nn.py 404.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
27
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
76 77
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
78 79
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
80
    'sequence_slice',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
93
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
94 95 96 97 98
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
99
    'group_norm',
D
dengkaipeng 已提交
100
    'spectral_norm',
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
114
    'roi_align',
X
Xin Pan 已提交
115 116 117 118
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
119
    'resize_nearest',
X
Xin Pan 已提交
120 121 122 123 124 125
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
126
    'selu',
X
Xin Pan 已提交
127 128 129
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
130
    'margin_rank_loss',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
164
    'rank',
X
Xin Pan 已提交
165 166 167 168 169 170 171 172 173 174
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
175
    'space_to_depth',
W
whs 已提交
176
    'affine_grid',
S
sneaxiy 已提交
177
    'sequence_reverse',
178
    'affine_channel',
B
barrierye 已提交
179
    'similarity_focus',
M
minqiyang 已提交
180
    'hash',
D
dengkaipeng 已提交
181
    'grid_sampler',
G
gmcather 已提交
182 183
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
184
    'bilinear_tensor_product',
C
chengduo 已提交
185 186
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
187
    'lstm',
S
shippingwang 已提交
188
    'shuffle_channel',
189
    'temporal_shift',
S
sneaxiy 已提交
190
    'py_func',
191
    'psroi_pool',
H
heqiaozhi 已提交
192
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
193
    'huber_loss',
D
dengkaipeng 已提交
194
    'kldiv_loss',
Z
zhaozhehao 已提交
195
    'tree_conv',
C
ceci3 已提交
196
    'npair_loss',
R
ruri 已提交
197
    'pixel_shuffle',
198
    'fsp_matrix',
H
heqiaozhi 已提交
199
    'continuous_value_model',
Y
Yu Yang 已提交
200 201
]

J
jerrywgz 已提交
202 203
kIgnoreIndex = -100

Y
Yu Yang 已提交
204 205 206 207 208 209 210

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
211
       is_test=False,
212
       name=None):
Y
Yu Yang 已提交
213
    """
214
    **Fully Connected Layer**
Y
Yu Yang 已提交
215

216
    This function creates a fully connected layer in the network. It can take
217
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
218
    Args in detail). It creates a variable called weights for each input tensor,
219 220 221 222
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
223
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
224 225
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
226

227
    When the input is single tensor:
C
caoying03 已提交
228

229 230 231 232 233
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
234 235 236

    .. math::

237
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
238 239 240

    In the above equation:

241 242 243
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
244
    * :math:`b`: The bias parameter created by this layer (if needed).
245
    * :math:`Act`: The activation function.
C
caoying03 已提交
246
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
266
    Args:
R
ranqiu 已提交
267 268 269 270 271 272 273 274 275 276
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
277
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
278 279 280 281
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
282 283
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
284
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
285
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
286
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
287

288
    Returns:
F
fengjiayi 已提交
289
        Variable: The transformation result.
290 291

    Raises:
C
caoying03 已提交
292
        ValueError: If rank of the input tensor is less than 2.
293 294 295 296

    Examples:
        .. code-block:: python

297
          # when input is single tensor
F
fengjiayi 已提交
298
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
299
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
300 301 302 303 304

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
305
    """
C
caoying03 已提交
306
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
307 308 309 310

    dtype = helper.input_dtype()

    mul_results = []
311 312
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
313 314 315
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
316

Y
Yu Yang 已提交
317
        w = helper.create_parameter(
318
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
319
        tmp = helper.create_variable_for_type_inference(dtype)
320
        helper.append_op(
321 322 323
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
324
            outputs={"Out": tmp},
M
mozga-intel 已提交
325 326
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
327 328 329 330
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
331
    else:
X
Xin Pan 已提交
332
        pre_bias = helper.create_variable_for_type_inference(dtype)
333
        helper.append_op(
334 335 336
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
337
            attrs={"use_mkldnn": False})
338 339 340 341
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
342 343


344 345 346
def embedding(input,
              size,
              is_sparse=False,
347
              is_distributed=False,
348 349 350
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
351
    """
352 353
    **Embedding Layer**

354
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
355 356
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
357 358 359

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
360 361

    Args:
362 363 364 365 366
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
367
        is_distributed(bool): Whether to run lookup table from remote parameter server.
368 369
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
370
            with zeros whenever lookup encounters it in :attr:`input`. If
371
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
372 373
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
374
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
375

376 377 378
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
379

380 381
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
382

C
chengduoZH 已提交
383
          dict_size = len(dataset.ids)
384
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
385
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
386 387 388
    """

    helper = LayerHelper('embedding', **locals())
389
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
390 391
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
392 393
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
394
    tmp = helper.create_variable_for_type_inference(dtype)
395 396
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
397 398 399 400 401
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
402 403 404
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
405
            'remote_prefetch': remote_prefetch,
406 407
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
408 409 410
    return tmp


W
wopeizl 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
427

W
wopeizl 已提交
428 429 430 431 432 433 434 435 436 437 438
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
439

W
wopeizl 已提交
440 441 442 443
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
488
    assert in_dygraph_mode(
489
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
533 534


P
phlrain 已提交
535 536 537 538 539 540
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
541
         dropout_prob=0.0,
P
phlrain 已提交
542 543 544 545 546
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
547
    """
P
phlrain 已提交
548
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
549 550

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
551
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
552 553
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
554
    .. math::
M
minqiyang 已提交
555 556 557 558 559 560 561

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
562
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
563 564 565 566

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
567 568

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
569 570 571 572 573 574
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
575 576 577
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
578
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
579

M
minqiyang 已提交
580
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
581 582 583 584 585
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
586
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
587 588 589 590 591
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
592
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
593 594
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
595 596
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
597 598 599 600 601 602
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
603
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
604

L
liuhongyu 已提交
605 606

    Returns:
M
minqiyang 已提交
607 608
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
609
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
610

H
haowang101779990 已提交
611 612 613 614
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
615
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
616 617
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
618
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
634
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
635 636 637 638 639 640
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
641 642 643
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
703 704 705 706 707 708 709 710 711 712
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
713
                  proj_activation='tanh',
714
                  dtype='float32',
X
xuezhong 已提交
715 716 717 718 719
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
720 721 722
    """
    **Dynamic LSTMP Layer**

723 724 725 726 727 728
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
729 730 731 732 733

    The formula is as follows:

    .. math::

734
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
735

736
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
737

738
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
739

740
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
741

742
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
743

744
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
745

746
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
747

Y
Yibing Liu 已提交
748 749 750 751 752 753
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
754
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
755
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
756
          bias vector).
Y
Yibing Liu 已提交
757 758 759
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
760
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
761
    * :math:`h`: The hidden state.
762
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
763 764
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
765
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
766
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
767
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
768 769
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
770 771 772 773

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
774

Y
Yibing Liu 已提交
775 776 777 778 779 780 781 782 783 784 785 786
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
787
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
788 789
                               hidden-hidden weight and projection weight.

790 791
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
792 793
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
794 795
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
796
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
797 798 799 800 801

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
802
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
803 804 805 806 807 808
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
809
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
810 811 812
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
813
                                - The shape is (1 x 7D).
C
chengduo 已提交
814 815 816 817 818

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
819 820 821 822 823 824 825 826 827
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
828
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
829 830
                              default "tanh".
        proj_activation(str): The activation for projection output.
831
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
832
                              default "tanh".
Y
Yibing Liu 已提交
833
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
834 835
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
836 837 838 839 840 841 842 843 844 845 846
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
847 848

    Returns:
849 850 851 852
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
853 854

    Examples:
855

Y
Yibing Liu 已提交
856 857
        .. code-block:: python

858 859 860 861
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
862
            hidden_dim, proj_dim = 512, 256
863
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
864
                                     act=None, bias_attr=None)
865 866 867
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
868 869 870 871
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
872
    """
873

L
lujun 已提交
874
    assert in_dygraph_mode(
875 876
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
877
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
878
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
879
    size = size // 4
Y
Yibing Liu 已提交
880 881 882 883 884 885 886 887 888 889
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
890 891 892 893 894 895
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
911

X
xuezhong 已提交
912 913 914 915 916
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
917 918
    helper.append_op(
        type='lstmp',
919
        inputs=inputs,
Y
Yibing Liu 已提交
920 921 922 923 924 925 926 927 928
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
929 930
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
931 932 933 934 935 936 937 938 939
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
940 941 942 943 944 945 946
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
947 948
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
949
    """
950
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
951

952 953 954
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
955

G
guosheng 已提交
956 957 958 959 960 961 962 963 964
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
965

G
guosheng 已提交
966
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
967

Q
Qiao Longfei 已提交
968 969 970

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
971 972 973 974 975 976 977 978 979 980 981 982
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
983
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
984 985
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
986 987 988 989
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
990
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
991 992

    Args:
993 994
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
995
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
996
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
997 998
            is the hidden size.
        size(int): The dimension of the gru cell.
999
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1000 1001
            hidden-hidden weight matrix. Note:

1002
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1003
              :math:`D` is the hidden size.
1004
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1005
              The first part are weights of the update gate and reset gate with
1006
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1007
              candidate hidden state with shape :math:`(D \\times D)`.
1008 1009 1010 1011 1012

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1013
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1014
            the bias in the update gate, reset gate and candidate calculations.
1015 1016 1017
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1018 1019
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1020
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1021 1022 1023
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1024
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1025
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1026 1027 1028 1029
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1030 1031

    Returns:
G
guosheng 已提交
1032
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1033
            and sequence length is the same with the input.
1034

G
guosheng 已提交
1035
    Examples:
1036

G
guosheng 已提交
1037 1038
        .. code-block:: python

1039 1040 1041 1042
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1043
            hidden_dim = 512
1044
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1045
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1046 1047
    """

L
lujun 已提交
1048
    assert in_dygraph_mode(
1049 1050
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1051 1052 1053 1054 1055 1056 1057
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1058
    batch_size = input.shape[0]
G
guosheng 已提交
1059
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1060
    if h_0:
G
guosheng 已提交
1061
        assert h_0.shape == (
Y
Yancey 已提交
1062 1063 1064
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1065

X
Xin Pan 已提交
1066 1067 1068 1069
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1083 1084
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1085 1086 1087 1088
        })
    return hidden


Y
Yu Yang 已提交
1089 1090 1091
def gru_unit(input,
             hidden,
             size,
1092 1093
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1094
             activation='tanh',
Q
Qiao Longfei 已提交
1095 1096
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1097
    """
1098 1099 1100
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1101
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1102
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1103

1104 1105
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1106

1107
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1108

1109
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1126 1127

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1128 1129 1130
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1131 1132
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1133 1134
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1135 1136 1137
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1138 1139 1140

    Args:
        input (Variable): The fc transformed input value of current step.
1141
        hidden (Variable): The hidden value of gru unit from previous step.
1142
        size (integer): The input dimension value.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1157
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1158
            the bias in the update gate, reset gate and candidate calculations.
1159 1160 1161
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1162 1163
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1164 1165 1166 1167
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1168

1169 1170 1171 1172 1173 1174
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1175

1176
             # assuming we have x_t_data and prev_hidden of size=10
1177
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1178 1179
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1192
    size = size // 3
Y
Yu Yang 已提交
1193 1194

    # create weight
1195 1196
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1197

X
Xin Pan 已提交
1198 1199 1200
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1201
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1202
    # create bias
1203
    if helper.bias_attr:
Y
Yu Yang 已提交
1204 1205 1206
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1207
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1208 1209 1210

    helper.append_op(
        type='gru_unit',
1211
        inputs=inputs,
Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1218 1219
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1220 1221 1222 1223 1224
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1225
@templatedoc()
1226
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1227 1228 1229 1230 1231 1232 1233
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1234
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1235 1236 1237 1238
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1239 1240 1241
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1242 1243

    """
Y
Yu Yang 已提交
1244 1245 1246 1247 1248 1249
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1250 1251 1252 1253 1254 1255 1256 1257
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1273 1274 1275 1276
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1277

W
wopeizl 已提交
1278 1279
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1280

W
wopeizl 已提交
1281
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1282

W
wopeizl 已提交
1283
        label(${label_type}): ${label_comment}
1284

W
wopeizl 已提交
1285 1286
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1287

W
wopeizl 已提交
1288 1289
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1290

Y
Yibing Liu 已提交
1291 1292 1293 1294 1295 1296 1297
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1298 1299 1300 1301 1302 1303 1304 1305
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1306
                "Transition": transition,
W
wopeizl 已提交
1307 1308
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1309

W
wopeizl 已提交
1310
    return viterbi_path
Y
Yu Yang 已提交
1311 1312


Y
yi.wu 已提交
1313
@templatedoc()
F
fengjiayi 已提交
1314
def cos_sim(X, Y):
Y
Yu Yang 已提交
1315
    """
Y
yi.wu 已提交
1316 1317 1318
    ${comment}

    Args:
1319 1320
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1321

Y
yi.wu 已提交
1322
    Returns:
1323
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1324
    """
F
fengjiayi 已提交
1325
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1326 1327 1328
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1339 1340 1341 1342 1343
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1344
            dropout_implementation="downgrade_in_infer"):
1345 1346 1347 1348 1349
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1350
    training. The dropout operator randomly sets (according to the given dropout
1351 1352 1353
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1354 1355
    dropout op can be removed from the program to make the program more efficient.

1356
    Args:
1357 1358
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1359 1360 1361 1362 1363 1364 1365
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1366 1367
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1368
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1369 1370

                                           - train: out = input * mask
C
ceci3 已提交
1371
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1372 1373 1374

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1375
                                        2. upscale_in_train, upscale the outcome at training time
1376

H
haowang101779990 已提交
1377 1378
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1379

H
haowang101779990 已提交
1380 1381
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1382

M
minqiyang 已提交
1383

1384
    Returns:
1385
        Variable: A tensor variable is the shape with `x`.
1386 1387

    Examples:
1388

1389 1390
        .. code-block:: python

1391 1392
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1393 1394
    """

F
fengjiayi 已提交
1395
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1396 1397
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1398
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1399 1400 1401 1402

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1403 1404 1405 1406 1407
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1408 1409 1410 1411
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1412 1413
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1414
        })
1415 1416 1417
    return out


J
jerrywgz 已提交
1418
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1419
    """
Y
Yibing Liu 已提交
1420 1421
    **Cross Entropy Layer**

1422 1423 1424
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1425 1426

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1427
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1428

Y
Yibing Liu 已提交
1429
        .. math::
Y
yangyaming 已提交
1430

Y
Yibing Liu 已提交
1431 1432 1433
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1434 1435
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1436 1437 1438 1439 1440

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1441
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1442 1443 1444
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1445 1446
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1447
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1448

Y
Yibing Liu 已提交
1449
    Args:
Y
yangyaming 已提交
1450
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1451 1452 1453 1454
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1455
        label (Variable|list): the ground truth which is a 2-D tensor. When
1456 1457 1458 1459
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1460
        soft_label (bool): a flag indicating whether to
1461
                                           interpretate the given labels as soft
1462
                                           labels. Default: `False`.
M
minqiyang 已提交
1463 1464
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1465
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1466 1467 1468 1469 1470

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1471 1472 1473
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1474

H
haowang101779990 已提交
1475 1476
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1477

H
haowang101779990 已提交
1478 1479
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1480 1481 1482 1483 1484 1485

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1486
    """
S
sneaxiy 已提交
1487 1488
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1489
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1490
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1491 1492 1493 1494 1495
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1496 1497
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1498 1499 1500
    return out


S
sneaxiy 已提交
1501 1502 1503 1504
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1505
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1506 1507 1508 1509 1510
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1511
                 'MatchX': [match_x],
S
sneaxiy 已提交
1512 1513 1514 1515 1516
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1517
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1518 1519 1520
    """
    Bayesian Personalized Ranking Loss Operator.

1521
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1522 1523 1524 1525 1526 1527
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1528 1529 1530 1531 1532 1533
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1534 1535
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1536 1537 1538
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1539 1540 1541
    Examples:
        .. code-block:: python

1542
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1543
    """
1544 1545 1546 1547 1548 1549

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1550
                'Label': [label]},
1551 1552 1553 1554
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1555
def square_error_cost(input, label):
Y
Yu Yang 已提交
1556
    """
1557 1558
    **Square error cost layer**

1559 1560
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1575 1576
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1577 1578

    Returns:
G
guosheng 已提交
1579
        Variable: The tensor variable storing the element-wise squared error \
1580
                  difference of input and label.
1581 1582 1583 1584

    Examples:
        .. code-block:: python

R
ruri 已提交
1585 1586 1587
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1588

Y
Yu Yang 已提交
1589
    """
F
fengjiayi 已提交
1590
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1591
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1592 1593 1594 1595 1596 1597
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1598
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1599
    helper.append_op(
F
fengjiayi 已提交
1600 1601
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1602 1603 1604
    return square_out


Y
yi.wu 已提交
1605
@templatedoc()
Y
Yu Yang 已提交
1606 1607 1608 1609
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1610
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1611
    """
Y
yi.wu 已提交
1612
    **Chunk Evaluator**
Y
yi.wu 已提交
1613

Y
yangyaming 已提交
1614
    This function computes and outputs the precision, recall and
1615
    F1-score of chunk detection.
Y
yi.wu 已提交
1616

M
minqiyang 已提交
1617
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1618
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1619 1620 1621 1622 1623 1624

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1625

Y
yi.wu 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1651

Y
yi.wu 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1676
    Args:
1677 1678 1679 1680 1681
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1682

Y
yi.wu 已提交
1683
    Returns:
Y
update  
yi.wu 已提交
1684 1685 1686
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1687

Y
yi.wu 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1700
    """
F
fengjiayi 已提交
1701
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1702 1703

    # prepare output
X
Xin Pan 已提交
1704 1705 1706 1707 1708 1709 1710
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1711 1712 1713 1714 1715 1716 1717 1718

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1719 1720 1721 1722
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1723 1724 1725
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1726 1727
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1728
        })
1729 1730
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1731 1732


1733
@templatedoc()
Y
Yu Yang 已提交
1734 1735 1736 1737 1738 1739 1740
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1741 1742
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1743 1744 1745 1746
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1747 1748 1749 1750 1751 1752 1753

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1767

1768 1769
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1770 1771
    """

L
lujun 已提交
1772
    assert not in_dygraph_mode(), (
1773
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1774 1775 1776 1777 1778
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1779
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1790
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1791 1792 1793 1794 1795 1796
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1797
def sequence_softmax(input, use_cudnn=False, name=None):
1798 1799 1800
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1801
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1818 1819 1820
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1833
    assert not in_dygraph_mode(), (
1834
        "sequence layer is not supported in dygraph mode yet.")
1835 1836
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1837
    softmax_out = helper.create_variable_for_type_inference(dtype)
1838 1839 1840 1841 1842 1843 1844 1845
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1846
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1847
    """
1848
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1849
    has the same shape as the input.
Q
qiaolongfei 已提交
1850

D
dengkaipeng 已提交
1851
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1852
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1853
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1854 1855 1856
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1857
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1858
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1859 1860 1861 1862 1863 1864 1865

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1866
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1867 1868 1869 1870 1871 1872 1873 1874

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1875 1876
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1877 1878
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1879 1880 1881
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1891
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1892
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1893 1894
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1895 1896

    """
1897 1898
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1899
    softmax_out = helper.create_variable_for_type_inference(dtype)
1900 1901 1902 1903
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1904 1905
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1906 1907 1908
    return softmax_out


Y
Yu Yang 已提交
1909 1910 1911
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1912 1913
           stride=1,
           padding=0,
1914
           dilation=1,
Y
Yu Yang 已提交
1915 1916 1917
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1918
           use_cudnn=True,
1919 1920
           act=None,
           name=None):
Y
Yu Yang 已提交
1921
    """
C
chengduoZH 已提交
1922
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1923 1924
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1925
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1926 1927 1928 1929 1930 1931 1932
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1933 1934 1935
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1936

1937
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1938

C
chengduoZH 已提交
1939 1940
    .. math::

C
refine  
chengduoZH 已提交
1941
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1942

T
tensor-tang 已提交
1943
    Where:
C
chengduoZH 已提交
1944

1945 1946 1947 1948 1949
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1950
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1951 1952 1953

    Example:

1954 1955
        - Input:

W
weixing02 已提交
1956
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1957

W
weixing02 已提交
1958
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1959

1960
        - Output:
T
tensor-tang 已提交
1961

W
weixing02 已提交
1962
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1963

C
chengduoZH 已提交
1964
        Where
1965 1966

        .. math::
C
chengduoZH 已提交
1967

W
weixing02 已提交
1968 1969
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1970 1971

    Args:
1972
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1973
        num_filters(int): The number of filter. It is as same as the output
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1991 1992 1993 1994 1995
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1996
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1997 1998 1999 2000 2001
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2002 2003
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2004 2005
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2006
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2007
            will be named automatically. Default: None
C
chengduoZH 已提交
2008 2009

    Returns:
G
guosheng 已提交
2010
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2011 2012
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2013
    Raises:
2014 2015
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018 2019
    Examples:
        .. code-block:: python

2020 2021
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2022 2023 2024
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2025
    assert param_attr is not False, "param_attr should not be False here."
2026
    l_type = 'conv2d'
X
xzl 已提交
2027 2028
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2029
        l_type = 'depthwise_conv2d'
2030 2031 2032 2033

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2034 2035 2036 2037 2038
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2039
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2040

C
chengduoZH 已提交
2041 2042 2043
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2044
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2045

C
chengduoZH 已提交
2046 2047
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2048 2049

    input_shape = input.shape
M
minqiyang 已提交
2050
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2051 2052

    def _get_default_param_initializer():
C
chengduo 已提交
2053 2054
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2055 2056 2057 2058 2059 2060 2061 2062
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2063
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2079
    helper.append_op(
2080
        type=l_type,
Y
Yu Yang 已提交
2081 2082 2083 2084 2085
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2086 2087 2088
        attrs={
            'strides': stride,
            'paddings': padding,
2089
            'dilations': dilation,
C
chengduoZH 已提交
2090
            'groups': groups,
2091
            'use_cudnn': use_cudnn,
2092
            'use_mkldnn': False,
2093
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2094
        })
Y
Yu Yang 已提交
2095 2096 2097 2098 2099 2100

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2118 2119 2120 2121 2122 2123
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2133 2134
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2135 2136 2137
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2138
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2164
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2165 2166
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2167
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2168 2169
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2170
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2171 2172
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2173
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2174 2175 2176 2177 2178 2179
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2190 2191
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2192 2193
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2194
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2195
            will be named automatically. Default: None.
C
chengduoZH 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2208 2209
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2210 2211 2212
    """

    l_type = 'conv3d'
C
chengduo 已提交
2213
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2224
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2238 2239 2240
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2241 2242 2243 2244 2245 2246 2247 2248
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2249
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2264
            'use_mkldnn': False
C
chengduoZH 已提交
2265 2266
        })

2267
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2268 2269 2270 2271

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2272
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2273
    """
Y
yangyaming 已提交
2274 2275 2276
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2288
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2289 2290 2291 2292 2293
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2294
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2295 2296 2297 2298 2299 2300 2301

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2302 2303
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2304

L
Luo Tao 已提交
2305 2306
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2307
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2308
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2309
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2310 2311 2312 2313 2314 2315 2316

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2317

Y
yangyaming 已提交
2318
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2319 2320 2321 2322 2323
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2324 2325
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2326
    """
L
lujun 已提交
2327
    assert not in_dygraph_mode(), (
2328
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2329
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2330
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2331 2332
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2333 2334 2335 2336 2337 2338

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2339 2340
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2341

Y
yangyaming 已提交
2342 2343 2344 2345 2346
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2347 2348 2349
    return pool_out


C
add doc  
chengduoZH 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2368
    assert not in_dygraph_mode(), (
2369
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2370
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2371
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2372 2373 2374 2375 2376
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2377
def sequence_first_step(input):
L
Luo Tao 已提交
2378
    """
L
Luo Tao 已提交
2379
    This function gets the first step of sequence.
L
Luo Tao 已提交
2380 2381 2382 2383

    .. code-block:: text

       x is a 1-level LoDTensor:
2384
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2385 2386 2387 2388 2389
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2390
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2391
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2392

L
Luo Tao 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2402

Y
yangyaming 已提交
2403
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2404 2405 2406
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2407 2408 2409
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2410
def sequence_last_step(input):
L
Luo Tao 已提交
2411
    """
L
Luo Tao 已提交
2412
    This function gets the last step of sequence.
L
Luo Tao 已提交
2413 2414 2415 2416

    .. code-block:: text

       x is a 1-level LoDTensor:
2417
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2418 2419 2420 2421 2422
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2423
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2424
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2425

L
Luo Tao 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2435

Y
yangyaming 已提交
2436
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2437 2438 2439
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2440 2441 2442
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2443 2444 2445 2446
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2447
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2448 2449 2450 2451 2452
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2453

H
haowang101779990 已提交
2454
              - Case:
Y
Yibing Liu 已提交
2455

2456
            Given the input Variable **input**:
2457

2458 2459 2460
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2461

2462
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2463

2464
            the output Variable will be
2465

2466 2467 2468
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2469

M
minqiyang 已提交
2470
    Note:
H
haowang101779990 已提交
2471
          The first dimension size of **input**, **offset** and **length**
2472
          should be equal. The **offset** should start from 0.
2473

Y
Yibing Liu 已提交
2474
    Args:
2475
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2476
                         sequences.
Y
Yibing Liu 已提交
2477 2478 2479 2480 2481 2482
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2483
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2494
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2495 2496
                                                   length=length)
    """
L
lujun 已提交
2497
    assert not in_dygraph_mode(), (
2498
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2499 2500
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2501
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2516
@templatedoc()
Y
Yu Yang 已提交
2517
def pool2d(input,
C
chengduoZH 已提交
2518 2519
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2520 2521
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2522
           global_pooling=False,
C
chengduoZH 已提交
2523
           use_cudnn=True,
2524
           ceil_mode=False,
2525 2526
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2527
    """
F
fengjiayi 已提交
2528
    ${comment}
2529 2530

    Args:
2531 2532 2533
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2534
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2535
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2536 2537
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2538
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2539 2540 2541 2542 2543 2544
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2545 2546 2547
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2548
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2549
                        layer will be named automatically.
2550
        exclusive (bool): Whether to exclude padding points in average pooling
2551
                          mode, default is true
F
fengjiayi 已提交
2552

2553
    Returns:
F
fengjiayi 已提交
2554
        Variable: The pooling result.
F
fengjiayi 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2567
          pool2d = fluid.layers.pool2d(
2568 2569 2570 2571
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2572
                            global_pooling=False)
Y
Yu Yang 已提交
2573 2574 2575 2576 2577
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2578

C
chengduoZH 已提交
2579 2580 2581 2582 2583
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2584 2585 2586 2587
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2588 2589
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2590

C
Add doc  
chengduoZH 已提交
2591
    l_type = 'pool2d'
2592 2593

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2594
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2595
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2596 2597

    helper.append_op(
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2609 2610
            "use_mkldnn": False,
            "exclusive": exclusive,
2611 2612 2613 2614 2615
        })

    return pool_out


D
dengkaipeng 已提交
2616
@templatedoc()
2617 2618 2619 2620 2621 2622 2623 2624
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2625 2626
           name=None,
           exclusive=True):
2627
    """
2628
    ${comment}
2629 2630

    Args:
D
dengkaipeng 已提交
2631 2632 2633 2634 2635
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2636 2637 2638 2639 2640
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2641 2642 2643 2644 2645 2646 2647
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2648
        exclusive (bool): Whether to exclude padding points in average pooling
2649
                          mode, default is true
2650

