framework.py 216.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
S
sneaxiy 已提交
49 50
    'cuda_places',
    'cpu_places',
51
    'xpu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
L
lujun 已提交
53
    'in_dygraph_mode',
C
chengduo 已提交
54
    'is_compiled_with_cuda',
55
    'is_compiled_with_xpu',
56
    'Variable',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
249 250 251 252 253
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
254 255 256 257

    return __impl__


T
tangwei12 已提交
258 259
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


277 278
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
279
static_only = wrap_decorator(_static_only_)
280
fake_interface_only = wrap_decorator(_fake_interface_only_)
281 282


L
lujun 已提交
283 284
def _dygraph_tracer():
    return _dygraph_tracer_
285

W
Wu Yi 已提交
286

M
minqiyang 已提交
287
def _current_expected_place():
288 289 290
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
291 292 293 294 295 296 297 298 299 300 301
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
318 319


L
Leo Chen 已提交
320 321 322 323
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
324

L
Leo Chen 已提交
325 326 327 328 329 330 331 332 333 334 335 336
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
337
def _cpu_num():
338
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
339 340 341 342 343 344 345 346
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
347
        os.environ['CPU_NUM'] = str(1)
348
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
349 350 351 352 353 354 355 356 357 358
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
359 360


361 362 363 364 365 366 367 368 369
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
385 386 387 388
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

389
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
390 391 392 393

    Examples:
        .. code-block:: python

394 395
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
396 397 398 399
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
400
def cuda_places(device_ids=None):
L
lujun 已提交
401
    """
402 403 404 405
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
406
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
407 408

    If :code:`device_ids` is None, environment variable of
409
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
410
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
411
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
412
    If :code:`FLAGS_selected_gpus` is not set, all visible
413
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
414 415

    If :code:`device_ids` is not None, it should be the device
416
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
417
    the returned list would be 
C
Chen Weihang 已提交
418
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
419

420
    Parameters:
421
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
422 423

    Returns:
C
Chen Weihang 已提交
424
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
425 426 427 428

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
429 430
            import paddle
            import paddle.static as static
T
tangwei12 已提交
431

432 433
            # required: gpu
            
C
Chen Weihang 已提交
434 435 436
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
437 438

    """
S
sneaxiy 已提交
439 440 441
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
442
        device_ids = _cuda_ids()
S
sneaxiy 已提交
443 444 445 446 447
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
470
        
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
486
def cpu_places(device_count=None):
L
lujun 已提交
487
    """
C
Chen Weihang 已提交
488
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
489

S
add doc  
sneaxiy 已提交
490 491
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
492 493
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
494 495
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
496

497 498
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
499 500

    Returns:
C
Chen Weihang 已提交
501
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
502 503 504 505

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
506 507
            import paddle
            import paddle.static as static
T
tangwei12 已提交
508

C
Chen Weihang 已提交
509 510 511
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
512 513
    """

S
sneaxiy 已提交
514 515 516 517 518 519
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
520
    """
521
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
522 523 524

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
525 526 527 528
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
529

530 531
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
532 533

    Returns:
534
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
535 536 537 538

    Examples:
        .. code-block:: python

539
            import paddle.fluid as fluid
L
lujun 已提交
540 541 542 543 544
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
545 546 547
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
548 549
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
550 551


552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
578
@signature_safe_contextmanager
579 580
def name_scope(prefix=None):
    """
581 582
    :api_attr: Static Graph

583
    Generate hierarchical name prefix for the operators in Static Graph.
584

T
Tao Luo 已提交
585 586 587
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
588
        Don't use it in dygraph, since it will cause memory leak.
589 590

    Args:
T
Tao Luo 已提交
591
        prefix(str, optional): prefix. Default is none.
592 593 594

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
595

596 597 598
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
599
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
600
             b = a + 1
601
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
602
                c = b * 1
603
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
604
                d = c / 1
605 606 607
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
608 609 610
                g = f - 1

          # Op are created in the default main program.  
611
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
627 628
    """
    # TODO(panyx0718): Only [0-9a-z].
629
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
630 631 632
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
633
        assert prefix, "namescope prefix can not be empty."
634 635
        global _name_scope
        _name_scope = _name_scope.child(prefix)
636 637 638 639
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
640 641 642 643 644 645 646 647 648 649 650 651


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
652 653 654
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
655 656 657 658


def grad_var_name(var_name):
    """
659 660
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
661 662 663
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
664

665
def convert_np_dtype_to_dtype_(np_dtype):
666 667
    """
    Convert the data type in numpy to the data type in Paddle
668

669
    Args:
670
        np_dtype(np.dtype): the data type in numpy.
671

672 673
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
674 675

    """
676 677
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
678
        return core.VarDesc.VarType.FP32
679
    elif dtype == np.float64:
680
        return core.VarDesc.VarType.FP64
681
    elif dtype == np.float16:
682
        return core.VarDesc.VarType.FP16
683
    elif dtype == np.int32:
684
        return core.VarDesc.VarType.INT32
685
    elif dtype == np.int16:
686
        return core.VarDesc.VarType.INT16
687
    elif dtype == np.int64:
688
        return core.VarDesc.VarType.INT64
689
    elif dtype == np.bool:
690
        return core.VarDesc.VarType.BOOL
691
    elif dtype == np.uint16:
692 693 694
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
695 696
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
697 698
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
699 700 701 702
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
703
    else:
M
minqiyang 已提交
704
        raise ValueError("Not supported numpy dtype %s" % dtype)
705 706 707


def dtype_is_floating(dtype):
708 709 710
    """
    Check the data type is floating or not.
    Args:
711
        dtype(np.dtype|core.VarDesc.VarType): data type.
712 713 714 715 716
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
717
    if not isinstance(dtype, core.VarDesc.VarType):
718 719
        dtype = convert_np_dtype_to_dtype_(dtype)

720 721 722 723
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
724 725


Y
Yang Yang(Tony) 已提交
726
def _debug_string_(proto, throw_on_error=True):
727 728 729 730 731 732 733 734 735 736 737
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
738
    error_fields = list()
Y
Yang Yang(Tony) 已提交
739
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
740 741
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
742 743 744
    return proto.__str__()


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
802
    target_block = default_main_program().current_block()
803 804 805 806 807 808 809 810 811 812 813

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
814
            })
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
854
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
855
                fill_constant([1], 1, force_cpu=True, out=temp_1)
856
                temp_end = target_block.create_var(dtype=slice_item.dtype)
857
                target_block.append_op(
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
882
                temp_out = var.block.create_var(dtype='int64')
883 884 885 886 887 888 889 890 891 892 893 894 895 896
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
897

898
    # starts
L
Leo Chen 已提交
899
    if contain_var(slice_start):
900 901 902 903 904 905 906 907
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
908 909 910 911
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
912 913 914 915 916 917 918
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
919 920 921
    else:
        attrs['ends'] = slice_end

922 923
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
924
        if contain_var(slice_step):
925 926 927 928 929 930 931
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
932 933
        else:
            attrs['strides'] = slice_step
934 935 936 937 938 939
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
940
        slice_out_var = target_block.create_var(
941 942 943
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

944
        target_block.append_op(
945 946 947 948 949 950 951
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
952
        strided_slice_out_var = target_block.create_var(
953 954 955
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
956
        target_block.append_op(
957 958 959 960 961 962 963 964
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
965
        reverse_out_var = target_block.create_var(
966 967 968
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
969
        target_block.append_op(
970 971 972 973 974 975 976 977 978 979 980
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
981
class Variable(object):
982
    """
J
Jiabin Yang 已提交
983
    **Notes**:
984
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
985

986 987
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
988 989 990
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
991
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
992 993
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
994

995
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
996
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
997

T
tianshuo78520a 已提交
998
    Most of a Variable's member variables can be set to be None. It mean
999
    it is not available or will be specified later.
1000

1001
    Examples:
1002 1003
        In Static Graph Mode:

1004 1005
        .. code-block:: python

1006
            import paddle.fluid as fluid
1007
            cur_program = fluid.Program()
1008 1009 1010 1011
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1012
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1013 1014 1015 1016 1017 1018 1019 1020 1021

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1022 1023
    """

Y
Yu Yang 已提交
1024 1025
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1026
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1027 1028 1029 1030
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1031
                 capacity=None,
Q
QI JUN 已提交
1032
                 persistable=None,
F
fengjiayi 已提交
1033
                 error_clip=None,
Y
Yu Yang 已提交
1034
                 stop_gradient=False,
F
fengjiayi 已提交
1035
                 is_data=False,
H
Huihuang Zheng 已提交
1036
                 need_check_feed=False,
H
hong 已提交
1037
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1038
                 **kwargs):
Y
Yu Yang 已提交
1039 1040
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1041
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1042

Y
Yu Yang 已提交
1043
        if dtype is not None:
1044
            if not isinstance(dtype, core.VarDesc.VarType):
1045
                dtype = convert_np_dtype_to_dtype_(dtype)
1046

H
hong 已提交
1047 1048
        self.belong_to_optimizer = belong_to_optimizer

1049 1050 1051 1052 1053
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1054

1055 1056 1057
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1058

1059 1060 1061
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1062 1063
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1064 1065
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1066

1067
        if shape is not None:
1068
            if is_new_var:
1069 1070 1071 1072 1073 1074
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1075 1076
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1077 1078 1079 1080 1081 1082 1083
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1084 1085
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1086 1087 1088 1089 1090 1091 1092 1093 1094
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1095 1096
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1097 1098 1099 1100 1101 1102 1103 1104 1105
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1106 1107
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1108 1109
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1110

1111 1112
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1113

1114 1115 1116 1117 1118 1119 1120
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1121

1122 1123 1124 1125
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1126

1127
    @fake_interface_only
1128 1129
    def detach(self):
        """
J
Jiabin Yang 已提交
1130
        **Notes**:
T
tianshuo78520a 已提交
1131
            **This API is ONLY available in Dygraph mode**
1132

1133
        Returns a new Variable, detached from the current graph.
1134

1135
        Returns:
J
Jiabin Yang 已提交
1136
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1137

1138

1139 1140 1141 1142 1143
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1144
                from paddle.fluid.dygraph import Linear
1145 1146 1147 1148
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1149
                    linear = Linear(32, 64)
1150
                    data = to_variable(data)
1151
                    x = linear(data)
1152 1153 1154
                    y = x.detach()

        """
1155
        pass
1156

1157
    @fake_interface_only
1158
    def numpy(self):
1159
        """
J
Jiabin Yang 已提交
1160
        **Notes**:
T
tianshuo78520a 已提交
1161
            **This API is ONLY available in Dygraph mode**
1162

J
Jiabin Yang 已提交
1163
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1164 1165 1166 1167 1168

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1169
            ndarray: dtype is same as current Variable
1170 1171 1172 1173 1174 1175

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1176
                from paddle.fluid.dygraph import Linear
1177 1178 1179 1180
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1181
                    linear = Linear(32, 64)
1182
                    data = to_variable(data)
1183
                    x = linear(data)
1184 1185 1186
                    print(x.numpy())

        """
1187
        pass
1188

1189
    @fake_interface_only
1190
    def backward(self, retain_graph=False):
1191
        """
J
Jiabin Yang 已提交
1192
        **Notes**:
T
tianshuo78520a 已提交
1193
            **This API is ONLY available in Dygraph mode**
1194

1195
        Run backward of current Graph which starts from current Tensor.
1196

J
Jiabin Yang 已提交
1197
        Args:
1198 1199 1200 1201
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1202

J
Jiabin Yang 已提交
1203 1204
        Returns:
            NoneType: None
1205 1206 1207 1208 1209

        Examples:
            .. code-block:: python

                import numpy as np
1210 1211
                import paddle
                paddle.disable_static()
1212 1213

                x = np.ones([2, 2], np.float32)
1214 1215 1216 1217 1218 1219 1220
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1221 1222
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1223
                loss.backward()
1224 1225

        """
1226
        pass
1227

1228
    @fake_interface_only
1229
    def gradient(self):
1230
        """
J
Jiabin Yang 已提交
1231
        **Notes**:
T
tianshuo78520a 已提交
1232
            **This API is ONLY available in Dygraph mode**
1233 1234 1235

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1236
        Returns:
1237
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1238 1239 1240 1241 1242 1243 1244

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1245
                # example1: return ndarray
1246 1247 1248 1249 1250 1251 1252 1253 1254
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1255
                    loss2.backward()
1256 1257
                    print(loss2.gradient())

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1271
        """
1272
        pass
1273

1274
    @fake_interface_only
1275
    def clear_gradient(self):
1276
        """
J
Jiabin Yang 已提交
1277
        **Notes**:
T
tianshuo78520a 已提交
1278
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1279 1280

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1281

J
Jiabin Yang 已提交
1282
        Clear  (set to ``0`` ) the Gradient of Current Variable
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1301
                    loss2.backward()
1302 1303 1304 1305 1306
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1307
        pass
X
Xin Pan 已提交
1308

1309 1310 1311 1312
    @fake_interface_only
    def register_hook(self, hook):
        pass

1313
    def __str__(self):
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1330 1331
                import paddle
                import paddle.static as static
1332

1333 1334 1335
                paddle.enable_static()

                cur_program = static.Program()
1336 1337 1338 1339 1340 1341
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1342 1343
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1344
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1345 1346
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1347 1348
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1349
        else:
1350 1351
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1365

F
update  
fengjiayi 已提交
1366
    def to_string(self, throw_on_error, with_details=False):
1367 1368 1369
        """
        Get debug string.

J
Jiabin Yang 已提交
1370 1371 1372 1373 1374
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1375

1376 1377
        Returns:
            str: The debug string.
1378 1379 1380 1381 1382

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1383
                import paddle
1384

1385
                paddle.enable_static()
1386 1387 1388 1389 1390
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1391
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1392
                print("=============with detail===============")
1393
                print(new_variable.to_string(True, True))
1394
        """
F
update  
fengjiayi 已提交
1395 1396
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1397
        protostr = self.desc.serialize_to_string()
1398
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1399 1400 1401 1402
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1403 1404 1405
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1406
        return res_str
1407 1408 1409

    __repr__ = __str__

1410
    @property
1411
    def stop_gradient(self):
J
Jiabin Yang 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1427 1428
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1429 1430 1431
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1432 1433
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1434 1435 1436 1437
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1438
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1439 1440
                assert (out1.gradient() == 0).all()
        """
1441
        return self._stop_gradient
1442

1443 1444
    @stop_gradient.setter
    def stop_gradient(self, s):
1445
        self._stop_gradient = s
1446

1447 1448
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1470
        return self.desc.persistable()
1471

Y
Yu Yang 已提交
1472 1473
    @persistable.setter
    def persistable(self, p):
1474
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1475

Y
Yu Yang 已提交
1476 1477
    @property
    def name(self):
J
Jiabin Yang 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1494
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1495

1496 1497 1498 1499 1500 1501 1502 1503
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1516 1517
    @name.setter
    def name(self, new_name):
1518
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1519

Y
Yu Yang 已提交
1520 1521
    @property
    def shape(self):
J
Jiabin Yang 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1539
        # convert to tuple, make it as same as numpy API.
1540
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1541 1542

    @property
F
fengjiayi 已提交
1543
    def dtype(self):
J
Jiabin Yang 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1560
        return self.desc.dtype()
Y
Yu Yang 已提交
1561 1562 1563

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1585 1586 1587
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1588
        return self.desc.lod_level()
Y
Yu Yang 已提交
1589

Y
Yu Yang 已提交
1590 1591
    @property
    def type(self):
J
Jiabin Yang 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1608
        return self.desc.type()
Y
Yu Yang 已提交
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1644
    def _set_error_clip(self, error_clip):
1645 1646 1647 1648 1649 1650 1651 1652 1653
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1654 1655
        self.error_clip = error_clip

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1696
            raise ValueError("slice step can not be zero")
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1772
    def _cloneVar(self, copy=False):
1773 1774
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1775 1776
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1777 1778 1779 1780
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1781
        new_var = self._cloneVar()
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1792
        new_var = self._cloneVar()
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1803
                return self._cloneVar(True)
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1822
                return self._cloneVar(True)
1823
            index = int(item)
1824
            if (index > 0 and index >= self.shape[axis]) \
1825 1826 1827 1828 1829 1830 1831
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1832
        return _getitem_impl_(self, item)
1833

1834 1835 1836 1837 1838 1839 1840
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

1841
        decrease_axes = []
1842 1843 1844
        axes = []
        starts = []
        ends = []
1845 1846
        steps = []

1847
        max_integer = sys.maxsize
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

        def replace_ellipsis(item):
            # Use slice(None) to replace Ellipsis.
            # For var, var.shape = [3,4,5,6]
            #
            #   var[..., 1:2] -> var[:, :, :, 1:2]
            #   var[0, ...] -> var[0]
            #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

            item = list(item)
1858 1859 1860 1861 1862 1863

            # Remove Variable to skip bug when counting Ellipsis
            item_remove_var = [
                ele for ele in item if not isinstance(ele, Variable)
            ]
            ell_count = item_remove_var.count(Ellipsis)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
            if ell_count == 0:
                return item
            elif ell_count > 1:
                raise IndexError(
                    "An index can only have a single ellipsis ('...')")

            ell_idx = item.index(Ellipsis)

            if ell_idx == len(item) - 1:
                return item[:-1]
            else:
                item[ell_idx:ell_idx + 1] = [slice(None)] * (
                    len(self.shape) - len(item) + 1)

            return item

        item = replace_ellipsis(item)

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                step = 1 if step is None else step

1893 1894
                # TODO: support cases when step < 1
                if not isinstance(step, Variable) and step == 0:
1895
                    raise ValueError(
1896
                        "When assign a value to a paddle.Tensor, step can not be 0, "
1897
                        "but received step is {}.".format(step))
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

                if isinstance(step, Variable) and (start is None or
                                                   end is None):
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, it's not supported that "
                        "the start or end is None when the type of step is paddle.Tensor."
                    )

                if start is None:
                    start = 0 if step > 0 else max_integer

                if end is None:
                    end = max_integer if step > 0 else (0 - max_integer)
1911
            else:
1912
                decrease_axes.append(dim)
1913 1914
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
1915
                step = 1
1916

1917 1918 1919
            axes.append(dim)
            starts.append(start)
            ends.append(end)
1920
            steps.append(step)
1921

1922 1923 1924 1925 1926 1927 1928
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'steps': steps,
            'decrease_axes': decrease_axes
        }
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

        from .layers import utils
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            del attrs['starts']
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            del attrs['ends']
        if utils._contain_var(steps):
            inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
            del attrs['steps']
1940 1941 1942 1943 1944

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

1945
        from .data_feeder import convert_dtype
1946 1947
        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
1948
            value = np.array([value]).astype(convert_dtype(dtype))
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
1959 1960 1961
            elif dtype == core.VarDesc.VarType.FP64:
                value_name = "fp64_values"
                values = [float(v) for v in value.flat]
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

1984 1985
        cur_block = default_main_program().current_block()
        cur_block.append_op(
1986
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
1987

1988 1989
        return self

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

Y
Yu Yang 已提交
2143

F
fengjiayi 已提交
2144 2145 2146
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2147

2148 2149
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2150 2151 2152 2153
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2154
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2155 2156 2157 2158 2159
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2160 2161 2162 2163
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2173
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2174 2175 2176 2177 2178 2179
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2180 2181 2182 2183 2184 2185 2186 2187
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2188 2189
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2190 2191
        return self.op_proto_map[type]

2192 2193
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2194
        custom_op_names = []
2195 2196 2197
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2198 2199 2200
                custom_op_names.append(proto.type)

        return custom_op_names
2201

2202 2203 2204 2205
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2206
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2207
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2208 2209
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2210 2211
        }

F
fengjiayi 已提交
2212

X
Xin Pan 已提交
2213
class Operator(object):
2214
    """
2215 2216 2217 2218 2219 2220 2221
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2222
        type(str): The type of operator. Default None.
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2243
        Block.append_op or Block._prepend_op instead.
2244 2245 2246 2247

    Examples:
        .. code-block:: python

2248
            import paddle.fluid as fluid
2249
            cur_program = fluid.Program()
2250 2251 2252 2253 2254
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2255
    """
2256
    OP_WITHOUT_KERNEL_SET = {
2257 2258
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2259
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2260 2261
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2262
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2263 2264
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2265
    }
2266

Y
Yu Yang 已提交
2267 2268
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2269
                 desc,
Y
Yu Yang 已提交
2270 2271 2272
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2273
                 attrs=None):
L
lujun 已提交
2274
        if in_dygraph_mode():
2275 2276
            if type is None:
                raise ValueError(
2277
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2278
            self._type = type
M
minqiyang 已提交
2279
            self.attrs = attrs if attrs else {}
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2294
                )] = self.block.program._op_role
2295 2296 2297

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2298 2299
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2300 2301 2302 2303 2304 2305 2306 2307

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2308
                    "`type` to initialized an Operator can not be None.")
2309 2310
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2311 2312 2313 2314 2315 2316 2317
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2318 2319 2320 2321 2322 2323 2324

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2356
                        if not isinstance(in_args, (list, tuple)):
2357 2358 2359 2360 2361 2362
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2363
                        for index, arg in enumerate(in_args):
2364 2365 2366 2367
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2368
                            elif isinstance(arg, (Variable, core.VarBase)):
2369
                                in_arg_names.append(cpt.to_text(arg.name))
2370
                            else:
2371 2372 2373 2374
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2375 2376
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2401 2402 2403 2404
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2405
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2406
                        if not in_dygraph_mode():
2407 2408 2409 2410
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2429
    def _has_kernel(self, op_type):
2430 2431
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2432
    def to_string(self, throw_on_error):
2433
        """
2434 2435
        Get debug string.

2436
        Args:
2437 2438
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2439

2440 2441
        Returns:
            str: The debug string.
2442 2443

        """
2444
        protostr = self.desc.serialize_to_string()
2445
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2446 2447
        return _debug_string_(proto, throw_on_error)

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2535 2536
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2537 2538 2539 2540 2541
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2542
    def __str__(self):
2543
        return self._to_readable_code()
2544 2545 2546

    __repr__ = __str__

F
fengjiayi 已提交
2547 2548
    @property
    def type(self):
2549
        return self.desc.type()
F
fengjiayi 已提交
2550 2551

    def input(self, name):
2552
        r"""
2553
        Get the input arguments according to the input parameter name.
2554

2555 2556
        Args:
            name(str): The input parameter name.
2557

2558 2559 2560
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2561
        """
F
fengjiayi 已提交
2562 2563
        return self.desc.input(name)

W
Wu Yi 已提交
2564
    def _rename_input(self, old_name, new_name):
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2575
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2576

W
Wu Yi 已提交
2577
    def _rename_output(self, old_name, new_name):
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2588
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2589

F
fengjiayi 已提交
2590 2591 2592 2593
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2594 2595 2596 2597 2598 2599 2600 2601
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2602
    def output(self, name):
2603
        r"""
2604
        Get output arguments by the output parameter name.
2605

2606 2607
        Args:
            name(str): The output parameter name.
2608

2609 2610 2611
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2612
        """
F
fengjiayi 已提交
2613 2614 2615 2616 2617 2618
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2619 2620 2621 2622 2623 2624 2625 2626
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2627
    def has_attr(self, name):
2628
        """
2629 2630
        Whether this Operator has the attribute with name or not.

2631
        Args:
2632
            name(str): the attribute name.
2633

2634 2635
        Returns:
            bool: True if has this attribute.
2636 2637

        """
F
fengjiayi 已提交
2638 2639 2640
        return self.desc.has_attr(name)

    def attr_type(self, name):
2641
        """
2642
        Get the type of attribute by attribute's name.
2643

2644 2645
        Args:
            name(str): the attribute name.
2646

2647 2648
        Returns:
            core.AttrType: the attribute type.
2649
        """
F
fengjiayi 已提交
2650 2651
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2652
    def _set_attr(self, name, val):
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2663 2664
        self._update_desc_attr(name, val)

2665 2666 2667
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2679 2680
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2681 2682
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2683
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2684 2685 2686 2687
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2688
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2689

F
fengjiayi 已提交
2690 2691 2692 2693 2694
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2695
        """
2696 2697
        Get the attribute by name.

2698
        Args:
2699
            name(str): the attribute name.
2700

2701 2702
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2703 2704
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2705
        return self.desc.attr(name)
Y
Yu Yang 已提交
2706

W
Wu Yi 已提交
2707
    def _block_attr_id(self, name):
2708
        """
G
gongweibao 已提交
2709
        Get the block attribute's id by name.
2710

2711 2712
        Args:
            name(str): the attribute name.
2713

2714 2715
        Returns:
            int: the block index.
2716
        """
W
Wu Yi 已提交
2717
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2718

W
Wu Yi 已提交
2719
    def _block_attr(self, name):
G
gongweibao 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2730
        id = self._block_attr_id(name)
G
gongweibao 已提交
2731 2732 2733
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2734
    def _blocks_attr(self, name):
G
gongweibao 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2745
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2746 2747 2748 2749 2750
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2751
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2762
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2763

J
JiayiFeng 已提交
2764
    def all_attrs(self):
F
fengjiayi 已提交
2765
        """
2766 2767 2768
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2769
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2770 2771 2772 2773
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2774 2775
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2776
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2777 2778 2779
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2780
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2781 2782 2783 2784
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2785 2786
        return attr_map

2787 2788 2789
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2790 2791 2792 2793

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2794 2795 2796
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2797 2798 2799 2800 2801 2802 2803 2804

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2805 2806
            return False

2807 2808 2809 2810 2811 2812
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2813

Y
Yu Yang 已提交
2814
class Block(object):
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2829
        use `Program._create_block()` to create a block.
2830 2831 2832 2833

    Examples:
        .. code-block:: python

2834 2835 2836
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2837 2838 2839 2840 2841 2842 2843 2844 2845
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2846
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2847
        self.desc = program.desc.block(idx)
2848
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2849
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2850
        self.program = program
2851
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2852

2853
    def __str__(self):
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2900

F
fengjiayi 已提交
2901 2902
    def to_string(self, throw_on_error, with_details=False):
        """
2903 2904
        Get debug string.

F
fengjiayi 已提交
2905 2906
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2907
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2908
            with_details(bool): more details about variables and parameters
2909 2910
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2911

2912 2913
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2914 2915 2916 2917
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2918
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2919 2920
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2921
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2922
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2923
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2924
            for op in self.ops:
F
fengjiayi 已提交
2925 2926
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2927 2928 2929
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2930 2931
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2932 2933
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2934 2935 2936

    __repr__ = __str__

Y
Yu Yang 已提交
2937 2938
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2939
        return self.desc.parent
Y
Yu Yang 已提交
2940

Y
Yu Yang 已提交
2941 2942 2943 2944
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2945
    def _set_forward_block_idx(self, idx):
2946 2947 2948 2949 2950 2951 2952 2953 2954
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2955
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2956

2957 2958 2959 2960 2961 2962 2963 2964
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2965 2966
    @property
    def idx(self):
Y
Yu Yang 已提交
2967
        return self.desc.id
Y
Yu Yang 已提交
2968

Q
Qiao Longfei 已提交
2969
    def var(self, name):
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2983
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2984 2985 2986
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2987 2988
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2989
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2990
        return v
Q
Qiao Longfei 已提交
2991

X
Xin Pan 已提交
2992
    def _find_var_recursive(self, name):
2993 2994 2995 2996 2997 2998 2999
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3000
            Variable: the Variable with the giving name. Or None if not found.
3001
        """
Y
Yu Yang 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3026
        return None
Y
Yu Yang 已提交
3027

X
Xin Pan 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3047

Q
Qiao Longfei 已提交
3048
    def all_parameters(self):
3049
        return list(self.iter_parameters())
3050

3051
    def iter_parameters(self):
M
minqiyang 已提交
3052
        return (item[1] for item in six.iteritems(self.vars)
3053
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3054

Y
Yu Yang 已提交
3055
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3056 3057 3058
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3059 3060 3061
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3062
        return var
Y
Yu Yang 已提交
3063

Q
Qiao Longfei 已提交
3064 3065 3066
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3067
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3068 3069
        """
        Rename variable in vars and ops' inputs and outputs
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3082
        """
M
minqiyang 已提交
3083 3084
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3085

T
typhoonzero 已提交
3086
        if not self.has_var(name):
3087
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3088 3089
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3090
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3091 3092 3093 3094 3095 3096
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3097
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3098 3099 3100 3101
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3102
        orig_var_type = v.type
M
minqiyang 已提交
3103
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3104
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3105
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3106
        if var_type == "Parameter":
L
Leo Chen 已提交
3107 3108
            if in_dygraph_mode():
                var = ParamBase(
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3119 3120
                var = Parameter(
                    self,
3121 3122 3123 3124 3125 3126 3127 3128 3129
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3130
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3131 3132
            var = Variable(
                self,
T
typhoonzero 已提交
3133
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3134 3135 3136 3137
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3138
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3139 3140 3141
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3142
        self._sync_with_cpp()
3143
        return var
T
typhoonzero 已提交
3144

3145 3146 3147
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3148
        self.desc._remove_var(cpt.to_bytes(name))
3149 3150
        del self.vars[name]

Y
Yu Yang 已提交
3151 3152
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3153
        param = None
L
Leo Chen 已提交
3154
        if in_dygraph_mode():
3155
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3156 3157
        else:
            param = Parameter(global_block, *args, **kwargs)
3158 3159 3160 3161 3162 3163
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
3164
        if 'initializer' in kwargs:
3165 3166 3167 3168 3169

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3170
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3171
                        # are treated as initialization ops that cause error.
3172
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3173 3174 3175 3176 3177
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3178
                            continue
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3190
                # TODO already inited, do nothing, should log a warning
3191 3192 3193
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3194
        return param
Y
Yu Yang 已提交
3195

Y
Yu Yang 已提交
3196
    def append_op(self, *args, **kwargs):
3197 3198 3199 3200 3201 3202
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3203
        if in_dygraph_mode():
3204
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3205
            type = kwargs.get("type", None)
3206 3207 3208
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3209
                type=type,
M
minqiyang 已提交
3210 3211
                inputs=None,
                outputs=None,
3212
                attrs=attrs)
3213

M
minqiyang 已提交
3214 3215 3216
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3217
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3218 3219

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3220
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3221 3222
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3223
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3224
        else:
3225 3226 3227 3228 3229 3230 3231 3232 3233
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
3234
            self.ops.append(op)
M
minqiyang 已提交
3235

3236 3237
        return op

W
Wu Yi 已提交
3238
    def _insert_op(self, index, *args, **kwargs):
3239 3240 3241 3242 3243 3244 3245 3246 3247
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3248
        self._sync_with_cpp()
F
fangshuixun007 已提交
3249
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3250

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3268 3269 3270 3271 3272 3273 3274 3275 3276
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3277 3278
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3279
        self.desc._remove_op(index, index + 1)
3280 3281
        del self.ops[index]

W
Wu Yi 已提交
3282
    def _slice_ops(self, start, end):
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3293
        return self.ops[start:end]
Y
Yancey1989 已提交
3294

W
Wu Yi 已提交
3295
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3296
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3297 3298
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3299
            op = Operator(
J
Jiabin Yang 已提交
3300
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3301

J
Jiabin Yang 已提交
3302
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3303
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3304 3305
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3306
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3307
        else:
3308 3309 3310 3311 3312 3313 3314 3315
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3316
            self.ops.insert(0, op)
3317

Y
Yu Yang 已提交
3318 3319
        return op

W
Wu Yi 已提交
3320
    def _sync_with_cpp(self):
3321
        """
3322 3323
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3324
        """
Q
Qiao Longfei 已提交
3325 3326 3327 3328 3329
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3330
        # sync variables removed from c++ end
3331
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3332
            if not self.desc.find_var(cpt.to_bytes(var)):
3333 3334
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3335
        # sync operators from cpp
3336 3337 3338 3339
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3356 3357 3358 3359 3360

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3361
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3362 3363 3364 3365 3366 3367 3368

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3382 3383 3384 3385
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3386
    def _copy_param_info_from(self, other):
3387
        """
3388 3389
        Copy the information of parameters from the other block.

3390
        Args:
3391 3392 3393 3394 3395
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3396 3397 3398 3399 3400

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3401 3402
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3403
        for p in other.iter_parameters():
3404 3405 3406
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3407 3408
                # if the Parameter is pruned, v may be None
                continue
3409
            assert isinstance(v, Variable)
3410
            new_p = None
L
Leo Chen 已提交
3411 3412
            if in_dygraph_mode():
                new_p = ParamBase(
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3424 3425
                new_p = Parameter(
                    block=self,
3426 3427 3428
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3429 3430
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3431 3432 3433 3434 3435 3436
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3437 3438
            self.vars[new_p.name] = new_p

3439
    def _clone_variable(self, var, force_persistable=True):
3440 3441
        """
        Clone a variable into current block.
3442

3443 3444
        Args:
            var: the variable to be cloned.
3445 3446 3447
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3448 3449

        Returns:
3450
            Variable: the new  variable cloned from 'var' in current block.
3451 3452
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3453 3454 3455 3456 3457
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3458 3459
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3460
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3461 3462 3463 3464 3465 3466
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3467
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3468 3469
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3470 3471 3472 3473 3474 3475 3476
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3477
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3478 3479
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3480
        return ret_var
3481

Y
Yu Yang 已提交
3482

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3578
    def remove_input_by_id(self, node_id):
3579 3580 3581 3582 3583 3584
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3585
        self.node.remove_input(node_id)
3586

3587
    def remove_input(self, node):
3588 3589 3590 3591
        """
        Remove a node from inputs.

