framework.py 250.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode') == '1')
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_current_cuda_graph_mode = None
85
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
86 87

# Some explanation of our execution system 2022.03
88
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
89
# build a fast execution system for dynamic mode. But we can't just remove all legacy
90
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
91
# these flags.
92
#
J
Jiabin Yang 已提交
93
# 1. _non_static_mode():
94
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
95 96 97 98
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
99
#
J
Jiabin Yang 已提交
100
# They have a relation ship as below:
101
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
102
# dygraph mode means you are not in _in_legacy_dygraph.
103
#
J
Jiabin Yang 已提交
104 105 106 107 108 109
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


110 111 112 113 114 115 116 117 118
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

119 120 121
    global _already_patch_eager_tensor
    global _already_patch_varbase

122
    assert isinstance(is_eager, bool)
123
    # switch into eager mode
124 125
    if is_eager:
        _C_ops.switch_to_eager_ops()
126 127 128 129 130 131
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
132 133
    else:
        _C_ops.switch_to_core_ops()
134 135 136 137 138
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
139

140 141 142 143 144 145 146 147 148 149 150
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
151 152


J
Jiabin Yang 已提交
153 154 155
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
156
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
157 158 159 160 161


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
162
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
163 164 165 166 167 168 169


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu(
    ) or core.is_compiled_with_rocm()

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
240 241 242


@signature_safe_contextmanager
J
Jiabin Yang 已提交
243
def _test_eager_guard(place=None):
244 245 246 247 248
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
249
    try:
J
Jiabin Yang 已提交
250
        yield
251
    finally:
252 253
        if not already_fallback:
            _enable_legacy_dygraph()
254 255


J
jianghaicheng 已提交
256 257 258 259 260 261 262 263 264 265 266 267
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
268
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
J
jianghaicheng 已提交
269
            The default value is None, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
270
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
J
jianghaicheng 已提交
271 272 273 274
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
W
Weilong Wu 已提交
275
    Only if the enable_manual_shard=True, the 'index' is able to be set not None. Please refer 
J
jianghaicheng 已提交
276
    to :code:`paddle.static.IpuStrategy` . 
W
Weilong Wu 已提交
277
    Only if the enable_pipelining=True, the 'stage' is able to be set not None. Please refer 
J
jianghaicheng 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
400 401
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
402 403 404

    if max_version is not None:
        max_version_split = max_version.split('.')
405 406
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


422
def _dygraph_not_support_(func):
423

424
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
425 426
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
427 428 429 430 431 432
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
433

434
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
435
        assert _non_static_mode(
436 437 438 439 440 441 442
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
443

444
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
445
        assert not _non_static_mode(
446
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
447 448 449 450 451
        return func(*args, **kwargs)

    return __impl__


452 453 454 455 456
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


457 458 459 460 461 462
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
463
# same base class.
464
def _fake_interface_only_(func):
465

466 467
    def __impl__(*args, **kwargs):
        raise AssertionError(
468 469 470 471 472
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
473 474 475 476

    return __impl__


T
tangwei12 已提交
477 478
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
479 480 481 482
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
483

484 485 486 487 488 489 490 491 492 493 494 495 496
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


497 498
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
499
static_only = wrap_decorator(_static_only_)
500
fake_interface_only = wrap_decorator(_fake_interface_only_)
501 502


L
lujun 已提交
503 504
def _dygraph_tracer():
    return _dygraph_tracer_
505

W
Wu Yi 已提交
506

507 508 509 510
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
511
def _current_expected_place():
512 513 514
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
515 516 517 518 519 520 521 522 523 524 525
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
526 527 528 529 530 531 532 533 534 535 536 537
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
538 539 540 541 542 543 544 545 546 547 548 549
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
565
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
566 567


L
Leo Chen 已提交
568 569 570 571
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
572

L
Leo Chen 已提交
573 574 575 576 577 578 579 580 581 582 583 584
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
585
def _cpu_num():
586
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
587 588 589 590 591 592 593 594
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
595
        os.environ['CPU_NUM'] = str(1)
596
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
597 598 599 600 601 602 603 604 605 606
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
607 608


609 610 611 612 613 614 615 616 617
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


618 619 620 621 622 623 624 625 626
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


627 628 629 630 631 632 633 634 635
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
706 707 708 709
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

710
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
711 712 713 714

    Examples:
        .. code-block:: python

715
            import paddle
716
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
717 718 719 720
    """
    return core.is_compiled_with_cuda()


721 722 723 724 725 726 727 728 729 730
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
731
            support_gpu = paddle.device.is_compiled_with_rocm()
732 733 734 735
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
736
def cuda_places(device_ids=None):
L
lujun 已提交
737
    """
738
    Note:
739 740 741
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
742
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
743 744

    If :code:`device_ids` is None, environment variable of
745
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
746
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
747
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
748
    If :code:`FLAGS_selected_gpus` is not set, all visible
749
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
750 751

    If :code:`device_ids` is not None, it should be the device
752
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
753
    the returned list would be 
C
Chen Weihang 已提交
754
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
755

756
    Parameters:
757
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
758 759

    Returns:
C
Chen Weihang 已提交
760
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
761 762

    Examples:
763
    
L
lujun 已提交
764 765
        .. code-block:: python

C
Chen Weihang 已提交
766 767
            import paddle
            import paddle.static as static
T
tangwei12 已提交
768

769 770
            # required: gpu
            
C
Chen Weihang 已提交
771 772 773
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
774 775

    """
S
sneaxiy 已提交
776 777 778
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
779
        device_ids = _cuda_ids()
S
sneaxiy 已提交
780 781 782 783 784
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


785 786 787 788
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
789 790 791 792 793 794 795 796 797 798 799
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
800 801 802 803 804 805 806
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
807

808 809
            # required: xpu

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
866
def cpu_places(device_count=None):
L
lujun 已提交
867
    """
C
Chen Weihang 已提交
868
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
869

S
add doc  
sneaxiy 已提交
870 871
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
872 873
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
874 875
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
876

877 878
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
879 880

    Returns:
C
Chen Weihang 已提交
881
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
882 883

    Examples:
884
    
L
lujun 已提交
885 886
        .. code-block:: python

C
Chen Weihang 已提交
887 888
            import paddle
            import paddle.static as static
T
tangwei12 已提交
889

C
Chen Weihang 已提交
890 891 892
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
893 894
    """

S
sneaxiy 已提交
895 896 897 898 899 900
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
901
    """
902
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
903 904 905

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
906 907 908 909
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
910

911 912
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
913 914

    Returns:
915
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
916 917 918 919

    Examples:
        .. code-block:: python

920
            import paddle.fluid as fluid
L
lujun 已提交
921 922 923 924 925
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
926 927 928
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
929 930
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
931 932


933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


975
class NameScope(object):
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1002
@signature_safe_contextmanager
1003 1004
def name_scope(prefix=None):
    """
1005

1006
    Generate hierarchical name prefix for the operators in Static Graph.
1007

T
Tao Luo 已提交
1008 1009 1010
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1011
        Don't use it in dygraph, since it will cause memory leak.
1012 1013

    Args:
T
Tao Luo 已提交
1014
        prefix(str, optional): prefix. Default is none.
1015 1016

    Examples:
1017
    
1018
        .. code-block:: python
T
Tink_Y 已提交
1019

1020 1021 1022
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1023
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1024
             b = a + 1
1025
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1026
                c = b * 1
1027
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1028
                d = c / 1
1029 1030 1031
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1032 1033 1034
                g = f - 1

          # Op are created in the default main program.  
1035
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1051 1052
    """
    # TODO(panyx0718): Only [0-9a-z].
1053
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1054
    if _non_static_mode():
L
Leo Chen 已提交
1055 1056
        yield
    else:
T
tianshuo78520a 已提交
1057
        assert prefix, "namescope prefix can not be empty."
1058 1059
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1060 1061 1062 1063
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1076 1077 1078
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1079 1080 1081 1082


def grad_var_name(var_name):
    """
1083 1084
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1085 1086 1087
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1088

1089
def convert_np_dtype_to_dtype_(np_dtype):
1090 1091
    """
    Convert the data type in numpy to the data type in Paddle
1092

1093
    Args:
1094
        np_dtype(np.dtype): the data type in numpy.
1095

1096 1097
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1098 1099

    """
1100 1101
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1102
        return core.VarDesc.VarType.FP32
1103
    elif dtype == np.float64:
1104
        return core.VarDesc.VarType.FP64
1105
    elif dtype == np.float16:
1106
        return core.VarDesc.VarType.FP16
1107
    elif dtype == np.int32:
1108
        return core.VarDesc.VarType.INT32
1109
    elif dtype == np.int16:
1110
        return core.VarDesc.VarType.INT16
1111
    elif dtype == np.int64:
1112
        return core.VarDesc.VarType.INT64
1113
    elif dtype == np.bool:
1114
        return core.VarDesc.VarType.BOOL
1115
    elif dtype == np.uint16:
1116 1117 1118
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1119 1120
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1121 1122
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1123 1124 1125 1126
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1127
    else:
M
minqiyang 已提交
1128
        raise ValueError("Not supported numpy dtype %s" % dtype)
1129 1130 1131


def dtype_is_floating(dtype):
1132 1133 1134
    """
    Check the data type is floating or not.
    Args:
1135
        dtype(np.dtype|core.VarDesc.VarType): data type.
1136 1137 1138 1139 1140
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1141
    if not isinstance(dtype, core.VarDesc.VarType):
1142 1143
        dtype = convert_np_dtype_to_dtype_(dtype)