2651
    Returns:
2652
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2666 2667 2668 2669 2670
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2671

C
chengduoZH 已提交
2672 2673 2674 2675 2676
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2677 2678 2679
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2680

C
chengduoZH 已提交
2681 2682
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2683

2684 2685
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2686
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2687
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2688 2689

    helper.append_op(
2690
        type=l_type,
Y
Yu Yang 已提交
2691 2692 2693 2694 2695 2696 2697
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2698
            "paddings": pool_padding,
2699
            "use_cudnn": use_cudnn,
2700
            "ceil_mode": ceil_mode,
2701 2702
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2703 2704 2705 2706 2707
        })

    return pool_out


2708 2709 2710 2711 2712 2713 2714
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2715 2716 2717 2718 2719 2720 2721
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2736 2737 2738 2739 2740 2741 2742 2743 2744

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2745 2746
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2761
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2762
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2763
          # of input data into m * n grids averagely and performs poolings in each
2764 2765
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2766
          #
2767 2768 2769 2770 2771 2772 2773 2774
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2775 2776
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2777
          pool_out = fluid.layers.adaptive_pool2d(
2778 2779
                            input=data,
                            pool_size=[3, 3],
2780
                            pool_type='avg')
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2791
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2817
    return (pool_out, mask) if require_index else pool_out
2818 2819 2820 2821 2822 2823 2824 2825 2826


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2827 2828 2829 2830 2831 2832 2833
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2852 2853 2854

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2855 2856 2857
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2858
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2859
            it must contain three integers, (Depth, Height, Width).
2860
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2861 2862
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2877 2878
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2879
          # of input data into l * m * n grids averagely and performs poolings in each
2880 2881
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2882
          #
2883 2884 2885 2886 2887 2888 2889 2890 2891
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2892
          #                 output[:, :, i, j, k] =
2893 2894
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2895 2896
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2897
          pool_out, mask = fluid.layers.adaptive_pool3d(
2898
                            input=data,
D
dengkaipeng 已提交
2899
                            pool_size=[3, 3, 3],
2900
                            pool_type='avg')
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2911
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2937
    return (pool_out, mask) if require_index else pool_out
2938 2939


Y
Yu Yang 已提交
2940 2941 2942 2943 2944 2945 2946
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2947
               data_layout='NCHW',
Y
Yang Yang 已提交
2948
               in_place=False,
2949 2950
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2951
               moving_variance_name=None,
2952
               do_model_average_for_mean_and_var=False,
2953 2954
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2955
    """
Q
qiaolongfei 已提交
2956 2957 2958 2959
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2960

Q
qiaolongfei 已提交
2961
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2962

Q
qiaolongfei 已提交
2963 2964
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2965 2966 2967
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2994
    Args:
Q
qingqing01 已提交
2995
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2996
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3006 3007 3008 3009 3010 3011 3012 3013
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3014
        data_layout(string, default NCHW): NCHW|NHWC
3015
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3016 3017 3018 3019
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3020
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3021
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3022 3023 3024 3025 3026
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3027 3028

    Returns:
Q
qiaolongfei 已提交
3029
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3030 3031 3032 3033 3034 3035 3036

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3037
    """
C
chengduo 已提交
3038
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3039 3040 3041
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3042 3043 3044 3045
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3064
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3065

3066 3067
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3068 3069 3070
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3071
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3072
        shape=param_shape,
W
Wu Yi 已提交
3073
        dtype=dtype)
3074 3075 3076 3077 3078 3079
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3080
            trainable=False,
W
wanghaoshuang 已提交
3081
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3082
        shape=param_shape,
W
Wu Yi 已提交
3083
        dtype=dtype)
3084
    variance.stop_gradient = True
Y
Yu Yang 已提交
3085 3086 3087 3088 3089 3090

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3091 3092 3093 3094
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3095

X
Xin Pan 已提交
3096 3097
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3115 3116 3117 3118
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3119
            "data_layout": data_layout,
X
Xin Pan 已提交
3120
            "use_mkldnn": False,
3121 3122
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3123
        })
Y
Yu Yang 已提交
3124 3125 3126 3127

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3247
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3248 3249 3250 3251

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3252
@templatedoc()
G
guosheng 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3263
    ${comment}
G
guosheng 已提交
3264 3265 3266

    The formula is as follows:

Y
yuyang18 已提交
3267
    ..  math::
G
guosheng 已提交
3268 3269 3270 3271 3272 3273 3274

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3275 3276 3277 3278 3279 3280 3281 3282
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3283

G
guosheng 已提交
3284 3285
    Args:
        input(Variable): The input tensor variable.
3286
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3287
            normalization. Default True.
3288
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3289 3290
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3291
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3292
            Default 1.
3293
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3294
            division by zero. Default 1e-05.
G
guosheng 已提交
3295
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3296 3297
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3298 3299
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3300
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3301 3302
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3303
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3304
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3305
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3306 3307 3308
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3309 3310

    Returns:
Y
yuyang18 已提交
3311
        ${y_comment}
G
guosheng 已提交
3312 3313 3314

    Examples:

Y
yuyang18 已提交
3315 3316 3317
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3318
    """
L
lujun 已提交
3319
    assert in_dygraph_mode(
L
lujun 已提交
3320
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3335
    if shift:
G
guosheng 已提交
3336 3337 3338 3339 3340 3341
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3342 3343 3344 3345 3346
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3374
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3422 3423
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3441
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3442 3443 3444
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3445
    This layer calculates the spectral normalization value of weight parameters of
3446
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3447
    Parameters. Calculations are showed as follows.
3448

D
dengkaipeng 已提交
3449 3450 3451
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3452
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3465
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3466 3467 3468 3469

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3470

D
dengkaipeng 已提交
3471
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3472 3473
                

D
dengkaipeng 已提交
3474 3475 3476 3477
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3478 3479 3480
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3481 3482 3483
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3484
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3485 3486 3487 3488 3489 3490 3491 3492

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3493
    dtype = weight.dtype
D
dengkaipeng 已提交
3494 3495 3496

    # create intput and parameters
    inputs = {'Weight': weight}
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3515 3516

    # create output
3517
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3518 3519

    helper.append_op(
3520
        type="spectral_norm",
D
Dun 已提交
3521
        inputs=inputs,
3522 3523 3524 3525 3526 3527
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3528

3529
    return out
D
Dun 已提交
3530 3531


Y
Yu Yang 已提交
3532 3533 3534 3535
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3536 3537 3538
                     padding=0,
                     stride=1,
                     dilation=1,
3539
                     groups=None,
C
caoying03 已提交
3540
                     param_attr=None,
3541
                     bias_attr=None,
C
chengduoZH 已提交
3542
                     use_cudnn=True,
3543
                     act=None,
C
caoying03 已提交
3544
                     name=None):
Y
Yu Yang 已提交
3545
    """
3546 3547 3548 3549 3550 3551 3552 3553
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3554 3555
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3556 3557 3558
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3559 3560 3561 3562 3563

    For each input :math:`X`, the equation is:

    .. math::

3564
        Out = \sigma (W \\ast X + b)
3565

3566
    Where:
3567 3568 3569

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3570 3571 3572 3573
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3574

3575 3576 3577 3578
    Example:

        - Input:

3579
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3580

3581
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3582 3583 3584

        - Output:

3585
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3586 3587

        Where
Y
Yu Yang 已提交
3588

3589 3590
        .. math::

3591 3592
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3593 3594
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3595 3596

    Args:
3597 3598 3599 3600
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3601 3602 3603 3604
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3633
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3634 3635 3636
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3637
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3638
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3639 3640

    Returns:
3641
        Variable: The tensor variable storing the convolution transpose result.
3642 3643

    Raises:
3644 3645
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3646 3647 3648 3649

    Examples:
       .. code-block:: python

3650 3651
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3652
    """
C
chengduo 已提交
3653
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3654 3655 3656 3657 3658 3659 3660 3661
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3662 3663 3664
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3665 3666 3667
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3668

C
chengduoZH 已提交
3669 3670
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3671

Y
Yu Yang 已提交
3672 3673 3674 3675 3676
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3677

Y
Yu Yang 已提交
3678 3679
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3680

C
chengduoZH 已提交
3681
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3682
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3683
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3684
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3685
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3686 3687 3688
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3689

3690 3691 3692 3693 3694 3695 3696
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3697
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3698
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3699

Y
Yu Yang 已提交
3700 3701 3702
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3703
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3704
    helper.append_op(
3705
        type=op_type,
Y
Yu Yang 已提交
3706 3707
        inputs={'Input': [input],
                'Filter': [img_filter]},
3708
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3709
        attrs={
3710
            'output_size': output_size,
3711 3712 3713 3714 3715
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3716 3717
        })

3718 3719 3720
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3721 3722


3723
def conv3d_transpose(input,
Y
Yu Yang 已提交
3724 3725 3726
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3727 3728 3729
                     padding=0,
                     stride=1,
                     dilation=1,
3730
                     groups=None,
C
caoying03 已提交
3731
                     param_attr=None,
3732
                     bias_attr=None,
C
chengduoZH 已提交
3733
                     use_cudnn=True,
3734
                     act=None,
C
caoying03 已提交
3735
                     name=None):
Y
Yu Yang 已提交
3736
    """
3737
    **Convlution3D transpose layer**
3738

3739
    The convolution3D transpose layer calculates the output based on the input,
3740
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3741 3742 3743 3744 3745 3746
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3747 3748 3749
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3750 3751 3752 3753 3754

    For each input :math:`X`, the equation is:

    .. math::

3755
        Out = \sigma (W \\ast X + b)
3756 3757 3758

    In the above equation:

3759 3760
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3761 3762 3763 3764
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3765

3766 3767 3768 3769
    Example:

        - Input:

3770
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3771

3772
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3773 3774 3775

        - Output:

3776
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3777 3778

        Where
Y
Yu Yang 已提交
3779

3780 3781
        .. math::

3782 3783 3784
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3785 3786

    Args:
3787
        input(Variable): The input image with [N, C, D, H, W] format.
3788 3789 3790
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3791
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3792 3793
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3794
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3795 3796 3797
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3798 3799
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3800
        stride(int|tuple): The stride size. If stride is a tuple, it must
3801 3802
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3803
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3804 3805 3806
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3807 3808 3809 3810 3811
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3821 3822
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3823 3824
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3825 3826
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3827 3828

    Returns:
3829
        Variable: The tensor variable storing the convolution transpose result.
3830 3831

    Raises:
3832 3833
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3834 3835 3836 3837

    Examples:
       .. code-block:: python

3838 3839
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3840
    """
C
chengduo 已提交
3841
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3842 3843
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3844
    if not isinstance(input, Variable):
3845
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3846 3847
    input_channel = input.shape[1]

3848 3849 3850
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3851

C
chengduoZH 已提交
3852 3853 3854
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3855 3856 3857 3858 3859 3860
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3861 3862 3863
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3864

3865
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3866
                         padding[0] - 1) // dilation[0] + 1
3867
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3868
                         padding[1] - 1) // dilation[1] + 1
3869
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3870
                         padding[2] - 1) // dilation[2] + 1
3871
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3872
    else:
3873 3874
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3875

3876
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3877
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3878 3879 3880
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3881
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3882
    helper.append_op(
3883
        type=l_type,
Y
Yu Yang 已提交
3884 3885
        inputs={'Input': [input],
                'Filter': [img_filter]},
3886
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3887 3888 3889 3890
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3891
            'groups': groups,
C
chengduoZH 已提交
3892 3893
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3894

3895 3896
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3897
    return out
Y
yangyaming 已提交
3898 3899


Y
yangyaming 已提交
3900
def sequence_expand(x, y, ref_level=-1, name=None):
3901
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3902 3903 3904 3905
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3906 3907 3908 3909 3910

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3911
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3912
                x.data = [[a], [b], [c], [d]]
3913 3914 3915
                x.dims = [4, 1]

            y is a LoDTensor:
3916 3917
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3918

Y
yangyaming 已提交
3919
            ref_level: 0
3920

Y
yangyaming 已提交
3921
            then output is a 1-level LoDTensor:
3922
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3923
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3924 3925 3926 3927
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3928
                x.data = [[a], [b], [c]]
3929 3930 3931
                x.dims = [3, 1]

            y is a LoDTensor:
3932
                y.lod = [[2, 0, 3]]
3933

Y
yangyaming 已提交
3934
            ref_level: -1
3935

Y
yangyaming 已提交
3936 3937 3938
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3939 3940 3941
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3942 3943
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3944
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3945
                        will be named automatically.
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3956
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3957
    """
L
lujun 已提交
3958
    assert not in_dygraph_mode(), (
3959
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3960
    helper = LayerHelper('sequence_expand', input=x, **locals())
3961
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3962
    tmp = helper.create_variable_for_type_inference(dtype)
3963
    helper.append_op(
Y
yangyaming 已提交
3964 3965 3966 3967 3968
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3969
    return tmp
3970 3971


C
chengduo 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4026
    assert not in_dygraph_mode(), (
4027
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4028 4029
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4030
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4031 4032 4033 4034 4035 4036 4037 4038
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4039
@templatedoc()
4040
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4041 4042 4043 4044 4045
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4046 4047 4048
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4049
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4050 4051 4052 4053
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4054 4055 4056
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4057

F
fengjiayi 已提交
4058
    Returns:
M
minqiyang 已提交
4059
        Variable: The padded sequence batch and the original lengths before
4060
                  padding. All sequences has the same length.
M
minqiyang 已提交
4061

F
fengjiayi 已提交
4062 4063 4064 4065 4066 4067 4068
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4069
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4070
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4071 4072 4073
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4074
    assert not in_dygraph_mode(), (
4075
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4076 4077
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4078 4079
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4080 4081 4082 4083

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4084 4085 4086 4087 4088 4089
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4090 4091
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4092
        attrs={'padded_length': maxlen})
4093
    return out, length
F
fengjiayi 已提交
4094 4095


4096
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4097
    """
4098
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4099

4100 4101
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4111 4112 4113
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4114
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4115 4116 4117 4118 4119 4120

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4121
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4122 4123 4124 4125 4126 4127

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4128 4129
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4142
    assert not in_dygraph_mode(), (
4143
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4144 4145
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4146
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4158 4159 4160 4161 4162 4163 4164
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4165
                is_accumulated=True,
4166 4167
                name=None,
                return_parent_idx=False):
4168
    """
4169 4170
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4171 4172 4173

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4174 4175

    This layer does the search in beams for one time step. Specifically, it
4176 4177 4178
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4190 4191 4192 4193

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4194

4195
    Args:
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4219 4220
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4221 4222
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4223 4224 4225 4226
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4227

4228
    Returns:
4229 4230 4231 4232
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4233 4234 4235 4236

    Examples:
        .. code-block:: python

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4254
    helper = LayerHelper('beam_search', **locals())
4255 4256 4257 4258 4259 4260
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4261

X
Xin Pan 已提交
4262 4263 4264
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4265 4266 4267 4268 4269
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4270 4271 4272

    helper.append_op(
        type='beam_search',
4273
        inputs=inputs,
Q
Qiao Longfei 已提交
4274 4275 4276
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4277
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4278 4279 4280 4281 4282 4283
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4284
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4285
        })
4286 4287 4288 4289
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4290 4291


4292 4293 4294 4295 4296 4297 4298
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4309

4310 4311 4312 4313 4314 4315
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4316

4317 4318
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4319

4320 4321 4322 4323 4324 4325
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4326 4327
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4343 4344 4345 4346
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4347
              param_attr=None,
C
caoying03 已提交
4348 4349
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4350 4351 4352 4353
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4354
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4355

4356
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4357

4358
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4359

4360
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4361 4362 4363

            h_t & = o_t tanh(c_t)

4364 4365 4366 4367 4368 4369
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4370 4371 4372

        .. math::

4373
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4374 4375 4376 4377 4378 4379 4380 4381

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4382
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4383 4384

    Args:
Y
yangyaming 已提交
4385 4386 4387 4388 4389 4390
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4391
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4404 4405
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4406 4407

    Returns:
Y
yangyaming 已提交
4408
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4409 4410

    Raises:
4411 4412 4413 4414
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4415 4416 4417 4418 4419 4420

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4421
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4422
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4423
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4440
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4441 4442 4443 4444
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4445 4446
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4447 4448 4449
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4450
    size = cell_t_prev.shape[1]
4451
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4452 4453
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4454
                param_attr=param_attr,
4455
                bias_attr=bias_attr)
Y
yangyaming 已提交
4456
    dtype = x_t.dtype
X
Xin Pan 已提交
4457 4458
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4468
    return h, c
G
guosheng 已提交
4469 4470


C
caoying03 已提交
4471
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4472
    """
Y
yangyaming 已提交
4473
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4474 4475 4476

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4477
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4478 4479
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4480 4481
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4482
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4483
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4484
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4485 4486
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4487 4488 4489

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4490

G
guosheng 已提交
4491 4492 4493 4494 4495 4496
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4497
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4498 4499 4500 4501
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4502 4503 4504 4505

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4506
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4507 4508 4509
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4510 4511
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4512
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4513 4514
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4515 4516 4517 4518 4519
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4520
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4521 4522 4523 4524
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4525 4526


C
caoying03 已提交
4527
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4528
    """
Y
Yibing Liu 已提交
4529
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4530 4531 4532

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4533 4534 4535
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4536
            must be in the range :math:`[-rank(input), rank(input))`. If
4537
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4538
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4539 4540
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4541
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4542
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4543
                       will be named automatically.
G
guosheng 已提交
4544 4545

    Returns:
Y
Yibing Liu 已提交
4546
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4547

G
guosheng 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4558 4559
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4560 4561 4562 4563 4564 4565 4566

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4567 4568
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4569
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4570 4571
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4572 4573 4574 4575 4576
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4577
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4578 4579 4580 4581
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4582 4583


C
caoying03 已提交
4584
def reduce_max(input, dim=None, keep_dim=False, name=None):
4585
    """
Y
yangyaming 已提交
4586
    Computes the maximum of tensor elements over the given dimension.
4587 4588 4589

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4590
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4591 4592 4593
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4594
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4595 4596
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4597
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4598 4599
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4600 4601 4602

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4603

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4615 4616 4617 4618 4619 4620 4621

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4622 4623
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4624
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4625 4626
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4627 4628 4629 4630 4631
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4632
            'dim': dim if dim != None else [0],
4633 4634 4635 4636 4637 4638
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4639
def reduce_min(input, dim=None, keep_dim=False, name=None):
4640
    """
Y
yangyaming 已提交
4641
    Computes the minimum of tensor elements over the given dimension.
4642 4643 4644

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4645
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4646 4647 4648
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4649
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4650 4651
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4652
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4653 4654
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4655 4656 4657

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4658

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4670 4671 4672 4673 4674 4675 4676

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4677 4678
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4679
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4680 4681
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4682 4683 4684 4685 4686
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4687
            'dim': dim if dim != None else [0],
4688 4689 4690 4691
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4692 4693


4694 4695 4696 4697 4698 4699
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4700
        dim (list|int|None): The dimensions along which the product is performed. If
4701 4702
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4703 4704
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4705 4706 4707
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4708
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4709
            layer will be named automatically.
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4724
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4725
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4726 4727 4728 4729 4730 4731 4732

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4733 4734
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4735
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4736 4737
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4738 4739 4740 4741 4742
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4743
            'dim': dim if dim != None else [0],
4744 4745 4746 4747 4748 4749
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4750 4751
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4752
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4772
        
Z
zhoukunsheng 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4802
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4822

Z
zhoukunsheng 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4845 4846 4847 4848 4849
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4850
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4851
    """
C
caoying03 已提交
4852
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4853 4854 4855

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4856 4857 4858 4859 4860
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4861
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4862
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4863
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4864 4865
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4866 4867

    Returns:
D
dzhwinter 已提交
4868
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4878 4879
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4891
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4892 4893 4894
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4895
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4918
    .. math::
4919 4920

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4921 4922 4923 4924 4925

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4926
        x(Variable|list): The input tensor to l2_normalize layer.
4927
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4928 4929
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4930
        epsilon(float): The epsilon value is used to avoid division by zero, \
4931
            the defalut value is 1e-12.
4932
        name(str|None): A name for this layer(optional). If set None, the layer \
4933
            will be named automatically.
C
caoying03 已提交
4934 4935

    Returns:
4936
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4937 4938

    Examples:
4939

C
caoying03 已提交
4940 4941
        .. code-block:: python

4942 4943 4944 4945
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4946 4947
    """

F
fengjiayi 已提交
4948 4949
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4950 4951
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4952 4953
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4954
    helper.append_op(
4955 4956 4957 4958
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4959
        attrs={
4960 4961
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4962 4963
        })
    return out
4964 4965


S
sneaxiy 已提交
4966
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4967
    """
Y
ying 已提交
4968 4969 4970 4971
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4972

C
chengduoZH 已提交
4973
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4974
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4975

4976 4977 4978 4979 4980
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4981
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4982

C
chengduoZH 已提交
4983
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4984
      performs in the following way.
G
guosheng 已提交
4985

4986
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4987
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4988
        last two dimensions and a batched matrix multiply supporting broadcast
4989
        applies on the two tensors.
G
guosheng 已提交
4990

Y
ying 已提交
4991 4992
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4993
    removed after matrix multiplication.
G
guosheng 已提交
4994 4995 4996

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4997 4998 4999
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5000
        alpha (float): The scale of output. Default 1.0.
5001
        name(str|None): A name for this layer(optional). If set None, the layer
5002
            will be named automatically.
G
guosheng 已提交
5003 5004

    Returns:
5005
        Variable: The product Tensor variable.
G
guosheng 已提交
5006

G
guosheng 已提交
5007 5008 5009
    Examples:
        .. code-block:: python

5010
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5011 5012
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5013

5014 5015
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5016

5017 5018
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5019

5020 5021
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5022 5023 5024 5025

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5026 5027
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5028

Y
ying 已提交
5029
            # x: [M], y: [N]
5030
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5031
    """
Y
ying 已提交
5032 5033 5034 5035 5036 5037 5038

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5039
            y_shape = y_shape + [1]
Y
ying 已提交
5040 5041 5042 5043 5044 5045 5046

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5047 5048
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5049

C
chengduo 已提交
5050
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5051
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5052 5053 5054
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5055
                if dim_x != y_shape[i]:
C
chengduo 已提交
5056 5057
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5058 5059 5060

    __check_input(x, y)

5061
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5062
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5063
    helper.append_op(
5064 5065 5066 5067
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5068 5069 5070
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5071
            'alpha': float(alpha),
S
sneaxiy 已提交
5072
        })
5073
    return out
5074 5075


5076
def topk(input, k, name=None):
Q
qingqing01 已提交
5077 5078 5079 5080
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5081
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5082 5083 5084 5085 5086 5087
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5109 5110 5111
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5112
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5113
                 of input.
5114
        name(str|None): A name for this layer(optional). If set None, the layer
5115
                       will be named automatically.
F
fengjiayi 已提交
5116
                       Default: None
Q
qingqing01 已提交
5117 5118

    Returns:
5119 5120 5121
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5122
        within the last dimension of input.
Q
qingqing01 已提交
5123

F
fengjiayi 已提交
5124 5125
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5126 5127 5128 5129 5130 5131 5132

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5133 5134
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5135 5136 5137 5138 5139 5140
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5141 5142
    helper.append_op(
        type="top_k",
W
whs 已提交
5143
        inputs=inputs,
Q
qingqing01 已提交
5144 5145
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5146
        attrs=attrs)
Q
qingqing01 已提交
5147 5148 5149 5150 5151
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5152
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5153
    """
Y
ying 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5163

Y
ying 已提交
5164
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5165

5166
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5167 5168
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5169
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5170

5171
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5172 5173
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5174

5175 5176 5177
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5178
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5179
                          the length of reference string.
5180
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5181
                                     calculating edit distance.
5182
        name (str): The name of this layer. It is optional.
5183

W
wanghaoshuang 已提交
5184
    Returns:
W
wanghaoshuang 已提交
5185
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5186 5187 5188 5189

    Examples:
        .. code-block:: python

T
tink2123 已提交
5190 5191
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5192
            cost = fluid.layers.edit_distance(input=x,label=y)
5193
    """
5194
    helper = LayerHelper("edit_distance", **locals())
5195

5196
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5197
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5198 5199
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5200 5201 5202 5203 5204

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5205
            attrs={"tokens": ignored_tokens})
5206 5207 5208 5209 5210
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5211
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5212
            attrs={"tokens": ignored_tokens})
5213 5214
        label = erased_label

5215
    # edit distance op
X
Xin Pan 已提交
5216 5217
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5218 5219 5220 5221
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5222 5223
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5224 5225
        attrs={"normalized": normalized})

5226
    return edit_distance_out, sequence_num
5227 5228 5229 5230 5231


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5232

Y
ying 已提交
5233 5234 5235 5236
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5254
        input.lod = [[4, 4]]
M
minqiyang 已提交
5255

W
whs 已提交
5256
        Computation:
5257

W
whs 已提交
5258 5259 5260 5261 5262 5263
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5264 5265 5266 5267 5268

        output.data = [[2],
                       [1],
                       [3]]

5269
        output.lod = [[2, 1]]
5270

W
whs 已提交
5271

5272 5273
    Args:

Y
ying 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5283
        name (str): The name of this layer. It is optional.
5284 5285

    Returns:
H
haowang101779990 已提交
5286 5287 5288
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5289
                  LoD [[]] and dims [1, 1].
5290 5291 5292 5293 5294

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5295

5296
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5297
    """
5298
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5299
    _, topk_indices = topk(input, k=1)
5300 5301

    # ctc align op
X
Xin Pan 已提交
5302
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5303 5304 5305
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5306
        outputs={"Output": [ctc_out]},
5307 5308
        attrs={"merge_repeated": True,
               "blank": blank})
5309
    return ctc_out
5310 5311


W
Wu Yi 已提交
5312
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5313
    """
5314 5315
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5316
    to compute Connectionist Temporal Classification (CTC) loss.
5317 5318
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5319 5320 5321
    input tensor.

    Args:
5322
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5323 5324 5325 5326
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5327
       label (Variable): The ground truth of variable-length sequence,
5328 5329 5330
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5331 5332
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5333 5334 5335
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5336
         follewed by a mean_op.
W
Wu Yi 已提交
5337
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5338 5339

    Returns:
5340 5341
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5342 5343

    Examples:
5344

W
wanghaoshuang 已提交
5345
        .. code-block:: python
5346

5347 5348 5349
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5350 5351

    """
F
fengjiayi 已提交
5352
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5353 5354
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5355 5356 5357 5358 5359 5360
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5361 5362 5363 5364 5365
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5366
    return loss_out
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5382 5383 5384
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5385 5386 5387 5388 5389
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5390

5391
            out.lod  = [[0, 1, 3]]
5392 5393 5394 5395

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5396 5397 5398 5399 5400 5401 5402
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5403 5404 5405

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5406 5407

    Returns:
5408

5409 5410 5411 5412 5413
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5414
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5415
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5416
    """
L
lujun 已提交
5417
    assert not in_dygraph_mode(), (
5418
        "sequence layer is not supported in dygraph mode yet.")
5419
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5420
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5421 5422 5423 5424 5425 5426
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5427 5428


5429 5430 5431 5432
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5433 5434 5435 5436 5437 5438
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5439
        num_neg_samples=None,
5440 5441 5442
        name=None,
        sampler="uniform",
        custom_dist=None,
5443 5444
        seed=0,
        is_sparse=False):
5445 5446 5447 5448 5449 5450 5451
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5452 5453
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5454
            sample is 1.0.
C
chengduo 已提交
5455 5456 5457 5458 5459 5460 5461 5462 5463
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5464
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5465 5466
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5467 5468 5469
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5470
        custom_dist (float[]): A float[] with size=num_total_classes.
5471 5472 5473 5474
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5475
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5476

5477
    Returns:
Y
Yibing Liu 已提交
5478 5479 5480 5481 5482 5483
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5484
	    import numpy as np
Y
Yibing Liu 已提交
5485

Y
Yibing Liu 已提交
5486 5487 5488 5489 5490 5491 5492 5493
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5494

Y
Yibing Liu 已提交
5495 5496 5497 5498
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5499

Y
Yibing Liu 已提交
5500 5501 5502
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5503

Y
Yibing Liu 已提交
5504 5505 5506 5507
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5508

Y
Yibing Liu 已提交
5509 5510 5511 5512 5513 5514 5515 5516
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5517
    """
Y
Yang Yu 已提交
5518 5519 5520
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5521 5522

    dim = input.shape[1]
Y
Yang Yu 已提交
5523 5524 5525 5526 5527 5528
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5529
    inputs = {}
C
chengduo 已提交
5530 5531 5532 5533 5534 5535 5536
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5537 5538 5539
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5540

5541 5542 5543 5544
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5545 5546 5547 5548 5549 5550 5551

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5552 5553
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5554
        custom_dist_len = num_total_classes
5555 5556 5557 5558 5559 5560
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5561
            if normal_prob - 1.0 > 0:
5562
                bigs.append((i, normal_prob))
5563
            elif 1.0 - normal_prob > 0:
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5579
            if big_left - 1.0 > 0:
5580
                bigs.append((big_idx, big_left))
5581
            elif 1.0 - big_left > 0:
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5611 5612 5613 5614
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5615 5616 5617 5618 5619
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5620 5621 5622 5623
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5624

Y
Yang Yu 已提交
5625 5626
    attrs = {
        'num_total_classes': int(num_total_classes),
5627 5628
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5629
        'sampler': sampler,
5630 5631
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5632
    }
Y
Yang Yu 已提交
5633 5634 5635

    helper.append_op(
        type='nce',
C
chengduo 已提交
5636
        inputs=inputs,
Y
Yang Yu 已提交
5637 5638 5639 5640 5641 5642
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5643
    return cost / (num_neg_samples + 1)
5644 5645


C
chengduo 已提交
5646 5647
def hsigmoid(input,
             label,
5648
             num_classes,
C
chengduo 已提交
5649 5650
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5651
             name=None,
5652 5653 5654
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5655
             is_sparse=False):
W
weixing02 已提交
5656 5657
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5658
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5659
    complete binary tree, or you can use is_custom to pass your own tree to
5660
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5661 5662 5663 5664 5665 5666
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5667
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5668
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5669

5670 5671
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5672 5673 5674 5675
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5676
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5677
       related to the same batch of inputs.
5678

W
weixing02 已提交
5679
    Args:
M
minqiyang 已提交
5680
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5681 5682 5683 5684
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5685 5686
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5687
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5699
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5700
            it should be in leaf -> root order
M
minqiyang 已提交
5701 5702 5703
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5704
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5705
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5706
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5707
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5708
             of W and input will be sparse.
W
weixing02 已提交
5709 5710

    Returns:
J
JiabinYang 已提交
5711
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5712 5713 5714 5715 5716

    Examples:

        .. code-block:: python

G
guosheng 已提交
5717 5718 5719
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5720 5721 5722 5723
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5724 5725
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5726
    dim = input.shape[1]
5727
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5728 5729 5730
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5731 5732 5733 5734 5735 5736 5737 5738 5739
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5740
    if (is_custom) and (path_code is None):
5741
        raise ValueError("path_code should not be None with custom tree")
5742
    elif (is_custom) and (path_table is None):
5743
        raise ValueError("path_table should not be None with custom tree")
5744
    elif (is_custom) and (num_classes is None):
5745
        raise ValueError("num_classes should not be None with custom tree")
5746 5747 5748
    else:
        pass

J
JiabinYang 已提交
5749
    weights = None
5750 5751 5752 5753
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5754
    if not is_custom:
J
JiabinYang 已提交
5755 5756 5757 5758 5759 5760 5761 5762
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5763
            shape=[num_classes, dim],
J
JiabinYang 已提交
5764 5765
            is_bias=False,
            dtype=input.dtype)
5766 5767 5768
    inputs = {
        "X": input,
        "W": weights,
5769
        "PathTable": path_table,
5770
        "PathCode": path_code,
5771 5772
        "Label": label
    }
W
weixing02 已提交
5773
    if helper.bias_attr:
5774
        if not is_custom:
J
JiabinYang 已提交
5775 5776
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5777
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5778 5779 5780 5781 5782 5783
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5784
                shape=[num_classes, 1],
J
JiabinYang 已提交
5785 5786 5787
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5788 5789
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5790
        inputs=inputs,
W
weixing02 已提交
5791
        outputs={"Out": out,
5792 5793 5794 5795 5796 5797 5798
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5799 5800 5801
    return out


Y
fix ci.  
ying 已提交
5802
def transpose(x, perm, name=None):
Y
ying 已提交
5803 5804 5805 5806 5807 5808 5809
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5810 5811 5812
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5813 5814 5815 5816 5817 5818 5819

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5820
            # use append_batch_size=False to avoid prepending extra
5821
            # batch size in shape
5822
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5823
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5824
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5825 5826
    """

Y
fix ci.  
ying 已提交
5827
    if len(perm) != len(x.shape):
Y
ying 已提交
5828 5829 5830
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5831 5832 5833 5834 5835 5836
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5837 5838

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5839 5840
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5841
    helper.append_op(
5842
        type='transpose2',
Y
fix ci.  
ying 已提交
5843
        inputs={'X': [x]},
5844 5845
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5846 5847
        attrs={'axis': perm})
    return out
5848 5849


5850 5851 5852 5853 5854 5855 5856
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5857
    """
5858 5859 5860 5861 5862 5863 5864
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5893 5894 5895 5896 5897 5898 5899 5900 5901
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5902 5903 5904
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5905 5906 5907 5908 5909
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5937 5938 5939
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5952
            output.dims = {8, 8}
5953

5954
            output.lod = [[4, 4]]
5955

T
Tink_Y 已提交
5956
    Examples:
5957 5958 5959

        .. code-block:: python

5960 5961
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5962 5963

    """
L
lujun 已提交
5964
    assert not in_dygraph_mode(), (
5965
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5976 5977 5978 5979 5980 5981 5982
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5983
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5984
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5985
    helper.append_op(
5986
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5987
    return out
5988 5989


Y
yuyang18 已提交
5990
@templatedoc()
5991
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5992 5993
    """
    ${comment}
5994 5995

    Args:
Y
yuyang18 已提交
5996
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5997 5998
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5999 6000 6001 6002 6003
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6004
        ${out_comment}.
6005 6006

    Examples:
Y
yuyang18 已提交
6007 6008 6009 6010
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6011 6012 6013 6014 6015 6016
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6017
    out = helper.create_variable_for_type_inference(dtype)
6018 6019 6020 6021 6022
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6023
    return helper.append_activation(out)
6024 6025


Y
yuyang18 已提交
6026
@templatedoc()
6027 6028
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6029 6030
    ${comment}

L
lujun 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6074 6075

    Args:
Y
yuyang18 已提交
6076 6077
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6078 6079

    Returns:
Y
yuyang18 已提交
6080
        ${out_comment}.
6081 6082
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6083 6084 6085 6086 6087

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6088
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6089 6090 6091 6092 6093 6094
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6095 6096


6097 6098 6099
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6100
                               ignore_index=kIgnoreIndex,
6101
                               numeric_stable_mode=True,
6102
                               return_softmax=False):
6103 6104
    """
    **Softmax With Cross Entropy Operator.**
6105

6106 6107 6108 6109
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
6110

6111 6112 6113
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6114

6115 6116 6117
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
6118

6119
    The equation is as follows:
6120

6121
    1) Hard label (one-hot label, so every sample has exactly one class)
6122

6123 6124 6125 6126
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6127

6128 6129 6130
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6131

6132 6133 6134 6135
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6136 6137 6138
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6139

H
haowang101779990 已提交
6140
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6141

H
haowang101779990 已提交
6142
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6143

H
haowang101779990 已提交
6144
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6145 6146 6147

    and then cross entropy loss is calculated by softmax and label.

6148 6149 6150 6151 6152 6153 6154 6155
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6156 6157
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6158
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6159 6160 6161
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6162 6163 6164
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6165
                                    stable algorithm. Default: True
6166
        return_softmax (bool): A flag indicating whether to return the softmax
6167
                               along with the cross entropy loss. Default: False
6168

6169
    Returns:
H
haowang101779990 已提交
6170 6171 6172 6173 6174
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6175 6176 6177 6178 6179 6180 6181

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6182 6183
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6184 6185
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6186 6187
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6188 6189 6190 6191 6192 6193
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6194 6195 6196 6197 6198
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6199 6200 6201 6202

    if return_softmax:
        return loss, softmax

6203 6204 6205
    return loss


6206 6207 6208
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6209
                                       num_true=1,
6210
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6211 6212 6213
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6214
                                       seed=0):
X
xuezhong 已提交
6215 6216 6217 6218 6219
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6220
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6221 6222 6223 6224 6225 6226 6227 6228
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6229
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6230 6231 6232 6233 6234 6235 6236 6237
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6238
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6250
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6251 6252 6253 6254 6255
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6256
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6257
            logits.
X
xuezhong 已提交
6258 6259 6260 6261 6262
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6263 6264 6265
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6286 6287
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6288 6289
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6290 6291 6292 6293 6294

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6295
            'Labels': label,
X
xuezhong 已提交
6296 6297
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6298 6299 6300 6301
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6302
            'SampledLabels': sampled_label,
6303 6304 6305
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6306 6307
        },
        attrs={
X
xuezhong 已提交
6308
            'use_customized_samples': use_customized_samples,
6309
            'uniq': True,
X
xuezhong 已提交
6310 6311 6312 6313
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6314 6315
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6316 6317 6318 6319 6320 6321
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6322 6323
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6324
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6325
                'Label': sampled_softlabel},
X
xuezhong 已提交
6326 6327 6328
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6329
            'soft_label': True,
X
xuezhong 已提交
6330 6331 6332
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6333
    return loss / num_true
X
xuezhong 已提交
6334 6335


6336 6337
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6338 6339
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6340
    For each instance, it computes the smooth L1 loss element by element first
6341
    and then sums all the losses. So the shape of ouput Variable is
6342
    [batch_size, 1].
6343

6344 6345
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6346
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6347
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6348
            L1 loss op with same shape as :attr:`x`.
6349
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6350 6351
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6352
            by this tensor element by element.
6353
        outside_weight (Variable|None): A tensor with rank at least 2. This
6354 6355
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6356
            element by element.
6357
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6358 6359
           scalar with default value 1.0.

6360
    Returns:
6361
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6362 6363 6364 6365 6366

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6367 6368
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6369
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6370
            out = fluid.layers.smooth_l1(x=fc, y=label)
6371
    """
6372

6373
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6374 6375
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6386
        attrs={'sigma': sigma if sigma is not None else 1.0})
6387
    return loss
6388 6389 6390 6391


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6392
    This layer creates the one-hot representations for input indices.
6393 6394

    Args:
Y
Yibing Liu 已提交
6395 6396
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6397 6398

    Returns:
Y
Yibing Liu 已提交
6399
        Variable: The one-hot representations of input.
6400 6401

    Examples:
C
caoying03 已提交
6402
        .. code-block:: python
6403

Y
Yibing Liu 已提交
6404 6405
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6406 6407
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6408
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6409 6410 6411 6412
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6413 6414
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6415
    return one_hot_out
Y
Yu Yang 已提交
6416 6417


Y
Yu Yang 已提交
6418
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6419
    """
Y
yi.wu 已提交
6420 6421 6422
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6423 6424 6425 6426 6427 6428

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6429 6430
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6431 6432 6433 6434 6435

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6436
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6437 6438
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6439 6440
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6441 6442 6443 6444 6445
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6446
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6447
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6448 6449
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6450
            outputs={'Out': [counter]},
M
minqiyang 已提交
6451 6452
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6453 6454 6455
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6456 6457


6458
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6459
    """
C
caoying03 已提交
6460 6461
    Gives a new shape to the input Tensor without changing its data.

6462 6463 6464 6465 6466
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6467

6468
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6469

6470 6471 6472 6473
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6474
    2. 0 means the actual dimension value is going to be copied from the
6475 6476 6477 6478
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6479 6480

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6481
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6482
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6483

6484
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6485 6486
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6487 6488
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6489
    dimensions.
C
caoying03 已提交
6490

6491
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6492 6493 6494 6495
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6496 6497

    Args:
6498
        x(variable): The input tensor.
C
caoying03 已提交
6499 6500
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6501 6502 6503 6504 6505
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6506 6507
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6508 6509 6510
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6511
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6512
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6513

6514
    Returns:
G
guosheng 已提交
6515 6516 6517 6518
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6519

X
Xin Pan 已提交
6520 6521 6522
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6523 6524
    Examples:
        .. code-block:: python
G
guosheng 已提交
6525

6526
            data = fluid.layers.data(
6527
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6528
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6529
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6530 6531 6532
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6533
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6534 6535 6536 6537 6538
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6539

6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6555
    helper = LayerHelper("reshape2", **locals())
6556 6557
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6558
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6559
    helper.append_op(
6560
        type="reshape2",
X
Xin Pan 已提交
6561
        inputs=inputs,
D
dzhwinter 已提交
6562
        attrs={"shape": shape},
6563 6564
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6565

D
dzhwinter 已提交
6566
    return helper.append_activation(out)
6567

6568

6569
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6570
    """
M
minqiyang 已提交
6571 6572 6573
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6574
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6575

H
haowang101779990 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6597

Y
Yibing Liu 已提交
6598
    Args:
6599
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6600
        axes (list): List of integers, indicating the dimensions to be squeezed.
6601
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6602 6603 6604 6605 6606 6607 6608 6609

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6610
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6611
    """
L
lujun 已提交
6612
    assert not in_dygraph_mode(), (
L
lujun 已提交
6613
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6614
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6615 6616
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6617
    helper.append_op(
6618
        type="squeeze2",
6619
        inputs={"X": input},
Y
Yibing Liu 已提交
6620
        attrs={"axes": axes},
6621 6622
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6623

6624 6625 6626
    return out


6627
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6628
    """
M
minqiyang 已提交
6629 6630 6631
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6632

M
minqiyang 已提交
6633
    For example:
H
haowang101779990 已提交
6634 6635 6636

    .. code-block:: text

M
minqiyang 已提交
6637
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6638
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6639

Y
Yibing Liu 已提交
6640
    Args:
6641
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6642
        axes (list): List of integers, indicating the dimensions to be inserted.
6643
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6644 6645 6646 6647 6648 6649 6650 6651

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6652
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6653 6654
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6655 6656
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6657
    helper.append_op(
6658
        type="unsqueeze2",
6659
        inputs={"X": input},
Y
Yibing Liu 已提交
6660
        attrs={"axes": axes},
6661 6662
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6663

6664 6665
    return out

6666

Y
yangyaming 已提交
6667
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6668
    """
Y
Yibing Liu 已提交
6669
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6670 6671 6672 6673
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6674
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6675 6676 6677 6678 6679 6680

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6681
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6682 6683 6684
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6685
            target_lod: [4, 2]
Y
yangyaming 已提交
6686 6687

            then we get a 1-level LoDTensor:
6688
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6689 6690 6691 6692 6693 6694
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6695
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6696 6697 6698 6699
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6700
                y.data = [[2, 4]]
Y
yangyaming 已提交
6701 6702 6703
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6704
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6705 6706 6707 6708 6709 6710
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6711
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6712 6713 6714 6715
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6716
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6717 6718 6719 6720
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6721
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6722 6723 6724 6725 6726
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6727
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6728
                           from :attr:`y`.
Y
yangyaming 已提交
6729
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6730
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6731 6732

    Returns:
Y
Yibing Liu 已提交
6733
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6734 6735

    Raises:
Y
Yibing Liu 已提交
6736
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6746
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6772
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6801 6802
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6815 6816 6817
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6831 6832 6833 6834


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6835
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6836
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6837

G
guosheng 已提交
6838 6839 6840 6841
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6864
                         The length of :attr:paddings must be
G
guosheng 已提交
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6875

G
guosheng 已提交
6876 6877 6878 6879 6880 6881
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6882
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6883 6884 6885 6886 6887 6888 6889
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6890 6891


C
chengduo 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6923 6924
		And
            pad_value = -1,
C
chengduo 已提交
6925

T
Tink_Y 已提交
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6961
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6962 6963 6964 6965 6966 6967 6968 6969 6970
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6971 6972 6973 6974 6975 6976 6977
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6978 6979
    called label-smoothing regularization (LSR).

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7003
                              be :math:`(1, class\_num)`.
7004 7005
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7006
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7026
    smooth_label = helper.create_variable_for_type_inference(dtype)
7027 7028 7029 7030 7031 7032 7033
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7034 7035


W
wopeizl 已提交
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7072 7073


J
jerrywgz 已提交
7074 7075 7076 7077 7078 7079
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7080 7081
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7098 7099 7100
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7101 7102 7103 7104 7105 7106
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7107
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7148 7149
        .. code-block:: python

W
whs 已提交
7150 7151 7152 7153
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7154
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7155 7156 7157 7158 7159 7160
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7161 7162


7163 7164 7165 7166
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7167
                 resample='BILINEAR',
7168 7169
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7170
                 align_mode=1):
7171
    """
Q
qiaolongfei 已提交
7172
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7173

7174
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7175 7176 7177
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7178

7179
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7180

7181
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7182

7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7193
    Align_corners and align_mode are optinal parameters,the calculation method 
7194 7195 7196 7197
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7198
    .. code-block:: text
7199

T
Tink_Y 已提交
7200
        For scale:
7201
          
T
Tink_Y 已提交
7202
            if align_corners = True && out_size > 1 :
7203

T
Tink_Y 已提交
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7215

T
Tink_Y 已提交
7216 7217
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7218

T
Tink_Y 已提交
7219 7220
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7221

T
Tink_Y 已提交
7222 7223
          else:
              align_corners = True
7224

T
Tink_Y 已提交
7225 7226
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7227

T
Tink_Y 已提交
7228 7229
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7230

T
Tink_Y 已提交
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7241

T
Tink_Y 已提交
7242 7243 7244 7245
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7246

T
Tink_Y 已提交
7247 7248
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7249 7250 7251 7252 7253 7254 7255 7256 7257

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7258
    Args:
7259
        input (Variable): The input tensor of image resize layer,
7260 7261
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7262
        out_shape(list|tuple|Variable|None): Output shape of image resize
7263 7264
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7265
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7266
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7267
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7268
             Default: None.
7269 7270
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7271
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7272
                       currently.
7273
                       Default: 'BILINEAR'
7274 7275 7276
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7277
                                :attr:`out_shape` and :attr:`scale` specifying
7278 7279 7280 7281 7282 7283 7284
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7285 7286
                                constructing stage.
                                Default: None
7287 7288 7289 7290
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7291
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7292 7293
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7294 7295

    Returns:
Q
update  
qiaolongfei 已提交
7296 7297
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7298

7299 7300 7301
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7302
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7303 7304 7305
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7306
        ValueError: scale should be greater than zero.
7307 7308
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7309

7310 7311 7312
    Examples:
        .. code-block:: python

R
ruri 已提交
7313
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7314
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7315
    """
7316 7317 7318 7319
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7320 7321
    if resample not in resample_methods:
        raise ValueError(
7322
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7323
        )
7324
    resample_type = resample_methods[resample]
7325 7326 7327 7328 7329 7330

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7331
    if out_shape is None and scale is None:
7332
        raise ValueError("One of out_shape and scale must not be None.")
7333
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7334
    dtype = helper.input_dtype()
7335 7336 7337 7338

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7339
    inputs = {"X": input}
D
dengkaipeng 已提交
7340
    attrs = {
D
dengkaipeng 已提交
7341 7342
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7343 7344 7345 7346 7347
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7348
    if out_shape is not None:
7349 7350 7351 7352
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7353
            inputs['OutSize'] = out_shape
7354 7355
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7356 7357
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7358 7359 7360 7361 7362 7363 7364
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7365
    else:
D
dengkaipeng 已提交
7366 7367
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7368
        attrs['scale'] = float(scale)
7369

7370 7371 7372 7373 7374
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7375
    out = helper.create_variable_for_type_inference(dtype)
7376
    helper.append_op(
7377
        type='{}_interp'.format(resample_type),
7378
        inputs=inputs,
7379
        outputs={"Out": out},
D
dengkaipeng 已提交
7380
        attrs=attrs)
7381
    return out
F
stash  
fengjiayi 已提交
7382 7383


7384
@templatedoc(op_type="bilinear_interp")
7385 7386 7387 7388
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7389 7390
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7391
                    align_mode=1):
7392
    """
7393 7394
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7395 7396
    in priority order.

7397 7398 7399 7400
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7401 7402
    again in the other direction.

7403
    For details of bilinear interpolation, please refer to Wikipedia:
7404
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7405

T
tink2123 已提交
7406
    Align_corners and align_mode are optinal parameters,the calculation 
7407 7408 7409 7410
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7411
    .. code-block:: text
7412

T
Tink_Y 已提交
7413
        For scale:
7414
          
T
Tink_Y 已提交
7415
            if align_corners = True && out_size > 1 :
7416

T
Tink_Y 已提交
7417 7418 7419 7420 7421
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7422

T
Tink_Y 已提交
7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7433 7434


T
Tink_Y 已提交
7435
          else:
T
tink2123 已提交
7436

T
Tink_Y 已提交
7437 7438
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7439

T
Tink_Y 已提交
7440 7441
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7442 7443 7444



Y
yuyang18 已提交
7445 7446 7447
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7448 7449 7450
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7451

Y
yuyang18 已提交
7452
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7453
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7454
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7455
             Default: None.
Y
yuyang18 已提交
7456 7457

        name(str|None): The output variable name.
7458 7459 7460
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7461
                                :attr:`out_shape` and :attr:`scale` specifying
7462 7463 7464 7465 7466 7467 7468
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7469 7470
                                constructing stage.
                                Default: None
7471 7472
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7473 7474 7475

    Returns:
        ${out_comment}.
7476 7477 7478 7479

    Examples:
        .. code-block:: python

R
ruri 已提交
7480
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7481
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7482 7483
    """

7484 7485
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7486 7487


7488
@templatedoc(op_type="nearest_interp")
7489 7490 7491 7492
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7493 7494
                   actual_shape=None,
                   align_corners=True):
7495
    """
7496
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7497 7498
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7499 7500
    out_shape and scale in priority order.

7501 7502
    Example:

T
Tink_Y 已提交
7503 7504 7505 7506 7507
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7508

T
Tink_Y 已提交
7509 7510 7511 7512 7513 7514 7515 7516
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7517
          
T
Tink_Y 已提交
7518 7519
          if:
              align_corners = False
7520

T
Tink_Y 已提交
7521 7522
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7523

T
Tink_Y 已提交
7524 7525
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7526

T
Tink_Y 已提交
7527 7528
          else:
              align_corners = True
7529

T
Tink_Y 已提交
7530 7531
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7532

T
Tink_Y 已提交
7533 7534
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7535 7536


7537
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7538
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7539 7540 7541 7542

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7543 7544 7545
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7546

Y
yuyang18 已提交
7547
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7548
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7549
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7550
             Default: None.
Y
yuyang18 已提交
7551 7552

        name(str|None): The output variable name.
7553 7554 7555
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7556
                                :attr:`out_shape` and :attr:`scale` specifying
7557 7558 7559 7560 7561 7562 7563
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7564 7565
                                constructing stage.
                                Default: None
7566
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7567 7568 7569

    Returns:
        ${out_comment}.
7570 7571 7572 7573

    Examples:
        .. code-block:: python

R
ruri 已提交
7574
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7575
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7576 7577
    """

7578 7579
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7580 7581 7582 7583


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7584 7585 7586
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7587 7588 7589 7590 7591 7592 7593
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7594
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7595

7596
    Returns:
Q
update  
qiaolongfei 已提交
7597
        Variable: The output is a 4-D tensor of the shape
7598
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7599 7600 7601 7602 7603 7604

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7615 7616 7617
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7618 7619 7620
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7621 7622
def gather(input, index):
    """
Q
qiaolongfei 已提交
7623 7624
    **Gather Layer**

7625
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7626 7627 7628 7629
    of X indexed by `index` and concatenate them together.

    .. math::

7630
        Out = X[Index]
W
whs 已提交
7631 7632 7633 7634 7635 7636 7637


    .. code-block:: text


                Given:

7638 7639
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7650
        input (Variable): The source input with rank>=1.
W
whs 已提交
7651 7652 7653 7654 7655 7656
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7657

W
whs 已提交
7658 7659
        .. code-block:: python

Y
Yibing Liu 已提交
7660 7661
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7662 7663 7664 7665
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7666
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7667 7668 7669 7670 7671 7672 7673 7674
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7706
    out = helper.create_variable_for_type_inference(dtype)
7707 7708 7709 7710 7711 7712 7713 7714 7715
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7725

Q
Qingsheng Li 已提交
7726
    Given the following input:
H
haowang101779990 已提交
7727

Q
Qingsheng Li 已提交
7728
    .. code-block:: text
H
haowang101779990 已提交
7729

Q
Qingsheng Li 已提交
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7742

Q
Qingsheng Li 已提交
7743
    .. code-block:: text
H
haowang101779990 已提交
7744

Q
Qingsheng Li 已提交
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7760
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7761 7762 7763 7764 7765 7766 7767 7768

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7769
    assert not in_dygraph_mode(), (
7770
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7771 7772
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7773
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7774 7775 7776 7777 7778 7779 7780 7781 7782
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7796

7797 7798 7799
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7800
    """
F
stash  
fengjiayi 已提交
7801
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7802
    dtype = x.dtype
X
Xin Pan 已提交
7803
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7804
    if seed is None:
7805
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7806
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7807
    if isinstance(seed, int):
F
fengjiayi 已提交
7808 7809 7810 7811 7812
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7813 7814 7815 7816
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7817
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7818 7819
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7820 7821
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7822
    return out
W
whs 已提交
7823 7824


7825
def log(x, name=None):
W
wanghaoshuang 已提交
7826 7827 7828 7829 7830
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7831
        Out = \\ln(x)
W
wanghaoshuang 已提交
7832 7833

    Args:
7834
        x (Variable): Input tensor.
7835 7836
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7837 7838 7839 7840 7841 7842 7843 7844

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7845
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7846 7847
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7848
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7849
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7850
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7851 7852 7853
    return out


7854
def relu(x, name=None):
W
wanghaoshuang 已提交
7855 7856
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7857
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7858 7859 7860 7861
    the tensor elementwise.

    .. math::

7862
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7863 7864

    Args:
7865
        x (Variable): The input tensor.
7866 7867
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7868 7869 7870 7871 7872 7873 7874 7875

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7876
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7877 7878
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7879
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7880
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7881 7882
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7883
    return out
7884 7885


C
chengduo 已提交
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7927 7928 7929
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7930 7931 7932 7933
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7934
    .. math::
7935

H
haowang101779990 已提交
7936
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7937

7938
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7939 7940 7941 7942 7943
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7944
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7945
                           Its shape should be the same as input.
7946
        num_classes (int): The possible number of labels.
W
whs 已提交
7947 7948

    Returns:
M
minqiyang 已提交
7949 7950
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7951
                     Three variables:
M
minqiyang 已提交
7952

H
haowang101779990 已提交
7953 7954 7955
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7956 7957 7958 7959

    Examples:

        .. code-block:: python
7960

W
whs 已提交
7961 7962 7963 7964
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7965 7966 7967
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7968 7969
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7970 7971
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7972
        outputs={
W
whs 已提交
7973 7974 7975
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7976 7977 7978
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8047
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8048 8049 8050 8051 8052

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8053
            isinstance(shape, Variable)):
8054 8055 8056 8057 8058
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8059
    out = helper.create_variable_for_type_inference(x.dtype)
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8077 8078


W
whs 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8096

W
whs 已提交
8097
              out_shape = [2, 3, 5, 5]
8098

W
whs 已提交
8099
          Step 1:
8100

W
whs 已提交
8101 8102 8103
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8104

W
whs 已提交
8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8150
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8151
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8164

W
whs 已提交
8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8176
            isinstance(out_shape, Variable)):
W
whs 已提交
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8198 8199
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8200

8201 8202
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8203
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8204 8205 8206
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8207

8208 8209
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8210

H
haowang101779990 已提交
8211 8212
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8213 8214
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8215

H
haowang101779990 已提交
8216 8217 8218 8219 8220 8221 8222 8223
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8224 8225 8226

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8261
    out = helper.create_variable_for_type_inference("float32")
8262 8263 8264 8265 8266 8267 8268 8269

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8270 8271


M
minqiyang 已提交
8272 8273
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8274
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8275
    which compares left score and right score passed in.
M
minqiyang 已提交
8276
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8277 8278 8279

    .. math::

H
haowang101779990 已提交
8280
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8281 8282

    Args:
M
minqiyang 已提交
8283
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8284 8285
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8286
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8287 8288
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8289

M
minqiyang 已提交
8290
    Returns:
M
minqiyang 已提交
8291
       Variable: The ranking loss.
H
haowang101779990 已提交
8292

M
minqiyang 已提交
8293
    Raises:
M
minqiyang 已提交
8294
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8295

M
minqiyang 已提交
8296
    Examples:
H
haowang101779990 已提交
8297

M
minqiyang 已提交
8298
        .. code-block:: python
H
haowang101779990 已提交
8299

Y
Yibing Liu 已提交
8300 8301 8302
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8303 8304
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8305
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8306 8307 8308 8309 8310 8311
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8312 8313
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8337
        .. code-block:: text
W
whs 已提交
8338

T
Tink_Y 已提交
8339
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8340

T
Tink_Y 已提交
8341 8342
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8343

T
Tink_Y 已提交
8344
	      Case 0:
M
minqiyang 已提交
8345

T
Tink_Y 已提交
8346 8347 8348
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8349

T
Tink_Y 已提交
8350 8351 8352
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8353

T
Tink_Y 已提交
8354
	      Case 1:
M
minqiyang 已提交
8355

T
Tink_Y 已提交
8356 8357
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8358

T
Tink_Y 已提交
8359 8360 8361
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8362

T
Tink_Y 已提交
8363
	      Case 2:
M
minqiyang 已提交
8364

T
Tink_Y 已提交
8365 8366
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8367

T
Tink_Y 已提交
8368 8369 8370
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8371 8372


W
whs 已提交
8373 8374
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8375
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8399
    out = helper.create_variable_for_type_inference(dtype)
8400 8401 8402 8403 8404 8405 8406 8407 8408
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8409
    helper.append_op(
8410
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8411 8412 8413 8414

    return out


8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8427 8428 8429 8430 8431

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8432 8433
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8434 8435
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8436
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8457 8458 8459 8460 8461

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8462 8463
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8464 8465
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8466
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8487 8488 8489 8490 8491

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8492 8493
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8494 8495
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8496
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8518 8519 8520 8521 8522

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8523
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8524
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8525 8526
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8527
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8550 8551 8552 8553 8554

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8555 8556
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8557 8558
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8559
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8581 8582 8583 8584 8585

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8586 8587
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8588 8589
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8590
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8591 8592 8593 8594 8595 8596 8597 8598
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8599 8600 8601 8602
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8603 8604
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8605 8606 8607

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8608
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8609
          weight (alpha).
J
jerrywgz 已提交
8610
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8611 8612 8613
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8614
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8615
          will be named automatically.
J
jerrywgz 已提交
8616 8617 8618 8619 8620 8621 8622 8623

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8624
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8638
        attr=helper.param_attr,
J
jerrywgz 已提交
8639 8640 8641 8642
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8643
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8644 8645 8646 8647 8648 8649 8650 8651 8652
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8663
    Returns:
8664
        output(${out_type}): ${out_comment}
8665 8666 8667

    Examples:

8668
    .. code-block:: python
8669

H
haowang101779990 已提交
8670 8671
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8672 8673
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8674
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8693
    Returns:
8694
        output(${out_type}): ${out_comment}
8695 8696 8697 8698 8699

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8700 8701
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8702 8703
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8704
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8722
    Returns:
8723
        output(${out_type}): ${out_comment}
8724 8725 8726 8727 8728

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8729 8730
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8731 8732
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8733
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8734 8735 8736 8737 8738 8739 8740 8741
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8742 8743 8744 8745
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8746

H
haowang101779990 已提交
8747
    For Example:
M
minqiyang 已提交
8748

H
haowang101779990 已提交
8749
    .. code-block:: text
8750

H
haowang101779990 已提交
8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8772 8773 8774

    Args:
        x (Variable): A tensor of rank >= axis.
8775 8776
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8777 8778 8779 8780 8781 8782 8783 8784
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8785 8786 8787
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8788 8789 8790 8791
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8792
        ValueError: If axis is not in range [0, rank(x)].
8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8809 8810
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8811
    helper.append_op(
8812
        type='flatten2',
8813
        inputs={"X": x},
8814 8815
        outputs={'Out': out,
                 'XShape': x_shape},
8816 8817
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8818 8819


C
chenweihang 已提交
8820
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8821
    """
C
chenweihang 已提交
8822
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8823
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8824 8825
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8826

H
haowang101779990 已提交
8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8844 8845

    Args:
C
chenweihang 已提交
8846 8847 8848
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8849 8850 8851 8852 8853 8854 8855 8856 8857 8858

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8859
    assert not in_dygraph_mode(), (
8860
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8861
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8862 8863
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8864 8865 8866 8867 8868 8869
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8870
    return out
8871

8872

S
sneaxiy 已提交
8873 8874 8875 8876 8877 8878 8879 8880 8881
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8882

S
sneaxiy 已提交
8883
    .. math::
8884

S
sneaxiy 已提交
8885 8886 8887
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8888
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8889 8890 8891 8892
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8893 8894 8895
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8896 8897
    Returns:
        Variable: The output sequence mask.
8898

S
sneaxiy 已提交
8899
    """
L
lujun 已提交
8900
    assert not in_dygraph_mode(), (
8901
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8902

Q
qingqing01 已提交
8903
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8904
    if name is None:
X
Xin Pan 已提交
8905
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8906
    else:
X
Xin Pan 已提交
8907
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8908

Q
qingqing01 已提交
8909 8910 8911
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8912 8913
        outputs={'Y': out},
        attrs={
8914
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8915 8916 8917
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8918 8919


X
Xin Pan 已提交
8920
def stack(x, axis=0):
S
sneaxiy 已提交
8921 8922 8923 8924
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8925 8926 8927 8928 8929 8930 8931

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8932
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8933
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8934

C
chengduozh 已提交
8935 8936
    For Example:

C
chengduozh 已提交
8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8975
    Args:
8976
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8977
        axis (int|None): The axis along which all inputs are stacked.
8978

S
sneaxiy 已提交
8979 8980
    Returns:
        Variable: The stacked variable.
8981

S
sneaxiy 已提交
8982 8983
    """

X
Xin Pan 已提交
8984 8985 8986 8987 8988 8989
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8990
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8991
    helper.append_op(
S
sneaxiy 已提交
8992 8993
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8994

X
Xin Pan 已提交
8995
    return out
D
dzhwinter 已提交
8996 8997 8998 8999 9000 9001 9002


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9003

D
dzhwinter 已提交
9004 9005 9006
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9007
    raised.
D
dzhwinter 已提交
9008 9009

    Args:
M
minqiyang 已提交
9010
        x (Variable): Input variable.
D
dzhwinter 已提交
9011 9012
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9013

D
dzhwinter 已提交
9014 9015
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9016

D
dzhwinter 已提交
9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9027
    for _ in range(num):
X
Xin Pan 已提交
9028
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9029 9030 9031 9032 9033 9034 9035 9036

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9049

W
whs 已提交
9050 9051 9052 9053
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9054

W
whs 已提交
9055
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9056

W
whs 已提交
9057
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9058

W
whs 已提交
9059 9060 9061 9062
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9063

W
whs 已提交
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9080
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9081 9082 9083 9084 9085 9086
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9087 9088


G
fix  
gongweibao 已提交
9089 9090 9091
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9092
@templatedoc()
G
fix  
gongweibao 已提交
9093 9094 9095 9096 9097 9098 9099 9100 9101
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9102
    ${comment}
G
fix  
gongweibao 已提交
9103 9104

    Args:
G
gongweibao 已提交
9105 9106 9107
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9108
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9109 9110 9111
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9112 9113
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9114
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9115

9116 9117 9118 9119 9120
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9121 9122 9123
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9124
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9141 9142


G
gongweibao 已提交
9143
@templatedoc()
X
Xin Pan 已提交
9144
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9145
    """
G
gongweibao 已提交
9146
    ${comment}
G
fix  
gongweibao 已提交
9147 9148

    Args:
G
gongweibao 已提交
9149 9150 9151 9152
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9153 9154 9155
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9156
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9157

9158 9159 9160 9161
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9162 9163 9164
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9165
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9176
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9177 9178 9179 9180 9181
        })

    return out


G
gongweibao 已提交
9182
@templatedoc()
G
fix  
gongweibao 已提交
9183
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9184
    """
G
gongweibao 已提交
9185
    ${comment}
G
fix  
gongweibao 已提交
9186 9187

    Args:
G
gongweibao 已提交
9188 9189 9190 9191
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9192
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9193 9194

    Returns:
G
gongweibao 已提交
9195
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9196

9197 9198 9199
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9200
            x = fluid.layers.data(
9201 9202 9203 9204 9205
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9206
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9207 9208 9209
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9210
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9222
@templatedoc()
G
fix  
gongweibao 已提交
9223 9224 9225 9226 9227 9228 9229 9230 9231
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9232
    ${comment}
G
fix  
gongweibao 已提交
9233 9234

    Args:
G
gongweibao 已提交
9235 9236
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9237
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9238 9239 9240 9241
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9242
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9243 9244

    Returns:
G
gongweibao 已提交
9245
        out (Variable): ${out_comment}
9246 9247 9248 9249

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9250
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9251

Y
Yibing Liu 已提交
9252
            out = fluid.layers.gaussian_random_batch_size_like(
9253
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9254 9255 9256
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9257
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9276
@templatedoc()
X
Xin Pan 已提交
9277
def sum(x):
G
fix  
gongweibao 已提交
9278
    """
G
gongweibao 已提交
9279
    ${comment}
G
fix  
gongweibao 已提交
9280 9281

    Args:
G
gongweibao 已提交
9282
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9283 9284

    Returns:
G
gongweibao 已提交
9285
        out (Variable): ${out_comment}
9286 9287 9288 9289 9290 9291

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9292 9293 9294
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9295 9296
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9297 9298 9299 9300
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9301
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9302 9303 9304 9305

    return out


G
gongweibao 已提交
9306
@templatedoc()
G
fix  
gongweibao 已提交
9307 9308
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9309
    ${comment}
G
fix  
gongweibao 已提交
9310 9311

    Args:
G
gongweibao 已提交
9312 9313 9314 9315
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9316 9317

    Returns:
G
gongweibao 已提交
9318
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9319

9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9331 9332 9333
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9334 9335
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9349 9350
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9351
    Get the shape of the input.
G
fix  
gongweibao 已提交
9352 9353

    Args:
C
chengduozh 已提交
9354
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9355 9356

    Returns:
C
fix doc  
chengduozh 已提交
9357
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9358

9359 9360 9361 9362 9363 9364
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9365 9366 9367
    """

    helper = LayerHelper('shape', **locals())
9368
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9369
    helper.append_op(
G
fix  
gongweibao 已提交
9370
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9371 9372

    return out
G
merge  
gongweibao 已提交
9373 9374


Z
zhoukunsheng 已提交
9375 9376 9377 9378
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9379
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9401 9402 9403 9404
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9405
    if in_dygraph_mode():
X
Xin Pan 已提交
9406 9407 9408
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9409 9410 9411 9412
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9413 9414
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9415
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9416 9417 9418
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9419

S
sneaxiy 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9431
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9432 9433 9434 9435 9436 9437 9438 9439
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9440
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9441
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9442 9443 9444 9445 9446 9447

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9448
    if name is None:
X
Xin Pan 已提交
9449
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9450 9451 9452
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9453 9454 9455 9456 9457 9458 9459 9460 9461 9462

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9463
    return helper.append_activation(out)
S
sneaxiy 已提交
9464 9465


X
Xin Pan 已提交
9466
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9467 9468 9469
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9470
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9471 9472 9473
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9474
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9475 9476 9477
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9478
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9479 9480 9481
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9482
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9483 9484 9485
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9486
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9487 9488 9489
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9490
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9491 9492 9493
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9494 9495 9496 9497 9498 9499 9500 9501
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9502
for func in [
9503 9504 9505 9506 9507 9508 9509 9510 9511
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9512 9513 9514 9515 9516
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9517 9518
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9519
        ])
M
minqiyang 已提交
9520 9521


9522
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9523 9524
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9525 9526
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9527 9528 9529

    if out is None:
        if name is None:
X
Xin Pan 已提交
9530
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9546
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9558 9559 9560 9561 9562 9563 9564 9565 9566

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9567 9568 9569 9570 9571 9572 9573
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9574
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9586 9587 9588 9589 9590 9591 9592 9593 9594

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9595 9596 9597 9598 9599 9600 9601
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9602
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9614 9615 9616 9617 9618 9619 9620 9621 9622

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9623 9624 9625 9626 9627 9628 9629
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9630
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9631 9632 9633 9634 9635 9636 9637 9638 9639 9640
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9641 9642 9643 9644 9645 9646 9647

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9648 9649 9650 9651
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9667 9668 9669 9670 9671 9672 9673

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9674 9675 9676 9677 9678
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9679 9680 9681 9682
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9706 9707 9708 9709 9710 9711 9712

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9713 9714 9715 9716 9717
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9718 9719 9720 9721
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9722 9723 9724 9725 9726 9727 9728 9729

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9748
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9749 9750 9751 9752 9753 9754 9755 9756 9757 9758
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9801
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9802 9803 9804 9805 9806 9807 9808 9809 9810
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9811 9812
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9813 9814 9815 9816 9817 9818
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9819 9820 9821
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9822 9823
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9824 9825 9826 9827 9828 9829
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9830
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9831
        name(basestring|None): Name of the output.
9832 9833
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9834 9835 9836

    Returns:
        out(${out_type}): ${out_comment}
9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9851 9852 9853 9854 9855
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9856
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9857 9858 9859 9860 9861 9862 9863 9864
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9865 9866
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9887
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9888 9889 9890 9891 9892 9893 9894 9895 9896 9897
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9898 9899


J
JiabinYang 已提交
9900
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9901
    """
J
JiabinYang 已提交
9902
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9903 9904 9905

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9906
    The attr blocksize indicates the input block size.
9907 9908

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9909
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9910 9911

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9912
    (but keeping all data)
J
JiabinYang 已提交
9913

J
JiabinYang 已提交
9914
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9915
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9916 9917 9918 9919 9920
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9921
    Args:
J
JiabinYang 已提交
9922
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9923
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9924 9925

    Returns:
J
JiabinYang 已提交
9926
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9927 9928

    Raises:
J
JiabinYang 已提交
9929
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9930 9931 9932 9933 9934

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9935
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9936
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9937
                x=data, blocksize=2)
9938 9939 9940 9941 9942 9943

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9944 9945
    """

J
JiabinYang 已提交
9946
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9947

J
JiabinYang 已提交
9948 9949
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9950 9951

    if name is None:
J
JiabinYang 已提交
9952 9953
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9954 9955 9956 9957 9958
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9959
        type="space_to_depth",
J
JiabinYang 已提交
9960
        inputs={"X": x},
J
JiabinYang 已提交
9961
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9962
        outputs={"Out": out})
J
JiabinYang 已提交
9963 9964
    return out

J
JiabinYang 已提交
9965

S
sneaxiy 已提交
9966 9967
@templatedoc()
def sequence_reverse(x, name=None):
9968
    """
S
sneaxiy 已提交
9969 9970 9971 9972 9973 9974 9975 9976 9977
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
9978
    assert not in_dygraph_mode(), (
9979
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9980 9981
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9982
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9983 9984 9985 9986 9987 9988 9989 9990 9991 9992
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9993 9994


9995 9996 9997 9998 9999 10000
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10001 10002 10003 10004 10005
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10006

10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10019
        act (str, default None): Activation to be applied to the output of this layer.
10020 10021 10022 10023 10024 10025 10026

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10027
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10039
    return helper.append_activation(out)
10040 10041


B
barrierye 已提交
10042
def similarity_focus(input, axis, indexes, name=None):
10043
    """
B
barrierye 已提交
10044
    SimilarityFocus Operator
B
barrierye 已提交
10045 10046

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10047

10048 10049 10050
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10051
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10052 10053 10054 10055 10056 10057 10058
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10059
       each index.
B
barrierye 已提交
10060 10061 10062 10063
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10113
    Args:
10114
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10115
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10116
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10117
            1, 2 or 3.
B
barrierye 已提交
10118
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10119 10120

    Returns:
H
haowang101779990 已提交
10121 10122
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10123

B
barrierye 已提交
10124 10125
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10126

B
barrierye 已提交
10127
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10128 10129
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10142 10143 10144 10145 10146
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10147 10148 10149 10150 10151 10152 10153
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10154 10155


M
minqiyang 已提交
10156 10157
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10158 10159
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10160 10161
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10200
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10201
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10202 10203 10204 10205 10206 10207

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10208

M
minqiyang 已提交
10209 10210 10211
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10212 10213
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10214 10215
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10216 10217 10218 10219 10220 10221 10222
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10223 10224


D
dengkaipeng 已提交
10225
@templatedoc()
10226 10227
def grid_sampler(x, grid, name=None):
    """
10228
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10229
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10230 10231 10232 10233
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10234
    interpolation value of 4 nearest corner points.
10235

H
haowang101779990 已提交
10236
    .. code-block:: text
10237

H
haowang101779990 已提交
10238 10239
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10240

H
haowang101779990 已提交
10241 10242
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10243

H
haowang101779990 已提交
10244 10245 10246
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10247

H
haowang101779990 已提交
10248 10249 10250 10251 10252 10253 10254 10255 10256
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10257

H
haowang101779990 已提交
10258 10259 10260 10261
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10262

H
haowang101779990 已提交
10263 10264 10265 10266
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10267

H
haowang101779990 已提交
10268 10269 10270 10271
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10272

H
haowang101779990 已提交
10273 10274
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10275 10276

    Args:
10277 10278 10279
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10280 10281

    Returns:
H
haowang101779990 已提交
10282
        Variable: Output of shape [N, C, H, W] data samples input X
10283 10284
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10285 10286 10287 10288 10289 10290 10291 10292
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10293

D
dengkaipeng 已提交
10294 10295 10296 10297 10298 10299 10300 10301 10302
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10303
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10304 10305
    ipts = {'X': x, 'Grid': grid}

10306
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10307 10308 10309
    return out


G
gmcather 已提交
10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10337 10338
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10377
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10378 10379 10380 10381 10382 10383 10384
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10385

H
heqiaozhi 已提交
10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10400 10401 10402 10403
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10404
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10405 10406
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10407
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10408 10409

    .. math::
H
haowang101779990 已提交
10410 10411 10412
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10413 10414

    Where:
H
haowang101779990 已提交
10415 10416
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10431

G
gmcather 已提交
10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10448 10449 10450 10451 10452 10453 10454 10455 10456 10457


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10458
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10459

Q
Qiao Longfei 已提交
10460
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10461 10462 10463
    For example:

    .. math::
H
haowang101779990 已提交
10464
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10465

Q
Qiao Longfei 已提交
10466
    In this formula:
10467 10468
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10469
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10470
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10471 10472 10473
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10474 10475
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10476 10477 10478
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10479
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10480
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10481
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10482 10483 10484 10485
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10486
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10487 10488 10489 10490

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10491 10492 10493
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10494 10495
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10496
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10497 10498 10499 10500

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10501
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10542 10543


S
shippingwang 已提交
10544
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10545 10546
    """
    **Shuffle Channel Operator**
10547

S
shippingwang 已提交
10548 10549 10550 10551 10552 10553
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10554
    
S
shippingwang 已提交
10555
    .. code-block:: text
10556

S
shippingwang 已提交
10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10585
    Args: 
S
shippingwang 已提交
10586 10587
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10588 10589

    Returns:
S
shippingwang 已提交
10590 10591
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10592 10593

    Raises:
S
shippingwang 已提交
10594
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10595 10596 10597

    Examples:
        .. code-block:: python
10598 10599

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10600
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10601 10602 10603
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10604
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10605 10606 10607 10608 10609 10610 10611 10612 10613

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10614
    return out
S
Add  
shippingwang 已提交
10615 10616


10617
@templatedoc()
D
dengkaipeng 已提交
10618
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10619 10620 10621 10622 10623 10624 10625 10626
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10627
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10628
        name (str, default None): The name of this layer.
10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10641
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10654 10655
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10656 10657 10658
    return out


S
sneaxiy 已提交
10659
class PyFuncRegistry(object):
S
sneaxiy 已提交
10660 10661 10662
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10663
        if func is None or not callable(func):
S
sneaxiy 已提交
10664 10665 10666
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10667
        # find named args using reflection
S
sneaxiy 已提交
10668 10669 10670 10671 10672 10673 10674
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10675 10676 10677
        '''
        Why record self here?

M
minqiyang 已提交
10678 10679
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10680
           to find the registered function corresponding
M
minqiyang 已提交
10681
           to :code:`idx`.
S
sneaxiy 已提交
10682

M
minqiyang 已提交
10683 10684
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10685
           whose reference count is 1 would cause
M
minqiyang 已提交
10686
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10687 10688
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10689
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10704 10705 10706 10707 10708 10709 10710 10711 10712
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10713

S
sneaxiy 已提交
10714 10715
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10716 10717

        ret = []
S
sneaxiy 已提交
10718 10719 10720
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10721 10722
                continue

S
sneaxiy 已提交
10723 10724
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10725

S
sneaxiy 已提交
10726 10727 10728
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10729

S
sneaxiy 已提交
10730
        return tuple(ret)
S
sneaxiy 已提交
10731 10732


S
sneaxiy 已提交
10733 10734 10735 10736
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10737

S
sneaxiy 已提交
10738 10739 10740 10741 10742 10743 10744 10745
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10746
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10747

S
sneaxiy 已提交
10748 10749
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10750 10751 10752 10753
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10754
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10755
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10756 10757
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10758 10759 10760 10761 10762
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10763
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10764
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10765
                                       None means no backward. Default None.
S
sneaxiy 已提交
10766
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10767
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10768 10769
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10770
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10771 10772 10773

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10774 10775

    Examples:
M
minqiyang 已提交
10776

S
sneaxiy 已提交
10777 10778 10779 10780 10781
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10782
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10783 10784
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10785
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10786 10787 10788
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10789
        >>>
S
sneaxiy 已提交
10790 10791 10792 10793 10794
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10795
        >>>     print(x)
S
sneaxiy 已提交
10796 10797 10798 10799 10800 10801
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10802
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10803 10804
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10805 10806
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10807 10808 10809 10810 10811 10812 10813 10814
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10815
    """
S
sneaxiy 已提交
10816
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10817 10818 10819
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10820
        x = [x]
S
sneaxiy 已提交
10821 10822
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10823

S
sneaxiy 已提交
10824 10825 10826
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10827
        out_list = [out]
S
sneaxiy 已提交
10828
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10829
        out_list = out
S
sneaxiy 已提交
10830 10831 10832
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10833

S
sneaxiy 已提交
10834 10835
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10836
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10837 10838

    for each_out in out_list:
S
sneaxiy 已提交
10839 10840
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10841 10842
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10843

S
sneaxiy 已提交
10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10859 10860 10861 10862

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10863 10864
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10865 10866 10867
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10868
        })
S
sneaxiy 已提交
10869
    return out
S
sneaxiy 已提交
10870 10871 10872


# For debug usage
S
sneaxiy 已提交
10873 10874 10875 10876
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10929

M
minqiyang 已提交
10930

M
minqiyang 已提交
10931
def huber_loss(input, label, delta):
10932
    """
M
minqiyang 已提交
10933 10934 10935
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10936 10937 10938 10939

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10940
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10941 10942 10943 10944

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10945
        huber\_loss = 0.5 * (label - input) * (label - input)
10946 10947 10948 10949 10950 10951 10952


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10953
        delta (float): The parameter of huber loss, which controls
10954 10955 10956
                       the range of outliers

    Returns:
M
minqiyang 已提交
10957
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10958 10959 10960 10961 10962

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10963
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10964
    """
M
minqiyang 已提交
10965
    helper = LayerHelper('huber_loss', **locals())
10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10977 10978


D
dengkaipeng 已提交
10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11079 11080


C
ceci3 已提交
11081
from .ops import square
C
ceci3 已提交
11082
from .control_flow import equal
C
ceci3 已提交
11083 11084


C
ceci3 已提交
11085 11086 11087
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11088

C
ceci3 已提交
11089
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11090 11091

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11092
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11093 11094 11095 11096 11097
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11098 11099
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11100 11101 11102 11103 11104 11105 11106

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11107 11108 11109 11110 11111 11112 11113 11114
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11115 11116 11117 11118 11119 11120 11121
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11122
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11123 11124
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11125 11126
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11127 11128 11129 11130
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11131 11132 11133
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11134 11135 11136
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11137 11138


R
ruri 已提交
11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11168
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11169 11170 11171 11172 11173 11174 11175 11176 11177

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11178
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11239 11240 11241 11242


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11243

H
heqiaozhi 已提交
11244
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11245

H
fix doc  
heqiaozhi 已提交
11246
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11247 11248 11249
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11250
    
H
fix doc  
heqiaozhi 已提交
11251
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11252

H
heqiaozhi 已提交
11253
    Args:
H
fix doc  
heqiaozhi 已提交
11254 11255

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11256 11257
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11258 11259
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11260

H
heqiaozhi 已提交
11261
    Returns:
H
fix doc  
heqiaozhi 已提交
11262 11263 11264

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11265
    Examples:
H
fix doc  
heqiaozhi 已提交
11266

H
heqiaozhi 已提交
11267
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11268

H
heqiaozhi 已提交
11269 11270 11271 11272 11273 11274 11275 11276 11277 11278
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11279

H
heqiaozhi 已提交
11280 11281 11282 11283 11284 11285 11286 11287 11288
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11289
    return out