        Args:
3592
            node(IrNode): the node being removed.
3593
        """
3594
        self.node.remove_input(node.node)
3595

3596
    def append_input(self, node):
3597 3598 3599 3600
        """
        Append a node in inputs.

        Args:
3601
            node(IrNode): the node being appended.
3602
        """
3603
        self.node.append_input(node.node)
3604 3605 3606 3607 3608 3609 3610 3611

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3612
    def remove_output_by_id(self, node_id):
3613 3614 3615 3616 3617 3618
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3619
        self.node.remove_output(node_id)
3620

3621
    def remove_output(self, node):
3622 3623 3624 3625
        """
        Remove a node from outputs.

        Args:
3626
            node(IrNode): the node being removed.
3627
        """
3628
        self.node.remove_output(node.node)
3629

3630
    def append_output(self, node):
3631 3632 3633 3634
        """
        Append a node in outputs.

        Args:
3635
            node(IrNode): the node being appended.
3636
        """
3637
        self.node.append_output(node.node)
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3685
            "The node variable description can not be None."
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3696
            "The node variable description can not be None."
3697 3698
        return self.node.var().persistable()

3699 3700 3701 3702 3703 3704 3705 3706
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3707
            "The node variable description can not be None."
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3718
            "The node variable description can not be None."
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3729
            "The node variable description can not be None."
3730 3731
        return self.node.var().shape()

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3779
            "The node operator description can not be None."
3780 3781
        self.node.op()._rename_input(old_input_name, new_input_name)

3782 3783 3784 3785 3786 3787 3788 3789 3790
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3791
            "The node operator description can not be None."
3792 3793
        self.node.op()._rename_output(old_output_name, new_output_name)

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3805
            "The node operator description can not be None."
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3819
            "The node operator description can not be None."
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3830
            "The node operator description can not be None."
3831 3832
        return self.node.op().set_type(new_type)

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3848
            "The node operator description can not be None."
3849 3850 3851 3852
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3853
                all(isinstance(v, Block) for v in val):
3854 3855
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3856
                isinstance(val, core.ProgramDesc):
3857 3858 3859 3860
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3861 3862 3863 3864 3865 3866 3867 3868
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3869
            "The node operator description can not be None."
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3880
            "The node operator description can not be None."
3881 3882
        return self.node.op().output_arg_names()

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3904 3905
class IrGraph(object):
    """
3906
    Python IrGraph. Beneath it is a core.Graph, which is used for
3907
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3908 3909
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3910 3911 3912 3913
    """

    def __init__(self, graph, for_test=False):
        """
3914 3915
        Construct an IrGraph using core.Graph.

3916 3917 3918 3919 3920 3921 3922 3923 3924
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3925 3926 3927 3928
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3929 3930 3931
        Warns:
            The method only clones the graph structure, not its attributes.

3932 3933 3934
        Returns:
            IrGraph: A new and duplicated graph.
        """
3935
        g = self.graph.clone()
3936 3937
        return IrGraph(g, self._for_test)

3938
    def is_test(self):
3939 3940 3941
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3942 3943
        return self._for_test

W
WangZhen 已提交
3944
    def all_nodes(self):
3945 3946 3947
        """
        Return all nodes included in the graph as a set.
        """
3948
        return {IrNode(node) for node in self.graph.nodes()}
3949

3950
    def all_var_nodes(self):
3951 3952 3953
        """
        Return all variable nodes included in the graph as a set.
        """
3954
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3955

3956
    def all_persistable_nodes(self):
3957 3958 3959
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3960 3961 3962 3963 3964
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3965
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3966

3967
    def all_op_nodes(self):
3968 3969 3970
        """
        Return all operator nodes included in the graph as a set.
        """
3971
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3972

3973
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3985
            IrVarNode: the created persistable variable node.
3986
        """
3987 3988 3989 3990 3991
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3992
        return IrVarNode(self.graph.create_var_node(var_desc))
3993 3994

    def create_var_node(self, name, var_type, shape, var_dtype):
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4006
            IrVarNode: the created variable node.
4007 4008
        """

4009 4010 4011 4012
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4013
        return IrVarNode(self.graph.create_var_node(var_desc))
4014

4015 4016 4017 4018 4019 4020
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4021
    def create_var_node_from_desc(self, var_desc):
4022 4023 4024 4025 4026 4027 4028 4029
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4030
            IrVarNode: the created variable node.
4031
        """
4032
        return IrVarNode(self.graph.create_var_node(var_desc))
4033 4034

    def create_op_node(self, op_type, attrs, inputs, outputs):
4035 4036 4037 4038 4039 4040 4041
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4042
            outputs(dict): the outputs of the operator node.
4043 4044

        Returns:
4045
            IrOpNode: the created operator node.
4046
        """
4047 4048
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4049
        for attr, value in six.iteritems(attrs):
4050
            self._update_desc_attr(op_desc, attr, value)
4051
        for input_name, var_nodes in six.iteritems(inputs):
4052 4053 4054 4055
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4056
        for output_name, var_nodes in six.iteritems(outputs):
4057 4058 4059 4060
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4061
        return IrOpNode(self.graph.create_op_node(op_desc))
4062 4063

    def create_op_node_from_desc(self, op_desc):
4064 4065 4066 4067 4068 4069 4070
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4071
            IrOpNode: the created operator node.
4072
        """
4073
        return IrOpNode(self.graph.create_op_node(op_desc))
4074 4075

    def update_input_link(self, old_input_node, new_input_node, op_node):
4076 4077 4078 4079
        """
        Update the input's link of a operator node.

        Args:
4080 4081 4082
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4083
        """
4084
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4085
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4086
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4087 4088 4089 4090
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4091
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4092

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4103
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4104
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4105 4106 4107 4108 4109 4110
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4111
    def link_to(self, node_in, node_out):
4112 4113 4114 4115
        """
        Connect two nodes.

        Args:
4116 4117
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4118
        """
4119
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
4120
            'The two arguments(node_in&node_out) must be in the graph nodes.'
4121 4122
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4123 4124

    def safe_remove_nodes(self, remove_nodes):
4125 4126 4127 4128 4129 4130 4131
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4132
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4133 4134 4135 4136
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4137 4138
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4139

Z
Zhen Wang 已提交
4140 4141 4142 4143 4144 4145 4146 4147
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4148
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4149 4150 4151 4152
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4153
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4154 4155 4156
                        ]
                    else:
                        var_nodes[each_var_name].append(
4157 4158
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4159 4160
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4161
    def has_circle(self):
4162 4163 4164 4165 4166 4167
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4168 4169 4170
        return core.has_circle(self.graph)

    def graph_num(self):
4171 4172 4173 4174 4175 4176
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4177 4178 4179
        return core.graph_num(self.graph)

    def topology_sort(self):
4180 4181 4182
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4183
        Notes: the `graph` can not contain a circle.
4184 4185

        Returns:
Z
Zhen Wang 已提交
4186
            list(IrNode): nodes in topology order.
4187
        """
4188
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4189
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4190 4191

    def build_adjacency_list(self):
4192 4193 4194 4195
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4196
            dict{IrNode: set(IrNode)}: the adjacency list.
4197
        """
4198 4199 4200 4201 4202
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4203

4204 4205 4206 4207 4208 4209 4210 4211
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4212
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4213 4214 4215 4216 4217
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4218 4219
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4220 4221 4222
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4223 4224 4225 4226 4227
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4228
        remove_ctr_vars = set()
4229
        if remove_ctr_var:
4230
            for node in self.all_var_nodes():
4231 4232 4233
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4234 4235
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4236 4237
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4238 4239 4240 4241 4242 4243
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4244 4245 4246 4247
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4248 4249
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4250 4251 4252 4253 4254 4255 4256
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4257 4258 4259
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4260
        WARN: When the graph includes backward operator nodes, the
4261 4262 4263 4264 4265 4266
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4267
        convert_pass = core.get_pass('graph_to_program_pass')
4268 4269
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4270 4271 4272 4273
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4301
class Program(object):
D
dzhwinter 已提交
4302
    """
4303
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4304
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4305
    it will contain nested block.
4306

J
Jiabin Yang 已提交
4307 4308 4309
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4310

J
Jiabin Yang 已提交
4311
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4312
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4313 4314 4315 4316 4317 4318 4319
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4320
    **Notes**:
4321 4322 4323
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4324 4325

    Returns:
J
Jiabin Yang 已提交
4326
        Program: An empty Program.
D
dzhwinter 已提交
4327 4328

    Examples:
4329 4330
        .. code-block:: python

4331 4332 4333 4334
            import paddle
            import paddle.static as static

            paddle.enable_static()
4335

4336 4337 4338 4339 4340
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4341
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4342 4343 4344

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4345 4346 4347

    """

4348 4349
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4350 4351
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4352 4353
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4354
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4355
        self.__op_role_var = []
T
tangwei12 已提交
4356

4357 4358
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4359
        self._is_distributed = False
4360
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4361
        self._is_chief = False
4362 4363 4364
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4365
        self._endpoints = []
4366 4367 4368
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4369
        self._trainers_endpoints = []
4370
        # the distributed lookup table names
T
tangwei12 已提交
4371
        self._distributed_lookup_table = None
4372 4373 4374

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4375 4376
        self._use_lamb = False

4377 4378 4379
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4380

4381 4382 4383
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4384
        self._program_config = None
4385

H
hutuxian 已提交
4386 4387 4388
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4389 4390 4391
        # appending gradients times
        self._appending_grad_times = 0

4392 4393 4394 4395
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4396 4397 4398
        # compiled program, i.e. Graph
        self._graph = None

4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4409 4410
                import paddle
                import paddle.static as static
4411

4412 4413 4414
                paddle.enable_static()

                prog = static.default_main_program()
4415 4416 4417 4418 4419
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4420
                prog1 = static.default_main_program()
4421 4422 4423 4424 4425 4426 4427 4428
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4429
    @property
4430
    def _op_role(self):
Y
yuyang18 已提交
4431 4432 4433 4434 4435 4436 4437 4438
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4439
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4440 4441 4442 4443
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4444 4445
        return self._current_role

4446 4447
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4448 4449 4450
        self._current_role = role

    @property
4451
    def _op_role_var(self):
Y
yuyang18 已提交
4452
        """
4453
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4454

4455
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4456 4457 4458

        Notes: This is a very low-level API. Users should not use it directly.
        """
4459
        return self.__op_role_var
Y
yuyang18 已提交
4460

4461
    @signature_safe_contextmanager
4462 4463 4464 4465 4466
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4467 4468 4469 4470
        try:
            yield
        finally:
            self._current_role = tmp_role
4471

S
rename  
sneaxiy 已提交
4472
    @signature_safe_contextmanager
W
Wu Yi 已提交
4473
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4474 4475 4476 4477 4478 4479 4480
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4481
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4482 4483 4484

        Examples:

4485
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4486
            >>> p, g = backward(...)
W
Wu Yi 已提交
4487
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4488 4489
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4490
        tmp_role = self._current_role
4491
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4492

Y
yuyang18 已提交
4493 4494
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4495
        self.__op_role_var = [
4496 4497 4498
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4499 4500 4501 4502 4503
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4504

S
rename  
sneaxiy 已提交
4505
    @signature_safe_contextmanager
X
Xin Pan 已提交
4506
    def _lr_schedule_guard(self, is_with_opt=False):
4507 4508 4509 4510 4511 4512 4513
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4514 4515 4516 4517
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4518 4519 4520

        Examples:

4521
            >>> import paddle.fluid as fluid
4522 4523 4524 4525
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4526 4527

        tmp_role = self._current_role
4528
        tmp_var = self.__op_role_var
4529

4530 4531
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4532 4533
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4534
        # TODO(typhoonzero): how to set target learning rate var
4535
        self.__op_role_var = []
4536 4537 4538 4539 4540
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4541

4542
    def __str__(self):
Y
yuyang18 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4572 4573
            import paddle
            import paddle.static as static
4574

4575 4576 4577
            paddle.enable_static()

            cur_program = static.Program()
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4594
            program_str += '\n'
4595
        return program_str
Y
Yang Yang(Tony) 已提交
4596

F
fengjiayi 已提交
4597 4598 4599
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4600

J
Jiabin Yang 已提交
4601 4602 4603
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4604

J
Jiabin Yang 已提交
4605
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4606

H
haowang101779990 已提交
4607
        Returns:
J
Jiabin Yang 已提交
4608
            str: The debug string describe current Program.
Y
yuyang18 已提交
4609 4610

        Raises:
J
Jiabin Yang 已提交
4611
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4612

4613 4614 4615
        Examples:
            .. code-block:: python

4616 4617 4618 4619
                import paddle
                import paddle.static as static

                paddle.enable_static()
4620

4621 4622 4623
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4624
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4625
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4626
                print("program string without detail: {}".format(prog_string))
4627
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4628
        """
4629 4630 4631 4632 4633 4634 4635 4636 4637
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4638 4639 4640 4641 4642 4643
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4644 4645
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4646 4647
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4648

W
Wu Yi 已提交
4649
    def _get_desc(self):
Y
yuyang18 已提交
4650 4651 4652 4653 4654 4655 4656
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4657 4658
        return self.desc

X
version  
Xin Pan 已提交
4659 4660 4661
    def _version(self):
        return self.desc._version()

4662
    def clone(self, for_test=False):
Y
yuyang18 已提交
4663
        """
4664 4665 4666 4667
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4668

4669
        Create a new Program with forward content of original one when ``for_test=True``.
4670
        Create a new Program as same as the original one when ``for_test=False``.
4671

4672
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4673 4674 4675
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4676

4677 4678
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4679 4680
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4681
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4682

J
Jiabin Yang 已提交
4683
        For Example:
4684
          ::
L
Luo Tao 已提交
4685

4686 4687 4688 4689 4690 4691
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4692
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4693
            loss = paddle.mean(pred)
4694
            # Here we use clone before Momentum
4695 4696
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4697
            optimizer.minimize(loss)
4698

J
Jiabin Yang 已提交
4699
        Args:
4700

4701 4702
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4703

J
Jiabin Yang 已提交
4704
        Returns:
4705
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4706

Y
yuyang18 已提交
4707 4708 4709

        Examples:

4710 4711 4712 4713 4714 4715 4716
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4733
            1. To clone a test program, the sample code is:
4734 4735 4736
                .. code-block:: python

                    import six
4737 4738 4739 4740 4741 4742
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4755 4756
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4757 4758 4759

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4760 4761 4762
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4763
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4764 4765
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4766
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4767 4768
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4769
                            test_program = train_program.clone(for_test=True)
4770
                    print_prog(test_program)
J
Jiabin Yang 已提交
4771 4772 4773 4774

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4775
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4776 4777 4778 4779
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4780 4781 4782
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4783 4784 4785
                            sgd.minimize(avg_loss)


4786
            2. The clone method can be avoid if you create program for training and program for testing individually.
4787 4788 4789
                .. code-block:: python

                    import six
4790 4791 4792 4793 4794 4795
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4807

4808
                    def network():
4809
                        img = static.data(name='image', shape=[None, 784])
4810
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4811 4812
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4813
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4814 4815
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4816 4817
                        return avg_loss

4818 4819 4820 4821 4822
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4823
                            avg_loss = network()
4824
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4825
                            sgd.minimize(avg_loss)
4826
                    # the test startup program is not used.
4827 4828
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4829 4830
                            avg_loss = network()
                    print_prog(test_program_2)
4831

4832
            The two code snippets above will generate and print same programs.
4833
        """
4834

T
tangwei12 已提交
4835
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4836 4837 4838
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4839
        pruned_origin_block_id_map = None
4840
        if for_test:
4841 4842 4843 4844 4845 4846 4847 4848 4849
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4850
        else:
4851
            p = Program()
G
gongweibao 已提交
4852 4853
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4854
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4855 4856 4857
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4858 4859

            p._current_role = self._current_role
4860
            p.__op_role_var = self.__op_role_var
4861
            p._appending_grad_times = self._appending_grad_times
4862 4863
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4864

T
tangwei12 已提交
4865
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4866
            # its desc.
W
Wu Yi 已提交
4867
            p._sync_with_cpp()
4868

W
Wu Yi 已提交
4869
        p._copy_param_info_from(self)
4870
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4871
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4872
        return p
4873

4874
    def _prune(self, targets):
Y
yuyang18 已提交
4875 4876 4877 4878 4879 4880 4881 4882
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4883
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4884 4885 4886 4887
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4888
        """
4889
        return self._prune_with_input([], targets)
4890 4891

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4892
        """
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4903
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4904 4905 4906 4907 4908 4909
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4910
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4911 4912 4913
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4914 4915
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4916 4917
        if not isinstance(targets, list):
            targets = [targets]
4918 4919 4920

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4921 4922 4923
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4924

4925 4926 4927 4928
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4929 4930 4931
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4932
                else:
4933 4934 4935
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4936 4937 4938 4939 4940 4941 4942 4943

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4944 4945 4946 4947 4948 4949 4950 4951 4952
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4953
                        # Skip optimize op except for optimize op in targets,
4954 4955 4956 4957 4958 4959
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4960 4961 4962 4963 4964 4965 4966 4967
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4968

4969
        res = Program()
4970 4971 4972
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4973 4974 4975
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4976
        res._sync_with_cpp()
4977 4978 4979 4980 4981

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4982 4983
        return res

X
Xin Pan 已提交
4984
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4985
        """
F
fengjiayi 已提交
4986 4987 4988 4989 4990
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4991
        3. change the :code:`is_test`
Y
yuyang18 已提交
4992 4993 4994
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4995
        Args:
X
Xin Pan 已提交
4996 4997
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4998

Y
yuyang18 已提交
4999 5000 5001 5002 5003 5004
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5005
        res = Program()
5006
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5007 5008 5009 5010

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5011
        if prune_read_op:
5012 5013 5014 5015 5016 5017 5018 5019 5020
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5021
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5022 5023

        # change all `is_test` attributes to True
M
minqiyang 已提交
5024
        for i in six.moves.range(res.desc.num_blocks()):
5025
            block = res.desc.block(i)
M
minqiyang 已提交
5026
            for j in six.moves.range(block.op_size()):
5027 5028
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5029
                    op._set_attr('is_test', True)
5030 5031 5032
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5033 5034 5035
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5036
        res._sync_with_cpp()
5037 5038
        return res

5039 5040
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5041
        """
5042 5043 5044
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5045

5046 5047
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5048

J
Jiabin Yang 已提交
5049
        Args:
Y
yuyang18 已提交
5050

J
Jiabin Yang 已提交
5051
            binary_str_type (str): the binary prootbuf string.
5052

J
Jiabin Yang 已提交
5053 5054
        Returns:
            Program: A deserialized Program.
5055 5056 5057 5058

        Examples:
            .. code-block:: python

5059 5060 5061 5062
                import paddle
                import paddle.static as static

                paddle.enable_static()
5063

5064 5065 5066 5067
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5068

5069
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5070

5071
                    z = paddle.matmul(x=x, y=y)
5072

5073 5074
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5075

5076
                    print(static.default_main_program())
5077
                    print(prog_restored)
Y
yuyang18 已提交
5078
        """
5079 5080
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5081
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5082
        p._sync_with_cpp()
5083
        return p
Y
Yu Yang 已提交
5084

5085
    @staticmethod
5086
    def _construct_from_desc(desc):
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5102 5103
    @property
    def random_seed(self):
Y
yuyang18 已提交
5104
        """
J
Jiabin Yang 已提交
5105
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5106 5107
        the random seed from random device.

5108 5109
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5110 5111 5112

        Returns:
            int64: Random seed in current Program
5113

5114 5115 5116 5117

        Examples:
            .. code-block:: python

5118 5119 5120
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5121

5122 5123 5124
                paddle.enable_static()

                prog = static.default_main_program()
5125
                random_seed = prog.random_seed
5126
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5127 5128 5129
                print(random_seed)
                ## 0
                ## the default random seed is 0
5130

5131
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5132
                prog.random_seed = 1
5133
                z_var = F.dropout(x_var, 0.7)
5134

5135
                print(prog.random_seed)
5136 5137
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5138
        """
D
dzhwinter 已提交
5139 5140
        return self._seed

Q
qiaolongfei 已提交
5141 5142
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5143
        """
5144 5145
        The number of :ref:`api_guide_Block_en`  in this Program.

5146 5147
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5148 5149 5150

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5151

5152 5153 5154 5155

        Examples:
            .. code-block:: python

5156 5157 5158 5159
                import paddle
                import paddle.static as static

                paddle.enable_static()
5160

5161
                prog = static.default_main_program()
5162 5163
                num_blocks = prog.num_blocks
                print(num_blocks)
5164

5165 5166
                # print result:
                # 1
Y
yuyang18 已提交
5167
        """
Q
qiaolongfei 已提交
5168 5169
        return self.desc.num_blocks()

D
dzhwinter 已提交
5170 5171 5172
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5173 5174 5175
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5176 5177
        self._seed = seed

Y
Yu Yang 已提交
5178
    def __repr__(self):
5179
        return self.__str__()
5180

Y
Yu Yang 已提交
5181
    def global_block(self):
Y
yuyang18 已提交
5182
        """
5183 5184
        .. note::
            This API has no effect in Dygraph mode.
5185 5186 5187

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5188 5189
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5190

5191 5192 5193 5194

        Examples:
            .. code-block:: python

5195 5196 5197 5198
                import paddle
                import paddle.static as static

                paddle.enable_static()
5199

5200
                prog = static.default_main_program()
5201 5202
                gb_block = prog.global_block()
                print(gb_block)
5203

Y
yuyang18 已提交
5204
        """
Y
Yu Yang 已提交
5205 5206
        return self.blocks[0]

Q
Qiao Longfei 已提交
5207
    def block(self, index):
Y
yuyang18 已提交
5208
        """
5209 5210
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5211

5212 5213
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5214 5215
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5216

J
Jiabin Yang 已提交
5217 5218
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5219 5220 5221 5222

        Examples:
            .. code-block:: python

5223 5224 5225 5226
                import paddle
                import paddle.static as static

                paddle.enable_static()
5227

5228
                prog = static.default_main_program()
5229 5230
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5231
        """
Q
Qiao Longfei 已提交
5232 5233
        return self.blocks[index]

Y
Yu Yang 已提交
5234
    def current_block(self):
Y
yuyang18 已提交
5235
        """
5236 5237
        .. note::
            This API has no effect in Dygraph mode.
5238

J
Jiabin Yang 已提交
5239 5240
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5241

J
Jiabin Yang 已提交
5242 5243
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5244

5245 5246 5247
        Examples:
            .. code-block:: python

5248 5249 5250 5251
                import paddle
                import paddle.static as static

                paddle.enable_static()
5252

5253
                prog = static.default_main_program()
5254 5255
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5256
        """
Y
Yu Yang 已提交
5257 5258
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5259
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5260 5261 5262 5263 5264
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5265

Y
yuyang18 已提交
5266 5267 5268 5269 5270
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5271
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5272 5273 5274
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5275 5276 5277 5278
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5279
    def _rollback(self):
Y
yuyang18 已提交
5280 5281 5282 5283 5284
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5285 5286
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5287
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5298 5299 5300
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5301
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5302

W
Wu Yi 已提交
5303
    def _copy_param_info_from(self, other):
5304
        """
5305
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5306

Y
yuyang18 已提交
5307 5308 5309
        Notes: This is a very low level API. Users should not invoke it
        directly.

5310 5311 5312 5313 5314 5315 5316
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5317 5318 5319
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5320

W
Wu Yi 已提交
5321
        self.global_block()._copy_param_info_from(other.global_block())
5322

5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5334 5335 5336
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5337 5338
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5339
        self._parameters_on_pservers = other._parameters_on_pservers
5340
        self._endpoints = other._endpoints
5341
        self._ps_endpoint = other._ps_endpoint
5342 5343
        self._distributed_lookup_table = other._distributed_lookup_table

5344
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5345 5346
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5347

Y
yuyang18 已提交
5348 5349 5350
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5351 5352
        Args:
            other(Program): Other program
5353 5354 5355 5356
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5357 5358 5359 5360 5361

        Returns:
            None
        """
        if not isinstance(other, Program):
5362 5363 5364
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5365

5366 5367 5368 5369 5370
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5371 5372 5373

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5374 5375
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5376
            for var in list(block.vars.values()):
5377 5378 5379 5380 5381 5382 5383
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5384

5385
    def list_vars(self):
Y
yuyang18 已提交
5386
        """
5387
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5388

J
Jiabin Yang 已提交
5389
        Returns:
5390
            iterable Tensors: The Generator will yield every Tensor in this program.
5391 5392 5393 5394

        Examples:
            .. code-block:: python

5395 5396
                import paddle
                import paddle.static as static
5397

5398 5399 5400 5401 5402
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5403 5404
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5405

5406 5407
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5408
        """
5409
        for each_block in self.blocks:
5410
            for each_var in list(each_block.vars.values()):
5411 5412
                yield each_var

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5423 5424 5425 5426
                import paddle
                import paddle.static as static

                paddle.enable_static()
5427

5428 5429
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5430
                hidden = static.nn.fc(x=data, size=10)
5431 5432
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5433 5434 5435 5436 5437 5438 5439

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5440 5441
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5619

5620
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5621
class Parameter(Variable):
5622
    """
5623
    Parameter is derived from Variable. A parameter is a persistable
5624
    Variable, and will be updated by optimizers after each iteration.
5625
    The training of a neural network is essentially the updating of
5626 5627
    its parameters.

5628
    Relative to a general Variable, a Parameter has several its own
5629 5630
    member variables:

5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5641 5642
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5643 5644
    """

5645 5646 5647 5648 5649 5650
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5651 5652 5653 5654 5655
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5656
        if len(shape) == 0:
5657 5658
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5659 5660 5661

        for each in shape:
            if each < 0:
5662 5663 5664
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5665 5666

        Variable.__init__(
5667 5668 5669 5670 5671 5672 5673
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5674 5675 5676 5677
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5678 5679
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5680
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5681

5682 5683
        self.need_clip = kwargs.get('need_clip', True)

5684 5685
        self.is_distributed = False

F
fengjiayi 已提交
5686
    def __str__(self):
5687
        return self._to_readable_code()
F
fengjiayi 已提交
5688

F
update  
fengjiayi 已提交
5689 5690 5691
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5692

F
update  
fengjiayi 已提交
5693 5694 5695 5696 5697 5698 5699 5700
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5701 5702 5703 5704 5705 5706 5707 5708 5709
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5710 5711 5712 5713 5714 5715
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5716
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5717
            for attr_name in additional_attr:
5718 5719
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5720 5721
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5722 5723 5724 5725
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5726

5727 5728
class ParamBase(core.VarBase):
    """
5729 5730 5731
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5732 5733 5734
    The training of a neural network is essentially the updating of
    its ParamBase.

5735
    Relative to a general Tensor, a ParamBase has several its own
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5748 5749
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5780 5781
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5782 5783 5784 5785 5786 5787 5788

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5789 5790
        self.need_clip = kwargs.get('need_clip', True)

5791
        self.is_distributed = False
5792
        # self.block = default_main_program().global_block()
5793

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5807
    def __str__(self):
5808
        """
5809
        Convert a ParamBase object to a readable string.
5810

5811
        Returns(str): A readable string.
5812 5813 5814 5815

        Examples:
            .. code-block:: python

5816
                import paddle
5817 5818 5819 5820 5821 5822 5823
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5824
        """
5825 5826
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5827

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5839

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5858 5859 5860
    __repr__ = __str__


Y
Yu Yang 已提交
5861
# program is a global instance.
Y
Yu Yang 已提交
5862 5863
_main_program_ = Program()
_startup_program_ = Program()
5864

5865

5866
def default_startup_program():
Y
Yu Yang 已提交
5867
    """
Y
yuyang18 已提交
5868 5869
    Get default/global startup program.

5870 5871
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5872

5873 5874
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5875

5876 5877
    Returns:
        Program: current default startup program.
5878

5879
    Returns type: 
5880 5881 5882 5883

    Examples:
        .. code-block:: python

5884
            import paddle
5885

5886
            paddle.enable_static()
5887 5888 5889 5890
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5891
    """
Y
Yu Yang 已提交
5892
    return _startup_program_
5893

5894

5895
def default_main_program():
Y
Yu Yang 已提交
5896
    """
5897
    This API can be used to get ``default main program`` which store the 
5898
    descriptions of Ops and tensors.
T
tangwei12 已提交
5899

5900
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5901
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5902

5903 5904
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5905
    :code:`default_main_program` when the program is not specified.
5906

5907
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5908

Y
Yu Yang 已提交
5909
    Returns:
5910
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5911 5912 5913 5914

    Examples:
        ..  code-block:: python

5915
            import paddle
5916

5917
            paddle.enable_static()
5918
            # Sample Network:
5919 5920 5921
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5922

5923 5924 5925
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5926
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5927
    """
Y
Yu Yang 已提交
5928
    return _main_program_
Y
Yu Yang 已提交
5929 5930 5931 5932 5933


def switch_main_program(program):
    """
    Switch the main program to a new program.
5934

Y
Yu Yang 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5949
    Switch the startup program to a new program
Y
Yu Yang 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5962
@signature_safe_contextmanager
Y
Yu Yang 已提交
5963 5964
def program_guard(main_program, startup_program=None):
    """
5965 5966
    :api_attr: Static Graph

5967 5968 5969
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5970

G
guofei 已提交
5971
    Args:
5972 5973
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5974 5975 5976 5977
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5978
    Examples:
5979
       .. code-block:: python
T
tangwei12 已提交
5980

5981
          import paddle
Y
yuyang18 已提交
5982

5983 5984 5985 5986 5987
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5988
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5989 5990 5991

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5992

Y
Yu Yang 已提交
5993
    Examples:
5994
       .. code-block:: python
Y
yuyang18 已提交
5995

5996
          import paddle
5997

5998 5999 6000 6001 6002
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6003

Y
Yu Yang 已提交
6004
    """
6005
    from .data_feeder import check_type
6006 6007
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6008 6009
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6010
        check_type(startup_program, 'startup_program', Program,
6011
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
6012
        startup_program = switch_startup_program(startup_program)
6013 6014 6015 6016 6017 6018
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6019 6020


W
Wu Yi 已提交
6021
def _get_var(name, program=None):
X
xuwei06 已提交
6022
    """
Y
yuyang18 已提交
6023
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6024

X
xuwei06 已提交
6025 6026 6027
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6028
        If None, default_global_program() will be used.
X
xuwei06 已提交
6029 6030 6031 6032 6033 6034 6035

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6036
    assert isinstance(program, Program)
X
xuwei06 已提交
6037 6038

    return program.global_block().var(name)
6039 6040


S
rename  
sneaxiy 已提交
6041
@signature_safe_contextmanager
L
lujun 已提交
6042 6043
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6044
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6045
    _dygraph_tracer_ = tracer
6046
    core._switch_tracer(tracer)
M
minqiyang 已提交
6047

6048 6049 6050
    try:
        yield
    finally:
6051 6052
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6053 6054


S
rename  
sneaxiy 已提交
6055
@signature_safe_contextmanager
L
lujun 已提交
6056
def _dygraph_place_guard(place):
6057 6058 6059
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6060

6061 6062
    _set_dygraph_tracer_expected_place(place)

6063 6064 6065
    try:
        yield
    finally:
6066
        _global_expected_place_ = tmp_place
6067
        _set_dygraph_tracer_expected_place(tmp_place)
6068 6069


6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6086 6087
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6088 6089 6090 6091 6092 6093 6094 6095 6096
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6097
            import paddle
6098

Z
Zhang Ting 已提交
6099 6100 6101
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6102
            if support_gpu:
Z
Zhang Ting 已提交
6103
                place = paddle.CUDAPlace(0)
6104 6105

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6106 6107 6108
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6109

Z
Zhang Ting 已提交
6110
            with paddle.static.device_guard("cpu"):
6111
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6112 6113
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6114
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6115
                out = paddle.reshape(data1, shape=shape)
6116

Z
Zhang Ting 已提交
6117 6118
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6119 6120 6121
            result = exe.run(fetch_list=[out])
    """

6122 6123 6124 6125 6126
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6127 6128 6129 6130
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
6131 6132
    if index:
        device = ":".join([device, index])
6133
    pre_device = switch_device(device)
6134 6135 6136 6137
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6205 6206 6207 6208 6209 6210 6211


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6212
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6213 6214 6215 6216 6217 6218 6219 6220 6221
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6222

6223 6224 6225
    if (place == "device"):
        return core.Place()

6226
    # GPU
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6242 6243

    # XPU
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6267
    raise ValueError(
6268 6269
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret