251 1252 1253 1254 1255 1256
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1272 1273 1274 1275
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1276

W
wopeizl 已提交
1277 1278
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1279

W
wopeizl 已提交
1280
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1281

W
wopeizl 已提交
1282
        label(${label_type}): ${label_comment}
1283

W
wopeizl 已提交
1284 1285
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1286

W
wopeizl 已提交
1287 1288
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1289

W
wopeizl 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1300
                "Transition": transition,
W
wopeizl 已提交
1301 1302
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1303

W
wopeizl 已提交
1304
    return viterbi_path
Y
Yu Yang 已提交
1305 1306


Y
yi.wu 已提交
1307
@templatedoc()
F
fengjiayi 已提交
1308
def cos_sim(X, Y):
Y
Yu Yang 已提交
1309
    """
Y
yi.wu 已提交
1310 1311 1312
    ${comment}

    Args:
1313 1314
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1315

Y
yi.wu 已提交
1316
    Returns:
1317
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1318
    """
F
fengjiayi 已提交
1319
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1320 1321 1322
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1333 1334 1335 1336 1337
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1338
            dropout_implementation="downgrade_in_infer"):
1339 1340 1341 1342 1343
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1344
    training. The dropout operator randomly sets (according to the given dropout
1345 1346 1347
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1348 1349
    dropout op can be removed from the program to make the program more efficient.

1350
    Args:
1351 1352
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1353 1354 1355 1356 1357 1358 1359
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1360 1361
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1362
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1363 1364

                                           - train: out = input * mask
C
ceci3 已提交
1365
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1366 1367 1368

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1369
                                        2. upscale_in_train, upscale the outcome at training time
1370

H
haowang101779990 已提交
1371 1372
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1373

H
haowang101779990 已提交
1374 1375
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1376

M
minqiyang 已提交
1377

1378
    Returns:
1379
        Variable: A tensor variable is the shape with `x`.
1380 1381

    Examples:
1382

1383 1384
        .. code-block:: python

1385 1386
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1387 1388
    """

F
fengjiayi 已提交
1389
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1390 1391 1392
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1393 1394 1395 1396

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1397 1398 1399 1400 1401
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1402 1403 1404 1405
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1406 1407
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1408
        })
1409 1410 1411
    return out


J
jerrywgz 已提交
1412
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1413
    """
Y
Yibing Liu 已提交
1414 1415
    **Cross Entropy Layer**

1416 1417 1418
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1419 1420

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1421
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1422

Y
Yibing Liu 已提交
1423
        .. math::
Y
yangyaming 已提交
1424

Y
Yibing Liu 已提交
1425 1426 1427
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1428 1429
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1430 1431 1432 1433 1434

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1435
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1436 1437 1438
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1439 1440
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1441
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1442

Y
Yibing Liu 已提交
1443
    Args:
Y
yangyaming 已提交
1444
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1445 1446 1447 1448
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1449
        label (Variable|list): the ground truth which is a 2-D tensor. When
1450 1451 1452 1453
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1454
        soft_label (bool): a flag indicating whether to
1455
                                           interpretate the given labels as soft
1456
                                           labels. Default: `False`.
M
minqiyang 已提交
1457 1458
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1459
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1460 1461 1462 1463 1464

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1465 1466 1467
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1468

H
haowang101779990 已提交
1469 1470
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1471

H
haowang101779990 已提交
1472 1473
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1474 1475 1476 1477 1478 1479

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1480
    """
S
sneaxiy 已提交
1481 1482
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1483
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1484
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1485 1486 1487 1488 1489
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1490 1491
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1492 1493 1494
    return out


S
sneaxiy 已提交
1495 1496 1497 1498
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1499
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1500 1501 1502 1503 1504
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1505
                 'MatchX': [match_x],
S
sneaxiy 已提交
1506 1507 1508 1509 1510
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1511
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1512 1513 1514
    """
    Bayesian Personalized Ranking Loss Operator.

1515
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1516 1517 1518 1519 1520 1521
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1522 1523 1524 1525 1526 1527
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1528 1529
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1530 1531 1532
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1533 1534 1535
    Examples:
        .. code-block:: python

1536
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1537
    """
1538 1539 1540 1541 1542 1543

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1544
                'Label': [label]},
1545 1546 1547 1548
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1549
def square_error_cost(input, label):
Y
Yu Yang 已提交
1550
    """
1551 1552
    **Square error cost layer**

1553 1554
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1569 1570
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1571 1572

    Returns:
G
guosheng 已提交
1573
        Variable: The tensor variable storing the element-wise squared error \
1574
                  difference of input and label.
1575 1576 1577 1578 1579 1580 1581 1582

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1583
    """
F
fengjiayi 已提交
1584
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1585
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1586 1587 1588 1589 1590 1591
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1592
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1593
    helper.append_op(
F
fengjiayi 已提交
1594 1595
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1596 1597 1598
    return square_out


Y
yi.wu 已提交
1599
@templatedoc()
Y
Yu Yang 已提交
1600 1601 1602 1603
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1604
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1605
    """
Y
yi.wu 已提交
1606
    **Chunk Evaluator**
Y
yi.wu 已提交
1607

Y
yangyaming 已提交
1608
    This function computes and outputs the precision, recall and
1609
    F1-score of chunk detection.
Y
yi.wu 已提交
1610

M
minqiyang 已提交
1611
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1612
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1613 1614 1615 1616 1617 1618

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1619

Y
yi.wu 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1645

Y
yi.wu 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1670
    Args:
1671 1672 1673 1674 1675
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1676

Y
yi.wu 已提交
1677
    Returns:
Y
update  
yi.wu 已提交
1678 1679 1680
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1681

Y
yi.wu 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1694
    """
F
fengjiayi 已提交
1695
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1696 1697

    # prepare output
X
Xin Pan 已提交
1698 1699 1700 1701 1702 1703 1704
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1705 1706 1707 1708 1709 1710 1711 1712

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1713 1714 1715 1716
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1717 1718 1719
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1720 1721
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1722
        })
1723 1724
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1725 1726


1727
@templatedoc()
Y
Yu Yang 已提交
1728 1729 1730 1731 1732 1733 1734
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1735 1736
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1737 1738 1739 1740
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1741 1742 1743 1744 1745 1746 1747

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1761

1762 1763
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1764 1765
    """

L
lujun 已提交
1766
    assert not in_dygraph_mode(), (
1767
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1768 1769 1770 1771 1772
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1773
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1784
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1785 1786 1787 1788 1789 1790
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1791
def sequence_softmax(input, use_cudnn=False, name=None):
1792 1793 1794
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1795
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1812 1813 1814
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1827
    assert not in_dygraph_mode(), (
1828
        "sequence layer is not supported in dygraph mode yet.")
1829 1830
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1831
    softmax_out = helper.create_variable_for_type_inference(dtype)
1832 1833 1834 1835 1836 1837 1838 1839
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1840
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1841
    """
1842
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1843
    has the same shape as the input.
Q
qiaolongfei 已提交
1844

D
dengkaipeng 已提交
1845
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1846
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1847
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1848 1849 1850
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1851
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1852
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1853 1854 1855 1856 1857 1858 1859

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1860
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1861 1862 1863 1864 1865 1866 1867 1868

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1869 1870
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1871 1872
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1873 1874 1875
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1885
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1886
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1887 1888
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1889 1890

    """
1891 1892
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1893
    softmax_out = helper.create_variable_for_type_inference(dtype)
1894 1895 1896 1897
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1898 1899
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1900 1901 1902
    return softmax_out


Y
Yu Yang 已提交
1903 1904 1905
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1906 1907
           stride=1,
           padding=0,
1908
           dilation=1,
Y
Yu Yang 已提交
1909 1910 1911
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1912
           use_cudnn=True,
1913 1914
           act=None,
           name=None):
Y
Yu Yang 已提交
1915
    """
C
chengduoZH 已提交
1916
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1917 1918
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1919
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1920 1921 1922 1923 1924 1925 1926
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1927 1928 1929
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1930

1931
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1932

C
chengduoZH 已提交
1933 1934
    .. math::

C
refine  
chengduoZH 已提交
1935
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1936

T
tensor-tang 已提交
1937
    Where:
C
chengduoZH 已提交
1938

1939 1940 1941 1942 1943
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1944
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1945 1946 1947

    Example:

1948 1949
        - Input:

W
weixing02 已提交
1950
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1951

W
weixing02 已提交
1952
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1953

1954
        - Output:
T
tensor-tang 已提交
1955

W
weixing02 已提交
1956
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1957

C
chengduoZH 已提交
1958
        Where
1959 1960

        .. math::
C
chengduoZH 已提交
1961

W
weixing02 已提交
1962 1963
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1964 1965

    Args:
1966
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1967
        num_filters(int): The number of filter. It is as same as the output
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1985 1986 1987 1988 1989
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1990
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1991 1992 1993 1994 1995
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1996 1997
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1998 1999
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2000
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2001
            will be named automatically. Default: None
C
chengduoZH 已提交
2002 2003

    Returns:
G
guosheng 已提交
2004
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2005 2006
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2007
    Raises:
2008 2009
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2010

C
chengduoZH 已提交
2011 2012 2013
    Examples:
        .. code-block:: python

2014 2015
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2016 2017 2018
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2019
    assert param_attr is not False, "param_attr should not be False here."
2020
    l_type = 'conv2d'
X
xzl 已提交
2021 2022
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2023
        l_type = 'depthwise_conv2d'
2024 2025 2026 2027

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2028 2029 2030 2031 2032
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2033
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2034

C
chengduoZH 已提交
2035 2036 2037
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2038
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2039

C
chengduoZH 已提交
2040 2041
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2042 2043

    input_shape = input.shape
M
minqiyang 已提交
2044
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2045 2046

    def _get_default_param_initializer():
C
chengduo 已提交
2047 2048
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2049 2050 2051 2052 2053 2054 2055 2056
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2057
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2073
    helper.append_op(
2074
        type=l_type,
Y
Yu Yang 已提交
2075 2076 2077 2078 2079
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2080 2081 2082
        attrs={
            'strides': stride,
            'paddings': padding,
2083
            'dilations': dilation,
C
chengduoZH 已提交
2084
            'groups': groups,
2085
            'use_cudnn': use_cudnn,
2086
            'use_mkldnn': False,
2087
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2088
        })
Y
Yu Yang 已提交
2089 2090 2091 2092 2093 2094

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2112 2113 2114 2115 2116 2117
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2127 2128
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2129 2130 2131
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2132
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2158
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2159 2160
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2161
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2162 2163
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2164
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2165 2166
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2167
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2168 2169 2170 2171 2172 2173
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2184 2185
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2186 2187
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2188
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2189
            will be named automatically. Default: None.
C
chengduoZH 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2202 2203
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2204 2205 2206
    """

    l_type = 'conv3d'
C
chengduo 已提交
2207
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2218
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2232 2233 2234
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2235 2236 2237 2238 2239 2240 2241 2242
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2243
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2258
            'use_mkldnn': False
C
chengduoZH 已提交
2259 2260
        })

2261
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2262 2263 2264 2265

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2266
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2267
    """
Y
yangyaming 已提交
2268 2269 2270
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2282
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2283 2284 2285 2286 2287
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2288
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2289 2290 2291 2292 2293 2294 2295

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2296 2297
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2298

L
Luo Tao 已提交
2299 2300
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2301
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2302
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2303
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2304 2305 2306 2307 2308 2309 2310

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2311

Y
yangyaming 已提交
2312
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2313 2314 2315 2316 2317
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2318 2319
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2320
    """
L
lujun 已提交
2321
    assert not in_dygraph_mode(), (
2322
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2323
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2324
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2325 2326
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2327 2328 2329 2330 2331 2332

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2333 2334
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2335

Y
yangyaming 已提交
2336 2337 2338 2339 2340
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2341 2342 2343
    return pool_out


C
add doc  
chengduoZH 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2362
    assert not in_dygraph_mode(), (
2363
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2364
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2365
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2366 2367 2368 2369 2370
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2371
def sequence_first_step(input):
L
Luo Tao 已提交
2372
    """
L
Luo Tao 已提交
2373
    This function gets the first step of sequence.
L
Luo Tao 已提交
2374 2375 2376 2377

    .. code-block:: text

       x is a 1-level LoDTensor:
2378
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2379 2380 2381 2382 2383
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2384
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2385
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2386

L
Luo Tao 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2396

Y
yangyaming 已提交
2397
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2398 2399 2400
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2401 2402 2403
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2404
def sequence_last_step(input):
L
Luo Tao 已提交
2405
    """
L
Luo Tao 已提交
2406
    This function gets the last step of sequence.
L
Luo Tao 已提交
2407 2408 2409 2410

    .. code-block:: text

       x is a 1-level LoDTensor:
2411
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2412 2413 2414 2415 2416
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2417
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2418
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2419

L
Luo Tao 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2429

Y
yangyaming 已提交
2430
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2431 2432 2433
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2434 2435 2436
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2437 2438 2439 2440
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2441
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2442 2443 2444 2445 2446
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2447

H
haowang101779990 已提交
2448
              - Case:
Y
Yibing Liu 已提交
2449

2450
            Given the input Variable **input**:
2451

2452 2453 2454
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2455

2456
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2457

2458
            the output Variable will be
2459

2460 2461 2462
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2463

M
minqiyang 已提交
2464
    Note:
H
haowang101779990 已提交
2465
          The first dimension size of **input**, **offset** and **length**
2466
          should be equal. The **offset** should start from 0.
2467

Y
Yibing Liu 已提交
2468
    Args:
2469
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2470
                         sequences.
Y
Yibing Liu 已提交
2471 2472 2473 2474 2475 2476
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2477
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2488
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2489 2490
                                                   length=length)
    """
L
lujun 已提交
2491
    assert not in_dygraph_mode(), (
2492
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2493 2494
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2495
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2510
@templatedoc()
Y
Yu Yang 已提交
2511
def pool2d(input,
C
chengduoZH 已提交
2512 2513
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2514 2515
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2516
           global_pooling=False,
C
chengduoZH 已提交
2517
           use_cudnn=True,
2518
           ceil_mode=False,
2519 2520
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2521
    """
F
fengjiayi 已提交
2522
    ${comment}
2523 2524

    Args:
2525 2526 2527
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2528
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2529
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2530 2531
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2532
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2533 2534 2535 2536 2537 2538
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2539 2540 2541
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2542
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2543
                        layer will be named automatically.
2544
        exclusive (bool): Whether to exclude padding points in average pooling
2545
                          mode, default is true
F
fengjiayi 已提交
2546

2547
    Returns:
F
fengjiayi 已提交
2548
        Variable: The pooling result.
F
fengjiayi 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2561
          pool2d = fluid.layers.pool2d(
2562 2563 2564 2565
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2566
                            global_pooling=False)
Y
Yu Yang 已提交
2567 2568 2569 2570 2571
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2572

C
chengduoZH 已提交
2573 2574 2575 2576 2577
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2578 2579 2580 2581
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2582 2583
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2584

C
Add doc  
chengduoZH 已提交
2585
    l_type = 'pool2d'
2586 2587

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2588
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2589
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2590 2591

    helper.append_op(
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2603 2604
            "use_mkldnn": False,
            "exclusive": exclusive,
2605 2606 2607 2608 2609
        })

    return pool_out


D
dengkaipeng 已提交
2610
@templatedoc()
2611 2612 2613 2614 2615 2616 2617 2618
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2619 2620
           name=None,
           exclusive=True):
2621
    """
2622
    ${comment}
2623 2624

    Args:
D
dengkaipeng 已提交
2625 2626 2627 2628 2629
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2630 2631 2632 2633 2634
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2635 2636 2637 2638 2639 2640 2641
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2642
        exclusive (bool): Whether to exclude padding points in average pooling
2643
                          mode, default is true
2644

2645
    Returns:
2646
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2660 2661 2662 2663 2664
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2665

C
chengduoZH 已提交
2666 2667 2668 2669 2670
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2671 2672 2673
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2674

C
chengduoZH 已提交
2675 2676
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2677

2678 2679
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2680
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2681
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2682 2683

    helper.append_op(
2684
        type=l_type,
Y
Yu Yang 已提交
2685 2686 2687 2688 2689 2690 2691
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2692
            "paddings": pool_padding,
2693
            "use_cudnn": use_cudnn,
2694
            "ceil_mode": ceil_mode,
2695 2696
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2697 2698 2699 2700 2701
        })

    return pool_out


2702 2703 2704 2705 2706 2707 2708
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2709 2710 2711 2712 2713 2714 2715
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2730 2731 2732 2733 2734 2735 2736 2737 2738

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2739 2740
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2755
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2756
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2757
          # of input data into m * n grids averagely and performs poolings in each
2758 2759
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2760
          #
2761 2762 2763 2764 2765 2766 2767 2768
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2769 2770
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2771
          pool_out = fluid.layers.adaptive_pool2d(
2772 2773
                            input=data,
                            pool_size=[3, 3],
2774
                            pool_type='avg')
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2785
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2811
    return (pool_out, mask) if require_index else pool_out
2812 2813 2814 2815 2816 2817 2818 2819 2820


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2821 2822 2823 2824 2825 2826 2827
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2846 2847 2848

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2849 2850 2851
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2852
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2853
            it must contain three integers, (Depth, Height, Width).
2854
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2855 2856
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2871 2872
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2873
          # of input data into l * m * n grids averagely and performs poolings in each
2874 2875
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2876
          #
2877 2878 2879 2880 2881 2882 2883 2884 2885
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2886
          #                 output[:, :, i, j, k] =
2887 2888
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2889 2890
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2891
          pool_out, mask = fluid.layers.adaptive_pool3d(
2892
                            input=data,
D
dengkaipeng 已提交
2893
                            pool_size=[3, 3, 3],
2894
                            pool_type='avg')
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2905
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2931
    return (pool_out, mask) if require_index else pool_out
2932 2933


Y
Yu Yang 已提交
2934 2935 2936 2937 2938 2939 2940
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2941
               data_layout='NCHW',
Y
Yang Yang 已提交
2942
               in_place=False,
2943 2944
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2945
               moving_variance_name=None,
2946
               do_model_average_for_mean_and_var=False,
2947 2948
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2949
    """
Q
qiaolongfei 已提交
2950 2951 2952 2953
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2954

Q
qiaolongfei 已提交
2955
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2956

Q
qiaolongfei 已提交
2957 2958
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2959 2960 2961
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2988
    Args:
Q
qingqing01 已提交
2989
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2990
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3000 3001 3002 3003 3004 3005 3006 3007
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3008
        data_layout(string, default NCHW): NCHW|NHWC
3009
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3010 3011 3012 3013
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3014
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3015
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3016 3017 3018 3019 3020
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3021 3022

    Returns:
Q
qiaolongfei 已提交
3023
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3024 3025 3026 3027 3028 3029 3030

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3031
    """
C
chengduo 已提交
3032
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3033 3034 3035
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3036 3037 3038 3039
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3058
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3059

3060 3061
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3062 3063 3064
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3065
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3066
        shape=param_shape,
W
Wu Yi 已提交
3067
        dtype=dtype)
3068 3069 3070 3071 3072 3073
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3074
            trainable=False,
W
wanghaoshuang 已提交
3075
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3076
        shape=param_shape,
W
Wu Yi 已提交
3077
        dtype=dtype)
3078
    variance.stop_gradient = True
Y
Yu Yang 已提交
3079 3080 3081 3082 3083 3084

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3085 3086 3087 3088
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3089

X
Xin Pan 已提交
3090 3091
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3109 3110 3111 3112
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3113
            "data_layout": data_layout,
X
Xin Pan 已提交
3114
            "use_mkldnn": False,
3115 3116
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3117
        })
Y
Yu Yang 已提交
3118 3119 3120 3121

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3241
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3242 3243 3244 3245

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3246
@templatedoc()
G
guosheng 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3257
    ${comment}
G
guosheng 已提交
3258 3259 3260

    The formula is as follows:

Y
yuyang18 已提交
3261
    ..  math::
G
guosheng 已提交
3262 3263 3264 3265 3266 3267 3268

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3269 3270 3271 3272 3273 3274 3275 3276
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3277

G
guosheng 已提交
3278 3279
    Args:
        input(Variable): The input tensor variable.
3280
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3281
            normalization. Default True.
3282
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3283 3284
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3285
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3286
            Default 1.
3287
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3288
            division by zero. Default 1e-05.
G
guosheng 已提交
3289
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3290 3291
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3292 3293
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3294
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3295 3296
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3297
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3298
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3299
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3300 3301 3302
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3303 3304

    Returns:
Y
yuyang18 已提交
3305
        ${y_comment}
G
guosheng 已提交
3306 3307 3308

    Examples:

Y
yuyang18 已提交
3309 3310 3311
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3312
    """
L
lujun 已提交
3313
    assert in_dygraph_mode(
L
lujun 已提交
3314
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3329
    if shift:
G
guosheng 已提交
3330 3331 3332 3333 3334 3335
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3336 3337 3338 3339 3340
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3368
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3416 3417
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3435
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3436 3437 3438
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3439
    This layer calculates the spectral normalization value of weight parameters of
3440
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3441
    Parameters. Calculations are showed as follows.
3442

D
dengkaipeng 已提交
3443 3444 3445
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3446
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3459
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3460 3461 3462 3463

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3464

D
dengkaipeng 已提交
3465
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3466 3467
                

D
dengkaipeng 已提交
3468 3469 3470 3471
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3472 3473 3474
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3475 3476 3477
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3478
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3479 3480 3481 3482 3483 3484 3485 3486

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3487
    dtype = weight.dtype
D
dengkaipeng 已提交
3488 3489 3490

    # create intput and parameters
    inputs = {'Weight': weight}
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3509 3510

    # create output
3511
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3512 3513

    helper.append_op(
3514
        type="spectral_norm",
D
Dun 已提交
3515
        inputs=inputs,
3516 3517 3518 3519 3520 3521
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3522

3523
    return out
D
Dun 已提交
3524 3525


Y
Yu Yang 已提交
3526 3527 3528 3529
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3530 3531 3532
                     padding=0,
                     stride=1,
                     dilation=1,
3533
                     groups=None,
C
caoying03 已提交
3534
                     param_attr=None,
3535
                     bias_attr=None,
C
chengduoZH 已提交
3536
                     use_cudnn=True,
3537
                     act=None,
C
caoying03 已提交
3538
                     name=None):
Y
Yu Yang 已提交
3539
    """
3540 3541 3542 3543 3544 3545 3546 3547
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3548 3549
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3550 3551 3552
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3553 3554 3555 3556 3557

    For each input :math:`X`, the equation is:

    .. math::

3558
        Out = \sigma (W \\ast X + b)
3559

3560
    Where:
3561 3562 3563

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3564 3565 3566 3567
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3568

3569 3570 3571 3572
    Example:

        - Input:

3573
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3574

3575
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3576 3577 3578

        - Output:

3579
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3580 3581

        Where
Y
Yu Yang 已提交
3582

3583 3584
        .. math::

3585 3586
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3587 3588
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3589 3590

    Args:
3591 3592 3593 3594
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3595 3596 3597 3598
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3627
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3628 3629 3630
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3631
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3632
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3633 3634

    Returns:
3635
        Variable: The tensor variable storing the convolution transpose result.
3636 3637

    Raises:
3638 3639
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3640 3641 3642 3643

    Examples:
       .. code-block:: python

3644 3645
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3646
    """
C
chengduo 已提交
3647
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3648 3649 3650 3651 3652 3653 3654 3655
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3656 3657 3658
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3659 3660 3661
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3662

C
chengduoZH 已提交
3663 3664
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3665

Y
Yu Yang 已提交
3666 3667 3668 3669 3670
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3671

Y
Yu Yang 已提交
3672 3673
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3674

C
chengduoZH 已提交
3675
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3676
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3677
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3678
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3679
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3680 3681 3682
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3683

3684 3685 3686 3687 3688 3689 3690
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3691
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3692
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3693

Y
Yu Yang 已提交
3694 3695 3696
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3697
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3698
    helper.append_op(
3699
        type=op_type,
Y
Yu Yang 已提交
3700 3701
        inputs={'Input': [input],
                'Filter': [img_filter]},
3702
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3703
        attrs={
3704
            'output_size': output_size,
3705 3706 3707 3708 3709
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3710 3711
        })

3712 3713 3714
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3715 3716


3717
def conv3d_transpose(input,
Y
Yu Yang 已提交
3718 3719 3720
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3721 3722 3723
                     padding=0,
                     stride=1,
                     dilation=1,
3724
                     groups=None,
C
caoying03 已提交
3725
                     param_attr=None,
3726
                     bias_attr=None,
C
chengduoZH 已提交
3727
                     use_cudnn=True,
3728
                     act=None,
C
caoying03 已提交
3729
                     name=None):
Y
Yu Yang 已提交
3730
    """
3731
    **Convlution3D transpose layer**
3732

3733
    The convolution3D transpose layer calculates the output based on the input,
3734
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3735 3736 3737 3738 3739 3740
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3741 3742 3743
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3744 3745 3746 3747 3748

    For each input :math:`X`, the equation is:

    .. math::

3749
        Out = \sigma (W \\ast X + b)
3750 3751 3752

    In the above equation:

3753 3754
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3755 3756 3757 3758
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3759

3760 3761 3762 3763
    Example:

        - Input:

3764
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3765

3766
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3767 3768 3769

        - Output:

3770
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3771 3772

        Where
Y
Yu Yang 已提交
3773

3774 3775
        .. math::

3776 3777 3778
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3779 3780

    Args:
3781
        input(Variable): The input image with [N, C, D, H, W] format.
3782 3783 3784
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3785
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3786 3787
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3788
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3789 3790 3791
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3792 3793
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3794
        stride(int|tuple): The stride size. If stride is a tuple, it must
3795 3796
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3797
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3798 3799 3800
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3801 3802 3803 3804 3805
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3815 3816
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3817 3818
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3819 3820
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3821 3822

    Returns:
3823
        Variable: The tensor variable storing the convolution transpose result.
3824 3825

    Raises:
3826 3827
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3828 3829 3830 3831

    Examples:
       .. code-block:: python

3832 3833
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3834
    """
C
chengduo 已提交
3835
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3836 3837
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3838
    if not isinstance(input, Variable):
3839
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3840 3841
    input_channel = input.shape[1]

3842 3843 3844
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3845

C
chengduoZH 已提交
3846 3847 3848
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3849 3850 3851 3852 3853 3854
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3855 3856 3857
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3858

3859
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3860
                         padding[0] - 1) // dilation[0] + 1
3861
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3862
                         padding[1] - 1) // dilation[1] + 1
3863
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3864
                         padding[2] - 1) // dilation[2] + 1
3865
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3866
    else:
3867 3868
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3869

3870
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3871
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3872 3873 3874
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3875
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3876
    helper.append_op(
3877
        type=l_type,
Y
Yu Yang 已提交
3878 3879
        inputs={'Input': [input],
                'Filter': [img_filter]},
3880
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3881 3882 3883 3884
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3885
            'groups': groups,
C
chengduoZH 已提交
3886 3887
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3888

3889 3890
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3891
    return out
Y
yangyaming 已提交
3892 3893


Y
yangyaming 已提交
3894
def sequence_expand(x, y, ref_level=-1, name=None):
3895
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3896 3897 3898 3899
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3900 3901 3902 3903 3904

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3905
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3906
                x.data = [[a], [b], [c], [d]]
3907 3908 3909
                x.dims = [4, 1]

            y is a LoDTensor:
3910 3911
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3912

Y
yangyaming 已提交
3913
            ref_level: 0
3914

Y
yangyaming 已提交
3915
            then output is a 1-level LoDTensor:
3916
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3917
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3918 3919 3920 3921
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3922
                x.data = [[a], [b], [c]]
3923 3924 3925
                x.dims = [3, 1]

            y is a LoDTensor:
3926
                y.lod = [[2, 0, 3]]
3927

Y
yangyaming 已提交
3928
            ref_level: -1
3929

Y
yangyaming 已提交
3930 3931 3932
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3933 3934 3935
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3936 3937
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3938
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3939
                        will be named automatically.
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3950
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3951
    """
L
lujun 已提交
3952
    assert not in_dygraph_mode(), (
3953
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3954
    helper = LayerHelper('sequence_expand', input=x, **locals())
3955
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3956
    tmp = helper.create_variable_for_type_inference(dtype)
3957
    helper.append_op(
Y
yangyaming 已提交
3958 3959 3960 3961 3962
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3963
    return tmp
3964 3965


C
chengduo 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4020
    assert not in_dygraph_mode(), (
4021
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4022 4023
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4024
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4025 4026 4027 4028 4029 4030 4031 4032
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4033
@templatedoc()
4034
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4035 4036 4037 4038 4039
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4040 4041 4042
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4043
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4044 4045 4046 4047
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4048 4049 4050
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4051

F
fengjiayi 已提交
4052
    Returns:
M
minqiyang 已提交
4053
        Variable: The padded sequence batch and the original lengths before
4054
                  padding. All sequences has the same length.
M
minqiyang 已提交
4055

F
fengjiayi 已提交
4056 4057 4058 4059 4060 4061 4062
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4063
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4064
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4065 4066 4067
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4068
    assert not in_dygraph_mode(), (
4069
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4070 4071
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4072 4073
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4074 4075 4076 4077

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4078 4079 4080 4081 4082 4083
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4084 4085
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4086
        attrs={'padded_length': maxlen})
4087
    return out, length
F
fengjiayi 已提交
4088 4089


4090
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4091
    """
4092
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4093

4094 4095
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4105 4106 4107
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4108
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4109 4110 4111 4112 4113 4114

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4115
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4116 4117 4118 4119 4120 4121

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4122 4123
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4136
    assert not in_dygraph_mode(), (
4137
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4138 4139
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4140
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4152 4153 4154 4155 4156 4157 4158
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4159
                is_accumulated=True,
4160 4161
                name=None,
                return_parent_idx=False):
4162
    """
4163 4164
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4165 4166 4167

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4168 4169

    This layer does the search in beams for one time step. Specifically, it
4170 4171 4172
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4184 4185 4186 4187

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4188

4189
    Args:
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4213 4214
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4215 4216
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4217 4218 4219 4220
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4221

4222
    Returns:
4223 4224 4225 4226
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4227 4228 4229 4230

    Examples:
        .. code-block:: python

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4248
    helper = LayerHelper('beam_search', **locals())
4249 4250 4251 4252 4253 4254
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4255

X
Xin Pan 已提交
4256 4257 4258
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4259 4260 4261 4262 4263
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4264 4265 4266

    helper.append_op(
        type='beam_search',
4267
        inputs=inputs,
Q
Qiao Longfei 已提交
4268 4269 4270
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4271
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4272 4273 4274 4275 4276 4277
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4278
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4279
        })
4280 4281 4282 4283
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4284 4285


4286 4287 4288 4289 4290 4291 4292
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4293

4294 4295 4296 4297 4298 4299 4300 4301 4302
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4303

4304 4305 4306 4307 4308 4309
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4310

4311 4312
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4313

4314 4315 4316 4317 4318 4319
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4320 4321
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4337 4338 4339 4340
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4341
              param_attr=None,
C
caoying03 已提交
4342 4343
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4344 4345 4346 4347
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4348
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4349

4350
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4351

4352
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4353

4354
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4355 4356 4357

            h_t & = o_t tanh(c_t)

4358 4359 4360 4361 4362 4363
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4364 4365 4366

        .. math::

4367
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4368 4369 4370 4371 4372 4373 4374 4375

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4376
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4377 4378

    Args:
Y
yangyaming 已提交
4379 4380 4381 4382 4383 4384
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4385
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4398 4399
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4400 4401

    Returns:
Y
yangyaming 已提交
4402
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4403 4404

    Raises:
4405 4406 4407 4408
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4409 4410 4411 4412 4413 4414

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4415
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4416
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4417
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4434
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4435 4436 4437 4438
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4439 4440
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4441 4442 4443
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4444
    size = cell_t_prev.shape[1]
4445
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4446 4447
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4448
                param_attr=param_attr,
4449
                bias_attr=bias_attr)
Y
yangyaming 已提交
4450
    dtype = x_t.dtype
X
Xin Pan 已提交
4451 4452
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4462
    return h, c
G
guosheng 已提交
4463 4464


C
caoying03 已提交
4465
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4466
    """
Y
yangyaming 已提交
4467
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4468 4469 4470

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4471
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4472 4473
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4474 4475
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4476
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4477
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4478
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4479 4480
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4481 4482 4483

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4484

G
guosheng 已提交
4485 4486 4487 4488 4489 4490
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4491
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4492 4493 4494 4495
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4496 4497 4498 4499

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4500
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4501 4502 4503
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4504 4505
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4506
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4507 4508
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4509 4510 4511 4512 4513
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4514
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4515 4516 4517 4518
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4519 4520


C
caoying03 已提交
4521
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4522
    """
Y
Yibing Liu 已提交
4523
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4524 4525 4526

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4527 4528 4529
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4530
            must be in the range :math:`[-rank(input), rank(input))`. If
4531
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4532
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4533 4534
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4535
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4536
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4537
                       will be named automatically.
G
guosheng 已提交
4538 4539

    Returns:
Y
Yibing Liu 已提交
4540
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4541

G
guosheng 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4552 4553
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4554 4555 4556 4557 4558 4559 4560

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4561 4562
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4563
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4564 4565
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4566 4567 4568 4569 4570
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4571
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4572 4573 4574 4575
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4576 4577


C
caoying03 已提交
4578
def reduce_max(input, dim=None, keep_dim=False, name=None):
4579
    """
Y
yangyaming 已提交
4580
    Computes the maximum of tensor elements over the given dimension.
4581 4582 4583

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4584
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4585 4586 4587
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4588
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4589 4590
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4591
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4592 4593
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4594 4595 4596

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4609 4610 4611 4612 4613 4614 4615

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4616 4617
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4618
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4619 4620
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4621 4622 4623 4624 4625
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4626
            'dim': dim if dim != None else [0],
4627 4628 4629 4630 4631 4632
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4633
def reduce_min(input, dim=None, keep_dim=False, name=None):
4634
    """
Y
yangyaming 已提交
4635
    Computes the minimum of tensor elements over the given dimension.
4636 4637 4638

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4639
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4640 4641 4642
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4643
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4644 4645
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4646
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4647 4648
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4649 4650 4651

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4652

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4664 4665 4666 4667 4668 4669 4670

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4671 4672
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4673
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4674 4675
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4676 4677 4678 4679 4680
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4681
            'dim': dim if dim != None else [0],
4682 4683 4684 4685
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4686 4687


4688 4689 4690 4691 4692 4693
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4694
        dim (list|int|None): The dimensions along which the product is performed. If
4695 4696
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4697 4698
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4699 4700 4701
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4702
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4703
            layer will be named automatically.
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4718
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4719
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4720 4721 4722 4723 4724 4725 4726

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4727 4728
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4729
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4730 4731
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4732 4733 4734 4735 4736
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4737
            'dim': dim if dim != None else [0],
4738 4739 4740 4741 4742 4743
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4744 4745
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4746
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4766
        
Z
zhoukunsheng 已提交
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4796
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4816

Z
zhoukunsheng 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4839 4840 4841 4842 4843
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4844
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4845
    """
C
caoying03 已提交
4846
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4847 4848 4849

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4850 4851 4852 4853 4854
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4855
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4856
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4857
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4858 4859
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4860 4861

    Returns:
D
dzhwinter 已提交
4862
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4872 4873
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4889
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4912
    .. math::
4913 4914

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4915 4916 4917 4918 4919

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4920
        x(Variable|list): The input tensor to l2_normalize layer.
4921
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4922 4923
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4924
        epsilon(float): The epsilon value is used to avoid division by zero, \
4925
            the defalut value is 1e-12.
4926
        name(str|None): A name for this layer(optional). If set None, the layer \
4927
            will be named automatically.
C
caoying03 已提交
4928 4929

    Returns:
4930
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4931 4932

    Examples:
4933

C
caoying03 已提交
4934 4935
        .. code-block:: python

4936 4937 4938 4939
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4940 4941
    """

F
fengjiayi 已提交
4942 4943
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4944 4945
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4946 4947
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4948
    helper.append_op(
4949 4950 4951 4952
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4953
        attrs={
4954 4955
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4956 4957
        })
    return out
4958 4959


S
sneaxiy 已提交
4960
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4961
    """
Y
ying 已提交
4962 4963 4964 4965
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4966

C
chengduoZH 已提交
4967
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4968
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4969

4970 4971 4972 4973 4974
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4975
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4976

C
chengduoZH 已提交
4977
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4978
      performs in the following way.
G
guosheng 已提交
4979

4980
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4981
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4982
        last two dimensions and a batched matrix multiply supporting broadcast
4983
        applies on the two tensors.
G
guosheng 已提交
4984

Y
ying 已提交
4985 4986
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4987
    removed after matrix multiplication.
G
guosheng 已提交
4988 4989 4990

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4991 4992 4993
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4994
        alpha (float): The scale of output. Default 1.0.
4995
        name(str|None): A name for this layer(optional). If set None, the layer
4996
            will be named automatically.
G
guosheng 已提交
4997 4998

    Returns:
4999
        Variable: The product Tensor variable.
G
guosheng 已提交
5000

G
guosheng 已提交
5001 5002 5003
    Examples:
        .. code-block:: python

5004
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5005 5006
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5007

5008 5009
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5010

5011 5012
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5013

5014 5015
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5016 5017 5018 5019

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5020 5021
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5022

Y
ying 已提交
5023
            # x: [M], y: [N]
5024
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5025
    """
Y
ying 已提交
5026 5027 5028 5029 5030 5031 5032

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5033
            y_shape = y_shape + [1]
Y
ying 已提交
5034 5035 5036 5037 5038 5039 5040

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5041 5042
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5043

C
chengduo 已提交
5044
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5045
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5046 5047 5048
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5049
                if dim_x != y_shape[i]:
C
chengduo 已提交
5050 5051
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5052 5053 5054

    __check_input(x, y)

5055
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5056
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5057
    helper.append_op(
5058 5059 5060 5061
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5062 5063 5064
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5065
            'alpha': float(alpha),
S
sneaxiy 已提交
5066
        })
5067
    return out
5068 5069


5070
def topk(input, k, name=None):
Q
qingqing01 已提交
5071 5072 5073 5074
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5075
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5076 5077 5078 5079 5080 5081
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5103 5104 5105
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5106
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5107
                 of input.
5108
        name(str|None): A name for this layer(optional). If set None, the layer
5109
                       will be named automatically.
F
fengjiayi 已提交
5110
                       Default: None
Q
qingqing01 已提交
5111 5112

    Returns:
5113 5114 5115
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5116
        within the last dimension of input.
Q
qingqing01 已提交
5117

F
fengjiayi 已提交
5118 5119
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5120 5121 5122 5123 5124 5125 5126

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5127 5128
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5129 5130 5131 5132 5133 5134
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5135 5136
    helper.append_op(
        type="top_k",
W
whs 已提交
5137
        inputs=inputs,
Q
qingqing01 已提交
5138 5139
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5140
        attrs=attrs)
Q
qingqing01 已提交
5141 5142 5143 5144 5145
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5146
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5147
    """
Y
ying 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5157

Y
ying 已提交
5158
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5159

5160
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5161 5162
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5163
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5164

5165
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5166 5167
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5168

5169 5170 5171
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5172
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5173
                          the length of reference string.
5174
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5175
                                     calculating edit distance.
5176
        name (str): The name of this layer. It is optional.
5177

W
wanghaoshuang 已提交
5178
    Returns:
W
wanghaoshuang 已提交
5179
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5180 5181 5182 5183

    Examples:
        .. code-block:: python

T
tink2123 已提交
5184 5185
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5186
            cost = fluid.layers.edit_distance(input=x,label=y)
5187
    """
5188
    helper = LayerHelper("edit_distance", **locals())
5189

5190
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5191
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5192 5193
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5194 5195 5196 5197 5198

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5199
            attrs={"tokens": ignored_tokens})
5200 5201 5202 5203 5204
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5205
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5206
            attrs={"tokens": ignored_tokens})
5207 5208
        label = erased_label

5209
    # edit distance op
X
Xin Pan 已提交
5210 5211
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5212 5213 5214 5215
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5216 5217
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5218 5219
        attrs={"normalized": normalized})

5220
    return edit_distance_out, sequence_num
5221 5222 5223 5224 5225


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5226

Y
ying 已提交
5227 5228 5229 5230
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5248
        input.lod = [[4, 4]]
M
minqiyang 已提交
5249

W
whs 已提交
5250
        Computation:
5251

W
whs 已提交
5252 5253 5254 5255 5256 5257
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5258 5259 5260 5261 5262

        output.data = [[2],
                       [1],
                       [3]]

5263
        output.lod = [[2, 1]]
5264

W
whs 已提交
5265

5266 5267
    Args:

Y
ying 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5277
        name (str): The name of this layer. It is optional.
5278 5279

    Returns:
H
haowang101779990 已提交
5280 5281 5282
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5283
                  LoD [[]] and dims [1, 1].
5284 5285 5286 5287 5288

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5289

5290
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5291
    """
5292
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5293
    _, topk_indices = topk(input, k=1)
5294 5295

    # ctc align op
X
Xin Pan 已提交
5296
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5297 5298 5299
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5300
        outputs={"Output": [ctc_out]},
5301 5302
        attrs={"merge_repeated": True,
               "blank": blank})
5303
    return ctc_out
5304 5305


W
Wu Yi 已提交
5306
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5307
    """
5308 5309
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5310
    to compute Connectionist Temporal Classification (CTC) loss.
5311 5312
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5313 5314 5315
    input tensor.

    Args:
5316
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5317 5318 5319 5320
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5321
       label (Variable): The ground truth of variable-length sequence,
5322 5323 5324
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5325 5326
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5327 5328 5329
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5330
         follewed by a mean_op.
W
Wu Yi 已提交
5331
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5332 5333

    Returns:
5334 5335
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5336 5337

    Examples:
5338

W
wanghaoshuang 已提交
5339
        .. code-block:: python
5340

5341 5342 5343
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5344 5345

    """
F
fengjiayi 已提交
5346
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5347 5348
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5349 5350 5351 5352 5353 5354
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5355 5356 5357 5358 5359
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5360
    return loss_out
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5376 5377 5378
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5379 5380 5381 5382 5383
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5384

5385
            out.lod  = [[0, 1, 3]]
5386 5387 5388 5389

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5390 5391 5392 5393 5394 5395 5396
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5397 5398 5399

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5400 5401

    Returns:
5402

5403 5404 5405 5406 5407
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5408
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5409
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5410
    """
L
lujun 已提交
5411
    assert not in_dygraph_mode(), (
5412
        "sequence layer is not supported in dygraph mode yet.")
5413
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5414
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5415 5416 5417 5418 5419 5420
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5421 5422


5423 5424 5425 5426
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5427 5428 5429 5430 5431 5432
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5433
        num_neg_samples=None,
5434 5435 5436
        name=None,
        sampler="uniform",
        custom_dist=None,
5437 5438
        seed=0,
        is_sparse=False):
5439 5440 5441 5442 5443 5444 5445
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5446 5447
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5448
            sample is 1.0.
C
chengduo 已提交
5449 5450 5451 5452 5453 5454 5455 5456 5457
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5458
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5459 5460
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5461 5462 5463
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5464
        custom_dist (float[]): A float[] with size=num_total_classes.
5465 5466 5467 5468
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5469
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5470

5471
    Returns:
Y
Yibing Liu 已提交
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5499 5500 5501 5502 5503 5504 5505 5506 5507

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5508

5509
    """
Y
Yang Yu 已提交
5510 5511 5512
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5513 5514

    dim = input.shape[1]
Y
Yang Yu 已提交
5515 5516 5517 5518 5519 5520
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5521
    inputs = {}
C
chengduo 已提交
5522 5523 5524 5525 5526 5527 5528
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5529 5530 5531
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5532

5533 5534 5535 5536
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5537 5538 5539 5540 5541 5542 5543

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5544 5545 5546 5547 5548 5549 5550 5551 5552
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5553
            if normal_prob - 1.0 > 0:
5554
                bigs.append((i, normal_prob))
5555
            elif 1.0 - normal_prob > 0:
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5571
            if big_left - 1.0 > 0:
5572
                bigs.append((big_idx, big_left))
5573
            elif 1.0 - big_left > 0:
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5603 5604 5605 5606
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5607 5608 5609 5610 5611
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5612 5613 5614 5615
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5616

Y
Yang Yu 已提交
5617 5618
    attrs = {
        'num_total_classes': int(num_total_classes),
5619 5620
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5621
        'sampler': sampler,
5622 5623
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5624
    }
Y
Yang Yu 已提交
5625 5626 5627

    helper.append_op(
        type='nce',
C
chengduo 已提交
5628
        inputs=inputs,
Y
Yang Yu 已提交
5629 5630 5631 5632 5633 5634
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5635
    return cost / (num_neg_samples + 1)
5636 5637


C
chengduo 已提交
5638 5639
def hsigmoid(input,
             label,
5640
             num_classes,
C
chengduo 已提交
5641 5642
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5643
             name=None,
5644 5645 5646
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5647
             is_sparse=False):
W
weixing02 已提交
5648 5649
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5650
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5651
    complete binary tree, or you can use is_custom to pass your own tree to
5652
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5653 5654 5655 5656 5657 5658
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5659
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5660
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5661

5662 5663
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5664 5665 5666 5667
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5668
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5669
       related to the same batch of inputs.
5670

W
weixing02 已提交
5671
    Args:
M
minqiyang 已提交
5672
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5673 5674 5675 5676
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5677 5678
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5679
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5691
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5692
            it should be in leaf -> root order
M
minqiyang 已提交
5693 5694 5695
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5696
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5697
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5698
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5699
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5700
             of W and input will be sparse.
W
weixing02 已提交
5701 5702

    Returns:
J
JiabinYang 已提交
5703
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5704 5705 5706 5707 5708

    Examples:

        .. code-block:: python

G
guosheng 已提交
5709 5710 5711
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5712 5713 5714 5715
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5716 5717
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5718
    dim = input.shape[1]
5719
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5720 5721 5722
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5723 5724 5725 5726
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5727 5728
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5729 5730 5731
    else:
        pass

J
JiabinYang 已提交
5732
    weights = None
5733 5734 5735 5736
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5737
    if not is_custom:
J
JiabinYang 已提交
5738 5739 5740 5741 5742 5743 5744 5745
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5746
            shape=[num_classes, dim],
J
JiabinYang 已提交
5747 5748
            is_bias=False,
            dtype=input.dtype)
5749 5750 5751
    inputs = {
        "X": input,
        "W": weights,
5752
        "PathTable": path_table,
5753
        "PathCode": path_code,
5754 5755
        "Label": label
    }
W
weixing02 已提交
5756
    if helper.bias_attr:
5757
        if not is_custom:
J
JiabinYang 已提交
5758 5759
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5760
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5761 5762 5763 5764 5765 5766
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5767
                shape=[num_classes, 1],
J
JiabinYang 已提交
5768 5769 5770
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5771 5772
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5773
        inputs=inputs,
W
weixing02 已提交
5774
        outputs={"Out": out,
5775 5776 5777 5778 5779 5780 5781
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5782 5783 5784
    return out


Y
fix ci.  
ying 已提交
5785
def transpose(x, perm, name=None):
Y
ying 已提交
5786 5787 5788 5789 5790 5791 5792
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5793 5794 5795
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5796 5797 5798 5799 5800 5801 5802

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5803
            # use append_batch_size=False to avoid prepending extra
5804
            # batch size in shape
5805
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5806
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5807
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5808 5809
    """

Y
fix ci.  
ying 已提交
5810
    if len(perm) != len(x.shape):
Y
ying 已提交
5811 5812 5813
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5814 5815 5816 5817 5818 5819
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5820 5821

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5822 5823
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5824
    helper.append_op(
5825
        type='transpose2',
Y
fix ci.  
ying 已提交
5826
        inputs={'X': [x]},
5827 5828
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5829 5830
        attrs={'axis': perm})
    return out
5831 5832


5833 5834 5835 5836 5837 5838 5839
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5840
    """
5841 5842 5843 5844 5845 5846 5847
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5876 5877 5878 5879 5880 5881 5882 5883 5884
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5885 5886 5887
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5888 5889 5890 5891 5892
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5920 5921 5922
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5935
            output.dims = {8, 8}
5936

5937
            output.lod = [[4, 4]]
5938

T
Tink_Y 已提交
5939
    Examples:
5940 5941 5942

        .. code-block:: python

5943 5944
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5945 5946

    """
L
lujun 已提交
5947
    assert not in_dygraph_mode(), (
5948
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5959 5960 5961 5962 5963 5964 5965
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5966
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5967
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5968
    helper.append_op(
5969
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5970
    return out
5971 5972


Y
yuyang18 已提交
5973
@templatedoc()
5974
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5975 5976
    """
    ${comment}
5977 5978

    Args:
Y
yuyang18 已提交
5979
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5980 5981
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5982 5983 5984 5985 5986
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5987
        ${out_comment}.
5988 5989

    Examples:
Y
yuyang18 已提交
5990 5991 5992 5993
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5994 5995 5996 5997 5998 5999
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6000
    out = helper.create_variable_for_type_inference(dtype)
6001 6002 6003 6004 6005
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6006
    return helper.append_activation(out)
6007 6008


Y
yuyang18 已提交
6009
@templatedoc()
6010 6011
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6012 6013
    ${comment}

L
lujun 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6057 6058

    Args:
Y
yuyang18 已提交
6059 6060
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6061 6062

    Returns:
Y
yuyang18 已提交
6063
        ${out_comment}.
6064 6065
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6066 6067 6068 6069 6070

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6071
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6072 6073 6074 6075 6076 6077
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6078 6079


6080 6081 6082
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6083
                               ignore_index=kIgnoreIndex,
6084
                               numeric_stable_mode=True,
6085
                               return_softmax=False):
6086 6087
    """
    **Softmax With Cross Entropy Operator.**
6088

6089 6090 6091 6092
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
6093

6094 6095 6096
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6097

6098 6099 6100
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
6101

6102
    The equation is as follows:
6103

6104
    1) Hard label (one-hot label, so every sample has exactly one class)
6105

6106 6107 6108 6109
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6110

6111 6112 6113
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6114

6115 6116 6117 6118
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6119 6120 6121
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6122

H
haowang101779990 已提交
6123
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6124

H
haowang101779990 已提交
6125
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6126

H
haowang101779990 已提交
6127
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6128 6129 6130

    and then cross entropy loss is calculated by softmax and label.

6131 6132 6133 6134 6135 6136 6137 6138
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6139 6140
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6141
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6142 6143 6144
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6145 6146 6147
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6148
                                    stable algorithm. Default: True
6149
        return_softmax (bool): A flag indicating whether to return the softmax
6150
                               along with the cross entropy loss. Default: False
6151

6152
    Returns:
H
haowang101779990 已提交
6153 6154 6155 6156 6157
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6158 6159 6160 6161 6162 6163 6164

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6165 6166
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6167 6168
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6169 6170
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6171 6172 6173 6174 6175 6176
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6177 6178 6179 6180 6181
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6182 6183 6184 6185

    if return_softmax:
        return loss, softmax

6186 6187 6188
    return loss


6189 6190 6191
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6192
                                       num_true=1,
6193
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6194 6195 6196
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6197
                                       seed=0):
X
xuezhong 已提交
6198 6199 6200 6201 6202
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6203
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6204 6205 6206 6207 6208 6209 6210 6211
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6212
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6213 6214 6215 6216 6217 6218 6219 6220
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6221
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6233
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6234 6235 6236 6237 6238
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6239
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6240
            logits.
X
xuezhong 已提交
6241 6242 6243 6244 6245
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6246 6247 6248
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6269 6270
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6271 6272 6273 6274 6275

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6276
            'Labels': label,
X
xuezhong 已提交
6277 6278
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6279 6280 6281 6282
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6283
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6284 6285 6286
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6287
            'use_customized_samples': use_customized_samples,
6288
            'uniq': True,
X
xuezhong 已提交
6289 6290 6291 6292
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6293 6294
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6295 6296 6297 6298 6299 6300
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6301 6302
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6303
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6304
                'Label': sampled_softlabel},
X
xuezhong 已提交
6305 6306 6307
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6308
            'soft_label': True,
X
xuezhong 已提交
6309 6310 6311
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6312
    return loss / num_true
X
xuezhong 已提交
6313 6314


6315 6316
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6317 6318
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6319
    For each instance, it computes the smooth L1 loss element by element first
6320
    and then sums all the losses. So the shape of ouput Variable is
6321
    [batch_size, 1].
6322

6323 6324
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6325
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6326
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6327
            L1 loss op with same shape as :attr:`x`.
6328
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6329 6330
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6331
            by this tensor element by element.
6332
        outside_weight (Variable|None): A tensor with rank at least 2. This
6333 6334
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6335
            element by element.
6336
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6337 6338
           scalar with default value 1.0.

6339
    Returns:
6340
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6341 6342 6343 6344 6345

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6346 6347
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6348
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6349
            out = fluid.layers.smooth_l1(x=fc, y=label)
6350
    """
6351

6352
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6353 6354
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6365
        attrs={'sigma': sigma if sigma is not None else 1.0})
6366
    return loss
6367 6368 6369 6370


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6371
    This layer creates the one-hot representations for input indices.
6372 6373

    Args:
Y
Yibing Liu 已提交
6374 6375
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6376 6377

    Returns:
Y
Yibing Liu 已提交
6378
        Variable: The one-hot representations of input.
6379 6380

    Examples:
C
caoying03 已提交
6381
        .. code-block:: python
6382

Y
Yibing Liu 已提交
6383 6384
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6385 6386
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6387
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6388 6389 6390 6391
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6392 6393
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6394
    return one_hot_out
Y
Yu Yang 已提交
6395 6396


Y
Yu Yang 已提交
6397
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6398
    """
Y
yi.wu 已提交
6399 6400 6401
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6402 6403 6404 6405 6406 6407

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6408 6409
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6410 6411 6412 6413 6414 6415

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6416 6417
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6418 6419
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6420 6421 6422 6423 6424
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6425
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6426
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6427 6428
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6429
            outputs={'Out': [counter]},
M
minqiyang 已提交
6430 6431
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6432 6433 6434
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6435 6436


6437
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6438
    """
C
caoying03 已提交
6439 6440
    Gives a new shape to the input Tensor without changing its data.

6441 6442 6443 6444 6445
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6446

6447
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6448

6449 6450 6451 6452
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6453
    2. 0 means the actual dimension value is going to be copied from the
6454 6455 6456 6457
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6458 6459

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6460
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6461
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6462

6463
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6464 6465
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6466 6467
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6468
    dimensions.
C
caoying03 已提交
6469

6470
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6471 6472 6473 6474
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6475 6476

    Args:
6477
        x(variable): The input tensor.
C
caoying03 已提交
6478 6479
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6480 6481 6482 6483 6484
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6485 6486
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6487 6488 6489
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6490
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6491
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6492

6493
    Returns:
G
guosheng 已提交
6494 6495 6496 6497
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6498

X
Xin Pan 已提交
6499 6500 6501
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6502 6503
    Examples:
        .. code-block:: python
G
guosheng 已提交
6504

6505
            data = fluid.layers.data(
6506
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6507
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6508
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6509 6510 6511
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6512
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6513 6514 6515 6516 6517
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6518

6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6534
    helper = LayerHelper("reshape2", **locals())
6535 6536
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6537
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6538
    helper.append_op(
6539
        type="reshape2",
X
Xin Pan 已提交
6540
        inputs=inputs,
D
dzhwinter 已提交
6541
        attrs={"shape": shape},
6542 6543
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6544

D
dzhwinter 已提交
6545
    return helper.append_activation(out)
6546

6547

6548
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6549
    """
M
minqiyang 已提交
6550 6551 6552
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6553
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6554

H
haowang101779990 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6576

Y
Yibing Liu 已提交
6577
    Args:
6578
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6579
        axes (list): List of integers, indicating the dimensions to be squeezed.
6580
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6581 6582 6583 6584 6585 6586 6587 6588

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6589
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6590
    """
L
lujun 已提交
6591
    assert not in_dygraph_mode(), (
L
lujun 已提交
6592
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6593
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6594 6595
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6596
    helper.append_op(
6597
        type="squeeze2",
6598
        inputs={"X": input},
Y
Yibing Liu 已提交
6599
        attrs={"axes": axes},
6600 6601
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6602

6603 6604 6605
    return out


6606
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6607
    """
M
minqiyang 已提交
6608 6609 6610
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6611

M
minqiyang 已提交
6612
    For example:
H
haowang101779990 已提交
6613 6614 6615

    .. code-block:: text

M
minqiyang 已提交
6616
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6617
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6618

Y
Yibing Liu 已提交
6619
    Args:
6620
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6621
        axes (list): List of integers, indicating the dimensions to be inserted.
6622
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6623 6624 6625 6626 6627 6628 6629 6630

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6631
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6632 6633
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6634 6635
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6636
    helper.append_op(
6637
        type="unsqueeze2",
6638
        inputs={"X": input},
Y
Yibing Liu 已提交
6639
        attrs={"axes": axes},
6640 6641
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6642

6643 6644
    return out

6645

Y
yangyaming 已提交
6646
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6647
    """
Y
Yibing Liu 已提交
6648
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6649 6650 6651 6652
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6653
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6654 6655 6656 6657 6658 6659

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6660
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6661 6662 6663
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6664
            target_lod: [4, 2]
Y
yangyaming 已提交
6665 6666

            then we get a 1-level LoDTensor:
6667
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6668 6669 6670 6671 6672 6673
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6674
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6675 6676 6677 6678
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6679
                y.data = [[2, 4]]
Y
yangyaming 已提交
6680 6681 6682
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6683
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6684 6685 6686 6687 6688 6689
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6690
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6691 6692 6693 6694
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6695
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6696 6697 6698 6699
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6700
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6701 6702 6703 6704 6705
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6706
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6707
                           from :attr:`y`.
Y
yangyaming 已提交
6708
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6709
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6710 6711

    Returns:
Y
Yibing Liu 已提交
6712
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6713 6714

    Raises:
Y
Yibing Liu 已提交
6715
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6725
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6751
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6780 6781
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6794 6795 6796
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6810 6811 6812 6813


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6814
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6815
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6816

G
guosheng 已提交
6817 6818 6819 6820
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6843
                         The length of :attr:paddings must be
G
guosheng 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6854

G
guosheng 已提交
6855 6856 6857 6858 6859 6860
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6861
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6862 6863 6864 6865 6866 6867 6868
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6869 6870


C
chengduo 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6902 6903
		And
            pad_value = -1,
C
chengduo 已提交
6904

T
Tink_Y 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6940
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6950 6951 6952 6953 6954 6955 6956
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6957 6958
    called label-smoothing regularization (LSR).

6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6982
                              be :math:`(1, class\_num)`.
6983 6984
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6985
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7005
    smooth_label = helper.create_variable_for_type_inference(dtype)
7006 7007 7008 7009 7010 7011 7012
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7013 7014


W
wopeizl 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7051 7052


J
jerrywgz 已提交
7053 7054 7055 7056 7057 7058
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7059 7060
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7077 7078 7079
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7080 7081 7082 7083 7084 7085
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7086
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7127 7128
        .. code-block:: python

W
whs 已提交
7129 7130 7131 7132
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7133
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7134 7135 7136 7137 7138 7139
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7140 7141


7142 7143 7144 7145
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7146
                 resample='BILINEAR',
7147 7148
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7149
                 align_mode=1):
7150
    """
Q
qiaolongfei 已提交
7151
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7152

7153
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7154 7155 7156
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7157

7158
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7159

7160
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7161

7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7172
    Align_corners and align_mode are optinal parameters,the calculation method 
7173 7174 7175 7176
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7177
    .. code-block:: text
7178

T
Tink_Y 已提交
7179
        For scale:
7180
          
T
Tink_Y 已提交
7181
            if align_corners = True && out_size > 1 :
7182

T
Tink_Y 已提交
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7194

T
Tink_Y 已提交
7195 7196
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7197

T
Tink_Y 已提交
7198 7199
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7200

T
Tink_Y 已提交
7201 7202
          else:
              align_corners = True
7203

T
Tink_Y 已提交
7204 7205
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7206

T
Tink_Y 已提交
7207 7208
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7209

T
Tink_Y 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7220

T
Tink_Y 已提交
7221 7222 7223 7224
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7225

T
Tink_Y 已提交
7226 7227
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7228 7229 7230 7231 7232 7233 7234 7235 7236

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7237
    Args:
7238
        input (Variable): The input tensor of image resize layer,
7239 7240
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7241
        out_shape(list|tuple|Variable|None): Output shape of image resize
7242 7243
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7244
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7245
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7246
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7247
             Default: None.
7248 7249
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7250
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7251
                       currently.
7252
                       Default: 'BILINEAR'
7253 7254 7255
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7256
                                :attr:`out_shape` and :attr:`scale` specifying
7257 7258 7259 7260 7261 7262 7263
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7264 7265
                                constructing stage.
                                Default: None
7266 7267 7268 7269
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7270
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7271 7272
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7273 7274

    Returns:
Q
update  
qiaolongfei 已提交
7275 7276
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7277

7278 7279 7280
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7281
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7282 7283 7284
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7285
        ValueError: scale should be greater than zero.
7286 7287
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7288

7289 7290 7291
    Examples:
        .. code-block:: python

7292
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7293
    """
7294 7295 7296 7297
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7298 7299
    if resample not in resample_methods:
        raise ValueError(
7300
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7301
        )
7302
    resample_type = resample_methods[resample]
7303 7304 7305 7306 7307 7308

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7309
    if out_shape is None and scale is None:
7310
        raise ValueError("One of out_shape and scale must not be None.")
7311
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7312
    dtype = helper.input_dtype()
7313 7314 7315 7316

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7317
    inputs = {"X": input}
D
dengkaipeng 已提交
7318
    attrs = {
D
dengkaipeng 已提交
7319 7320
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7321 7322 7323 7324 7325
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7326
    if out_shape is not None:
7327 7328 7329 7330
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7331
            inputs['OutSize'] = out_shape
7332 7333
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7334 7335
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7336 7337 7338 7339 7340 7341 7342
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7343
    else:
D
dengkaipeng 已提交
7344 7345
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7346
        attrs['scale'] = float(scale)
7347

7348 7349 7350 7351 7352
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7353
    out = helper.create_variable_for_type_inference(dtype)
7354
    helper.append_op(
7355
        type='{}_interp'.format(resample_type),
7356
        inputs=inputs,
7357
        outputs={"Out": out},
D
dengkaipeng 已提交
7358
        attrs=attrs)
7359
    return out
F
stash  
fengjiayi 已提交
7360 7361


7362
@templatedoc(op_type="bilinear_interp")
7363 7364 7365 7366
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7367 7368
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7369
                    align_mode=1):
7370
    """
7371 7372
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7373 7374
    in priority order.

7375 7376 7377 7378
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7379 7380
    again in the other direction.

7381
    For details of bilinear interpolation, please refer to Wikipedia:
7382
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7383

T
tink2123 已提交
7384
    Align_corners and align_mode are optinal parameters,the calculation 
7385 7386 7387 7388
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7389
    .. code-block:: text
7390

T
Tink_Y 已提交
7391
        For scale:
7392
          
T
Tink_Y 已提交
7393
            if align_corners = True && out_size > 1 :
7394

T
Tink_Y 已提交
7395 7396 7397 7398 7399
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7400

T
Tink_Y 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7411 7412


T
Tink_Y 已提交
7413
          else:
T
tink2123 已提交
7414

T
Tink_Y 已提交
7415 7416
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7417

T
Tink_Y 已提交
7418 7419
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7420 7421 7422



Y
yuyang18 已提交
7423 7424 7425
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7426 7427 7428
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7429

Y
yuyang18 已提交
7430
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7431
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7432
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7433
             Default: None.
Y
yuyang18 已提交
7434 7435

        name(str|None): The output variable name.
7436 7437 7438
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7439
                                :attr:`out_shape` and :attr:`scale` specifying
7440 7441 7442 7443 7444 7445 7446
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7447 7448
                                constructing stage.
                                Default: None
7449 7450
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7451 7452 7453

    Returns:
        ${out_comment}.
7454 7455 7456 7457 7458

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7459 7460
    """

7461 7462
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7463 7464


7465
@templatedoc(op_type="nearest_interp")
7466 7467 7468 7469
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7470 7471
                   actual_shape=None,
                   align_corners=True):
7472
    """
7473
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7474 7475
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7476 7477
    out_shape and scale in priority order.

7478 7479
    Example:

T
Tink_Y 已提交
7480 7481 7482 7483 7484
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7485

T
Tink_Y 已提交
7486 7487 7488 7489 7490 7491 7492 7493
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7494
          
T
Tink_Y 已提交
7495 7496
          if:
              align_corners = False
7497

T
Tink_Y 已提交
7498 7499
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7500

T
Tink_Y 已提交
7501 7502
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7503

T
Tink_Y 已提交
7504 7505
          else:
              align_corners = True
7506

T
Tink_Y 已提交
7507 7508
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7509

T
Tink_Y 已提交
7510 7511
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7512 7513


7514
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7515
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7516 7517 7518 7519

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7520 7521 7522
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7523

Y
yuyang18 已提交
7524
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7525
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7526
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7527
             Default: None.
Y
yuyang18 已提交
7528 7529

        name(str|None): The output variable name.
7530 7531 7532
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7533
                                :attr:`out_shape` and :attr:`scale` specifying
7534 7535 7536 7537 7538 7539 7540
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7541 7542
                                constructing stage.
                                Default: None
7543
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7544 7545 7546

    Returns:
        ${out_comment}.
7547 7548 7549 7550 7551

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7552 7553
    """

7554 7555
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7556 7557 7558 7559


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7560 7561 7562
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7563 7564 7565 7566 7567 7568 7569
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7570
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7571

7572
    Returns:
Q
update  
qiaolongfei 已提交
7573
        Variable: The output is a 4-D tensor of the shape
7574
        (num_batches, channls, out_h, out_w).
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7585 7586 7587
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7588 7589 7590
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7591 7592
def gather(input, index):
    """
Q
qiaolongfei 已提交
7593 7594
    **Gather Layer**

7595
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7596 7597 7598 7599
    of X indexed by `index` and concatenate them together.

    .. math::

7600
        Out = X[Index]
W
whs 已提交
7601 7602 7603 7604 7605 7606 7607


    .. code-block:: text


                Given:

7608 7609
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7620
        input (Variable): The source input with rank>=1.
W
whs 已提交
7621 7622 7623 7624 7625 7626
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7627

W
whs 已提交
7628 7629 7630 7631 7632 7633
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7634
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7635 7636 7637 7638 7639 7640 7641 7642
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7674
    out = helper.create_variable_for_type_inference(dtype)
7675 7676 7677 7678 7679 7680 7681 7682 7683
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7693

Q
Qingsheng Li 已提交
7694
    Given the following input:
H
haowang101779990 已提交
7695

Q
Qingsheng Li 已提交
7696
    .. code-block:: text
H
haowang101779990 已提交
7697

Q
Qingsheng Li 已提交
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7710

Q
Qingsheng Li 已提交
7711
    .. code-block:: text
H
haowang101779990 已提交
7712

Q
Qingsheng Li 已提交
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7728
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7729 7730 7731 7732 7733 7734 7735 7736

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7737
    assert not in_dygraph_mode(), (
7738
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7739 7740
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7741
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7742 7743 7744 7745 7746 7747 7748 7749 7750
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7764

7765 7766 7767
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7768
    """
F
stash  
fengjiayi 已提交
7769
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7770
    dtype = x.dtype
X
Xin Pan 已提交
7771
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7772
    if seed is None:
7773
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7774
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7775
    if isinstance(seed, int):
F
fengjiayi 已提交
7776 7777 7778 7779 7780
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7781 7782 7783 7784
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7785
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7786 7787
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7788 7789
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7790
    return out
W
whs 已提交
7791 7792


7793
def log(x, name=None):
W
wanghaoshuang 已提交
7794 7795 7796 7797 7798
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7799
        Out = \\ln(x)
W
wanghaoshuang 已提交
7800 7801

    Args:
7802
        x (Variable): Input tensor.
7803 7804
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7805 7806 7807 7808 7809 7810 7811 7812

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7813
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7814 7815
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7816
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7817
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7818
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7819 7820 7821
    return out


7822
def relu(x, name=None):
W
wanghaoshuang 已提交
7823 7824
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7825
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7826 7827 7828 7829
    the tensor elementwise.

    .. math::

7830
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7831 7832

    Args:
7833
        x (Variable): The input tensor.
7834 7835
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7836 7837 7838 7839 7840 7841 7842 7843

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7844
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7845 7846
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7847
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7848
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7849 7850
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7851
    return out
7852 7853


C
chengduo 已提交
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7895 7896 7897
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7898 7899 7900 7901
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7902
    .. math::
7903

H
haowang101779990 已提交
7904
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7905

7906
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7907 7908 7909 7910 7911
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7912
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7913
                           Its shape should be the same as input.
7914
        num_classes (int): The possible number of labels.
W
whs 已提交
7915 7916

    Returns:
M
minqiyang 已提交
7917 7918
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7919
                     Three variables:
M
minqiyang 已提交
7920

H
haowang101779990 已提交
7921 7922 7923
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7924 7925 7926 7927

    Examples:

        .. code-block:: python
7928

W
whs 已提交
7929 7930 7931 7932
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7933 7934 7935
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7936 7937
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7938 7939
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7940
        outputs={
W
whs 已提交
7941 7942 7943
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7944 7945 7946
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8015
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8016 8017 8018 8019 8020

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8021
            isinstance(shape, Variable)):
8022 8023 8024 8025 8026
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8027
    out = helper.create_variable_for_type_inference(x.dtype)
8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8045 8046


W
whs 已提交
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8064

W
whs 已提交
8065
              out_shape = [2, 3, 5, 5]
8066

W
whs 已提交
8067
          Step 1:
8068

W
whs 已提交
8069 8070 8071
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8072

W
whs 已提交
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8118
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8119
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8132

W
whs 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8144
            isinstance(out_shape, Variable)):
W
whs 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8166 8167
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8168

8169 8170
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8171
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8172 8173 8174
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8175

8176 8177
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8178

H
haowang101779990 已提交
8179 8180
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8181 8182
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8183

H
haowang101779990 已提交
8184 8185 8186 8187 8188 8189 8190 8191
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8192 8193 8194

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8229
    out = helper.create_variable_for_type_inference("float32")
8230 8231 8232 8233 8234 8235 8236 8237

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8238 8239


M
minqiyang 已提交
8240 8241
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8242
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8243
    which compares left score and right score passed in.
M
minqiyang 已提交
8244
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8245 8246 8247

    .. math::

H
haowang101779990 已提交
8248
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8249 8250

    Args:
M
minqiyang 已提交
8251
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8252 8253
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8254
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8255 8256
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8257

M
minqiyang 已提交
8258
    Returns:
M
minqiyang 已提交
8259
       Variable: The ranking loss.
H
haowang101779990 已提交
8260

M
minqiyang 已提交
8261
    Raises:
M
minqiyang 已提交
8262
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8263

M
minqiyang 已提交
8264
    Examples:
H
haowang101779990 已提交
8265

M
minqiyang 已提交
8266
        .. code-block:: python
H
haowang101779990 已提交
8267

M
minqiyang 已提交
8268 8269 8270 8271 8272
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8273
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8274 8275 8276 8277 8278 8279
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8280 8281
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8305
        .. code-block:: text
W
whs 已提交
8306

T
Tink_Y 已提交
8307
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8308

T
Tink_Y 已提交
8309 8310
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8311

T
Tink_Y 已提交
8312
	      Case 0:
M
minqiyang 已提交
8313

T
Tink_Y 已提交
8314 8315 8316
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8317

T
Tink_Y 已提交
8318 8319 8320
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8321

T
Tink_Y 已提交
8322
	      Case 1:
M
minqiyang 已提交
8323

T
Tink_Y 已提交
8324 8325
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8326

T
Tink_Y 已提交
8327 8328 8329
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8330

T
Tink_Y 已提交
8331
	      Case 2:
M
minqiyang 已提交
8332

T
Tink_Y 已提交
8333 8334
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8335

T
Tink_Y 已提交
8336 8337 8338
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8339 8340


W
whs 已提交
8341 8342
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8343
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8367
    out = helper.create_variable_for_type_inference(dtype)
8368 8369 8370 8371 8372 8373 8374 8375 8376
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8377
    helper.append_op(
8378
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8379 8380 8381 8382

    return out


8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8395 8396 8397 8398 8399

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8400 8401
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8402 8403
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8404
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8425 8426 8427 8428 8429

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8430 8431
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8432 8433
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8434
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8455 8456 8457 8458 8459

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8460 8461
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8462 8463
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8464
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8486 8487 8488 8489 8490

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8491
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8492
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8493 8494
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8495
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8518 8519 8520 8521 8522

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8523 8524
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8525 8526
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8527
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8549 8550 8551 8552 8553

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8554 8555
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8556 8557
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8558
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8559 8560 8561 8562 8563 8564 8565 8566
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8567 8568 8569 8570
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8571 8572
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8573 8574 8575

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8576
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8577
          weight (alpha).
J
jerrywgz 已提交
8578
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8579 8580 8581
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8582
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8583
          will be named automatically.
J
jerrywgz 已提交
8584 8585 8586 8587 8588 8589 8590 8591

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8592
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8606
        attr=helper.param_attr,
J
jerrywgz 已提交
8607 8608 8609 8610
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8611
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8612 8613 8614 8615 8616 8617 8618 8619 8620
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8621 8622 8623 8624 8625 8626 8627 8628 8629 8630
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8631
    Returns:
8632
        output(${out_type}): ${out_comment}
8633 8634 8635

    Examples:

8636
    .. code-block:: python
8637

H
haowang101779990 已提交
8638 8639
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8640 8641
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8642
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8661
    Returns:
8662
        output(${out_type}): ${out_comment}
8663 8664 8665 8666 8667

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8668 8669
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8670 8671
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8672
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8690
    Returns:
8691
        output(${out_type}): ${out_comment}
8692 8693 8694 8695 8696

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8697 8698
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8699 8700
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8701
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8702 8703 8704 8705 8706 8707 8708 8709
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8710 8711 8712 8713
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8714

H
haowang101779990 已提交
8715
    For Example:
M
minqiyang 已提交
8716

H
haowang101779990 已提交
8717
    .. code-block:: text
8718

H
haowang101779990 已提交
8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8740 8741 8742

    Args:
        x (Variable): A tensor of rank >= axis.
8743 8744
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8745 8746 8747 8748 8749 8750 8751 8752
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8753 8754 8755
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8756 8757 8758 8759
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8760
        ValueError: If axis is not in range [0, rank(x)].
8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8777 8778
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8779
    helper.append_op(
8780
        type='flatten2',
8781
        inputs={"X": x},
8782 8783
        outputs={'Out': out,
                 'XShape': x_shape},
8784 8785
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8786 8787


C
chenweihang 已提交
8788
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8789
    """
C
chenweihang 已提交
8790
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8791
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8792 8793
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8794

H
haowang101779990 已提交
8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8812 8813

    Args:
C
chenweihang 已提交
8814 8815 8816
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8817 8818 8819 8820 8821 8822 8823 8824 8825 8826

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8827
    assert not in_dygraph_mode(), (
8828
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8829
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8830 8831
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8832 8833 8834 8835 8836 8837
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8838
    return out
8839

8840

S
sneaxiy 已提交
8841 8842 8843 8844 8845 8846 8847 8848 8849
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8850

S
sneaxiy 已提交
8851
    .. math::
8852

S
sneaxiy 已提交
8853 8854 8855
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8856
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8857 8858 8859 8860
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8861 8862 8863
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8864 8865
    Returns:
        Variable: The output sequence mask.
8866

S
sneaxiy 已提交
8867
    """
L
lujun 已提交
8868
    assert not in_dygraph_mode(), (
8869
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8870

Q
qingqing01 已提交
8871
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8872
    if name is None:
X
Xin Pan 已提交
8873
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8874
    else:
X
Xin Pan 已提交
8875
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8876

Q
qingqing01 已提交
8877 8878 8879
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8880 8881
        outputs={'Y': out},
        attrs={
8882
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8883 8884 8885
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8886 8887


X
Xin Pan 已提交
8888
def stack(x, axis=0):
S
sneaxiy 已提交
8889 8890 8891 8892
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8893 8894 8895 8896 8897 8898 8899

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8900
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8901
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8902

C
chengduozh 已提交
8903 8904
    For Example:

C
chengduozh 已提交
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8943
    Args:
8944
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8945
        axis (int|None): The axis along which all inputs are stacked.
8946

S
sneaxiy 已提交
8947 8948
    Returns:
        Variable: The stacked variable.
8949

S
sneaxiy 已提交
8950 8951
    """

X
Xin Pan 已提交
8952 8953 8954 8955 8956 8957
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8958
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8959
    helper.append_op(
S
sneaxiy 已提交
8960 8961
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8962

X
Xin Pan 已提交
8963
    return out
D
dzhwinter 已提交
8964 8965 8966 8967 8968 8969 8970


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8971

D
dzhwinter 已提交
8972 8973 8974
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8975
    raised.
D
dzhwinter 已提交
8976 8977

    Args:
M
minqiyang 已提交
8978
        x (Variable): Input variable.
D
dzhwinter 已提交
8979 8980
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8981

D
dzhwinter 已提交
8982 8983
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8984

D
dzhwinter 已提交
8985 8986 8987 8988 8989 8990 8991 8992 8993 8994
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8995
    for _ in range(num):
X
Xin Pan 已提交
8996
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8997 8998 8999 9000 9001 9002 9003 9004

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9017

W
whs 已提交
9018 9019 9020 9021
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9022

W
whs 已提交
9023
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9024

W
whs 已提交
9025
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9026

W
whs 已提交
9027 9028 9029 9030
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9031

W
whs 已提交
9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9048
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9049 9050 9051 9052 9053 9054
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9055 9056


G
fix  
gongweibao 已提交
9057 9058 9059
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9060
@templatedoc()
G
fix  
gongweibao 已提交
9061 9062 9063 9064 9065 9066 9067 9068 9069
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9070
    ${comment}
G
fix  
gongweibao 已提交
9071 9072

    Args:
G
gongweibao 已提交
9073 9074 9075
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9076
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9077 9078 9079
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9080 9081
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9082
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9083

9084 9085 9086 9087 9088
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9089 9090 9091
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9092
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9109 9110


G
gongweibao 已提交
9111
@templatedoc()
X
Xin Pan 已提交
9112
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9113
    """
G
gongweibao 已提交
9114
    ${comment}
G
fix  
gongweibao 已提交
9115 9116

    Args:
G
gongweibao 已提交
9117 9118 9119 9120
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9121 9122 9123
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9124
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9125

9126 9127 9128 9129
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9130 9131 9132
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9133
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9134 9135 9136 9137 9138 9139 9140 9141 9142 9143
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9144
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9145 9146 9147 9148 9149
        })

    return out


G
gongweibao 已提交
9150
@templatedoc()
G
fix  
gongweibao 已提交
9151
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9152
    """
G
gongweibao 已提交
9153
    ${comment}
G
fix  
gongweibao 已提交
9154 9155

    Args:
G
gongweibao 已提交
9156 9157 9158 9159
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9160
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9161 9162

    Returns:
G
gongweibao 已提交
9163
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9164

9165 9166 9167 9168 9169 9170 9171 9172 9173 9174
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9175 9176 9177
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9178
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9190
@templatedoc()
G
fix  
gongweibao 已提交
9191 9192 9193 9194 9195 9196 9197 9198 9199
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9200
    ${comment}
G
fix  
gongweibao 已提交
9201 9202

    Args:
G
gongweibao 已提交
9203 9204
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9205
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9206 9207 9208 9209
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9210
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9211 9212

    Returns:
G
gongweibao 已提交
9213
        out (Variable): ${out_comment}
9214 9215 9216 9217 9218 9219 9220 9221

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9222 9223 9224
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9225
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9244
@templatedoc()
X
Xin Pan 已提交
9245
def sum(x):
G
fix  
gongweibao 已提交
9246
    """
G
gongweibao 已提交
9247
    ${comment}
G
fix  
gongweibao 已提交
9248 9249

    Args:
G
gongweibao 已提交
9250
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9251 9252

    Returns:
G
gongweibao 已提交
9253
        out (Variable): ${out_comment}
9254 9255 9256 9257 9258 9259

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9260 9261 9262
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9263 9264
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9265 9266 9267 9268
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9269
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9270 9271 9272 9273

    return out


G
gongweibao 已提交
9274
@templatedoc()
G
fix  
gongweibao 已提交
9275 9276
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9277
    ${comment}
G
fix  
gongweibao 已提交
9278 9279

    Args:
G
gongweibao 已提交
9280 9281 9282 9283
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9284 9285

    Returns:
G
gongweibao 已提交
9286
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9287

9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9299 9300 9301
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9302 9303
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9317 9318
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9319
    Get the shape of the input.
G
fix  
gongweibao 已提交
9320 9321

    Args:
C
chengduozh 已提交
9322
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9323 9324

    Returns:
C
fix doc  
chengduozh 已提交
9325
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9326

9327 9328 9329 9330 9331 9332
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9333 9334 9335
    """

    helper = LayerHelper('shape', **locals())
9336
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9337
    helper.append_op(
G
fix  
gongweibao 已提交
9338
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9339 9340

    return out
G
merge  
gongweibao 已提交
9341 9342


Z
zhoukunsheng 已提交
9343 9344 9345 9346
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9347
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9369 9370 9371 9372
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9373
    if in_dygraph_mode():
X
Xin Pan 已提交
9374 9375 9376
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9377 9378 9379 9380
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9381 9382
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9383
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9384 9385 9386
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9387

S
sneaxiy 已提交
9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9399
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9400 9401 9402 9403 9404 9405 9406 9407
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9408
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9409
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9410 9411 9412 9413 9414 9415

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9416
    if name is None:
X
Xin Pan 已提交
9417
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9418 9419 9420
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9421 9422 9423 9424 9425 9426 9427 9428 9429 9430

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9431
    return helper.append_activation(out)
S
sneaxiy 已提交
9432 9433


X
Xin Pan 已提交
9434
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9435 9436 9437
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9438
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9439 9440 9441
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9442
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9443 9444 9445
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9446
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9447 9448 9449
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9450
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9451 9452 9453
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9454
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9455 9456 9457
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9458
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9459 9460 9461
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9462 9463 9464 9465 9466 9467 9468 9469
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9470
for func in [
9471 9472 9473 9474 9475 9476 9477 9478 9479
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9480 9481 9482 9483 9484
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9485 9486
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9487
        ])
M
minqiyang 已提交
9488 9489


9490
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9491 9492
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9493 9494
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9495 9496 9497

    if out is None:
        if name is None:
X
Xin Pan 已提交
9498
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9514
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9526 9527 9528 9529 9530 9531 9532 9533 9534

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9535 9536 9537 9538 9539 9540 9541
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9542
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9554 9555 9556 9557 9558 9559 9560 9561 9562

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9563 9564 9565 9566 9567 9568 9569
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9570
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9582 9583 9584 9585 9586 9587 9588 9589 9590

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9591 9592 9593 9594 9595 9596 9597
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9598
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9599 9600 9601 9602 9603 9604 9605 9606 9607 9608
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9609 9610 9611 9612 9613 9614 9615

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9616 9617 9618 9619
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9635 9636 9637 9638 9639 9640 9641

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9642 9643 9644 9645 9646
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9647 9648 9649 9650
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9674 9675 9676 9677 9678 9679 9680

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9681 9682 9683 9684 9685
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9686 9687 9688 9689
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9690 9691 9692 9693 9694 9695 9696 9697

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9716
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9769
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9770 9771 9772 9773 9774 9775 9776 9777 9778
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9779 9780
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9781 9782 9783 9784 9785 9786
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9787 9788 9789
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9790 9791
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9792 9793 9794 9795 9796 9797
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9798
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9799
        name(basestring|None): Name of the output.
9800 9801
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9802 9803 9804

    Returns:
        out(${out_type}): ${out_comment}
9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9819 9820 9821 9822 9823
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9824
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9825 9826 9827 9828 9829 9830 9831 9832
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9833 9834
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9855
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9856 9857 9858 9859 9860 9861 9862 9863 9864 9865
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9866 9867


J
JiabinYang 已提交
9868
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9869
    """
J
JiabinYang 已提交
9870
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9871 9872 9873

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9874
    The attr blocksize indicates the input block size.
9875 9876

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9877
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9878 9879

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9880
    (but keeping all data)
J
JiabinYang 已提交
9881

J
JiabinYang 已提交
9882
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9883
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9884 9885 9886 9887 9888
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9889
    Args:
J
JiabinYang 已提交
9890
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9891
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9892 9893

    Returns:
J
JiabinYang 已提交
9894
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9895 9896

    Raises:
J
JiabinYang 已提交
9897
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9898 9899 9900 9901 9902

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9903
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9904
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9905
                x=data, blocksize=2)
9906 9907 9908 9909 9910 9911

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9912 9913
    """

J
JiabinYang 已提交
9914
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9915

J
JiabinYang 已提交
9916 9917
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9918 9919

    if name is None:
J
JiabinYang 已提交
9920 9921
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9922 9923 9924 9925 9926
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9927
        type="space_to_depth",
J
JiabinYang 已提交
9928
        inputs={"X": x},
J
JiabinYang 已提交
9929
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9930
        outputs={"Out": out})
J
JiabinYang 已提交
9931 9932
    return out

J
JiabinYang 已提交
9933

S
sneaxiy 已提交
9934 9935
@templatedoc()
def sequence_reverse(x, name=None):
9936
    """
S
sneaxiy 已提交
9937 9938 9939 9940 9941 9942 9943 9944 9945
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
9946
    assert not in_dygraph_mode(), (
9947
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9948 9949
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9950
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9951 9952 9953 9954 9955 9956 9957 9958 9959 9960
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9961 9962


9963 9964 9965 9966 9967 9968
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9969 9970 9971 9972 9973
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9974

9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9987
        act (str, default None): Activation to be applied to the output of this layer.
9988 9989 9990 9991 9992 9993 9994

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9995
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10007
    return helper.append_activation(out)
10008 10009


B
barrierye 已提交
10010
def similarity_focus(input, axis, indexes, name=None):
10011
    """
B
barrierye 已提交
10012
    SimilarityFocus Operator
B
barrierye 已提交
10013 10014

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10015

10016 10017 10018
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10019
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10020 10021 10022 10023 10024 10025 10026
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10027
       each index.
B
barrierye 已提交
10028 10029 10030 10031
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10081
    Args:
10082
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10083
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10084
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10085
            1, 2 or 3.
B
barrierye 已提交
10086
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10087 10088

    Returns:
H
haowang101779990 已提交
10089 10090
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10091

B
barrierye 已提交
10092 10093
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10094

B
barrierye 已提交
10095
            data = fluid.layers.data(
B
barrierye 已提交
10096 10097
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
10098

B
barrierye 已提交
10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10111 10112 10113 10114 10115
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10116 10117 10118 10119 10120 10121 10122
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10123 10124


M
minqiyang 已提交
10125 10126
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10127 10128
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10129 10130
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10169
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10170
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10171 10172 10173 10174 10175 10176

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10177

M
minqiyang 已提交
10178 10179 10180
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10181 10182
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10183 10184
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10185 10186 10187 10188 10189 10190 10191
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10192 10193


D
dengkaipeng 已提交
10194
@templatedoc()
10195 10196
def grid_sampler(x, grid, name=None):
    """
10197
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10198
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10199 10200 10201 10202
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10203
    interpolation value of 4 nearest corner points.
10204

H
haowang101779990 已提交
10205
    .. code-block:: text
10206

H
haowang101779990 已提交
10207 10208
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10209

H
haowang101779990 已提交
10210 10211
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10212

H
haowang101779990 已提交
10213 10214 10215
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10216

H
haowang101779990 已提交
10217 10218 10219 10220 10221 10222 10223 10224 10225
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10226

H
haowang101779990 已提交
10227 10228 10229 10230
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10231

H
haowang101779990 已提交
10232 10233 10234 10235
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10236

H
haowang101779990 已提交
10237 10238 10239 10240
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10241

H
haowang101779990 已提交
10242 10243
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10244 10245

    Args:
10246 10247 10248
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10249 10250

    Returns:
H
haowang101779990 已提交
10251
        Variable: Output of shape [N, C, H, W] data samples input X
10252 10253
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10254 10255 10256 10257 10258 10259 10260 10261
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10262

D
dengkaipeng 已提交
10263 10264 10265 10266 10267 10268 10269 10270 10271
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10272
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10273 10274
    ipts = {'X': x, 'Grid': grid}

10275
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10276 10277 10278
    return out


G
gmcather 已提交
10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10345
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10346 10347 10348 10349 10350 10351 10352
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10353

H
heqiaozhi 已提交
10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10368 10369 10370 10371
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10372
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10373 10374
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10375
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10376 10377

    .. math::
H
haowang101779990 已提交
10378 10379 10380
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10381 10382

    Where:
H
haowang101779990 已提交
10383 10384
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10399

G
gmcather 已提交
10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10416 10417 10418 10419 10420 10421 10422 10423 10424 10425


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10426
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10427

Q
Qiao Longfei 已提交
10428
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10429 10430 10431
    For example:

    .. math::
H
haowang101779990 已提交
10432
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10433

Q
Qiao Longfei 已提交
10434
    In this formula:
10435 10436
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10437
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10438
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10439 10440 10441
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10442 10443
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10444 10445 10446
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10447
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10448
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10449
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10450 10451 10452 10453
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10454
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10455 10456 10457 10458

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10459
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10460 10461
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10462
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10463 10464 10465 10466

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10467
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10508 10509


S
shippingwang 已提交
10510
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10511 10512
    """
    **Shuffle Channel Operator**
10513

S
shippingwang 已提交
10514 10515 10516 10517 10518 10519
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10520
    
S
shippingwang 已提交
10521
    .. code-block:: text
10522

S
shippingwang 已提交
10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10551
    Args: 
S
shippingwang 已提交
10552 10553
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10554 10555

    Returns:
S
shippingwang 已提交
10556 10557
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10558 10559

    Raises:
S
shippingwang 已提交
10560
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10561 10562 10563

    Examples:
        .. code-block:: python
10564 10565

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10566
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10567 10568 10569
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10570
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10571 10572 10573 10574 10575 10576 10577 10578 10579

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10580
    return out
S
Add  
shippingwang 已提交
10581 10582


10583
@templatedoc()
D
dengkaipeng 已提交
10584
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10585 10586 10587 10588 10589 10590 10591 10592
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10593
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10594
        name (str, default None): The name of this layer.
10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10607
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10620 10621
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10622 10623 10624
    return out


S
sneaxiy 已提交
10625
class PyFuncRegistry(object):
S
sneaxiy 已提交
10626 10627 10628
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10629
        if func is None or not callable(func):
S
sneaxiy 已提交
10630 10631 10632
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10633
        # find named args using reflection
S
sneaxiy 已提交
10634 10635 10636 10637 10638 10639 10640
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10641 10642 10643
        '''
        Why record self here?

M
minqiyang 已提交
10644 10645
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10646
           to find the registered function corresponding
M
minqiyang 已提交
10647
           to :code:`idx`.
S
sneaxiy 已提交
10648

M
minqiyang 已提交
10649 10650
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10651
           whose reference count is 1 would cause
M
minqiyang 已提交
10652
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10653 10654
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10655
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10670 10671 10672 10673 10674 10675 10676 10677 10678
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10679

S
sneaxiy 已提交
10680 10681
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10682 10683

        ret = []
S
sneaxiy 已提交
10684 10685 10686
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10687 10688
                continue

S
sneaxiy 已提交
10689 10690
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10691

S
sneaxiy 已提交
10692 10693 10694
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10695

S
sneaxiy 已提交
10696
        return tuple(ret)
S
sneaxiy 已提交
10697 10698


S
sneaxiy 已提交
10699 10700 10701 10702
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10703

S
sneaxiy 已提交
10704 10705 10706 10707 10708 10709 10710 10711
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10712
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10713

S
sneaxiy 已提交
10714 10715
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10716 10717 10718 10719
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10720
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10721
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10722 10723
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10724 10725 10726 10727 10728
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10729
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10730
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10731
                                       None means no backward. Default None.
S
sneaxiy 已提交
10732
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10733
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10734 10735
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10736
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10737 10738 10739

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10740 10741

    Examples:
M
minqiyang 已提交
10742

S
sneaxiy 已提交
10743 10744 10745 10746 10747
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10748
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10749 10750
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10751
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10752 10753 10754
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10755
        >>>
S
sneaxiy 已提交
10756 10757 10758 10759 10760
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10761
        >>>     print(x)
S
sneaxiy 已提交
10762 10763 10764 10765 10766 10767
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10768
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10769 10770
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10771 10772
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10773 10774 10775 10776 10777 10778 10779 10780
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10781
    """
S
sneaxiy 已提交
10782
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10783 10784 10785
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10786
        x = [x]
S
sneaxiy 已提交
10787 10788
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10789

S
sneaxiy 已提交
10790 10791 10792
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10793
        out_list = [out]
S
sneaxiy 已提交
10794
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10795
        out_list = out
S
sneaxiy 已提交
10796 10797 10798
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10799

S
sneaxiy 已提交
10800 10801
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10802
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10803 10804

    for each_out in out_list:
S
sneaxiy 已提交
10805 10806
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10807 10808
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10809

S
sneaxiy 已提交
10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10825 10826 10827 10828

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10829 10830
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10831 10832 10833
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10834
        })
S
sneaxiy 已提交
10835
    return out
S
sneaxiy 已提交
10836 10837 10838


# For debug usage
S
sneaxiy 已提交
10839 10840 10841 10842
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10895

M
minqiyang 已提交
10896

M
minqiyang 已提交
10897
def huber_loss(input, label, delta):
10898
    """
M
minqiyang 已提交
10899 10900 10901
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10902 10903 10904 10905

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10906
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10907 10908 10909 10910

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10911
        huber\_loss = 0.5 * (label - input) * (label - input)
10912 10913 10914 10915 10916 10917 10918


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10919
        delta (float): The parameter of huber loss, which controls
10920 10921 10922
                       the range of outliers

    Returns:
M
minqiyang 已提交
10923
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10924 10925 10926 10927 10928

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10929
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10930
    """
M
minqiyang 已提交
10931
    helper = LayerHelper('huber_loss', **locals())
10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10943 10944


D
dengkaipeng 已提交
10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11045 11046


C
ceci3 已提交
11047
from .ops import square
C
ceci3 已提交
11048
from .control_flow import equal
C
ceci3 已提交
11049 11050


C
ceci3 已提交
11051 11052 11053
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11054

C
ceci3 已提交
11055
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11056 11057

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11058
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11059 11060 11061 11062 11063
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11064 11065
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11066 11067 11068 11069 11070 11071 11072

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11073 11074 11075 11076 11077 11078 11079 11080
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11081 11082 11083 11084 11085 11086 11087
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11088
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11089 11090
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11091 11092
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11093 11094 11095 11096
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11097 11098 11099
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11100 11101 11102
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11103 11104


R
ruri 已提交
11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11134
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

            input = fluid.layers.data(shape=[9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out