1144 1145 1146 1147
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1148 1149


Y
Yang Yang(Tony) 已提交
1150
def _debug_string_(proto, throw_on_error=True):
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1162
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1163
    if not proto.IsInitialized(error_fields) and throw_on_error:
1164 1165 1166
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1167 1168 1169
    return proto.__str__()


1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1180
    if _in_eager_mode_:
1181
        eager_tensor = core.eager.Tensor(
1182
            dtype if dtype else core.VarDesc.VarType.FP32,
1183 1184 1185
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1186 1187
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1188 1189
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1190 1191 1192
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1193 1194 1195


class VariableMetaClass(type):
1196

1197 1198 1199 1200
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1201
            return issubclass(t, core.eager.Tensor)
1202
        else:
J
Jiabin Yang 已提交
1203 1204
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1205 1206 1207 1208
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1209

1210 1211 1212 1213
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1214
            return issubclass(t, EagerParamBase)
1215
        else:
J
Jiabin Yang 已提交
1216 1217
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1218 1219 1220 1221
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1222
class Variable(object):
1223
    """
J
Jiabin Yang 已提交
1224
    **Notes**:
1225
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1226

1227 1228
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1229 1230 1231
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1232
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1233 1234
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1235

1236
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1237
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1238

T
tianshuo78520a 已提交
1239
    Most of a Variable's member variables can be set to be None. It mean
1240
    it is not available or will be specified later.
1241

1242
    Examples:
1243 1244
        In Static Graph Mode:

1245 1246
        .. code-block:: python

1247
            import paddle.fluid as fluid
1248
            cur_program = fluid.Program()
1249 1250 1251 1252
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1253

J
Jiabin Yang 已提交
1254
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1255 1256 1257 1258 1259 1260 1261 1262 1263

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1264 1265
    """

Y
Yu Yang 已提交
1266 1267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1269 1270 1271 1272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1273
                 capacity=None,
Q
QI JUN 已提交
1274
                 persistable=None,
F
fengjiayi 已提交
1275
                 error_clip=None,
Y
Yu Yang 已提交
1276
                 stop_gradient=False,
F
fengjiayi 已提交
1277
                 is_data=False,
H
Huihuang Zheng 已提交
1278
                 need_check_feed=False,
H
hong 已提交
1279
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1280
                 **kwargs):
Y
Yu Yang 已提交
1281 1282
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1283
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1284

Y
Yu Yang 已提交
1285
        if dtype is not None:
1286
            if not isinstance(dtype, core.VarDesc.VarType):
1287
                dtype = convert_np_dtype_to_dtype_(dtype)
1288

S
Steffy-zxf 已提交
1289 1290 1291 1292
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1293 1294
        self.belong_to_optimizer = belong_to_optimizer

1295 1296 1297 1298 1299
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1300

1301 1302 1303
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1304

1305 1306 1307
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1308 1309
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1310 1311
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1312

1313
        if shape is not None:
1314
            if is_new_var:
1315 1316 1317 1318 1319 1320
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1321 1322
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1323 1324 1325 1326 1327 1328 1329
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1330 1331
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1332 1333 1334 1335 1336 1337 1338 1339 1340
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1341 1342
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1343 1344 1345 1346 1347 1348 1349 1350 1351
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1352 1353
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1354 1355
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1356

1357 1358
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1359

1360 1361 1362 1363 1364 1365 1366
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1367

1368 1369
        self.block.vars[name] = self
        self.op = None
1370
        self.stop_gradient = stop_gradient
1371
        self.is_data = is_data
Y
Yu Yang 已提交
1372

1373 1374 1375
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1376 1377
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1378

1379
        Returns:
J
Jiabin Yang 已提交
1380
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1381 1382 1383 1384

        Examples:
            .. code-block:: python

1385
                import paddle
1386

1387 1388 1389 1390
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1391

1392 1393
                # create a detached Variable
                y = x.detach()
1394
        """
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1407 1408 1409
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1410
        return output
1411

1412
    @fake_interface_only
1413
    def numpy(self):
1414
        """
J
Jiabin Yang 已提交
1415
        **Notes**:
T
tianshuo78520a 已提交
1416
            **This API is ONLY available in Dygraph mode**
1417

J
Jiabin Yang 已提交
1418
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1419 1420 1421 1422 1423

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1424
            ndarray: dtype is same as current Variable
1425 1426 1427 1428 1429 1430

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1431
                from paddle.fluid.dygraph import Linear
1432 1433 1434 1435
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1436
                    linear = Linear(32, 64)
1437
                    data = to_variable(data)
1438
                    x = linear(data)
1439 1440 1441
                    print(x.numpy())

        """
1442
        pass
1443

1444
    @fake_interface_only
1445
    def backward(self, retain_graph=False):
1446
        """
J
Jiabin Yang 已提交
1447
        **Notes**:
T
tianshuo78520a 已提交
1448
            **This API is ONLY available in Dygraph mode**
1449

1450
        Run backward of current Graph which starts from current Tensor.
1451

J
Jiabin Yang 已提交
1452
        Args:
1453 1454 1455 1456
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1457

J
Jiabin Yang 已提交
1458 1459
        Returns:
            NoneType: None
1460 1461 1462 1463 1464

        Examples:
            .. code-block:: python

                import numpy as np
1465 1466
                import paddle
                paddle.disable_static()
1467 1468

                x = np.ones([2, 2], np.float32)
1469 1470 1471 1472 1473 1474 1475
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1476 1477
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1478
                loss.backward()
1479 1480

        """
1481
        pass
1482

1483
    @fake_interface_only
1484
    def gradient(self):
1485
        """
J
Jiabin Yang 已提交
1486
        **Notes**:
T
tianshuo78520a 已提交
1487
            **This API is ONLY available in Dygraph mode**
1488 1489 1490

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1491
        Returns:
1492
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1493 1494 1495 1496 1497 1498 1499

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1500
                # example1: return ndarray
1501 1502 1503 1504 1505 1506 1507 1508 1509
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1510
                    loss2.backward()
1511 1512
                    print(loss2.gradient())

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1526
        """
1527
        pass
1528

1529
    @fake_interface_only
1530
    def clear_gradient(self):
1531
        """
J
Jiabin Yang 已提交
1532
        **Notes**:
T
tianshuo78520a 已提交
1533
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1534 1535

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1536

J
Jiabin Yang 已提交
1537
        Clear  (set to ``0`` ) the Gradient of Current Variable
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1556
                    loss2.backward()
1557 1558 1559 1560 1561
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1562
        pass
X
Xin Pan 已提交
1563

1564 1565 1566 1567
    @fake_interface_only
    def register_hook(self, hook):
        pass

1568
    def __str__(self):
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1585 1586
                import paddle
                import paddle.static as static
1587

1588 1589 1590
                paddle.enable_static()

                cur_program = static.Program()
1591 1592 1593 1594 1595 1596
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1597 1598
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1599
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1600 1601
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1602 1603
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1604
        else:
1605 1606
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1607

1608
        if self.is_parameter:
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1619
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1620
        dist_context = get_default_distributed_context()
1621 1622
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1623 1624
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1625

1626
        return var_str
Y
Yang Yang(Tony) 已提交
1627

F
update  
fengjiayi 已提交
1628
    def to_string(self, throw_on_error, with_details=False):
1629 1630 1631
        """
        Get debug string.

J
Jiabin Yang 已提交
1632 1633 1634 1635 1636
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1637

1638 1639
        Returns:
            str: The debug string.
1640 1641 1642 1643 1644

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1645
                import paddle
1646

1647
                paddle.enable_static()
1648 1649 1650 1651 1652
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1653
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1654
                print("=============with detail===============")
1655
                print(new_variable.to_string(True, True))
1656
        """
1657 1658
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1659
        protostr = self.desc.serialize_to_string()
1660
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1661 1662
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1663
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1664
            for attr_name in additional_attr:
1665 1666 1667
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1668
        return res_str
1669 1670 1671

    __repr__ = __str__

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1699
    @property
1700
    def stop_gradient(self):
J
Jiabin Yang 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1716 1717
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1718 1719 1720
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1721 1722
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1723 1724 1725 1726
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1727
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1728 1729
                assert (out1.gradient() == 0).all()
        """
1730
        return self.desc.stop_gradient()
1731

1732 1733
    @stop_gradient.setter
    def stop_gradient(self, s):
1734
        self.desc.set_stop_gradient(s)
1735

1736 1737
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1759
        return self.desc.persistable()
1760

Y
Yu Yang 已提交
1761 1762
    @persistable.setter
    def persistable(self, p):
1763
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1790 1791
    @property
    def name(self):
J
Jiabin Yang 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1808
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1809

1810 1811 1812 1813 1814 1815
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1816 1817
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1830 1831
    @name.setter
    def name(self, new_name):
1832
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1833

Y
Yu Yang 已提交
1834 1835
    @property
    def shape(self):
J
Jiabin Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1853
        # convert to tuple, make it as same as numpy API.
1854
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1855 1856

    @property
F
fengjiayi 已提交
1857
    def dtype(self):
J
Jiabin Yang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1874
        return self.desc.dtype()
Y
Yu Yang 已提交
1875 1876 1877

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1891
            import paddle
J
Jiabin Yang 已提交
1892
            import paddle.fluid as fluid
1893 1894

            paddle.enable_static()
J
Jiabin Yang 已提交
1895 1896 1897 1898 1899 1900 1901
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1902 1903
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1904 1905
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1906
        return self.desc.lod_level()
Y
Yu Yang 已提交
1907

Y
Yu Yang 已提交
1908 1909
    @property
    def type(self):
J
Jiabin Yang 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1926
        return self.desc.type()
Y
Yu Yang 已提交
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

1969 1970 1971 1972 1973 1974 1975
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
1976 1977
        return out

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2008 2009 2010
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2011 2012
        return output

W
Wu Yi 已提交
2013
    def _set_error_clip(self, error_clip):
2014 2015 2016 2017 2018 2019 2020 2021 2022
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2023 2024
        self.error_clip = error_clip

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2065
            raise ValueError("slice step can not be zero")
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2076 2077
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2141
    def _cloneVar(self, copy=False):
2142 2143
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2144 2145
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2146 2147 2148 2149
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2150
        new_var = self._cloneVar()
2151 2152 2153 2154 2155 2156 2157 2158
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2159 2160 2161
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2162
        new_var = self._cloneVar()
2163 2164 2165 2166 2167 2168
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2169 2170 2171 2172 2173
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2174
                return self._cloneVar(True)
2175 2176 2177 2178 2179 2180 2181
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2182 2183
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2184 2185 2186
                        start += step
                else:
                    while start > stop:
2187 2188
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2189 2190 2191 2192
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2193
                return self._cloneVar(True)
2194
            index = int(item)
2195
            if (index > 0 and index >= self.shape[axis]) \
2196 2197 2198 2199 2200 2201 2202
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2203
        return _getitem_impl_(self, item)
2204

2205
    def __setitem__(self, item, value):
2206
        return _setitem_impl_(self, item, value)
2207

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2249 2250
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2251 2252 2253 2254
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2255 2256
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2311
        # can not be imported at the begainning of this file.
2312 2313 2314 2315 2316
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2317 2318
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2319 2320 2321

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2322 2323
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2354 2355 2356 2357
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2358 2359 2360 2361
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2362 2363 2364 2365 2366 2367 2368
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2394 2395 2396
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2397 2398
        return output

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2479

F
fengjiayi 已提交
2480 2481 2482
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2483

2484 2485
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2486 2487 2488 2489
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2490
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2491 2492 2493 2494 2495
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2496 2497 2498 2499
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2509
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2510 2511 2512 2513 2514 2515
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2516 2517 2518 2519 2520 2521 2522 2523
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2524 2525
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2526 2527
        return self.op_proto_map[type]

2528 2529
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2530
        custom_op_names = []
2531 2532 2533
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2534 2535 2536
                custom_op_names.append(proto.type)

        return custom_op_names
2537

2538 2539 2540 2541
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2542
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2543
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2544 2545
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2546 2547
        }

F
fengjiayi 已提交
2548

X
Xin Pan 已提交
2549
class Operator(object):
2550
    """
2551 2552 2553 2554 2555 2556 2557
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2558
        type(str): The type of operator. Default None.
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2579
        Block.append_op or Block._prepend_op instead.
2580 2581 2582 2583

    Examples:
        .. code-block:: python

2584
            import paddle.fluid as fluid
2585
            cur_program = fluid.Program()
2586 2587 2588 2589 2590
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2591
    """
2592
    OP_WITHOUT_KERNEL_SET = {
2593 2594
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2595
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2596 2597
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2598
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2599
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2600
        'copy_cross_scope', 'c_gen_cncl_id'
2601
    }
2602

Y
Yu Yang 已提交
2603 2604
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2605
                 desc,
Y
Yu Yang 已提交
2606 2607 2608
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2609
                 attrs=None):
J
Jiabin Yang 已提交
2610
        if _non_static_mode():
2611 2612
            if type is None:
                raise ValueError(
2613
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2614
            self._type = type
M
minqiyang 已提交
2615
            self.attrs = attrs if attrs else {}
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2626 2627 2628
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2629 2630 2631
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2632 2633
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2634 2635

            role_var_name = op_maker.kOpRoleVarAttrName()
2636 2637
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2638
                op_attrs[role_var_name] = self.block.program._op_role_var
2639 2640 2641 2642 2643

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2644 2645 2646 2647 2648
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2649 2650 2651
                return
            if type is None:
                raise ValueError(
2652
                    "`type` to initialized an Operator can not be None.")
2653 2654
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2655 2656 2657
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2658 2659 2660 2661
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2662 2663 2664 2665 2666 2667 2668

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2680
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2681 2682 2683 2684 2685
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2686 2687 2688 2689 2690
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2691

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2705
                        if not isinstance(in_args, (list, tuple)):
2706 2707 2708 2709 2710 2711
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2712
                        for index, arg in enumerate(in_args):
2713 2714 2715 2716
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2717
                            elif isinstance(arg, (Variable, core.VarBase)):
2718
                                in_arg_names.append(cpt.to_text(arg.name))
2719
                            else:
2720 2721 2722 2723
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2724 2725
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2726 2727 2728 2729 2730 2731 2732 2733 2734
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2735 2736 2737 2738
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2751 2752 2753 2754
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2755
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2756
                        if not _non_static_mode():
2757 2758 2759 2760
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2761 2762 2763 2764 2765 2766 2767
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2768 2769
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2770 2771 2772 2773
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2783 2784 2785 2786 2787
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2788
    def _has_kernel(self, op_type):
2789 2790
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2791
    def to_string(self, throw_on_error):
2792
        """
2793 2794
        Get debug string.

2795
        Args:
2796 2797
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2798

2799 2800
        Returns:
            str: The debug string.
2801 2802

        """
2803
        protostr = self.desc.serialize_to_string()
2804
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2805 2806
        return _debug_string_(proto, throw_on_error)

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2839
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2886
            # it is bytes of serialized protobuf
2887 2888 2889 2890
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
2891 2892 2893 2894 2895 2896 2897 2898 2899
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

2900 2901 2902
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
2903

2904 2905 2906 2907
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2908
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2909
        dist_context = get_default_distributed_context()
2910 2911
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2912 2913
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
2914

2915 2916
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2917 2918
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2919 2920 2921 2922 2923
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2924
    def __str__(self):
2925
        return self._to_readable_code()
2926 2927 2928

    __repr__ = __str__

F
fengjiayi 已提交
2929 2930
    @property
    def type(self):
2931
        return self.desc.type()
F
fengjiayi 已提交
2932 2933

    def input(self, name):
2934
        r"""
2935
        Get the input arguments according to the input parameter name.
2936

2937 2938
        Args:
            name(str): The input parameter name.
2939

2940 2941 2942
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2943
        """
F
fengjiayi 已提交
2944 2945
        return self.desc.input(name)

W
Wu Yi 已提交
2946
    def _rename_input(self, old_name, new_name):
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2957
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2958

W
Wu Yi 已提交
2959
    def _rename_output(self, old_name, new_name):
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2970
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2971

F
fengjiayi 已提交
2972 2973 2974 2975
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2976 2977 2978 2979 2980 2981 2982 2983
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2984
    def output(self, name):
2985
        r"""
2986
        Get output arguments by the output parameter name.
2987

2988 2989
        Args:
            name(str): The output parameter name.
2990

2991 2992 2993
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2994
        """
F
fengjiayi 已提交
2995 2996 2997 2998 2999 3000
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3001 3002 3003 3004 3005 3006 3007 3008
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3009
    def has_attr(self, name):
3010
        """
3011 3012
        Whether this Operator has the attribute with name or not.

3013
        Args:
3014
            name(str): the attribute name.
3015

3016 3017
        Returns:
            bool: True if has this attribute.
3018 3019

        """
F
fengjiayi 已提交
3020 3021 3022
        return self.desc.has_attr(name)

    def attr_type(self, name):
3023
        """
3024
        Get the type of attribute by attribute's name.
3025

3026 3027
        Args:
            name(str): the attribute name.
3028

3029 3030
        Returns:
            core.AttrType: the attribute type.
3031
        """
F
fengjiayi 已提交
3032 3033
        return self.desc.attr_type(name)

W
Wu Yi 已提交
3034
    def _set_attr(self, name, val):
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3045 3046
        self._update_desc_attr(name, val)

3047 3048 3049
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
3061 3062
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
3063 3064
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
3065
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3066 3067 3068 3069
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
3070
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
3071

F
fengjiayi 已提交
3072 3073 3074 3075 3076
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
3077
        """
3078 3079
        Get the attribute by name.

3080
        Args:
3081
            name(str): the attribute name.
3082

3083 3084
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3085 3086
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3087
        return self.desc.attr(name)
Y
Yu Yang 已提交
3088

W
Wu Yi 已提交
3089
    def _block_attr_id(self, name):
3090
        """
G
gongweibao 已提交
3091
        Get the block attribute's id by name.
3092

3093 3094
        Args:
            name(str): the attribute name.
3095

3096 3097
        Returns:
            int: the block index.
3098
        """
W
Wu Yi 已提交
3099
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3100

W
Wu Yi 已提交
3101
    def _block_attr(self, name):
G
gongweibao 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3112
        id = self._block_attr_id(name)
G
gongweibao 已提交
3113 3114 3115
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3116
    def _blocks_attr(self, name):
G
gongweibao 已提交
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3127
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3128 3129 3130 3131 3132
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3133
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3144
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3145

J
JiayiFeng 已提交
3146
    def all_attrs(self):
F
fengjiayi 已提交
3147
        """
3148 3149 3150
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3151
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3152 3153 3154 3155
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3156 3157
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3158
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3159 3160 3161
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3162
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3163 3164 3165 3166
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3167 3168
        return attr_map

3169 3170 3171
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3172 3173 3174 3175

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3176 3177 3178
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3179 3180 3181 3182 3183 3184 3185 3186

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3187 3188
            return False

3189 3190 3191 3192 3193 3194
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3220

Y
Yu Yang 已提交
3221
class Block(object):
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3236
        use `Program._create_block()` to create a block.
3237 3238 3239 3240

    Examples:
        .. code-block:: python

3241 3242 3243
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3244 3245 3246 3247 3248 3249 3250 3251 3252
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3253
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3254
        self.desc = program.desc.block(idx)
3255
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3256
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3257
        self.program = program
3258
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3259

3260
    def __str__(self):
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3295
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3307

F
fengjiayi 已提交
3308 3309
    def to_string(self, throw_on_error, with_details=False):
        """
3310 3311
        Get debug string.

F
fengjiayi 已提交
3312 3313
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3314
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3315
            with_details(bool): more details about variables and parameters
3316 3317
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3318

3319 3320
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3321
        """
3322 3323
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3324
        if with_details:
F
fengjiayi 已提交
3325
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3326 3327
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3328
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3329
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3330
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3331
            for op in self.ops:
F
fengjiayi 已提交
3332 3333
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3334 3335 3336
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3337 3338
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3339 3340
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3341 3342 3343

    __repr__ = __str__

Y
Yu Yang 已提交
3344 3345
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3346
        return self.desc.parent
Y
Yu Yang 已提交
3347

Y
Yu Yang 已提交
3348 3349 3350 3351
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3352
    def _set_forward_block_idx(self, idx):
3353 3354 3355 3356 3357 3358 3359 3360 3361
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3362
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3363

3364 3365 3366 3367 3368 3369 3370 3371
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3372 3373
    @property
    def idx(self):
Y
Yu Yang 已提交
3374
        return self.desc.id
Y
Yu Yang 已提交
3375

Q
Qiao Longfei 已提交
3376
    def var(self, name):
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3390
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3391 3392 3393
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3394 3395
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3396
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3397
        return v
Q
Qiao Longfei 已提交
3398

X
Xin Pan 已提交
3399
    def _find_var_recursive(self, name):
3400 3401 3402 3403 3404 3405 3406
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3407
            Variable: the Variable with the giving name. Or None if not found.
3408
        """
Y
Yu Yang 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3433
        return None
Y
Yu Yang 已提交
3434

X
Xin Pan 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3454

Q
Qiao Longfei 已提交
3455
    def all_parameters(self):
3456
        return list(self.iter_parameters())
3457

3458
    def iter_parameters(self):
M
minqiyang 已提交
3459
        return (item[1] for item in six.iteritems(self.vars)
3460
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3461

Y
Yu Yang 已提交
3462
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3463
        if _non_static_mode():
L
Leo Chen 已提交
3464 3465
            var = _varbase_creator(*args, **kwargs)
        else:
3466 3467 3468
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3469
        return var
Y
Yu Yang 已提交
3470

Q
Qiao Longfei 已提交
3471 3472 3473
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3474
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3475 3476
        """
        Rename variable in vars and ops' inputs and outputs
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3489
        """
M
minqiyang 已提交
3490 3491
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3492

T
typhoonzero 已提交
3493
        if not self.has_var(name):
3494
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3495 3496
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3497
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3498 3499 3500 3501 3502 3503
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3504
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3505 3506 3507 3508
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3509
        orig_var_type = v.type
M
minqiyang 已提交
3510
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3511
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3512
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3513
        if var_type == "Parameter":
L
Leo Chen 已提交
3514
            if in_dygraph_mode():
3515 3516 3517 3518 3519 3520 3521 3522 3523
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3524
            else:
J
Jiabin Yang 已提交
3525
                if _in_legacy_dygraph():
3526 3527 3528 3529 3530 3531 3532 3533 3534
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3535
                else:
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3546
        elif var_type == "Variable":
3547 3548 3549 3550 3551
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3552

W
Wu Yi 已提交
3553
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3554 3555 3556
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3557
        self._sync_with_cpp()
3558
        return var
T
typhoonzero 已提交
3559

3560 3561 3562
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3563
        self.desc._remove_var(cpt.to_bytes(name))
3564 3565
        del self.vars[name]

Y
Yu Yang 已提交
3566 3567
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3568
        param = None
L
Leo Chen 已提交
3569
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3570
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3571
        else:
J
Jiabin Yang 已提交
3572 3573 3574 3575
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3576

3577
        if 'initializer' in kwargs:
3578 3579 3580 3581 3582

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3583
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3584
                        # are treated as initialization ops that cause error.
3585
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3586 3587 3588 3589 3590
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3591
                            continue
3592 3593 3594 3595 3596 3597 3598 3599
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3600 3601
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3602
            elif init_ops_len == 1:
3603
                # TODO already inited, do nothing, should log a warning
3604 3605 3606
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3607
        return param
Y
Yu Yang 已提交
3608

Y
Yu Yang 已提交
3609
    def append_op(self, *args, **kwargs):
3610 3611 3612 3613 3614 3615
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3616
        if _non_static_mode():
3617
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3618
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3619
            type = kwargs.get("type", None)
3620 3621 3622 3623
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3624 3625 3626 3627 3628 3629
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3630

M
minqiyang 已提交
3631 3632 3633
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3634
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3635

3636 3637 3638
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3639 3640
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3641
        else:
3642 3643
            from paddle.fluid.dygraph.base import param_guard

3644
            op_desc = self.desc.append_op()
3645 3646 3647 3648 3649 3650
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3651 3652 3653 3654 3655 3656
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3657

M
minqiyang 已提交
3658
            self.ops.append(op)
M
minqiyang 已提交
3659

3660 3661
        return op

W
Wu Yi 已提交
3662
    def _insert_op(self, index, *args, **kwargs):
3663 3664 3665 3666 3667 3668 3669 3670 3671
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3672
        self._sync_with_cpp()
F
fangshuixun007 已提交
3673
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3692 3693 3694 3695 3696 3697 3698 3699 3700
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3701 3702
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3703
        self.desc._remove_op(index, index + 1)
3704 3705
        del self.ops[index]

W
Wu Yi 已提交
3706
    def _slice_ops(self, start, end):
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3717
        return self.ops[start:end]
Y
Yancey1989 已提交
3718

W
Wu Yi 已提交
3719
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3720
        if _non_static_mode():
J
Jiabin Yang 已提交
3721 3722
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3733
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3734
        else:
3735
            op_desc = self.desc._prepend_op()
3736 3737 3738 3739 3740 3741
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3742
            self.ops.insert(0, op)
3743

Y
Yu Yang 已提交
3744 3745
        return op

W
Wu Yi 已提交
3746
    def _sync_with_cpp(self):
3747
        """
3748 3749
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3750
        """
Q
Qiao Longfei 已提交
3751 3752 3753
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3754 3755 3756 3757
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3758 3759 3760 3761 3762 3763
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3764
                else:
3765 3766 3767 3768
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3769

3770
        # sync variables removed from c++ end
3771
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3772
            if not self.desc.find_var(cpt.to_bytes(var)):
3773 3774
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3775
        # sync operators from cpp
3776 3777 3778 3779
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3796 3797 3798 3799 3800

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3801
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3802 3803 3804 3805 3806 3807 3808

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3822 3823 3824 3825
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3826
    def _copy_param_info_from(self, other):
3827
        """
3828 3829
        Copy the information of parameters from the other block.

3830
        Args:
3831 3832 3833 3834 3835
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3836 3837 3838 3839 3840

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3841 3842
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3843
        for p in other.iter_parameters():
3844 3845 3846
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3847 3848
                # if the Parameter is pruned, v may be None
                continue
3849
            assert isinstance(v, Variable)
3850
            new_p = None
L
Leo Chen 已提交
3851
            if in_dygraph_mode():
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
3862
            else:
J
Jiabin Yang 已提交
3863
                if _in_legacy_dygraph():
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3888 3889
            self.vars[new_p.name] = new_p

3890
    def _clone_variable(self, var, force_persistable=True):
3891 3892
        """
        Clone a variable into current block.
3893

3894 3895
        Args:
            var: the variable to be cloned.
3896 3897 3898
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3899 3900

        Returns:
3901
            Variable: the new  variable cloned from 'var' in current block.
3902 3903
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3904 3905 3906
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
3907 3908 3909
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
3910
        elif var.type == core.VarDesc.VarType.RAW:
3911 3912 3913
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
3914 3915 3916 3917 3918 3919
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3920
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3921 3922
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3923 3924 3925 3926 3927 3928 3929
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3930
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3931 3932
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3933
        return ret_var
3934

Y
Yu Yang 已提交
3935

3936 3937 3938 3939
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
3940
# of some old Python Variables(all old Python Operators) may have
3941
# been destructed.
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4053
    def remove_input_by_id(self, node_id):
4054 4055 4056 4057 4058 4059
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4060
        self.node.remove_input(node_id)
4061

4062
    def remove_input(self, node):
4063 4064 4065 4066
        """
        Remove a node from inputs.

        Args:
4067
            node(IrNode): the node being removed.
4068
        """
4069
        self.node.remove_input(node.node)
4070

4071
    def append_input(self, node):
4072 4073 4074 4075
        """
        Append a node in inputs.

        Args:
4076
            node(IrNode): the node being appended.
4077
        """
4078
        self.node.append_input(node.node)
4079 4080 4081 4082 4083 4084 4085 4086

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4087
    def remove_output_by_id(self, node_id):
4088 4089 4090 4091 4092 4093
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4094
        self.node.remove_output(node_id)
4095

4096
    def remove_output(self, node):
4097 4098 4099 4100
        """
        Remove a node from outputs.

        Args:
4101
            node(IrNode): the node being removed.
4102
        """
4103
        self.node.remove_output(node.node)
4104

4105
    def append_output(self, node):
4106 4107 4108 4109
        """
        Append a node in outputs.

        Args:
4110
            node(IrNode): the node being appended.
4111
        """
4112
        self.node.append_output(node.node)
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4160
            "The node variable description can not be None."
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4171
            "The node variable description can not be None."
4172 4173
        return self.node.var().persistable()

4174 4175 4176 4177 4178 4179 4180 4181
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4182
            "The node variable description can not be None."
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4193
            "The node variable description can not be None."
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4204
            "The node variable description can not be None."
4205 4206
        return self.node.var().shape()

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4254
            "The node operator description can not be None."
4255 4256
        self.node.op()._rename_input(old_input_name, new_input_name)

4257 4258 4259 4260 4261 4262 4263 4264 4265
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4266
            "The node operator description can not be None."
4267 4268
        self.node.op()._rename_output(old_output_name, new_output_name)

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4280
            "The node operator description can not be None."
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4294
            "The node operator description can not be None."
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4305
            "The node operator description can not be None."
4306 4307
        return self.node.op().set_type(new_type)

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4323
            "The node operator description can not be None."
4324 4325 4326 4327
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4328
                all(isinstance(v, Block) for v in val):
4329 4330
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4331
                isinstance(val, core.ProgramDesc):
4332 4333 4334 4335
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4336 4337 4338 4339 4340 4341 4342 4343
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4344
            "The node operator description can not be None."
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4355
            "The node operator description can not be None."
4356 4357
        return self.node.op().output_arg_names()

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4379 4380
class IrGraph(object):
    """
4381
    Python IrGraph. Beneath it is a core.Graph, which is used for
4382
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4383 4384
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4385 4386 4387 4388
    """

    def __init__(self, graph, for_test=False):
        """
4389 4390
        Construct an IrGraph using core.Graph.

4391 4392 4393 4394 4395 4396 4397 4398 4399
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4400 4401 4402 4403
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4404 4405 4406
        Warns:
            The method only clones the graph structure, not its attributes.

4407 4408 4409
        Returns:
            IrGraph: A new and duplicated graph.
        """
4410
        g = self.graph.clone()
4411 4412
        return IrGraph(g, self._for_test)

4413
    def is_test(self):
4414 4415 4416
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4417 4418
        return self._for_test

W
WangZhen 已提交
4419
    def all_nodes(self):
4420 4421 4422
        """
        Return all nodes included in the graph as a set.
        """
4423
        return {IrNode(node) for node in self.graph.nodes()}
4424

4425
    def all_var_nodes(self):
4426 4427 4428
        """
        Return all variable nodes included in the graph as a set.
        """
4429
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4430

4431
    def all_persistable_nodes(self):
4432 4433 4434
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4435 4436 4437 4438 4439
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4440
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4441

4442
    def all_op_nodes(self):
4443 4444 4445
        """
        Return all operator nodes included in the graph as a set.
        """
4446
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4447

4448 4449 4450 4451 4452 4453
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4454
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4455 4456 4457 4458 4459 4460 4461 4462 4463
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4464
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4476
            IrVarNode: the created persistable variable node.
4477
        """
4478 4479 4480 4481 4482
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4483
        return IrVarNode(self.graph.create_var_node(var_desc))
4484 4485

    def create_var_node(self, name, var_type, shape, var_dtype):
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4497
            IrVarNode: the created variable node.
4498 4499
        """

4500 4501 4502 4503
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4504
        return IrVarNode(self.graph.create_var_node(var_desc))
4505

4506 4507 4508 4509 4510 4511
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4512
    def create_var_node_from_desc(self, var_desc):
4513 4514 4515 4516 4517 4518 4519 4520
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4521
            IrVarNode: the created variable node.
4522
        """
4523
        return IrVarNode(self.graph.create_var_node(var_desc))
4524 4525

    def create_op_node(self, op_type, attrs, inputs, outputs):
4526 4527 4528 4529 4530 4531 4532
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4533
            outputs(dict): the outputs of the operator node.
4534 4535

        Returns:
4536
            IrOpNode: the created operator node.
4537
        """
4538 4539
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4540
        for attr, value in six.iteritems(attrs):
4541
            self._update_desc_attr(op_desc, attr, value)
4542
        for input_name, var_nodes in six.iteritems(inputs):
4543 4544 4545 4546
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4547
        for output_name, var_nodes in six.iteritems(outputs):
4548 4549 4550 4551
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4552
        return IrOpNode(self.graph.create_op_node(op_desc))
4553 4554

    def create_op_node_from_desc(self, op_desc):
4555 4556 4557 4558 4559 4560 4561
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4562
            IrOpNode: the created operator node.
4563
        """
4564
        return IrOpNode(self.graph.create_op_node(op_desc))
4565 4566

    def update_input_link(self, old_input_node, new_input_node, op_node):
4567 4568 4569 4570
        """
        Update the input's link of a operator node.

        Args:
4571 4572 4573
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4574
        """
4575
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4576
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4577
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4578 4579 4580 4581
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4582
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4583

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4594
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4595
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4596 4597 4598 4599 4600 4601
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4602
    def link_to(self, node_in, node_out):
4603 4604 4605 4606
        """
        Connect two nodes.

        Args:
4607 4608
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4609
        """
4610 4611 4612 4613
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4614 4615
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4616 4617

    def safe_remove_nodes(self, remove_nodes):
4618 4619 4620 4621 4622 4623 4624
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4625
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4626 4627 4628 4629
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4630 4631
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4632

Z
Zhen Wang 已提交
4633 4634 4635 4636 4637 4638 4639 4640
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4641
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4642 4643 4644 4645
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4646
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4647 4648 4649
                        ]
                    else:
                        var_nodes[each_var_name].append(
4650 4651
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4652 4653
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4654
    def has_circle(self):
4655 4656 4657 4658 4659 4660
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4661 4662 4663
        return core.has_circle(self.graph)

    def graph_num(self):
4664 4665 4666 4667 4668 4669
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4670 4671 4672
        return core.graph_num(self.graph)

    def topology_sort(self):
4673 4674 4675
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4676
        Notes: the `graph` can not contain a circle.
4677 4678

        Returns:
Z
Zhen Wang 已提交
4679
            list(IrNode): nodes in topology order.
4680
        """
4681
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4682
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4683 4684

    def build_adjacency_list(self):
4685 4686 4687 4688
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4689
            dict{IrNode: set(IrNode)}: the adjacency list.
4690
        """
4691 4692 4693 4694 4695
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4696

4697 4698 4699 4700 4701 4702 4703 4704
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4705
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4706 4707 4708 4709 4710
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4711 4712
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4713 4714 4715
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4716 4717 4718 4719 4720
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4721
        remove_ctr_vars = set()
4722
        if remove_ctr_var:
4723
            for node in self.all_var_nodes():
4724 4725 4726
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4727 4728
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4729 4730
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4731 4732 4733 4734 4735 4736
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4737 4738 4739 4740
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4741 4742
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4743 4744 4745 4746 4747 4748 4749
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4750 4751 4752
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4753
        WARN: When the graph includes backward operator nodes, the
4754 4755 4756 4757 4758 4759
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4760
        convert_pass = core.get_pass('graph_to_program_pass')
4761 4762
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4763 4764 4765 4766
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4767 4768 4769 4770 4771 4772 4773 4774
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4775 4776
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4777 4778
        return target_node

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4795
class Program(object):
D
dzhwinter 已提交
4796
    """
4797
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4798
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4799
    it will contain nested block.
4800

J
Jiabin Yang 已提交
4801 4802 4803
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4804

J
Jiabin Yang 已提交
4805
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4806
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4807 4808 4809 4810 4811 4812 4813
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4814
    **Notes**:
4815 4816 4817
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4818 4819

    Returns:
J
Jiabin Yang 已提交
4820
        Program: An empty Program.
D
dzhwinter 已提交
4821 4822

    Examples:
4823 4824
        .. code-block:: python

4825 4826 4827 4828
            import paddle
            import paddle.static as static

            paddle.enable_static()
4829

4830 4831 4832 4833 4834
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4835
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4836 4837 4838

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4839 4840 4841

    """

4842 4843
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4844 4845
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4846 4847
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4848
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4849
        self.__op_role_var = []
T
tangwei12 已提交
4850

4851 4852
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4853
        self._is_distributed = False
4854
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4855
        self._is_chief = False
4856 4857 4858
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4859
        self._endpoints = []
4860 4861 4862
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4863
        self._trainers_endpoints = []
4864
        # the distributed lookup table names
T
tangwei12 已提交
4865
        self._distributed_lookup_table = None
4866 4867 4868

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4869 4870
        self._use_lamb = False

4871 4872 4873
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4874

4875 4876 4877
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4878
        self._program_config = None
4879

H
hutuxian 已提交
4880 4881 4882
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4883 4884 4885
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4886 4887 4888
        # appending gradients times
        self._appending_grad_times = 0

4889 4890 4891 4892
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4893 4894
        # compiled program, i.e. Graph
        self._graph = None
4895 4896
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4897

4898
    def _find_var_class_kwargs(self, new_desc):
4899 4900 4901 4902 4903 4904 4905 4906
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
4921 4922 4923 4924 4925 4926
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
4927 4928 4929 4930
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4931 4932
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
4933 4934 4935 4936 4937 4938 4939 4940 4941
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4982
        assert block_num == self.desc.num_blocks()
4983 4984

        # clear old blocks and desc
4985 4986 4987 4988 4989 4990 4991 4992 4993
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4994

4995
        del desc
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5025 5026
                import paddle
                import paddle.static as static
5027

5028 5029 5030
                paddle.enable_static()

                prog = static.default_main_program()
5031 5032 5033 5034 5035
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5036
                prog1 = static.default_main_program()
5037 5038 5039 5040 5041 5042 5043 5044
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5045
    @property
5046
    def _op_role(self):
Y
yuyang18 已提交
5047 5048 5049 5050 5051 5052 5053 5054
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5055
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5056 5057 5058 5059
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5060 5061
        return self._current_role

5062 5063
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5064 5065 5066
        self._current_role = role

    @property
5067
    def _op_role_var(self):
Y
yuyang18 已提交
5068
        """
5069
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5070

5071
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5072 5073 5074

        Notes: This is a very low-level API. Users should not use it directly.
        """
5075
        return self.__op_role_var
Y
yuyang18 已提交
5076

5077
    @signature_safe_contextmanager
5078 5079 5080 5081 5082
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5083 5084 5085 5086
        try:
            yield
        finally:
            self._current_role = tmp_role
5087

S
rename  
sneaxiy 已提交
5088
    @signature_safe_contextmanager
W
Wu Yi 已提交
5089
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5090 5091 5092 5093 5094 5095 5096
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5097
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5098 5099 5100

        Examples:

5101
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5102
            >>> p, g = backward(...)
W
Wu Yi 已提交
5103
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5104 5105
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5106
        tmp_role = self._current_role
5107
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5108

Y
yuyang18 已提交
5109 5110
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5111
        self.__op_role_var = [
5112 5113 5114
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5115 5116 5117 5118 5119
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5120

S
rename  
sneaxiy 已提交
5121
    @signature_safe_contextmanager
X
Xin Pan 已提交
5122
    def _lr_schedule_guard(self, is_with_opt=False):
5123 5124 5125 5126 5127 5128 5129
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5130 5131 5132 5133
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5134 5135 5136

        Examples:

5137
            >>> import paddle.fluid as fluid
5138 5139 5140 5141
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5142 5143

        tmp_role = self._current_role
5144
        tmp_var = self.__op_role_var
5145

5146 5147
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5148 5149
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5150
        # TODO(typhoonzero): how to set target learning rate var
5151
        self.__op_role_var = []
5152 5153 5154 5155 5156
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5157

5158
    def __str__(self):
Y
yuyang18 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5188 5189
            import paddle
            import paddle.static as static
5190

5191 5192 5193
            paddle.enable_static()

            cur_program = static.Program()
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5205
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5206 5207 5208 5209
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5210
            program_str += '\n'
5211
        return program_str
Y
Yang Yang(Tony) 已提交
5212

F
fengjiayi 已提交
5213 5214 5215
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5216

J
Jiabin Yang 已提交
5217 5218 5219
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5220

J
Jiabin Yang 已提交
5221
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5222

H
haowang101779990 已提交
5223
        Returns:
J
Jiabin Yang 已提交
5224
            str: The debug string describe current Program.
Y
yuyang18 已提交
5225 5226

        Raises:
J
Jiabin Yang 已提交
5227
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5228

5229 5230 5231
        Examples:
            .. code-block:: python

5232 5233 5234 5235
                import paddle
                import paddle.static as static

                paddle.enable_static()
5236

5237 5238 5239
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5240
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5241
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5242
                print("program string without detail: {}".format(prog_string))
5243
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5244
        """
5245 5246 5247 5248 5249 5250 5251 5252 5253
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5254 5255 5256 5257 5258 5259
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5260 5261
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5262 5263
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5264

W
Wu Yi 已提交
5265
    def _get_desc(self):
Y
yuyang18 已提交
5266 5267 5268 5269 5270 5271 5272
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5273 5274
        return self.desc

X
version  
Xin Pan 已提交
5275 5276 5277
    def _version(self):
        return self.desc._version()

5278
    def clone(self, for_test=False):
Y
yuyang18 已提交
5279
        """
5280 5281 5282 5283
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5284

5285
        Create a new Program with forward content of original one when ``for_test=True``.
5286
        Create a new Program as same as the original one when ``for_test=False``.
5287

5288
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5289 5290 5291
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5292

5293 5294
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5295 5296
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5297
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5298

J
Jiabin Yang 已提交
5299
        For Example:
5300
          ::
L
Luo Tao 已提交
5301

5302 5303 5304 5305 5306 5307
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5308
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5309
            loss = paddle.mean(pred)
5310
            # Here we use clone before Momentum
5311 5312
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5313
            optimizer.minimize(loss)
5314

J
Jiabin Yang 已提交
5315
        Args:
5316

5317 5318
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5319

J
Jiabin Yang 已提交
5320
        Returns:
5321
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5322

Y
yuyang18 已提交
5323 5324 5325

        Examples:

5326 5327 5328 5329 5330 5331 5332
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5349
            1. To clone a test program, the sample code is:
5350 5351 5352
                .. code-block:: python

                    import six
5353 5354 5355 5356 5357 5358
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5371 5372
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5373 5374 5375

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5376 5377 5378
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5379
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5380 5381
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5382
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5383 5384
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5385
                            test_program = train_program.clone(for_test=True)
5386
                    print_prog(test_program)
J
Jiabin Yang 已提交
5387 5388 5389 5390

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5391
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5392 5393 5394 5395
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5396 5397 5398
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5399 5400 5401
                            sgd.minimize(avg_loss)


5402
            2. The clone method can be avoid if you create program for training and program for testing individually.
5403 5404 5405
                .. code-block:: python

                    import six
5406 5407 5408 5409 5410 5411
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5423

5424
                    def network():
5425
                        img = static.data(name='image', shape=[None, 784])
5426
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5427 5428
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5429
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5430 5431
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5432 5433
                        return avg_loss

5434 5435 5436 5437 5438
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5439
                            avg_loss = network()
5440
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5441
                            sgd.minimize(avg_loss)
5442
                    # the test startup program is not used.
5443 5444
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5445 5446
                            avg_loss = network()
                    print_prog(test_program_2)
5447

5448
            The two code snippets above will generate and print same programs.
5449
        """
5450

T
tangwei12 已提交
5451
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5452 5453 5454
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5455
        pruned_origin_block_id_map = None
5456
        if for_test:
5457 5458 5459 5460 5461 5462 5463 5464 5465
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5466
        else:
5467
            p = Program()
G
gongweibao 已提交
5468 5469
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5470
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5471 5472 5473
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5474 5475

            p._current_role = self._current_role
5476
            p.__op_role_var = self.__op_role_var
5477
            p._appending_grad_times = self._appending_grad_times
5478 5479
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5480

T
tangwei12 已提交
5481
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5482
            # its desc.
W
Wu Yi 已提交
5483
            p._sync_with_cpp()
5484

W
Wu Yi 已提交
5485
        p._copy_param_info_from(self)
5486
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5487
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5488
        return p
5489

5490
    def _prune(self, targets):
Y
yuyang18 已提交
5491 5492 5493 5494 5495 5496 5497 5498
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5499
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5500 5501 5502 5503
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5504
        """
5505
        return self._prune_with_input([], targets)
5506 5507

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5508
        """
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5519
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5520 5521 5522 5523 5524 5525
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5526
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5527 5528 5529
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5530 5531
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5532 5533
        if not isinstance(targets, list):
            targets = [targets]
5534 5535 5536

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5537 5538 5539
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5540

5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5557 5558 5559 5560
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5561 5562 5563
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5564
                else:
5565 5566 5567
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5568 5569 5570 5571 5572 5573

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5574 5575 5576
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5577

5578 5579 5580 5581 5582 5583 5584 5585 5586
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5587
                        # Skip optimize op except for optimize op in targets,
5588 5589 5590 5591 5592
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5593

5594
                if target_op is not None:
5595 5596 5597
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5598

5599
        res = Program()
5600 5601
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5602 5603 5604
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5605
        res._sync_with_cpp()
5606 5607 5608 5609 5610

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5611 5612
        return res

X
Xin Pan 已提交
5613
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5614
        """
F
fengjiayi 已提交
5615 5616 5617 5618 5619
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5620
        3. change the :code:`is_test`
Y
yuyang18 已提交
5621 5622 5623
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5624
        Args:
X
Xin Pan 已提交
5625 5626
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5627

Y
yuyang18 已提交
5628 5629 5630 5631 5632 5633
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5634
        res = Program()
5635
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5636 5637 5638 5639

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5640
        if prune_read_op:
5641 5642 5643 5644 5645 5646 5647 5648 5649
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5650
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5651 5652

        # change all `is_test` attributes to True
M
minqiyang 已提交
5653
        for i in six.moves.range(res.desc.num_blocks()):
5654
            block = res.desc.block(i)
M
minqiyang 已提交
5655
            for j in six.moves.range(block.op_size()):
5656 5657
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5658
                    op._set_attr('is_test', True)
5659 5660 5661
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5662 5663 5664
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5665
        res._sync_with_cpp()
5666 5667
        return res

5668
    def _remove_training_info(self, clip_extra=True):
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5758 5759
        return res

5760 5761
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5762
        """
5763 5764 5765
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5766

5767 5768
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5769

J
Jiabin Yang 已提交
5770
        Args:
Y
yuyang18 已提交
5771

J
Jiabin Yang 已提交
5772
            binary_str_type (str): the binary prootbuf string.
5773

J
Jiabin Yang 已提交
5774 5775
        Returns:
            Program: A deserialized Program.
5776 5777 5778 5779

        Examples:
            .. code-block:: python

5780 5781 5782 5783
                import paddle
                import paddle.static as static

                paddle.enable_static()
5784

5785 5786 5787 5788
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5789

5790
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5791

5792
                    z = paddle.matmul(x=x, y=y)
5793

5794 5795
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5796

5797
                    print(static.default_main_program())
5798
                    print(prog_restored)
Y
yuyang18 已提交
5799
        """
5800 5801
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5802
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5803
        p._sync_with_cpp()
5804
        return p
Y
Yu Yang 已提交
5805

5806
    @staticmethod
5807
    def _construct_from_desc(desc):
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5823 5824
    @property
    def random_seed(self):
Y
yuyang18 已提交
5825
        """
J
Jiabin Yang 已提交
5826
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5827 5828
        the random seed from random device.

5829 5830
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5831 5832 5833

        Returns:
            int64: Random seed in current Program
5834

5835 5836 5837 5838

        Examples:
            .. code-block:: python

5839 5840 5841
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5842

5843 5844 5845
                paddle.enable_static()

                prog = static.default_main_program()
5846
                random_seed = prog.random_seed
5847
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5848 5849 5850
                print(random_seed)
                ## 0
                ## the default random seed is 0
5851

5852
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5853
                prog.random_seed = 1
5854
                z_var = F.dropout(x_var, 0.7)
5855

5856
                print(prog.random_seed)
5857 5858
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5859
        """
D
dzhwinter 已提交
5860 5861
        return self._seed

Q
qiaolongfei 已提交
5862 5863
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5864
        """
5865 5866
        The number of :ref:`api_guide_Block_en`  in this Program.

5867 5868
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5869 5870 5871

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5872

5873 5874 5875 5876

        Examples:
            .. code-block:: python

5877 5878 5879 5880
                import paddle
                import paddle.static as static

                paddle.enable_static()
5881

5882
                prog = static.default_main_program()
5883 5884
                num_blocks = prog.num_blocks
                print(num_blocks)
5885

5886 5887
                # print result:
                # 1
Y
yuyang18 已提交
5888
        """
Q
qiaolongfei 已提交
5889 5890
        return self.desc.num_blocks()

D
dzhwinter 已提交
5891 5892 5893
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5894 5895 5896
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5897 5898
        self._seed = seed

Y
Yu Yang 已提交
5899
    def __repr__(self):
5900
        return self.__str__()
5901

Y
Yu Yang 已提交
5902
    def global_block(self):
Y
yuyang18 已提交
5903
        """
5904 5905
        .. note::
            This API has no effect in Dygraph mode.
5906 5907 5908

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5909 5910
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5911

5912 5913 5914 5915

        Examples:
            .. code-block:: python

5916 5917 5918 5919
                import paddle
                import paddle.static as static

                paddle.enable_static()
5920

5921
                prog = static.default_main_program()
5922 5923
                gb_block = prog.global_block()
                print(gb_block)
5924

Y
yuyang18 已提交
5925
        """
Y
Yu Yang 已提交
5926 5927
        return self.blocks[0]

Q
Qiao Longfei 已提交
5928
    def block(self, index):
Y
yuyang18 已提交
5929
        """
5930 5931
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5932

5933 5934
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5935 5936
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5937

J
Jiabin Yang 已提交
5938 5939
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5940 5941 5942 5943

        Examples:
            .. code-block:: python

5944 5945 5946 5947
                import paddle
                import paddle.static as static

                paddle.enable_static()
5948

5949
                prog = static.default_main_program()
5950 5951
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5952
        """
Q
Qiao Longfei 已提交
5953 5954
        return self.blocks[index]

Y
Yu Yang 已提交
5955
    def current_block(self):
Y
yuyang18 已提交
5956
        """
5957 5958
        .. note::
            This API has no effect in Dygraph mode.
5959

J
Jiabin Yang 已提交
5960 5961
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5962

J
Jiabin Yang 已提交
5963 5964
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5965

5966 5967 5968
        Examples:
            .. code-block:: python

5969 5970 5971 5972
                import paddle
                import paddle.static as static

                paddle.enable_static()
5973

5974
                prog = static.default_main_program()
5975 5976
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5977
        """
Y
Yu Yang 已提交
5978 5979
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5980
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5981 5982 5983 5984 5985
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5986

Y
yuyang18 已提交
5987 5988 5989 5990 5991
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5992
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5993 5994 5995
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5996 5997 5998 5999
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6000
    def _rollback(self):
Y
yuyang18 已提交
6001 6002 6003 6004 6005
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6006 6007
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6008
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6019 6020 6021
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6022
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6023

W
Wu Yi 已提交
6024
    def _copy_param_info_from(self, other):
6025
        """
6026
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6027

Y
yuyang18 已提交
6028 6029 6030
        Notes: This is a very low level API. Users should not invoke it
        directly.

6031 6032 6033 6034 6035 6036 6037
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6038 6039 6040
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6041

W
Wu Yi 已提交
6042
        self.global_block()._copy_param_info_from(other.global_block())
6043

6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6055 6056 6057
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6058 6059
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6060
        self._parameters_on_pservers = other._parameters_on_pservers
6061
        self._endpoints = other._endpoints
6062
        self._ps_endpoint = other._ps_endpoint
6063 6064
        self._distributed_lookup_table = other._distributed_lookup_table

6065
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6066 6067
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6068

Y
yuyang18 已提交
6069 6070 6071
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6072 6073
        Args:
            other(Program): Other program
6074 6075 6076 6077
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6078 6079 6080 6081 6082

        Returns:
            None
        """
        if not isinstance(other, Program):
6083 6084 6085
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6086

6087 6088 6089 6090 6091
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6092 6093 6094

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6095 6096
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6097
            for var in list(block.vars.values()):
6098 6099 6100 6101 6102 6103 6104
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6105

6106
    def list_vars(self):
Y
yuyang18 已提交
6107
        """
6108
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6109

J
Jiabin Yang 已提交
6110
        Returns:
6111
            iterable Tensors: The Generator will yield every Tensor in this program.
6112 6113 6114 6115

        Examples:
            .. code-block:: python

6116 6117
                import paddle
                import paddle.static as static
6118

6119 6120 6121 6122 6123
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6124 6125
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6126

6127 6128
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6129
        """
6130
        for each_block in self.blocks:
6131
            for each_var in list(each_block.vars.values()):
6132 6133
                yield each_var

6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6144 6145 6146 6147
                import paddle
                import paddle.static as static

                paddle.enable_static()
6148

6149 6150
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6151
                hidden = static.nn.fc(x=data, size=10)
6152 6153
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6154 6155 6156 6157 6158 6159 6160

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6161 6162
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6215
        # can not be imported at the begainning of this file.
6216 6217 6218 6219
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6220 6221
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6222 6223 6224 6225 6226

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6227 6228 6229
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6256 6257
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6258 6259 6260 6261 6262 6263 6264 6265

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6266 6267
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6337 6338 6339
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6340

Y
Yu Yang 已提交
6341

6342
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6343
class Parameter(Variable):
6344
    """
6345
    Parameter is derived from Variable. A parameter is a persistable
6346
    Variable, and will be updated by optimizers after each iteration.
6347
    The training of a neural network is essentially the updating of
6348 6349
    its parameters.

6350
    Relative to a general Variable, a Parameter has several its own
6351 6352
    member variables:

6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6363 6364
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6365 6366
    """

6367 6368 6369 6370 6371 6372
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6373 6374 6375 6376 6377
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6378
        if len(shape) == 0:
6379 6380
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6381 6382 6383

        for each in shape:
            if each < 0:
6384 6385 6386
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6387

6388 6389 6390 6391 6392 6393 6394
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6395 6396 6397 6398
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6399 6400
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6401
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6402

6403 6404
        self.need_clip = kwargs.get('need_clip', True)

6405 6406
        self.is_distributed = False

6407 6408
        self.is_parameter = True

F
fengjiayi 已提交
6409
    def __str__(self):
6410
        return self._to_readable_code()
F
fengjiayi 已提交
6411

F
update  
fengjiayi 已提交
6412 6413 6414
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6415

F
update  
fengjiayi 已提交
6416 6417 6418 6419 6420 6421 6422 6423
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6424 6425 6426 6427 6428 6429 6430 6431 6432
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6433
        """
6434 6435
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6436 6437 6438
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6439
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6440
            for attr_name in additional_attr:
6441 6442
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6443 6444
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6445 6446 6447 6448
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6449

6450 6451
class ParamBase(core.VarBase):
    """
6452 6453 6454
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6455 6456 6457
    The training of a neural network is essentially the updating of
    its ParamBase.

6458
    Relative to a general Tensor, a ParamBase has several its own
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6471 6472
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6498 6499 6500 6501
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6502

6503 6504
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6505 6506 6507 6508 6509 6510 6511

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6512 6513
        self.need_clip = kwargs.get('need_clip', True)

6514
        self.is_distributed = kwargs.get('is_distributed', False)
6515
        # self.block = default_main_program().global_block()
6516

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6530
    def __str__(self):
6531
        """
6532
        Convert a ParamBase object to a readable string.
6533

6534
        Returns(str): A readable string.
6535 6536 6537 6538

        Examples:
            .. code-block:: python

6539
                import paddle
6540 6541 6542 6543 6544 6545 6546
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6547
        """
6548 6549
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6550

6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6562

6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6581 6582 6583 6584
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6585 6586 6587 6588 6589 6590
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6591
    _core_eager_eagertensor = core.eager.Tensor
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6644 6645 6646
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6647 6648 6649 6650
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6735 6736
        return new_param

6737 6738 6739
    __repr__ = __str__


Y
Yu Yang 已提交
6740
# program is a global instance.
Y
Yu Yang 已提交
6741 6742
_main_program_ = Program()
_startup_program_ = Program()
6743
_startup_program_._is_start_up_program_ = True
6744

6745

6746
def default_startup_program():
Y
Yu Yang 已提交
6747
    """
Y
yuyang18 已提交
6748 6749
    Get default/global startup program.

6750 6751
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6752

6753 6754
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6755

6756 6757
    Returns:
        Program: current default startup program.
6758

6759
    Returns type: 
6760 6761 6762 6763

    Examples:
        .. code-block:: python

6764
            import paddle
6765

6766
            paddle.enable_static()
6767 6768 6769 6770
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6771
    """
Y
Yu Yang 已提交
6772
    return _startup_program_
6773

6774

6775
def default_main_program():
Y
Yu Yang 已提交
6776
    """
6777
    This API can be used to get ``default main program`` which store the 
6778
    descriptions of Ops and tensors.
T
tangwei12 已提交
6779

6780
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6781
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6782

6783 6784
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6785
    :code:`default_main_program` when the program is not specified.
6786

6787
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6788

Y
Yu Yang 已提交
6789
    Returns:
6790
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6791 6792 6793 6794

    Examples:
        ..  code-block:: python

6795
            import paddle
6796

6797
            paddle.enable_static()
6798
            # Sample Network:
6799 6800 6801
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6802

6803 6804 6805
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6806
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6807
    """
Y
Yu Yang 已提交
6808
    return _main_program_
Y
Yu Yang 已提交
6809 6810 6811 6812 6813


def switch_main_program(program):
    """
    Switch the main program to a new program.
6814

Y
Yu Yang 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6829
    Switch the startup program to a new program
Y
Yu Yang 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6842
@signature_safe_contextmanager
Y
Yu Yang 已提交
6843 6844
def program_guard(main_program, startup_program=None):
    """
6845 6846
    :api_attr: Static Graph

6847 6848 6849
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6850

G
guofei 已提交
6851
    Args:
6852 6853
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6854 6855 6856 6857
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6858
    Examples:
6859
       .. code-block:: python
T
tangwei12 已提交
6860

6861
          import paddle
Y
yuyang18 已提交
6862

6863 6864 6865 6866 6867
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6868
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6869 6870 6871

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6872

Y
Yu Yang 已提交
6873
    Examples:
6874
       .. code-block:: python
Y
yuyang18 已提交
6875

6876
          import paddle
6877

6878 6879 6880 6881 6882
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6883

Y
Yu Yang 已提交
6884
    """
6885
    from .data_feeder import check_type
6886 6887
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6888 6889
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6890
        check_type(startup_program, 'startup_program', Program,
6891
                   'paddle.static.program_guard')
6892 6893
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6894
        startup_program = switch_startup_program(startup_program)
6895 6896 6897 6898 6899 6900
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6901 6902


W
Wu Yi 已提交
6903
def _get_var(name, program=None):
X
xuwei06 已提交
6904
    """
Y
yuyang18 已提交
6905
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6906

X
xuwei06 已提交
6907 6908 6909
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6910
        If None, default_global_program() will be used.
X
xuwei06 已提交
6911 6912 6913 6914 6915 6916 6917

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6918
    assert isinstance(program, Program)
X
xuwei06 已提交
6919 6920

    return program.global_block().var(name)
6921 6922


S
rename  
sneaxiy 已提交
6923
@signature_safe_contextmanager
L
lujun 已提交
6924 6925
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6926
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6927
    _dygraph_tracer_ = tracer
6928
    core._switch_tracer(tracer)
M
minqiyang 已提交
6929

6930 6931 6932
    try:
        yield
    finally:
6933 6934
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6935 6936


S
rename  
sneaxiy 已提交
6937
@signature_safe_contextmanager
L
lujun 已提交
6938
def _dygraph_place_guard(place):
6939 6940 6941
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6942 6943
    _set_dygraph_tracer_expected_place(place)

6944 6945 6946
    try:
        yield
    finally:
6947
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6948
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6949 6950


6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
6961 6962 6963
    
    Note:
        The API only supports static mode.
6964 6965 6966 6967

    A context manager that specifies the device on which the OP will be placed.

    Args:
6968 6969
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6970 6971 6972 6973 6974 6975 6976
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
6977
    
6978
        .. code-block:: python
6979 6980
            
            # required: gpu
Z
Zhang Ting 已提交
6981
            import paddle
6982

Z
Zhang Ting 已提交
6983 6984 6985
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6986
            if support_gpu:
Z
Zhang Ting 已提交
6987
                place = paddle.CUDAPlace(0)
6988 6989

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6990 6991 6992
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6993

Z
Zhang Ting 已提交
6994
            with paddle.static.device_guard("cpu"):
6995
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6996 6997
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6998
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6999
                out = paddle.reshape(data1, shape=shape)
7000

Z
Zhang Ting 已提交
7001 7002
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7003 7004 7005
            result = exe.run(fetch_list=[out])
    """

7006 7007 7008 7009 7010
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7011
    if device not in ['cpu', 'gpu', 'npu', '', None]:
7012
        raise ValueError(
7013
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
7014
            "when there is no need to specify device. But received %s" % device)
7015 7016
    if index:
        device = ":".join([device, index])
7017
    pre_device = switch_device(device)
7018 7019 7020 7021
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7022 7023


7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7055 7056 7057
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7058
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7059 7060 7061 7062 7063 7064 7065

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7066 7067
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7068 7069 7070 7071
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7072 7073
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7074 7075 7076 7077 7078 7079 7080 7081
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7082
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7093
            import paddle
G
guofei 已提交
7094 7095

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7096
            res = paddle.get_flags(flags)
G
guofei 已提交
7097 7098 7099 7100 7101 7102
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7103 7104
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7105 7106 7107 7108 7109 7110 7111
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7112 7113
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7114 7115 7116 7117 7118 7119 7120 7121
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7122 7123 7124 7125 7126 7127 7128


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7129
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7130
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7131 7132 7133 7134 7135 7136 7137 7138 7139
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7140

7141 7142 7143
    if (place == "device"):
        return core.Place()

7144
    # GPU
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7160 7161

    # XPU
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7209
    raise ValueError(
7210 7211
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret