framework.py 239.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_global_expected_place_ = None
77
_current_device = None
78
global_prog_seed = 0
79
_current_pipeline_stage = None
80
_already_patch_eager_tensor = False
81
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
82
core._disable_eager_mode()
83 84 85


@signature_safe_contextmanager
86
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
87
    core._enable_eager_mode()
88
    _C_ops.switch_to_eager_ops()
89 90 91 92 93
    global _already_patch_eager_tensor
    if not _already_patch_eager_tensor:
        from .dygraph.varbase_patch_methods import monkey_patch_varbase
        monkey_patch_varbase()
        _already_patch_eager_tensor = True
94 95 96 97
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
98
    try:
J
Jiabin Yang 已提交
99
        yield
100
    finally:
J
Jiabin Yang 已提交
101
        core._disable_eager_mode()
102
        _C_ops.switch_to_core_ops()
103 104


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
212
def in_dygraph_mode():
L
lujun 已提交
213
    """
214

215 216 217 218 219 220 221
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
222 223

    Returns:
224
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
225 226 227 228

    Examples:
        .. code-block:: python

229 230 231 232 233 234 235 236
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
237 238

    """
L
lujun 已提交
239
    return _dygraph_tracer_ is not None
240 241


J
Jiabin Yang 已提交
242 243 244 245
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


246 247 248
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
249
        ), "We don't support %s in imperative mode" % func.__name__
250 251 252 253 254 255 256 257
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
258 259 260 261 262 263 264 265 266
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
267
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
268 269 270 271 272
        return func(*args, **kwargs)

    return __impl__


273 274 275 276 277
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


278 279 280 281 282 283
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
284
# same base class.
285 286 287
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
288 289 290 291 292
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
293 294 295 296

    return __impl__


T
tangwei12 已提交
297 298
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


316 317
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
318
static_only = wrap_decorator(_static_only_)
319
fake_interface_only = wrap_decorator(_fake_interface_only_)
320 321


L
lujun 已提交
322 323
def _dygraph_tracer():
    return _dygraph_tracer_
324

W
Wu Yi 已提交
325

326 327 328 329
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
330
def _current_expected_place():
331 332 333
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
334 335 336 337 338 339 340 341 342 343 344
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
345 346 347 348 349 350 351 352 353 354 355 356
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
357 358 359 360 361 362 363 364 365 366 367 368
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
384
    if _in_eager_mode():
385
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
386
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
387 388


L
Leo Chen 已提交
389 390 391 392
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
393

L
Leo Chen 已提交
394 395 396 397 398 399 400 401 402 403 404 405
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
406
def _cpu_num():
407
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
408 409 410 411 412 413 414 415
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
416
        os.environ['CPU_NUM'] = str(1)
417
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
418 419 420 421 422 423 424 425 426 427
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
428 429


430 431 432 433 434 435 436 437 438
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


439 440 441 442 443 444 445 446 447
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


448 449 450 451 452 453 454 455 456
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
527 528 529 530
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

531
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
532 533 534 535

    Examples:
        .. code-block:: python

536
            import paddle
537
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
538 539 540 541
    """
    return core.is_compiled_with_cuda()


542 543 544 545 546 547 548 549 550 551
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
552
            support_gpu = paddle.device.is_compiled_with_rocm()
553 554 555 556
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
557
def cuda_places(device_ids=None):
L
lujun 已提交
558
    """
559 560 561 562
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
563
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
564 565

    If :code:`device_ids` is None, environment variable of
566
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
567
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
568
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
569
    If :code:`FLAGS_selected_gpus` is not set, all visible
570
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
571 572

    If :code:`device_ids` is not None, it should be the device
573
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
574
    the returned list would be 
C
Chen Weihang 已提交
575
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
576

577
    Parameters:
578
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
579 580

    Returns:
C
Chen Weihang 已提交
581
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
582 583 584 585

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
586 587
            import paddle
            import paddle.static as static
T
tangwei12 已提交
588

589 590
            # required: gpu
            
C
Chen Weihang 已提交
591 592 593
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
594 595

    """
S
sneaxiy 已提交
596 597 598
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
599
        device_ids = _cuda_ids()
S
sneaxiy 已提交
600 601 602 603 604
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


605 606 607 608
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
609 610 611 612 613 614 615 616 617 618 619
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
620 621 622 623 624 625 626
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
627

628 629
            # required: xpu

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
686
def cpu_places(device_count=None):
L
lujun 已提交
687
    """
C
Chen Weihang 已提交
688
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
689

S
add doc  
sneaxiy 已提交
690 691
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
692 693
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
694 695
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
696

697 698
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
699 700

    Returns:
C
Chen Weihang 已提交
701
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
702 703 704 705

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
706 707
            import paddle
            import paddle.static as static
T
tangwei12 已提交
708

C
Chen Weihang 已提交
709 710 711
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
712 713
    """

S
sneaxiy 已提交
714 715 716 717 718 719
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
720
    """
721
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
722 723 724

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
725 726 727 728
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
729

730 731
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
732 733

    Returns:
734
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
735 736 737 738

    Examples:
        .. code-block:: python

739
            import paddle.fluid as fluid
L
lujun 已提交
740 741 742 743 744
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
745 746 747
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
748 749
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
750 751


752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
820
@signature_safe_contextmanager
821 822
def name_scope(prefix=None):
    """
823 824
    :api_attr: Static Graph

825
    Generate hierarchical name prefix for the operators in Static Graph.
826

T
Tao Luo 已提交
827 828 829
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
830
        Don't use it in dygraph, since it will cause memory leak.
831 832

    Args:
T
Tao Luo 已提交
833
        prefix(str, optional): prefix. Default is none.
834 835 836

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
837

838 839 840
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
841
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
842
             b = a + 1
843
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
844
                c = b * 1
845
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
846
                d = c / 1
847 848 849
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
850 851 852
                g = f - 1

          # Op are created in the default main program.  
853
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
869 870
    """
    # TODO(panyx0718): Only [0-9a-z].
871
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
872 873 874
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
875
        assert prefix, "namescope prefix can not be empty."
876 877
        global _name_scope
        _name_scope = _name_scope.child(prefix)
878 879 880 881
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
882 883 884 885 886 887 888 889 890 891 892 893


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
894 895 896
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
897 898 899 900


def grad_var_name(var_name):
    """
901 902
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
903 904 905
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
906

907
def convert_np_dtype_to_dtype_(np_dtype):
908 909
    """
    Convert the data type in numpy to the data type in Paddle
910

911
    Args:
912
        np_dtype(np.dtype): the data type in numpy.
913

914 915
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
916 917

    """
918 919
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
920
        return core.VarDesc.VarType.FP32
921
    elif dtype == np.float64:
922
        return core.VarDesc.VarType.FP64
923
    elif dtype == np.float16:
924
        return core.VarDesc.VarType.FP16
925
    elif dtype == np.int32:
926
        return core.VarDesc.VarType.INT32
927
    elif dtype == np.int16:
928
        return core.VarDesc.VarType.INT16
929
    elif dtype == np.int64:
930
        return core.VarDesc.VarType.INT64
931
    elif dtype == np.bool:
932
        return core.VarDesc.VarType.BOOL
933
    elif dtype == np.uint16:
934 935 936
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
937 938
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
939 940
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
941 942 943 944
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
945
    else:
M
minqiyang 已提交
946
        raise ValueError("Not supported numpy dtype %s" % dtype)
947 948 949


def dtype_is_floating(dtype):
950 951 952
    """
    Check the data type is floating or not.
    Args:
953
        dtype(np.dtype|core.VarDesc.VarType): data type.
954 955 956 957 958
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
959
    if not isinstance(dtype, core.VarDesc.VarType):
960 961
        dtype = convert_np_dtype_to_dtype_(dtype)

962 963 964 965
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
966 967


Y
Yang Yang(Tony) 已提交
968
def _debug_string_(proto, throw_on_error=True):
969 970 971 972 973 974 975 976 977 978 979
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
980
    error_fields = list()
Y
Yang Yang(Tony) 已提交
981
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
982 983
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
984 985 986
    return proto.__str__()


987 988 989 990 991 992 993 994 995 996
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

997 998 999 1000 1001 1002 1003 1004
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1016 1017
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1028 1029
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
1030 1031 1032 1033 1034 1035
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1036
class Variable(object):
1037
    """
J
Jiabin Yang 已提交
1038
    **Notes**:
1039
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1040

1041 1042
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1043 1044 1045
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1046
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1047 1048
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1049

1050
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1051
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1052

T
tianshuo78520a 已提交
1053
    Most of a Variable's member variables can be set to be None. It mean
1054
    it is not available or will be specified later.
1055

1056
    Examples:
1057 1058
        In Static Graph Mode:

1059 1060
        .. code-block:: python

1061
            import paddle.fluid as fluid
1062
            cur_program = fluid.Program()
1063 1064 1065 1066
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1067

J
Jiabin Yang 已提交
1068
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1069 1070 1071 1072 1073 1074 1075 1076 1077

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1078 1079
    """

Y
Yu Yang 已提交
1080 1081
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1082
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1083 1084 1085 1086
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1087
                 capacity=None,
Q
QI JUN 已提交
1088
                 persistable=None,
F
fengjiayi 已提交
1089
                 error_clip=None,
Y
Yu Yang 已提交
1090
                 stop_gradient=False,
F
fengjiayi 已提交
1091
                 is_data=False,
H
Huihuang Zheng 已提交
1092
                 need_check_feed=False,
H
hong 已提交
1093
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1094
                 **kwargs):
Y
Yu Yang 已提交
1095 1096
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1097
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1098

Y
Yu Yang 已提交
1099
        if dtype is not None:
1100
            if not isinstance(dtype, core.VarDesc.VarType):
1101
                dtype = convert_np_dtype_to_dtype_(dtype)
1102

S
Steffy-zxf 已提交
1103 1104 1105 1106
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1107 1108
        self.belong_to_optimizer = belong_to_optimizer

1109 1110 1111 1112 1113
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1114

1115 1116 1117
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1118

1119 1120 1121
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1122 1123
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1124 1125
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1126

1127
        if shape is not None:
1128
            if is_new_var:
1129 1130 1131 1132 1133 1134
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1135 1136
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1137 1138 1139 1140 1141 1142 1143
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1144 1145
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1146 1147 1148 1149 1150 1151 1152 1153 1154
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1155 1156
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1157 1158 1159 1160 1161 1162 1163 1164 1165
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1166 1167
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1168 1169
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1170

1171 1172
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1173

1174 1175 1176 1177 1178 1179 1180
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1181

1182 1183
        self.block.vars[name] = self
        self.op = None
1184
        self.stop_gradient = stop_gradient
1185
        self.is_data = is_data
Y
Yu Yang 已提交
1186

1187 1188 1189
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1190 1191
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1192

1193
        Returns:
J
Jiabin Yang 已提交
1194
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1195 1196 1197 1198

        Examples:
            .. code-block:: python

1199
                import paddle
1200

1201 1202 1203 1204
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1205

1206 1207
                # create a detached Variable
                y = x.detach()
1208
        """
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1224

1225
    @fake_interface_only
1226
    def numpy(self):
1227
        """
J
Jiabin Yang 已提交
1228
        **Notes**:
T
tianshuo78520a 已提交
1229
            **This API is ONLY available in Dygraph mode**
1230

J
Jiabin Yang 已提交
1231
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1232 1233 1234 1235 1236

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1237
            ndarray: dtype is same as current Variable
1238 1239 1240 1241 1242 1243

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1244
                from paddle.fluid.dygraph import Linear
1245 1246 1247 1248
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1249
                    linear = Linear(32, 64)
1250
                    data = to_variable(data)
1251
                    x = linear(data)
1252 1253 1254
                    print(x.numpy())

        """
1255
        pass
1256

1257
    @fake_interface_only
1258
    def backward(self, retain_graph=False):
1259
        """
J
Jiabin Yang 已提交
1260
        **Notes**:
T
tianshuo78520a 已提交
1261
            **This API is ONLY available in Dygraph mode**
1262

1263
        Run backward of current Graph which starts from current Tensor.
1264

J
Jiabin Yang 已提交
1265
        Args:
1266 1267 1268 1269
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1270

J
Jiabin Yang 已提交
1271 1272
        Returns:
            NoneType: None
1273 1274 1275 1276 1277

        Examples:
            .. code-block:: python

                import numpy as np
1278 1279
                import paddle
                paddle.disable_static()
1280 1281

                x = np.ones([2, 2], np.float32)
1282 1283 1284 1285 1286 1287 1288
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1289 1290
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1291
                loss.backward()
1292 1293

        """
1294
        pass
1295

1296
    @fake_interface_only
1297
    def gradient(self):
1298
        """
J
Jiabin Yang 已提交
1299
        **Notes**:
T
tianshuo78520a 已提交
1300
            **This API is ONLY available in Dygraph mode**
1301 1302 1303

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1304
        Returns:
1305
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1306 1307 1308 1309 1310 1311 1312

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1313
                # example1: return ndarray
1314 1315 1316 1317 1318 1319 1320 1321 1322
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1323
                    loss2.backward()
1324 1325
                    print(loss2.gradient())

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1339
        """
1340
        pass
1341

1342
    @fake_interface_only
1343
    def clear_gradient(self):
1344
        """
J
Jiabin Yang 已提交
1345
        **Notes**:
T
tianshuo78520a 已提交
1346
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1347 1348

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1349

J
Jiabin Yang 已提交
1350
        Clear  (set to ``0`` ) the Gradient of Current Variable
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1369
                    loss2.backward()
1370 1371 1372 1373 1374
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1375
        pass
X
Xin Pan 已提交
1376

1377 1378 1379 1380
    @fake_interface_only
    def register_hook(self, hook):
        pass

1381
    def __str__(self):
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1398 1399
                import paddle
                import paddle.static as static
1400

1401 1402 1403
                paddle.enable_static()

                cur_program = static.Program()
1404 1405 1406 1407 1408 1409
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1410 1411
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1412
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1413 1414
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1415 1416
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1417
        else:
1418 1419
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1420

1421
        if self.is_parameter:
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1432
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1433
        dist_context = get_default_distributed_context()
1434 1435
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1436
            var_str += ", {name} = {value}".format(
1437
                name="dist_attr", value=dist_tensor)
1438

1439
        return var_str
Y
Yang Yang(Tony) 已提交
1440

F
update  
fengjiayi 已提交
1441
    def to_string(self, throw_on_error, with_details=False):
1442 1443 1444
        """
        Get debug string.

J
Jiabin Yang 已提交
1445 1446 1447 1448 1449
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1450

1451 1452
        Returns:
            str: The debug string.
1453 1454 1455 1456 1457

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1458
                import paddle
1459

1460
                paddle.enable_static()
1461 1462 1463 1464 1465
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1466
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1467
                print("=============with detail===============")
1468
                print(new_variable.to_string(True, True))
1469
        """
F
update  
fengjiayi 已提交
1470 1471
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1472
        protostr = self.desc.serialize_to_string()
1473
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1474 1475
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1476
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1477
            for attr_name in additional_attr:
1478 1479 1480
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1481
        return res_str
1482 1483 1484

    __repr__ = __str__

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1512
    @property
1513
    def stop_gradient(self):
J
Jiabin Yang 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1529 1530
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1531 1532 1533
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1534 1535
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1536 1537 1538 1539
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1540
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1541 1542
                assert (out1.gradient() == 0).all()
        """
1543
        return self.desc.stop_gradient()
1544

1545 1546
    @stop_gradient.setter
    def stop_gradient(self, s):
1547
        self.desc.set_stop_gradient(s)
1548

1549 1550
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1572
        return self.desc.persistable()
1573

Y
Yu Yang 已提交
1574 1575
    @persistable.setter
    def persistable(self, p):
1576
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1603 1604
    @property
    def name(self):
J
Jiabin Yang 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1621
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1622

1623 1624 1625 1626 1627 1628
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1629 1630
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1643 1644
    @name.setter
    def name(self, new_name):
1645
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1646

Y
Yu Yang 已提交
1647 1648
    @property
    def shape(self):
J
Jiabin Yang 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1666
        # convert to tuple, make it as same as numpy API.
1667
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1668 1669

    @property
F
fengjiayi 已提交
1670
    def dtype(self):
J
Jiabin Yang 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1687
        return self.desc.dtype()
Y
Yu Yang 已提交
1688 1689 1690

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1712 1713 1714
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1715
        return self.desc.lod_level()
Y
Yu Yang 已提交
1716

Y
Yu Yang 已提交
1717 1718
    @property
    def type(self):
J
Jiabin Yang 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1735
        return self.desc.type()
Y
Yu Yang 已提交
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1820
    def _set_error_clip(self, error_clip):
1821 1822 1823 1824 1825 1826 1827 1828 1829
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1830 1831
        self.error_clip = error_clip

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1872
            raise ValueError("slice step can not be zero")
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1948
    def _cloneVar(self, copy=False):
1949 1950
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1951 1952
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1953 1954 1955 1956
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1957
        new_var = self._cloneVar()
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1968
        new_var = self._cloneVar()
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1979
                return self._cloneVar(True)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1998
                return self._cloneVar(True)
1999
            index = int(item)
2000
            if (index > 0 and index >= self.shape[axis]) \
2001 2002 2003 2004 2005 2006 2007
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2008
        return _getitem_impl_(self, item)
2009

2010
    def __setitem__(self, item, value):
2011
        return _setitem_impl_(self, item, value)
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2159 2160 2161 2162
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2163 2164 2165 2166
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2167 2168 2169 2170 2171 2172 2173
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2283

F
fengjiayi 已提交
2284 2285 2286
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2287

2288 2289
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2290 2291 2292 2293
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2294
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2295 2296 2297 2298 2299
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2300 2301 2302 2303
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2313
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2314 2315 2316 2317 2318 2319
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2320 2321 2322 2323 2324 2325 2326 2327
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2328 2329
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2330 2331
        return self.op_proto_map[type]

2332 2333
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2334
        custom_op_names = []
2335 2336 2337
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2338 2339 2340
                custom_op_names.append(proto.type)

        return custom_op_names
2341

2342 2343 2344 2345
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2346
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2347
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2348 2349
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2350 2351
        }

F
fengjiayi 已提交
2352

X
Xin Pan 已提交
2353
class Operator(object):
2354
    """
2355 2356 2357 2358 2359 2360 2361
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2362
        type(str): The type of operator. Default None.
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2383
        Block.append_op or Block._prepend_op instead.
2384 2385 2386 2387

    Examples:
        .. code-block:: python

2388
            import paddle.fluid as fluid
2389
            cur_program = fluid.Program()
2390 2391 2392 2393 2394
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2395
    """
2396
    OP_WITHOUT_KERNEL_SET = {
2397 2398
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2399
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2400 2401
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2402
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2403 2404
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2405
    }
2406

Y
Yu Yang 已提交
2407 2408
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2409
                 desc,
Y
Yu Yang 已提交
2410 2411 2412
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2413
                 attrs=None):
L
lujun 已提交
2414
        if in_dygraph_mode():
2415 2416
            if type is None:
                raise ValueError(
2417
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2418
            self._type = type
M
minqiyang 已提交
2419
            self.attrs = attrs if attrs else {}
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2434
                )] = self.block.program._op_role
2435 2436 2437

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2438 2439
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2440 2441 2442 2443 2444

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2445 2446 2447 2448 2449
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2450 2451 2452
                return
            if type is None:
                raise ValueError(
2453
                    "`type` to initialized an Operator can not be None.")
2454 2455
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2456 2457 2458 2459 2460 2461 2462
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2463 2464 2465 2466 2467 2468 2469

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2487 2488 2489 2490 2491
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2506
                        if not isinstance(in_args, (list, tuple)):
2507 2508 2509 2510 2511 2512
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2513
                        for index, arg in enumerate(in_args):
2514 2515 2516 2517
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2518
                            elif isinstance(arg, (Variable, core.VarBase)):
2519
                                in_arg_names.append(cpt.to_text(arg.name))
2520
                            else:
2521 2522 2523 2524
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2525 2526
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2551 2552 2553 2554
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2555
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2556
                        if not in_dygraph_mode():
2557 2558 2559 2560
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2579
    def _has_kernel(self, op_type):
2580 2581
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2582
    def to_string(self, throw_on_error):
2583
        """
2584 2585
        Get debug string.

2586
        Args:
2587 2588
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2589

2590 2591
        Returns:
            str: The debug string.
2592 2593

        """
2594
        protostr = self.desc.serialize_to_string()
2595
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2596 2597
        return _debug_string_(proto, throw_on_error)

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2630
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2683
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2684
        dist_context = get_default_distributed_context()
2685 2686
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2687
            attrs_str += ", {name} = {value}".format(
2688
                name="dist_attr", value=dist_op)
2689

2690 2691
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2692 2693
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2694 2695 2696 2697 2698
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2699
    def __str__(self):
2700
        return self._to_readable_code()
2701 2702 2703

    __repr__ = __str__

F
fengjiayi 已提交
2704 2705
    @property
    def type(self):
2706
        return self.desc.type()
F
fengjiayi 已提交
2707 2708

    def input(self, name):
2709
        r"""
2710
        Get the input arguments according to the input parameter name.
2711

2712 2713
        Args:
            name(str): The input parameter name.
2714

2715 2716 2717
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2718
        """
F
fengjiayi 已提交
2719 2720
        return self.desc.input(name)

W
Wu Yi 已提交
2721
    def _rename_input(self, old_name, new_name):
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2732
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2733

W
Wu Yi 已提交
2734
    def _rename_output(self, old_name, new_name):
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2745
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2746

F
fengjiayi 已提交
2747 2748 2749 2750
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2751 2752 2753 2754 2755 2756 2757 2758
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2759
    def output(self, name):
2760
        r"""
2761
        Get output arguments by the output parameter name.
2762

2763 2764
        Args:
            name(str): The output parameter name.
2765

2766 2767 2768
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2769
        """
F
fengjiayi 已提交
2770 2771 2772 2773 2774 2775
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2776 2777 2778 2779 2780 2781 2782 2783
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2784
    def has_attr(self, name):
2785
        """
2786 2787
        Whether this Operator has the attribute with name or not.

2788
        Args:
2789
            name(str): the attribute name.
2790

2791 2792
        Returns:
            bool: True if has this attribute.
2793 2794

        """
F
fengjiayi 已提交
2795 2796 2797
        return self.desc.has_attr(name)

    def attr_type(self, name):
2798
        """
2799
        Get the type of attribute by attribute's name.
2800

2801 2802
        Args:
            name(str): the attribute name.
2803

2804 2805
        Returns:
            core.AttrType: the attribute type.
2806
        """
F
fengjiayi 已提交
2807 2808
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2809
    def _set_attr(self, name, val):
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2820 2821
        self._update_desc_attr(name, val)

2822 2823 2824
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2836 2837
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2838 2839
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2840
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2841 2842 2843 2844
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2845
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2846

F
fengjiayi 已提交
2847 2848 2849 2850 2851
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2852
        """
2853 2854
        Get the attribute by name.

2855
        Args:
2856
            name(str): the attribute name.
2857

2858 2859
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2860 2861
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2862
        return self.desc.attr(name)
Y
Yu Yang 已提交
2863

W
Wu Yi 已提交
2864
    def _block_attr_id(self, name):
2865
        """
G
gongweibao 已提交
2866
        Get the block attribute's id by name.
2867

2868 2869
        Args:
            name(str): the attribute name.
2870

2871 2872
        Returns:
            int: the block index.
2873
        """
W
Wu Yi 已提交
2874
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2875

W
Wu Yi 已提交
2876
    def _block_attr(self, name):
G
gongweibao 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2887
        id = self._block_attr_id(name)
G
gongweibao 已提交
2888 2889 2890
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2891
    def _blocks_attr(self, name):
G
gongweibao 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2902
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2903 2904 2905 2906 2907
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2908
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2919
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2920

J
JiayiFeng 已提交
2921
    def all_attrs(self):
F
fengjiayi 已提交
2922
        """
2923 2924 2925
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2926
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2927 2928 2929 2930
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2931 2932
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2933
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2934 2935 2936
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2937
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2938 2939 2940 2941
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2942 2943
        return attr_map

2944 2945 2946
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2947 2948 2949 2950

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2951 2952 2953
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2954 2955 2956 2957 2958 2959 2960 2961

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2962 2963
            return False

2964 2965 2966 2967 2968 2969
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2995

Y
Yu Yang 已提交
2996
class Block(object):
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3011
        use `Program._create_block()` to create a block.
3012 3013 3014 3015

    Examples:
        .. code-block:: python

3016 3017 3018
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3019 3020 3021 3022 3023 3024 3025 3026 3027
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3028
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3029
        self.desc = program.desc.block(idx)
3030
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3031
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3032
        self.program = program
3033
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3034

3035
    def __str__(self):
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3070
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3082

F
fengjiayi 已提交
3083 3084
    def to_string(self, throw_on_error, with_details=False):
        """
3085 3086
        Get debug string.

F
fengjiayi 已提交
3087 3088
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3089
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3090
            with_details(bool): more details about variables and parameters
3091 3092
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3093

3094 3095
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3096 3097 3098 3099
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3100
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3101 3102
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3103
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3104
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3105
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3106
            for op in self.ops:
F
fengjiayi 已提交
3107 3108
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3109 3110 3111
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3112 3113
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3114 3115
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3116 3117 3118

    __repr__ = __str__

Y
Yu Yang 已提交
3119 3120
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3121
        return self.desc.parent
Y
Yu Yang 已提交
3122

Y
Yu Yang 已提交
3123 3124 3125 3126
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3127
    def _set_forward_block_idx(self, idx):
3128 3129 3130 3131 3132 3133 3134 3135 3136
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3137
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3138

3139 3140 3141 3142 3143 3144 3145 3146
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3147 3148
    @property
    def idx(self):
Y
Yu Yang 已提交
3149
        return self.desc.id
Y
Yu Yang 已提交
3150

Q
Qiao Longfei 已提交
3151
    def var(self, name):
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3165
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3166 3167 3168
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3169 3170
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3171
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3172
        return v
Q
Qiao Longfei 已提交
3173

X
Xin Pan 已提交
3174
    def _find_var_recursive(self, name):
3175 3176 3177 3178 3179 3180 3181
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3182
            Variable: the Variable with the giving name. Or None if not found.
3183
        """
Y
Yu Yang 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3208
        return None
Y
Yu Yang 已提交
3209

X
Xin Pan 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3229

Q
Qiao Longfei 已提交
3230
    def all_parameters(self):
3231
        return list(self.iter_parameters())
3232

3233
    def iter_parameters(self):
M
minqiyang 已提交
3234
        return (item[1] for item in six.iteritems(self.vars)
3235
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3236

Y
Yu Yang 已提交
3237
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3238 3239 3240
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3241 3242 3243
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3244
        return var
Y
Yu Yang 已提交
3245

Q
Qiao Longfei 已提交
3246 3247 3248
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3249
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3250 3251
        """
        Rename variable in vars and ops' inputs and outputs
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3264
        """
M
minqiyang 已提交
3265 3266
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3267

T
typhoonzero 已提交
3268
        if not self.has_var(name):
3269
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3270 3271
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3272
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3273 3274 3275 3276 3277 3278
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3279
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3280 3281 3282 3283
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3284
        orig_var_type = v.type
M
minqiyang 已提交
3285
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3286
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3287
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3288
        if var_type == "Parameter":
L
Leo Chen 已提交
3289 3290
            if in_dygraph_mode():
                var = ParamBase(
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3301 3302
                var = Parameter(
                    self,
3303 3304 3305 3306 3307 3308 3309 3310 3311
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3312
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3313 3314
            var = Variable(
                self,
T
typhoonzero 已提交
3315
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3316 3317 3318 3319
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3320
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3321 3322 3323
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3324
        self._sync_with_cpp()
3325
        return var
T
typhoonzero 已提交
3326

3327 3328 3329
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3330
        self.desc._remove_var(cpt.to_bytes(name))
3331 3332
        del self.vars[name]

Y
Yu Yang 已提交
3333 3334
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3335
        param = None
L
Leo Chen 已提交
3336
        if in_dygraph_mode():
3337 3338 3339 3340
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3341 3342
        else:
            param = Parameter(global_block, *args, **kwargs)
3343

3344
        if 'initializer' in kwargs:
3345 3346 3347 3348 3349

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3350
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3351
                        # are treated as initialization ops that cause error.
3352
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3353 3354 3355 3356 3357
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3358
                            continue
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3370
                # TODO already inited, do nothing, should log a warning
3371 3372 3373
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3374
        return param
Y
Yu Yang 已提交
3375

Y
Yu Yang 已提交
3376
    def append_op(self, *args, **kwargs):
3377 3378 3379 3380 3381 3382
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3383
        if in_dygraph_mode():
3384
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3385
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3386
            type = kwargs.get("type", None)
3387 3388 3389
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3390
                type=type,
M
minqiyang 已提交
3391 3392
                inputs=None,
                outputs=None,
3393
                attrs=attrs)
3394

M
minqiyang 已提交
3395 3396 3397
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3398
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3399 3400

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3401
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3402 3403
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3404 3405
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3406
        else:
3407 3408
            from paddle.fluid.dygraph.base import param_guard

3409
            op_desc = self.desc.append_op()
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3423

M
minqiyang 已提交
3424
            self.ops.append(op)
M
minqiyang 已提交
3425

3426 3427
        return op

W
Wu Yi 已提交
3428
    def _insert_op(self, index, *args, **kwargs):
3429 3430 3431 3432 3433 3434 3435 3436 3437
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3438
        self._sync_with_cpp()
F
fangshuixun007 已提交
3439
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3440

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3458 3459 3460 3461 3462 3463 3464 3465 3466
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3467 3468
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3469
        self.desc._remove_op(index, index + 1)
3470 3471
        del self.ops[index]

W
Wu Yi 已提交
3472
    def _slice_ops(self, start, end):
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3483
        return self.ops[start:end]
Y
Yancey1989 已提交
3484

W
Wu Yi 已提交
3485
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3486
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3487 3488
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3489
            op = Operator(
J
Jiabin Yang 已提交
3490
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3491

J
Jiabin Yang 已提交
3492
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3493
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3494 3495
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3496
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3497
        else:
3498 3499 3500 3501 3502 3503 3504 3505
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3506
            self.ops.insert(0, op)
3507

Y
Yu Yang 已提交
3508 3509
        return op

W
Wu Yi 已提交
3510
    def _sync_with_cpp(self):
3511
        """
3512 3513
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3514
        """
Q
Qiao Longfei 已提交
3515 3516 3517
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3535

3536
        # sync variables removed from c++ end
3537
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3538
            if not self.desc.find_var(cpt.to_bytes(var)):
3539 3540
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3541
        # sync operators from cpp
3542 3543 3544 3545
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3562 3563 3564 3565 3566

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3567
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3568 3569 3570 3571 3572 3573 3574

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3588 3589 3590 3591
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3592
    def _copy_param_info_from(self, other):
3593
        """
3594 3595
        Copy the information of parameters from the other block.

3596
        Args:
3597 3598 3599 3600 3601
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3602 3603 3604 3605 3606

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3607 3608
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3609
        for p in other.iter_parameters():
3610 3611 3612
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3613 3614
                # if the Parameter is pruned, v may be None
                continue
3615
            assert isinstance(v, Variable)
3616
            new_p = None
L
Leo Chen 已提交
3617 3618
            if in_dygraph_mode():
                new_p = ParamBase(
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3630 3631
                new_p = Parameter(
                    block=self,
3632 3633 3634
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3635 3636
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3637 3638 3639 3640 3641 3642
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3643 3644
            self.vars[new_p.name] = new_p

3645
    def _clone_variable(self, var, force_persistable=True):
3646 3647
        """
        Clone a variable into current block.
3648

3649 3650
        Args:
            var: the variable to be cloned.
3651 3652 3653
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3654 3655

        Returns:
3656
            Variable: the new  variable cloned from 'var' in current block.
3657 3658
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3659 3660 3661 3662 3663
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3664 3665
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3666
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3667 3668 3669 3670 3671 3672
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3673
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3674 3675
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3676 3677 3678 3679 3680 3681 3682
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3683
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3684 3685
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3686
        return ret_var
3687

Y
Yu Yang 已提交
3688

3689 3690 3691 3692 3693 3694
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3806
    def remove_input_by_id(self, node_id):
3807 3808 3809 3810 3811 3812
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3813
        self.node.remove_input(node_id)
3814

3815
    def remove_input(self, node):
3816 3817 3818 3819
        """
        Remove a node from inputs.

        Args:
3820
            node(IrNode): the node being removed.
3821
        """
3822
        self.node.remove_input(node.node)
3823

3824
    def append_input(self, node):
3825 3826 3827 3828
        """
        Append a node in inputs.

        Args:
3829
            node(IrNode): the node being appended.
3830
        """
3831
        self.node.append_input(node.node)
3832 3833 3834 3835 3836 3837 3838 3839

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3840
    def remove_output_by_id(self, node_id):
3841 3842 3843 3844 3845 3846
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3847
        self.node.remove_output(node_id)
3848

3849
    def remove_output(self, node):
3850 3851 3852 3853
        """
        Remove a node from outputs.

        Args:
3854
            node(IrNode): the node being removed.
3855
        """
3856
        self.node.remove_output(node.node)
3857

3858
    def append_output(self, node):
3859 3860 3861 3862
        """
        Append a node in outputs.

        Args:
3863
            node(IrNode): the node being appended.
3864
        """
3865
        self.node.append_output(node.node)
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3913
            "The node variable description can not be None."
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3924
            "The node variable description can not be None."
3925 3926
        return self.node.var().persistable()

3927 3928 3929 3930 3931 3932 3933 3934
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3935
            "The node variable description can not be None."
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3946
            "The node variable description can not be None."
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3957
            "The node variable description can not be None."
3958 3959
        return self.node.var().shape()

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4007
            "The node operator description can not be None."
4008 4009
        self.node.op()._rename_input(old_input_name, new_input_name)

4010 4011 4012 4013 4014 4015 4016 4017 4018
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4019
            "The node operator description can not be None."
4020 4021
        self.node.op()._rename_output(old_output_name, new_output_name)

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4033
            "The node operator description can not be None."
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4047
            "The node operator description can not be None."
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4058
            "The node operator description can not be None."
4059 4060
        return self.node.op().set_type(new_type)

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4076
            "The node operator description can not be None."
4077 4078 4079 4080
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4081
                all(isinstance(v, Block) for v in val):
4082 4083
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4084
                isinstance(val, core.ProgramDesc):
4085 4086 4087 4088
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4089 4090 4091 4092 4093 4094 4095 4096
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4097
            "The node operator description can not be None."
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4108
            "The node operator description can not be None."
4109 4110
        return self.node.op().output_arg_names()

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4132 4133
class IrGraph(object):
    """
4134
    Python IrGraph. Beneath it is a core.Graph, which is used for
4135
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4136 4137
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4138 4139 4140 4141
    """

    def __init__(self, graph, for_test=False):
        """
4142 4143
        Construct an IrGraph using core.Graph.

4144 4145 4146 4147 4148 4149 4150 4151 4152
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4153 4154 4155 4156
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4157 4158 4159
        Warns:
            The method only clones the graph structure, not its attributes.

4160 4161 4162
        Returns:
            IrGraph: A new and duplicated graph.
        """
4163
        g = self.graph.clone()
4164 4165
        return IrGraph(g, self._for_test)

4166
    def is_test(self):
4167 4168 4169
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4170 4171
        return self._for_test

W
WangZhen 已提交
4172
    def all_nodes(self):
4173 4174 4175
        """
        Return all nodes included in the graph as a set.
        """
4176
        return {IrNode(node) for node in self.graph.nodes()}
4177

4178
    def all_var_nodes(self):
4179 4180 4181
        """
        Return all variable nodes included in the graph as a set.
        """
4182
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4183

4184
    def all_persistable_nodes(self):
4185 4186 4187
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4188 4189 4190 4191 4192
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4193
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4194

4195
    def all_op_nodes(self):
4196 4197 4198
        """
        Return all operator nodes included in the graph as a set.
        """
4199
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4200

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4218
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4230
            IrVarNode: the created persistable variable node.
4231
        """
4232 4233 4234 4235 4236
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4237
        return IrVarNode(self.graph.create_var_node(var_desc))
4238 4239

    def create_var_node(self, name, var_type, shape, var_dtype):
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4251
            IrVarNode: the created variable node.
4252 4253
        """

4254 4255 4256 4257
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4258
        return IrVarNode(self.graph.create_var_node(var_desc))
4259

4260 4261 4262 4263 4264 4265
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4266
    def create_var_node_from_desc(self, var_desc):
4267 4268 4269 4270 4271 4272 4273 4274
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4275
            IrVarNode: the created variable node.
4276
        """
4277
        return IrVarNode(self.graph.create_var_node(var_desc))
4278 4279

    def create_op_node(self, op_type, attrs, inputs, outputs):
4280 4281 4282 4283 4284 4285 4286
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4287
            outputs(dict): the outputs of the operator node.
4288 4289

        Returns:
4290
            IrOpNode: the created operator node.
4291
        """
4292 4293
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4294
        for attr, value in six.iteritems(attrs):
4295
            self._update_desc_attr(op_desc, attr, value)
4296
        for input_name, var_nodes in six.iteritems(inputs):
4297 4298 4299 4300
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4301
        for output_name, var_nodes in six.iteritems(outputs):
4302 4303 4304 4305
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4306
        return IrOpNode(self.graph.create_op_node(op_desc))
4307 4308

    def create_op_node_from_desc(self, op_desc):
4309 4310 4311 4312 4313 4314 4315
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4316
            IrOpNode: the created operator node.
4317
        """
4318
        return IrOpNode(self.graph.create_op_node(op_desc))
4319 4320

    def update_input_link(self, old_input_node, new_input_node, op_node):
4321 4322 4323 4324
        """
        Update the input's link of a operator node.

        Args:
4325 4326 4327
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4328
        """
4329
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4330
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4331
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4332 4333 4334 4335
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4336
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4337

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4348
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4349
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4350 4351 4352 4353 4354 4355
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4356
    def link_to(self, node_in, node_out):
4357 4358 4359 4360
        """
        Connect two nodes.

        Args:
4361 4362
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4363
        """
4364 4365 4366 4367
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4368 4369
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4370 4371

    def safe_remove_nodes(self, remove_nodes):
4372 4373 4374 4375 4376 4377 4378
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4379
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4380 4381 4382 4383
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4384 4385
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4386

Z
Zhen Wang 已提交
4387 4388 4389 4390 4391 4392 4393 4394
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4395
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4396 4397 4398 4399
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4400
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4401 4402 4403
                        ]
                    else:
                        var_nodes[each_var_name].append(
4404 4405
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4406 4407
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4408
    def has_circle(self):
4409 4410 4411 4412 4413 4414
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4415 4416 4417
        return core.has_circle(self.graph)

    def graph_num(self):
4418 4419 4420 4421 4422 4423
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4424 4425 4426
        return core.graph_num(self.graph)

    def topology_sort(self):
4427 4428 4429
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4430
        Notes: the `graph` can not contain a circle.
4431 4432

        Returns:
Z
Zhen Wang 已提交
4433
            list(IrNode): nodes in topology order.
4434
        """
4435
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4436
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4437 4438

    def build_adjacency_list(self):
4439 4440 4441 4442
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4443
            dict{IrNode: set(IrNode)}: the adjacency list.
4444
        """
4445 4446 4447 4448 4449
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4450

4451 4452 4453 4454 4455 4456 4457 4458
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4459
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4460 4461 4462 4463 4464
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4465 4466
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4467 4468 4469
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4470 4471 4472 4473 4474
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4475
        remove_ctr_vars = set()
4476
        if remove_ctr_var:
4477
            for node in self.all_var_nodes():
4478 4479 4480
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4481 4482
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4483 4484
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4485 4486 4487 4488 4489 4490
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4491 4492 4493 4494
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4495 4496
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4497 4498 4499 4500 4501 4502 4503
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4504 4505 4506
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4507
        WARN: When the graph includes backward operator nodes, the
4508 4509 4510 4511 4512 4513
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4514
        convert_pass = core.get_pass('graph_to_program_pass')
4515 4516
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4517 4518 4519 4520
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4521 4522 4523 4524 4525 4526 4527 4528
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4529 4530
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4531 4532
        return target_node

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4549
class Program(object):
D
dzhwinter 已提交
4550
    """
4551
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4552
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4553
    it will contain nested block.
4554

J
Jiabin Yang 已提交
4555 4556 4557
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4558

J
Jiabin Yang 已提交
4559
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4560
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4561 4562 4563 4564 4565 4566 4567
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4568
    **Notes**:
4569 4570 4571
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4572 4573

    Returns:
J
Jiabin Yang 已提交
4574
        Program: An empty Program.
D
dzhwinter 已提交
4575 4576

    Examples:
4577 4578
        .. code-block:: python

4579 4580 4581 4582
            import paddle
            import paddle.static as static

            paddle.enable_static()
4583

4584 4585 4586 4587 4588
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4589
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4590 4591 4592

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4593 4594 4595

    """

4596 4597
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4598 4599
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4600 4601
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4602
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4603
        self.__op_role_var = []
T
tangwei12 已提交
4604

4605 4606
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4607
        self._is_distributed = False
4608
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4609
        self._is_chief = False
4610 4611 4612
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4613
        self._endpoints = []
4614 4615 4616
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4617
        self._trainers_endpoints = []
4618
        # the distributed lookup table names
T
tangwei12 已提交
4619
        self._distributed_lookup_table = None
4620 4621 4622

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4623 4624
        self._use_lamb = False

4625 4626 4627
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4628

4629 4630 4631
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4632
        self._program_config = None
4633

H
hutuxian 已提交
4634 4635 4636
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4637 4638 4639
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4640 4641 4642
        # appending gradients times
        self._appending_grad_times = 0

4643 4644 4645 4646
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4647 4648
        # compiled program, i.e. Graph
        self._graph = None
4649 4650
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4651

4652
    def _find_var_class_kwargs(self, new_desc):
4653 4654 4655 4656 4657 4658 4659 4660
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4730
        assert block_num == self.desc.num_blocks()
4731 4732

        # clear old blocks and desc
4733 4734 4735 4736 4737 4738 4739 4740 4741
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4742

4743
        del desc
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4773 4774
                import paddle
                import paddle.static as static
4775

4776 4777 4778
                paddle.enable_static()

                prog = static.default_main_program()
4779 4780 4781 4782 4783
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4784
                prog1 = static.default_main_program()
4785 4786 4787 4788 4789 4790 4791 4792
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4793
    @property
4794
    def _op_role(self):
Y
yuyang18 已提交
4795 4796 4797 4798 4799 4800 4801 4802
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4803
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4804 4805 4806 4807
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4808 4809
        return self._current_role

4810 4811
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4812 4813 4814
        self._current_role = role

    @property
4815
    def _op_role_var(self):
Y
yuyang18 已提交
4816
        """
4817
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4818

4819
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4820 4821 4822

        Notes: This is a very low-level API. Users should not use it directly.
        """
4823
        return self.__op_role_var
Y
yuyang18 已提交
4824

4825
    @signature_safe_contextmanager
4826 4827 4828 4829 4830
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4831 4832 4833 4834
        try:
            yield
        finally:
            self._current_role = tmp_role
4835

S
rename  
sneaxiy 已提交
4836
    @signature_safe_contextmanager
W
Wu Yi 已提交
4837
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4838 4839 4840 4841 4842 4843 4844
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4845
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4846 4847 4848

        Examples:

4849
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4850
            >>> p, g = backward(...)
W
Wu Yi 已提交
4851
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4852 4853
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4854
        tmp_role = self._current_role
4855
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4856

Y
yuyang18 已提交
4857 4858
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4859
        self.__op_role_var = [
4860 4861 4862
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4863 4864 4865 4866 4867
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4868

S
rename  
sneaxiy 已提交
4869
    @signature_safe_contextmanager
X
Xin Pan 已提交
4870
    def _lr_schedule_guard(self, is_with_opt=False):
4871 4872 4873 4874 4875 4876 4877
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4878 4879 4880 4881
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4882 4883 4884

        Examples:

4885
            >>> import paddle.fluid as fluid
4886 4887 4888 4889
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4890 4891

        tmp_role = self._current_role
4892
        tmp_var = self.__op_role_var
4893

4894 4895
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4896 4897
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4898
        # TODO(typhoonzero): how to set target learning rate var
4899
        self.__op_role_var = []
4900 4901 4902 4903 4904
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4905

4906
    def __str__(self):
Y
yuyang18 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4936 4937
            import paddle
            import paddle.static as static
4938

4939 4940 4941
            paddle.enable_static()

            cur_program = static.Program()
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4953
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4954 4955 4956 4957
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4958
            program_str += '\n'
4959
        return program_str
Y
Yang Yang(Tony) 已提交
4960

F
fengjiayi 已提交
4961 4962 4963
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4964

J
Jiabin Yang 已提交
4965 4966 4967
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4968

J
Jiabin Yang 已提交
4969
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4970

H
haowang101779990 已提交
4971
        Returns:
J
Jiabin Yang 已提交
4972
            str: The debug string describe current Program.
Y
yuyang18 已提交
4973 4974

        Raises:
J
Jiabin Yang 已提交
4975
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4976

4977 4978 4979
        Examples:
            .. code-block:: python

4980 4981 4982 4983
                import paddle
                import paddle.static as static

                paddle.enable_static()
4984

4985 4986 4987
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4988
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4989
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4990
                print("program string without detail: {}".format(prog_string))
4991
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4992
        """
4993 4994 4995 4996 4997 4998 4999 5000 5001
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5002 5003 5004 5005 5006 5007
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5008 5009
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5010 5011
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5012

W
Wu Yi 已提交
5013
    def _get_desc(self):
Y
yuyang18 已提交
5014 5015 5016 5017 5018 5019 5020
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5021 5022
        return self.desc

X
version  
Xin Pan 已提交
5023 5024 5025
    def _version(self):
        return self.desc._version()

5026
    def clone(self, for_test=False):
Y
yuyang18 已提交
5027
        """
5028 5029 5030 5031
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5032

5033
        Create a new Program with forward content of original one when ``for_test=True``.
5034
        Create a new Program as same as the original one when ``for_test=False``.
5035

5036
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5037 5038 5039
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5040

5041 5042
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5043 5044
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5045
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5046

J
Jiabin Yang 已提交
5047
        For Example:
5048
          ::
L
Luo Tao 已提交
5049

5050 5051 5052 5053 5054 5055
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5056
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5057
            loss = paddle.mean(pred)
5058
            # Here we use clone before Momentum
5059 5060
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5061
            optimizer.minimize(loss)
5062

J
Jiabin Yang 已提交
5063
        Args:
5064

5065 5066
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5067

J
Jiabin Yang 已提交
5068
        Returns:
5069
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5070

Y
yuyang18 已提交
5071 5072 5073

        Examples:

5074 5075 5076 5077 5078 5079 5080
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5097
            1. To clone a test program, the sample code is:
5098 5099 5100
                .. code-block:: python

                    import six
5101 5102 5103 5104 5105 5106
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5119 5120
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5121 5122 5123

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5124 5125 5126
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5127
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5128 5129
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5130
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5131 5132
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5133
                            test_program = train_program.clone(for_test=True)
5134
                    print_prog(test_program)
J
Jiabin Yang 已提交
5135 5136 5137 5138

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5139
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5140 5141 5142 5143
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5144 5145 5146
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5147 5148 5149
                            sgd.minimize(avg_loss)


5150
            2. The clone method can be avoid if you create program for training and program for testing individually.
5151 5152 5153
                .. code-block:: python

                    import six
5154 5155 5156 5157 5158 5159
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5171

5172
                    def network():
5173
                        img = static.data(name='image', shape=[None, 784])
5174
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5175 5176
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5177
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5178 5179
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5180 5181
                        return avg_loss

5182 5183 5184 5185 5186
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5187
                            avg_loss = network()
5188
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5189
                            sgd.minimize(avg_loss)
5190
                    # the test startup program is not used.
5191 5192
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5193 5194
                            avg_loss = network()
                    print_prog(test_program_2)
5195

5196
            The two code snippets above will generate and print same programs.
5197
        """
5198

T
tangwei12 已提交
5199
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5200 5201 5202
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5203
        pruned_origin_block_id_map = None
5204
        if for_test:
5205 5206 5207 5208 5209 5210 5211 5212 5213
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5214
        else:
5215
            p = Program()
G
gongweibao 已提交
5216 5217
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5218
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5219 5220 5221
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5222 5223

            p._current_role = self._current_role
5224
            p.__op_role_var = self.__op_role_var
5225
            p._appending_grad_times = self._appending_grad_times
5226 5227
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5228

T
tangwei12 已提交
5229
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5230
            # its desc.
W
Wu Yi 已提交
5231
            p._sync_with_cpp()
5232

W
Wu Yi 已提交
5233
        p._copy_param_info_from(self)
5234
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5235
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5236
        return p
5237

5238
    def _prune(self, targets):
Y
yuyang18 已提交
5239 5240 5241 5242 5243 5244 5245 5246
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5247
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5248 5249 5250 5251
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5252
        """
5253
        return self._prune_with_input([], targets)
5254 5255

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5256
        """
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5267
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5268 5269 5270 5271 5272 5273
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5274
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5275 5276 5277
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5278 5279
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5280 5281
        if not isinstance(targets, list):
            targets = [targets]
5282 5283 5284

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5285 5286 5287
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5288

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5305 5306 5307 5308
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5309 5310 5311
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5312
                else:
5313 5314 5315
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5316 5317 5318 5319 5320 5321

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5322 5323 5324
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5325

5326 5327 5328 5329 5330 5331 5332 5333 5334
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5335
                        # Skip optimize op except for optimize op in targets,
5336 5337 5338 5339 5340
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5341

5342
                if target_op is not None:
5343 5344 5345
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5346

5347
        res = Program()
5348 5349 5350
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5351 5352 5353
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5354
        res._sync_with_cpp()
5355 5356 5357 5358 5359

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5360 5361
        return res

X
Xin Pan 已提交
5362
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5363
        """
F
fengjiayi 已提交
5364 5365 5366 5367 5368
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5369
        3. change the :code:`is_test`
Y
yuyang18 已提交
5370 5371 5372
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5373
        Args:
X
Xin Pan 已提交
5374 5375
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5376

Y
yuyang18 已提交
5377 5378 5379 5380 5381 5382
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5383
        res = Program()
5384
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5385 5386 5387 5388

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5389
        if prune_read_op:
5390 5391 5392 5393 5394 5395 5396 5397 5398
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5399
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5400 5401

        # change all `is_test` attributes to True
M
minqiyang 已提交
5402
        for i in six.moves.range(res.desc.num_blocks()):
5403
            block = res.desc.block(i)
M
minqiyang 已提交
5404
            for j in six.moves.range(block.op_size()):
5405 5406
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5407
                    op._set_attr('is_test', True)
5408 5409 5410
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5411 5412 5413
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5414
        res._sync_with_cpp()
5415 5416
        return res

5417
    def _remove_training_info(self, clip_extra=True):
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5507 5508
        return res

5509 5510
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5511
        """
5512 5513 5514
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5515

5516 5517
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5518

J
Jiabin Yang 已提交
5519
        Args:
Y
yuyang18 已提交
5520

J
Jiabin Yang 已提交
5521
            binary_str_type (str): the binary prootbuf string.
5522

J
Jiabin Yang 已提交
5523 5524
        Returns:
            Program: A deserialized Program.
5525 5526 5527 5528

        Examples:
            .. code-block:: python

5529 5530 5531 5532
                import paddle
                import paddle.static as static

                paddle.enable_static()
5533

5534 5535 5536 5537
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5538

5539
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5540

5541
                    z = paddle.matmul(x=x, y=y)
5542

5543 5544
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5545

5546
                    print(static.default_main_program())
5547
                    print(prog_restored)
Y
yuyang18 已提交
5548
        """
5549 5550
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5551
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5552
        p._sync_with_cpp()
5553
        return p
Y
Yu Yang 已提交
5554

5555
    @staticmethod
5556
    def _construct_from_desc(desc):
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5572 5573
    @property
    def random_seed(self):
Y
yuyang18 已提交
5574
        """
J
Jiabin Yang 已提交
5575
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5576 5577
        the random seed from random device.

5578 5579
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5580 5581 5582

        Returns:
            int64: Random seed in current Program
5583

5584 5585 5586 5587

        Examples:
            .. code-block:: python

5588 5589 5590
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5591

5592 5593 5594
                paddle.enable_static()

                prog = static.default_main_program()
5595
                random_seed = prog.random_seed
5596
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5597 5598 5599
                print(random_seed)
                ## 0
                ## the default random seed is 0
5600

5601
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5602
                prog.random_seed = 1
5603
                z_var = F.dropout(x_var, 0.7)
5604

5605
                print(prog.random_seed)
5606 5607
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5608
        """
D
dzhwinter 已提交
5609 5610
        return self._seed

Q
qiaolongfei 已提交
5611 5612
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5613
        """
5614 5615
        The number of :ref:`api_guide_Block_en`  in this Program.

5616 5617
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5618 5619 5620

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5621

5622 5623 5624 5625

        Examples:
            .. code-block:: python

5626 5627 5628 5629
                import paddle
                import paddle.static as static

                paddle.enable_static()
5630

5631
                prog = static.default_main_program()
5632 5633
                num_blocks = prog.num_blocks
                print(num_blocks)
5634

5635 5636
                # print result:
                # 1
Y
yuyang18 已提交
5637
        """
Q
qiaolongfei 已提交
5638 5639
        return self.desc.num_blocks()

D
dzhwinter 已提交
5640 5641 5642
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5643 5644 5645
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5646 5647
        self._seed = seed

Y
Yu Yang 已提交
5648
    def __repr__(self):
5649
        return self.__str__()
5650

Y
Yu Yang 已提交
5651
    def global_block(self):
Y
yuyang18 已提交
5652
        """
5653 5654
        .. note::
            This API has no effect in Dygraph mode.
5655 5656 5657

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5658 5659
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5660

5661 5662 5663 5664

        Examples:
            .. code-block:: python

5665 5666 5667 5668
                import paddle
                import paddle.static as static

                paddle.enable_static()
5669

5670
                prog = static.default_main_program()
5671 5672
                gb_block = prog.global_block()
                print(gb_block)
5673

Y
yuyang18 已提交
5674
        """
Y
Yu Yang 已提交
5675 5676
        return self.blocks[0]

Q
Qiao Longfei 已提交
5677
    def block(self, index):
Y
yuyang18 已提交
5678
        """
5679 5680
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5681

5682 5683
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5684 5685
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5686

J
Jiabin Yang 已提交
5687 5688
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5689 5690 5691 5692

        Examples:
            .. code-block:: python

5693 5694 5695 5696
                import paddle
                import paddle.static as static

                paddle.enable_static()
5697

5698
                prog = static.default_main_program()
5699 5700
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5701
        """
Q
Qiao Longfei 已提交
5702 5703
        return self.blocks[index]

Y
Yu Yang 已提交
5704
    def current_block(self):
Y
yuyang18 已提交
5705
        """
5706 5707
        .. note::
            This API has no effect in Dygraph mode.
5708

J
Jiabin Yang 已提交
5709 5710
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5711

J
Jiabin Yang 已提交
5712 5713
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5714

5715 5716 5717
        Examples:
            .. code-block:: python

5718 5719 5720 5721
                import paddle
                import paddle.static as static

                paddle.enable_static()
5722

5723
                prog = static.default_main_program()
5724 5725
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5726
        """
Y
Yu Yang 已提交
5727 5728
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5729
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5730 5731 5732 5733 5734
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5735

Y
yuyang18 已提交
5736 5737 5738 5739 5740
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5741
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5742 5743 5744
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5745 5746 5747 5748
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5749
    def _rollback(self):
Y
yuyang18 已提交
5750 5751 5752 5753 5754
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5755 5756
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5757
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5768 5769 5770
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5771
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5772

W
Wu Yi 已提交
5773
    def _copy_param_info_from(self, other):
5774
        """
5775
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5776

Y
yuyang18 已提交
5777 5778 5779
        Notes: This is a very low level API. Users should not invoke it
        directly.

5780 5781 5782 5783 5784 5785 5786
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5787 5788 5789
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5790

W
Wu Yi 已提交
5791
        self.global_block()._copy_param_info_from(other.global_block())
5792

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5804 5805 5806
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5807 5808
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5809
        self._parameters_on_pservers = other._parameters_on_pservers
5810
        self._endpoints = other._endpoints
5811
        self._ps_endpoint = other._ps_endpoint
5812 5813
        self._distributed_lookup_table = other._distributed_lookup_table

5814
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5815 5816
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5817

Y
yuyang18 已提交
5818 5819 5820
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5821 5822
        Args:
            other(Program): Other program
5823 5824 5825 5826
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5827 5828 5829 5830 5831

        Returns:
            None
        """
        if not isinstance(other, Program):
5832 5833 5834
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5835

5836 5837 5838 5839 5840
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5841 5842 5843

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5844 5845
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5846
            for var in list(block.vars.values()):
5847 5848 5849 5850 5851 5852 5853
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5854

5855
    def list_vars(self):
Y
yuyang18 已提交
5856
        """
5857
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5858

J
Jiabin Yang 已提交
5859
        Returns:
5860
            iterable Tensors: The Generator will yield every Tensor in this program.
5861 5862 5863 5864

        Examples:
            .. code-block:: python

5865 5866
                import paddle
                import paddle.static as static
5867

5868 5869 5870 5871 5872
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5873 5874
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5875

5876 5877
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5878
        """
5879
        for each_block in self.blocks:
5880
            for each_var in list(each_block.vars.values()):
5881 5882
                yield each_var

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5893 5894 5895 5896
                import paddle
                import paddle.static as static

                paddle.enable_static()
5897

5898 5899
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5900
                hidden = static.nn.fc(x=data, size=10)
5901 5902
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5903 5904 5905 5906 5907 5908 5909

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5910 5911
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6089

6090
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6091
class Parameter(Variable):
6092
    """
6093
    Parameter is derived from Variable. A parameter is a persistable
6094
    Variable, and will be updated by optimizers after each iteration.
6095
    The training of a neural network is essentially the updating of
6096 6097
    its parameters.

6098
    Relative to a general Variable, a Parameter has several its own
6099 6100
    member variables:

6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6111 6112
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6113 6114
    """

6115 6116 6117 6118 6119 6120
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6121 6122 6123 6124 6125
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6126
        if len(shape) == 0:
6127 6128
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6129 6130 6131

        for each in shape:
            if each < 0:
6132 6133 6134
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6135 6136

        Variable.__init__(
6137 6138 6139 6140 6141 6142 6143
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6144 6145 6146 6147
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6148 6149
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6150
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6151

6152 6153
        self.need_clip = kwargs.get('need_clip', True)

6154 6155
        self.is_distributed = False

6156 6157
        self.is_parameter = True

F
fengjiayi 已提交
6158
    def __str__(self):
6159
        return self._to_readable_code()
F
fengjiayi 已提交
6160

F
update  
fengjiayi 已提交
6161 6162 6163
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6164

F
update  
fengjiayi 已提交
6165 6166 6167 6168 6169 6170 6171 6172
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6173 6174 6175 6176 6177 6178 6179 6180 6181
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6182 6183 6184 6185 6186 6187
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6188
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6189
            for attr_name in additional_attr:
6190 6191
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6192 6193
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6194 6195 6196 6197
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6198

6199 6200
class ParamBase(core.VarBase):
    """
6201 6202 6203
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6204 6205 6206
    The training of a neural network is essentially the updating of
    its ParamBase.

6207
    Relative to a general Tensor, a ParamBase has several its own
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6220 6221
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6252 6253
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6254 6255 6256 6257 6258 6259 6260

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6261 6262
        self.need_clip = kwargs.get('need_clip', True)

6263
        self.is_distributed = kwargs.get('is_distributed', False)
6264
        # self.block = default_main_program().global_block()
6265

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6279
    def __str__(self):
6280
        """
6281
        Convert a ParamBase object to a readable string.
6282

6283
        Returns(str): A readable string.
6284 6285 6286 6287

        Examples:
            .. code-block:: python

6288
                import paddle
6289 6290 6291 6292 6293 6294 6295
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6296
        """
6297 6298
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6299

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6311

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6330 6331 6332 6333
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6481 6482
        return new_param

6483 6484 6485
    __repr__ = __str__


Y
Yu Yang 已提交
6486
# program is a global instance.
Y
Yu Yang 已提交
6487 6488
_main_program_ = Program()
_startup_program_ = Program()
6489
_startup_program_._is_start_up_program_ = True
6490

6491

6492
def default_startup_program():
Y
Yu Yang 已提交
6493
    """
Y
yuyang18 已提交
6494 6495
    Get default/global startup program.

6496 6497
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6498

6499 6500
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6501

6502 6503
    Returns:
        Program: current default startup program.
6504

6505
    Returns type: 
6506 6507 6508 6509

    Examples:
        .. code-block:: python

6510
            import paddle
6511

6512
            paddle.enable_static()
6513 6514 6515 6516
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6517
    """
Y
Yu Yang 已提交
6518
    return _startup_program_
6519

6520

6521
def default_main_program():
Y
Yu Yang 已提交
6522
    """
6523
    This API can be used to get ``default main program`` which store the 
6524
    descriptions of Ops and tensors.
T
tangwei12 已提交
6525

6526
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6527
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6528

6529 6530
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6531
    :code:`default_main_program` when the program is not specified.
6532

6533
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6534

Y
Yu Yang 已提交
6535
    Returns:
6536
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6537 6538 6539 6540

    Examples:
        ..  code-block:: python

6541
            import paddle
6542

6543
            paddle.enable_static()
6544
            # Sample Network:
6545 6546 6547
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6548

6549 6550 6551
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6552
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6553
    """
Y
Yu Yang 已提交
6554
    return _main_program_
Y
Yu Yang 已提交
6555 6556 6557 6558 6559


def switch_main_program(program):
    """
    Switch the main program to a new program.
6560

Y
Yu Yang 已提交
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6575
    Switch the startup program to a new program
Y
Yu Yang 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6588
@signature_safe_contextmanager
Y
Yu Yang 已提交
6589 6590
def program_guard(main_program, startup_program=None):
    """
6591 6592
    :api_attr: Static Graph

6593 6594 6595
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6596

G
guofei 已提交
6597
    Args:
6598 6599
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6600 6601 6602 6603
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6604
    Examples:
6605
       .. code-block:: python
T
tangwei12 已提交
6606

6607
          import paddle
Y
yuyang18 已提交
6608

6609 6610 6611 6612 6613
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6614
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6615 6616 6617

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6618

Y
Yu Yang 已提交
6619
    Examples:
6620
       .. code-block:: python
Y
yuyang18 已提交
6621

6622
          import paddle
6623

6624 6625 6626 6627 6628
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6629

Y
Yu Yang 已提交
6630
    """
6631
    from .data_feeder import check_type
6632 6633
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6634 6635
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6636
        check_type(startup_program, 'startup_program', Program,
6637
                   'paddle.static.program_guard')
6638 6639
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6640
        startup_program = switch_startup_program(startup_program)
6641 6642 6643 6644 6645 6646
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6647 6648


W
Wu Yi 已提交
6649
def _get_var(name, program=None):
X
xuwei06 已提交
6650
    """
Y
yuyang18 已提交
6651
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6652

X
xuwei06 已提交
6653 6654 6655
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6656
        If None, default_global_program() will be used.
X
xuwei06 已提交
6657 6658 6659 6660 6661 6662 6663

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6664
    assert isinstance(program, Program)
X
xuwei06 已提交
6665 6666

    return program.global_block().var(name)
6667 6668


S
rename  
sneaxiy 已提交
6669
@signature_safe_contextmanager
L
lujun 已提交
6670 6671
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6672
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6673
    _dygraph_tracer_ = tracer
6674
    core._switch_tracer(tracer)
M
minqiyang 已提交
6675

6676 6677 6678
    try:
        yield
    finally:
6679 6680
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6681 6682


S
rename  
sneaxiy 已提交
6683
@signature_safe_contextmanager
L
lujun 已提交
6684
def _dygraph_place_guard(place):
6685 6686 6687
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6688 6689
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6690 6691
    _set_dygraph_tracer_expected_place(place)

6692 6693 6694
    try:
        yield
    finally:
6695
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6696 6697 6698
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6699 6700


6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6717 6718
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6719 6720 6721 6722 6723 6724 6725 6726 6727
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6728
            import paddle
6729

Z
Zhang Ting 已提交
6730 6731 6732
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6733
            if support_gpu:
Z
Zhang Ting 已提交
6734
                place = paddle.CUDAPlace(0)
6735 6736

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6737 6738 6739
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6740

Z
Zhang Ting 已提交
6741
            with paddle.static.device_guard("cpu"):
6742
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6743 6744
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6745
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6746
                out = paddle.reshape(data1, shape=shape)
6747

Z
Zhang Ting 已提交
6748 6749
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6750 6751 6752
            result = exe.run(fetch_list=[out])
    """

6753 6754 6755 6756 6757
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6758
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6759
        raise ValueError(
6760
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6761
            "when there is no need to specify device. But received %s" % device)
6762 6763
    if index:
        device = ":".join([device, index])
6764
    pre_device = switch_device(device)
6765 6766 6767 6768
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6769 6770 6771 6772 6773


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6774
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6775 6776 6777 6778 6779 6780 6781

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6782 6783
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6784 6785 6786 6787
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6788 6789
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6790 6791 6792 6793 6794 6795 6796 6797
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6798
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6809
            import paddle
G
guofei 已提交
6810 6811

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6812
            res = paddle.get_flags(flags)
G
guofei 已提交
6813 6814 6815 6816 6817 6818
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6819 6820
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6821 6822 6823 6824 6825 6826 6827
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6828 6829
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6830 6831 6832 6833 6834 6835 6836 6837
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6838 6839 6840 6841 6842 6843 6844


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6845 6846
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
                          core.MLUPlace)):
6847 6848 6849 6850 6851 6852 6853 6854 6855
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6856

6857 6858 6859
    if (place == "device"):
        return core.Place()

6860
    # GPU
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6876 6877

    # XPU
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

6913
    raise ValueError(
6914
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, MLUPlace and NPUPlace, but received {}.".
6915
        format(place))
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret