eager_method.cc 113.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
L
LiYuRio 已提交
64 65
#include "paddle/phi/core/distributed/auto_parallel/reshard_function.h"
#include "paddle/phi/core/distributed/auto_parallel/reshard_utils.h"
66
#include "paddle/phi/core/flags.h"
67
#include "paddle/phi/core/tensor_utils.h"
68
#include "paddle/phi/kernels/funcs/math_function.h"
69
#include "paddle/utils/pybind.h"
J
Jiabin Yang 已提交
70

71
PHI_DECLARE_bool(set_to_1d);
72
PHI_DECLARE_bool(use_stride_kernel);
73

74 75 76
namespace paddle {
namespace pybind {

77 78
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
79
                                     const paddle::platform::Place& place,
80
                                     bool zero_copy);
81

82
extern PyTypeObject* p_tensor_type;
83

J
Jiabin Yang 已提交
84
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
85
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
86
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
87
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
88
    PADDLE_ENFORCE_EQ(
89 90
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
91 92 93 94 95 96 97 98
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
99
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
100 101 102 103
        "method, when you reach this means we got another type index."));
  }
}

L
LiYuRio 已提交
104 105 106 107
namespace {
#ifdef PADDLE_WITH_DISTRIBUTE
phi::DenseTensor ReshardXToReplicated(
    phi::distributed::DistTensor* dist_tensor) {
L
LiYuRio 已提交
108
  if (!dist_tensor->dist_attr().is_replicated()) {
L
LiYuRio 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    phi::distributed::TensorDistAttr dist_attr(dist_tensor->dist_attr());
    std::vector<int64_t> dims_mapping(dist_tensor->dims().size(), -1);
    dist_attr.set_dims_mapping(dims_mapping);

    // reshard to replicate dist tensor
    auto* func =
        phi::distributed::ChooseProperReshardFunction(*dist_tensor, dist_attr);
    auto* dev_ctx =
        phi::DeviceContextPool::Instance().Get(dist_tensor->place());
    auto out_tensor = func->Eval(dev_ctx, *dist_tensor, dist_attr);
    return out_tensor->value();
  } else {
    return dist_tensor->value();
  }
}
#endif
}  // namespace

127 128
PyDoc_STRVAR(tensor_method_numpy__doc__,  // NOLINT
             R"DOC(numpy($self, /)
W
wanghuancoder 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

149 150
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
151 152
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
153 154
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
155 156
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
W
wanghuancoder 已提交
157 158 159 160 161
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
162 163 164 165 166
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
167 168 169 170 171
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
172 173
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
174
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
175 176
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
177
  size_t py_rank = tensor_dims.size();
178
  size_t numel = 1;
179
  if (py_rank == 0) {
180
    Py_ssize_t args_num = PyTuple_Size(args);
181 182
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
183 184 185 186 187 188 189
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
190
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
191 192 193 194 195
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
196 197
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
198
             "modify "
199
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
200
             "possible, "
201
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
202 203 204 205
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
206 207 208 209 210 211 212 213
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
214 215 216 217 218 219
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
220
  }
W
wanghuancoder 已提交
221 222

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
223 224 225 226 227 228 229 230 231 232 233
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

234
    if (tensor_dims.empty()) {
235 236 237
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
238 239 240 241 242 243
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
244 245 246 247 248
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
249 250 251
    return array;
  }

W
wanghuancoder 已提交
252 253 254
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

255
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
256
    eager_gil_scoped_release guard;
257
    platform::CPUPlace place;
258 259 260 261
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
262 263
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
264 265 266 267 268
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
269
      // deep copy
W
wanghuancoder 已提交
270 271 272 273 274
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
275
    } else if (self->tensor.is_dist_tensor()) {
276
#ifdef PADDLE_WITH_DISTRIBUTE
277 278 279
      VLOG(6) << "Getting DistTensor's numpy value";
      auto* dist_tensor =
          static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
L
LiYuRio 已提交
280 281
      auto dense_tensor = ReshardXToReplicated(dist_tensor);

282 283 284 285 286 287 288 289 290 291 292 293
      cpu_tensor.set_meta(dense_tensor.meta());
      // deep copy
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor.Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      // deep copy
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor.Holder()->ptr(),
                           dense_tensor.Holder()->size());
294 295 296 297 298 299 300
#else
      PADDLE_THROW(
          platform::errors::Unavailable("The `numpy()` method of (Dist)Tensor "
                                        "is not supported in the current "
                                        "PaddlePaddle, please recompile and "
                                        "installPaddlePaddle with the option "
                                        "of `WITH_DISTRIBUTE=ON`."));
301
#endif
302 303 304 305
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
306 307 308 309 310
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
311
      // deep copy
W
wanghuancoder 已提交
312 313 314 315 316
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
317 318
    }

319
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
320
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
321
    eager_gil_scoped_release guard;
322 323 324 325
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
326
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
327
#endif
328 329 330 331
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
332 333
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
334 335 336 337 338 339 340 341 342
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
343
    } else if (self->tensor.is_dist_tensor()) {
344
#ifdef PADDLE_WITH_DISTRIBUTE
345 346 347
      VLOG(6) << "Getting DistTensor's numpy value";
      auto* dist_tensor =
          static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
L
LiYuRio 已提交
348 349
      auto dense_tensor = ReshardXToReplicated(dist_tensor);

350 351 352 353 354 355 356 357 358
      cpu_tensor.set_meta(dense_tensor.meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor.Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor.Holder()->ptr(),
                                      dense_tensor.Holder()->size(),
                                      kind);
359 360 361 362 363 364 365
#else
      PADDLE_THROW(
          platform::errors::Unavailable("The `numpy()` method of (Dist)Tensor "
                                        "is not supported in the current "
                                        "PaddlePaddle, please recompile and "
                                        "installPaddlePaddle with the option "
                                        "of `WITH_DISTRIBUTE=ON`."));
366
#endif
367 368 369 370
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
371 372 373 374 375 376 377 378 379
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
380
    }
381
#endif
C
Chen Weihang 已提交
382 383 384 385 386 387 388
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
389 390
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
391 392 393 394 395 396 397 398 399 400
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
401 402 403 404
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
405 406 407 408 409 410 411 412 413 414
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
415 416
    }
#endif
417 418
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
419
    eager_gil_scoped_release guard;
420
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
421 422 423 424
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
425 426
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
427 428 429 430 431
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
432
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
433 434 435
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
436 437 438 439
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
440
      // TODO(qili93): temporary for ascend npu performance to be removed along
441
      // with npu_identity op
442
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
443 444 445 446 447
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
448 449 450 451 452
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
453
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
454 455 456
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
457 458
    }
#endif
459 460 461
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
462
    RETURN_PY_NONE
463 464
  }

W
wanghuancoder 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

485 486 487 488
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
489 490 491 492 493 494 495 496
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
497 498
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
J
Jack Zhou 已提交
499 500 501 502 503
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
504 505 506 507 508
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
522 523
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
524 525 526 527 528 529 530 531 532 533 534 535
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
536 537
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
538 539 540 541 542 543 544 545 546 547
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
548 549 550
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
551 552 553 554
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
555
    RETURN_PY_NONE
J
Jack Zhou 已提交
556 557 558 559
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

560 561 562 563
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
564
  return ToPyObject(self->tensor.initialized());
565 566 567
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

582
static void IncreaseTensorReferenceCountUntilCopyComplete(
583
    const paddle::Tensor& tensor, const platform::Place& place) {
584 585 586 587 588 589 590 591
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
592
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
593 594 595 596 597 598 599
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

600 601
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
602 603
                                        PyObject* kwargs) {
  EAGER_TRY
604 605
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
606
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
607 608 609 610 611 612 613 614 615 616
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
617
  }
618 619 620 621
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
PyDoc_STRVAR(tensor_reconstruct_from___doc__,
             R"DOC(reconstruct_from_($self, other/)
--

Reconstruct the self with other Tensor. It is a deep copy of 'self = other'.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      t1 = paddle.to_tensor([1.0], stop_gradient=False)
      t2 = paddle.to_tensor([2.0], stop_gradient=True)

      t1.reconstruct_from_(t2)

      print(t1)
)DOC");

644 645 646 647
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
648
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
649
  std::string orig_name = self->tensor.name();
650 651
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
652
  self->tensor = src_tensor;
653 654

  // Recover source name
655
  self->tensor.set_name(orig_name);
656 657

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
658
          << " to " << self->tensor.name();
659 660
  RETURN_PY_NONE

661 662 663
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

664 665
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
666 667
                                     PyObject* kwargs) {
  EAGER_TRY
668
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
669
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
670
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
671
          << self->tensor.name();
672
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
673
    eager_gil_scoped_release guard;
674
    egr::EagerUtils::autograd_meta(&(self->tensor))
675 676
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
677
    egr::EagerUtils::autograd_meta(&(self->tensor))
678 679
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
680
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
681
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
682 683 684
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
685
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
686
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
687
    }
688 689
  }

690
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
691
          << self->tensor.name();
692 693
  RETURN_PY_NONE

694 695 696
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

697 698
PyDoc_STRVAR(tensor_method_clone__doc__,  // NOLINT
             R"DOC(clone($self, /)
W
wanghuancoder 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

733 734 735 736
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
737
  paddle::Tensor out;
W
wanghuancoder 已提交
738 739 740 741 742 743 744 745 746
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
747

W
wanghuancoder 已提交
748 749
    out = assign_ad_func(self->tensor);
  }
750 751 752 753
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
PyDoc_STRVAR(tensor_method_retain_grads__doc__, R"DOC(retain_grads($self, /)
--

Enables this Tensor to have their grad populated during backward(). It is a no-op for leaf tensors.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # [1., 1., 1.]

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      # y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # None
)DOC");

786 787
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
788
                                     PyObject* kwargs) {
789
  EAGER_TRY
790
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
791
    eager_gil_scoped_release guard;
792
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
793
    if (!meta->GetMutableGradNode()) {
794
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
795
              << "become accumulation node";
796
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
797
    }
798
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
799
  }
800 801
  RETURN_PY_NONE

802 803 804
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

805
PyDoc_STRVAR(tensor_clear_gradient__doc__,  // NOLINT
W
wanghuancoder 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

835 836
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
837
                                       PyObject* kwargs) {
838
  EAGER_TRY
839
  VLOG(4) << "ClearGradient " << self->tensor.name();
840

841 842 843
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
844
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
845 846
  }

847
  paddle::Tensor* grad;
848
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
849
  if (is_leaf) {
850 851 852
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
853
                       "Detected nullptr grad"
854 855
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
856
  } else {
857
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
858
    grad = meta->MutableGrad();
859 860
  }

861
  if (grad->impl()) {
W
wanghuancoder 已提交
862
    eager_gil_scoped_release guard;
863 864 865 866 867 868 869 870 871 872
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
873 874 875 876
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
877 878 879 880 881
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
882 883 884 885 886 887 888
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
889 890
      }
    }
891
  }
892

893 894
  RETURN_PY_NONE

895 896 897
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

898 899
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
900
                                    PyObject* kwargs) {
901
  EAGER_TRY
902
  VLOG(4) << "ZeroGrads " << self->tensor.name();
903

904
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
905
    eager_gil_scoped_release guard;
906
    // Add RetainGrad as PostHook to AccumulationNode
907
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
908 909
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
910
                       "Detected nullptr grad"
911 912 913
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
914 915 916 917 918 919 920
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
921
    }
922
  } else {
W
wanghuancoder 已提交
923
    eager_gil_scoped_release guard;
924
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
925
    if (meta->MutableGrad()->initialized()) {
926 927 928 929 930 931 932 933 934
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
935
    }
936 937
  }

938 939
  RETURN_PY_NONE

940 941 942
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

943 944
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
945 946
                                         PyObject* kwargs) {
  EAGER_TRY
947
  paddle::Tensor* dst_ptr =
948
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
949 950
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
951 952 953
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
954
                        self->tensor.name()));
955
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
956 957 958
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
959
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
960
  dst_tensor->ShareBufferWith(*src_tensor);
961
  dst_tensor->ShareDataTypeWith(*src_tensor);
962 963
  RETURN_PY_NONE

964 965 966
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

967 968 969 970
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
971
  paddle::Tensor* dst_ptr =
972
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
973 974
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
975 976 977
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
978
                        self->tensor.name()));
979
  bool res = false;
980
  if (!self->tensor.defined() || !dst_ptr->defined()) {
981 982
    return ToPyObject(res);
  }
983 984
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
985 986 987 988 989
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

990 991 992 993
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
994
  paddle::Tensor* src_ptr =
995
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
996 997
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
998 999 1000
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
1001 1002
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
1003 1004
  RETURN_PY_NONE

1005 1006 1007
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1008 1009 1010 1011
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
1012
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1013 1014
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
1015 1016 1017 1018 1019
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
1020
  if (!self->tensor.defined() || !src_tensor.defined()) {
1021 1022
    return ToPyObject(res);
  }
1023
  res = (self->tensor.impl().get() == src_tensor.impl().get());
1024 1025 1026 1027
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1028 1029
PyDoc_STRVAR(tensor_method_detach__doc__,  // NOLINT
             R"DOC(detach($self, /)
W
wanghuancoder 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

1069 1070
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
1071 1072
                                      PyObject* kwargs) {
  EAGER_TRY
1073
  PADDLE_ENFORCE_EQ(
1074
      self->tensor.defined(),
1075
      true,
1076
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
1077
                                        self->tensor.name()));
1078

1079
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
1080
  if (obj) {
1081
    auto v = reinterpret_cast<TensorObject*>(obj);
1082
    new (&(v->tensor)) paddle::Tensor();
1083 1084 1085 1086
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
PyDoc_STRVAR(tensor_method_detach___doc__, R"DOC(detach_($self, /)
--

Detach self from the current graph, and returns self Tensor.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.
)DOC");

W
wanghuancoder 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
PyDoc_STRVAR(tensor_method_get_tensor__doc__, R"DOC(get_tensor($self, /)
--

Returns the underline tensor in the origin Tensor.

Returns:
    Underline tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      underline_x = x.get_tensor()
      print(underline_x) # a Dense Tensor info
)DOC");

1144 1145 1146 1147
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
1148
  if (!self->tensor.defined()) {
1149 1150 1151
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
1152
  }
1153
  if (self->tensor.is_dense_tensor()) {
1154
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1155 1156
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
1157 1158
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1159 1160
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1161
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1162 1163
    return ToPyObject(tensor);
#else
1164 1165 1166 1167
    PADDLE_THROW(platform::errors::Unavailable(
        "The `get_tensor()` method of (Dist)Tensor is not supported in the "
        "current PaddlePaddle, please recompile and installPaddlePaddle "
        "with the option of `WITH_DISTRIBUTE=ON`."));
L
LiYuRio 已提交
1168
#endif
1169
  } else {
1170
    RETURN_PY_NONE
1171 1172 1173 1174
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1175 1176 1177 1178 1179
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1180
    RETURN_PY_NONE
1181 1182 1183 1184 1185 1186
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1187
    RETURN_PY_NONE
1188 1189 1190 1191
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1206 1207
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1208
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1209

1210
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1211 1212 1213 1214 1215 1216 1217
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1218 1219 1220
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1221
  EAGER_TRY
J
Jiabin Yang 已提交
1222 1223 1224
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1225 1226
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1227 1228
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1229 1230
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1231
  PADDLE_ENFORCE_EQ(
1232
      self->tensor.defined(),
1233
      true,
J
Jiabin Yang 已提交
1234 1235 1236 1237 1238
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1250

1251 1252 1253 1254
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1271 1272 1273 1274 1275 1276
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1277
    if (op_type == "slice") {
W
wanghuancoder 已提交
1278
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1279 1280 1281 1282 1283 1284
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1285
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1286
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1287
      out = strided_slice_ad_func(
1288
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1289 1290 1291
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1301
  bool set_to_1d = FLAGS_set_to_1d;
1302 1303 1304 1305 1306 1307

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1308
      VLOG(1)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1321 1322 1323
        none_axes.pop_back();
      }
    }
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1338 1339
          }
        }
1340
        axis -= len;
J
Jiabin Yang 已提交
1341
      }
1342
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1343
    }
1344
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1345 1346 1347 1348
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1349
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1363 1364 1365
  }

  return ToPyObject(out);
1366 1367 1368
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1369 1370
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1371 1372
                                             PyObject* kwargs) {
  EAGER_TRY
1373 1374 1375 1376 1377 1378 1379 1380
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1381 1382 1383
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1384 1385
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1386 1387
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1388 1389 1390 1391 1392 1393 1394
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1395
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1396 1397 1398 1399 1400 1401 1402 1403

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1404 1405
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1406 1407 1408 1409 1410 1411
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1412 1413
        offset,
        numel,
W
wanghuancoder 已提交
1414 1415 1416
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1417 1418
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1419 1420 1421 1422 1423 1424
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1425 1426
          index,
          dims[i],
W
wanghuancoder 已提交
1427
          platform::errors::InvalidArgument(
1428 1429 1430
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1431
              dims[i]));
W
wanghuancoder 已提交
1432
      offset += index * stride[i];
W
wanghuancoder 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
1456 1457
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];    /* NOLINT */  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank]; /* NOLINT */  \
W
wanghuancoder 已提交
1458 1459
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1460 1461
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1462
        0,                                                                   \
1463 1464 1465
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1466 1467 1468 1469 1470
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1471 1472
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1524 1525
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1526 1527
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1549
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1550
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1551 1552 1553 1554 1555
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1556 1557
    }

1558
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1559 1560 1561 1562

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1563
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1564 1565 1566 1567
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1568
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1569 1570 1571
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1572
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1573 1574 1575
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1576
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1577 1578 1579
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1580
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1581 1582 1583
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1584
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1585 1586 1587
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1598 1599 1600 1601
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1602
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1603 1604 1605
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1606 1607 1608 1609 1610
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1611 1612 1613 1614 1615 1616 1617

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1618 1619
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1620
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1621 1622
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1623
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1624 1625
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1626
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1627 1628
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1629
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1630 1631
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1632
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1633 1634
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1635
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1636 1637 1638 1639 1640 1641 1642 1643
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1644 1645 1646 1647
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1648 1649
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1650 1651 1652 1653 1654 1655 1656
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1657
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1658 1659 1660 1661 1662 1663 1664
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1665
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1666 1667
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1668
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1669 1670 1671 1672 1673 1674 1675
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1676 1677 1678
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1679
      }
1680 1681
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1682 1683 1684 1685 1686 1687 1688 1689 1690
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1691 1692
    }
  } else {
1693
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1705
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1706
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1707 1708 1709 1710
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1711
#else
1712 1713 1714 1715
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1716 1717
#endif
    } else {
1718 1719
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1720 1721
    }
  }
1722 1723
  RETURN_PY_NONE

W
wanghuancoder 已提交
1724 1725 1726
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1727 1728
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1729 1730 1731
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1732
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1733
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1734 1735 1736 1737 1738

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1739
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1740 1741 1742 1743 1744 1745
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1746 1747 1748 1749 1750 1751 1752 1753 1754
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1755 1756
        rank_info.first,
        rank_info.second,
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1769 1770
        rank_info.first,
        rank_info.second,
1771 1772 1773 1774 1775 1776
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1777 1778
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1803
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,  // NOLINT
W
wanghuancoder 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1827 1828
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1829 1830 1831 1832 1833 1834
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1835
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1836
                    true,
1837 1838 1839 1840
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1841 1842 1843 1844
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1845 1846
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1847
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1848 1849 1850 1851 1852 1853 1854
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1855
      std::make_shared<PyVoidHook>(hook_func));
1856

1857 1858
  RETURN_PY_NONE

1859 1860 1861
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1862 1863
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1864
                                       PyObject* kwargs) {
1865 1866 1867
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1868
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1869
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1870
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1871
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1872
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1873
  }
1874 1875
  RETURN_PY_NONE

1876 1877 1878
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1879 1880
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1881 1882 1883
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1884 1885
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1886 1887 1888
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1889 1890 1891 1892 1893 1894 1895 1896 1897
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1898 1899
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1900 1901 1902
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1903
  if (self->tensor.initialized()) {
1904 1905
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1906 1907
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1908 1909
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1910 1911 1912 1913 1914
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1915 1916
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1917 1918 1919 1920
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1921 1922
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1923 1924 1925 1926
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1927 1928
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1929 1930
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1931

1932 1933 1934
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1935 1936 1937
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1938
                     "function _use_gpudnn is only effective for DenseTensor"));
1939

1940
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1941

1942
  // Set the same use_gpudnn attribute, return directly
1943 1944 1945 1946
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1947
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1948 1949 1950
    return ToPyObject(self->tensor);
  }

1951
  // Share all other members of Tensor except use_gpudnn
1952
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1953
  target_dense_meta.use_gpudnn = use_gpudnn;
1954 1955 1956 1957
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1958
  paddle::Tensor target_tensor(
1959 1960 1961 1962
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1963
          << " set use_gpudnn = " << use_gpudnn;
1964 1965 1966 1967 1968

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1969 1970
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1971 1972
                                         PyObject* kwargs) {
  EAGER_TRY
1973
  using Vocab = paddle::framework::Vocab;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1986
  using Strings = paddle::framework::Strings;
1987
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
2000 2001
      egr::IsVariableCompatTensor(self->tensor),
      true,
2002 2003
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
2004
  using Vocab = paddle::framework::Vocab;
2005 2006 2007 2008 2009 2010
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
PyDoc_STRVAR(tensor_method_nnz__doc__,
             R"DOC(nnz($self, /)
--

Note:
    **This API is only available for SparseCooTensor or SparseCsrTensor.**

Returns the total number of non zero elements in input SparseCooTensor/SparseCsrTensor.

Returns:
    int

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.nnz()
        # 3

)DOC");

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
PyDoc_STRVAR(tensor_method_indices__doc__,
             R"DOC(indices($self, /)
--

Note:
    **This API is only available for SparseCooTensor.**

Returns the indices of non zero elements in input SparseCooTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.indices()
        # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [[0, 1, 2],
        #         [1, 2, 0]])

)DOC");

2086 2087 2088 2089 2090 2091 2092 2093 2094
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
2095
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2096 2097 2098 2099 2100
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
PyDoc_STRVAR(tensor_method_values__doc__,
             R"DOC(values($self, /)
--

Note:
    **This API is only available for SparseCooTensor or SparseCsrTensor.**

Returns the values of non zero elements in input SparseCooTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.values()
        # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
        #        [1., 2., 3.])

)DOC");

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
2140
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2141 2142 2143 2144 2145
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2146
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2147 2148 2149 2150 2151 2152
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
PyDoc_STRVAR(tensor_method_crows__doc__,
             R"DOC(crows($self, /)
--

Note:
    **This API is only available for SparseCsrTensor.**

Returns the compressed row index of non zero elements in input SparseCsrTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.crows()
        # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [0, 2, 3, 5])

)DOC");

2181 2182 2183 2184 2185 2186 2187 2188 2189
static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2190
  paddle::Tensor tensor(
2191 2192 2193 2194 2195
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
PyDoc_STRVAR(tensor_method_cols__doc__,
             R"DOC(cols($self, /)
--

Note:
    **This API is only available for SparseCsrTensor.**

Returns the column index of non zero elements in input SparseCsrTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.cols()
        # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [1, 3, 2, 0, 1])

)DOC");

2224 2225 2226 2227 2228 2229 2230 2231 2232
static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2233
  paddle::Tensor tensor(
2234 2235 2236 2237 2238
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
PyDoc_STRVAR(tensor_method_is_dense__doc__, R"DOC(is_dense($self, /)
--

Whether the Tensor is a Dense Tensor.

Returns:
    Whether the Tensor is a Dense Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dense())
)DOC");

2256 2257
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
2258 2259 2260 2261 2262 2263 2264 2265 2266
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
PyDoc_STRVAR(tensor_method_is_dist__doc__, R"DOC(is_dist($self, /)
--

Whether the Tensor is a Distributed Tensor.

Returns:
    Whether the Tensor is a Distributed Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dist()) # False
)DOC");

L
LiYuRio 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
PyDoc_STRVAR(tensor_is_sparse__doc__,
             R"DOC(is_sparse($self, /)
--

Returns whether the input Tensor is SparseCooTensor or SparseCsrTensor.

When input is SparseCooTensor/SparseCsrTensor, will return True. When input is DenseTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.is_sparse()
        # True

)DOC");
2319 2320
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
2321 2322
                                         PyObject* kwargs) {
  EAGER_TRY
2323 2324 2325
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2326 2327 2328 2329 2330
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
PyDoc_STRVAR(tensor_is_sparse_coo__doc__,
             R"DOC(is_sparse_coo($self, /)
--

Returns whether the input Tensor is SparseCooTensor.

When input is SparseCooTensor, will return True. When input is DenseTensor/SparseCsrTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.is_sparse_coo()
        # True

)DOC");

2356 2357
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
2358 2359
                                             PyObject* kwargs) {
  EAGER_TRY
2360 2361 2362
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2363 2364 2365 2366
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
PyDoc_STRVAR(tensor_is_sparse_csr__doc__,
             R"DOC(is_sparse_csr($self, /)
--

Returns whether the input Tensor is SparseCsrTensor.

When input is SparseCsrTensor, will return True. When input is DenseTensor/SparseCooTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.is_sparse_csr()
        # True

)DOC");

2393 2394
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
2395 2396
                                             PyObject* kwargs) {
  EAGER_TRY
2397 2398 2399
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2400 2401 2402 2403
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
PyDoc_STRVAR(tensor_to_sparse_csr__doc__,
             R"DOC(to_sparse_csr($self, /)
--

Note:
    **This API is only available for DenseTensor or SparseCooTensor.**

Convert input Tensor to SparseCsrTensor.

When input is SparseCooTensor, will convert `COO` to `CSR` . When input is DenseTensor, will convert `Dense` to `CSR` .

Returns:
    SparseCsrTensor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.to_sparse_csr()
        # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
        #        crows=[0, 1, 2, 3],
        #        cols=[1, 2, 0],
        #        values=[1., 2., 3.])

)DOC");

2435 2436
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
PyDoc_STRVAR(tensor_is_same_shape__doc__,
             R"DOC(is_same_shape($self, y, /)
--

Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.

Args:
    x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
    y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.

Returns:
    bool: True for same shape and False for different shape.

Examples:

    .. code-block:: python

        import paddle

        x = paddle.rand([2, 3, 8])
        y = paddle.rand([2, 3, 8])
        y = y.to_sparse_csr()
        z = paddle.rand([2, 5])

        x.is_same_shape(y)
        # True
        x.is_same_shape(z)
        # False

)DOC");

2482 2483 2484 2485 2486 2487 2488 2489 2490
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2491 2492
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2493 2494 2495 2496 2497 2498 2499 2500
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2501 2502
PyDoc_STRVAR(tensor_method_element_size__doc__,  // NOLINT
             R"DOC(element_size($self, /)
W
wanghuancoder 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2531 2532
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2533 2534
                                            PyObject* kwargs) {
  EAGER_TRY
2535
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2536 2537 2538 2539 2540

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2541
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,  // NOLINT
W
wanghuancoder 已提交
2542 2543 2544
             R"DOC(_bump_inplace_version($self, /)
--

2545
Note:
W
wanghuancoder 已提交
2546 2547
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
2548

W
wanghuancoder 已提交
2549 2550
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2551 2552 2553 2554 2555
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2556
  RETURN_PY_NONE
2557 2558 2559
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2560 2561 2562 2563
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2564 2565 2566
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2567 2568 2569 2570
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2571 2572
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2594
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2595 2596 2597 2598
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2599 2600
  RETURN_PY_NONE

2601 2602 2603
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2604 2605
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2606 2607 2608
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2609 2610
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2627 2628 2629 2630 2631
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2632 2633 2634 2635 2636
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2637 2638
  RETURN_PY_NONE

W
wanghuancoder 已提交
2639 2640 2641 2642
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2643 2644
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2645 2646 2647 2648
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2649 2650
      t->IsInitialized(),
      true,
2651 2652 2653 2654 2655 2656 2657
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2658 2659
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2660 2661
                                   PyObject* kwargs) {
  EAGER_TRY
2662
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2663 2664 2665 2666 2667 2668
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2669 2670 2671 2672
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2673 2674
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2675 2676
                                    PyObject* kwargs) {
  EAGER_TRY
2677
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2678 2679 2680 2681 2682 2683
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2684 2685

  if (!grad->defined()) {
2686
    RETURN_PY_NONE
2687 2688
  }
  if (grad->is_dense_tensor()) {
2689
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2690 2691 2692 2693
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2694
    RETURN_PY_NONE
2695 2696 2697 2698
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
static PyObject* tensor__local_value(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
    phi::distributed::DistTensor* dist_tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
    paddle::Tensor result(
        std::make_shared<phi::DenseTensor>(dist_tensor->value()));
    return ToPyObject(result);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "The `_local_value` method of (Dist)Tensor is not supported "
        "in the current PaddlePaddle, please recompile and install "
        "PaddlePaddle "
        "with the option of `WITH_DISTRIBUTE=ON`."));
#endif
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2723 2724
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2725 2726
                                          PyObject* kwargs) {
  EAGER_TRY
2727
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2728 2729 2730 2731 2732 2733
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2734

2735
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2736 2737 2738 2739 2740 2741 2742 2743 2744
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
PyDoc_STRVAR(tensor_data_ptr__doc__,
             R"DOC(data_ptr($self, /)
--

Returns the address of the first element of current Tensor.

Returns:
    int, The address of the first element of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        print(x.data_ptr())
)DOC");

2763 2764 2765 2766 2767
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2768 2769 2770 2771
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2772 2773 2774 2775 2776
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
PyDoc_STRVAR(tensor_get_strides__doc__,
             R"DOC(get_strides($self, /)
--

Returns the strides of current Tensor.

Returns:
    List, the strides of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.get_strides())
)DOC");

W
wanghuancoder 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
PyDoc_STRVAR(tensor_contiguous__doc__,
             R"DOC(contiguous($self, /)
--

Returns a contiguous in memory tensor containing the same data as current Tensor.
If self tensor is already contiguous, this function returns the current Tensor.

Returns:
    Tensor, The contiguous Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        y = y.contiguous()
        print(y)
)DOC");

W
wanghuancoder 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
W
wanghuancoder 已提交
2862 2863 2864 2865
      self->tensor.set_impl(std::make_shared<phi::DenseTensor>(std::move(
          paddle::experimental::Trans2Contiguous(*(dense_tensor.get())))));
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
W
wanghuancoder 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
PyDoc_STRVAR(tensor_is_contiguous__doc__,
             R"DOC(is_contiguous($self, /)
--

Whether the Tensor is contiguous.

Returns:
    Bool, Whether the Tensor is contiguous.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.is_contiguous())
)DOC");
W
wanghuancoder 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2907
#if defined(PADDLE_WITH_CUDA)
2908 2909
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2910 2911 2912
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2913 2914
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2915 2916 2917
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2918 2919
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2920 2921 2922 2923
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2924
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2925 2926
  tensor_uva(self_tensor, device_id);

2927 2928
  RETURN_PY_NONE

2929 2930 2931
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2944

2945
PyMethodDef variable_methods[] = {  // NOLINT
2946
    {"numpy",
2947
     (PyCFunction)(void (*)())tensor_method_numpy,
2948
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2949
     tensor_method_numpy__doc__},
2950
    {"_is_initialized",
2951
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2952
     METH_VARARGS | METH_KEYWORDS,
2953
     nullptr},
W
wanghuancoder 已提交
2954
    {"_is_dense_tensor_hold_allocation",
2955 2956
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2957
     METH_VARARGS | METH_KEYWORDS,
2958
     nullptr},
2959
    {"_copy_to",
2960
     (PyCFunction)(void (*)())tensor_method__copy_to,
2961
     METH_VARARGS | METH_KEYWORDS,
2962
     nullptr},
2963
    {"copy_",
2964
     (PyCFunction)(void (*)())tensor_method_copy_,
2965
     METH_VARARGS | METH_KEYWORDS,
2966
     nullptr},
2967
    {"clone",
2968
     (PyCFunction)(void (*)())tensor_method_clone,
2969
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2970
     tensor_method_clone__doc__},
2971
    {"reconstruct_from_",
2972
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2973
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2974
     tensor_reconstruct_from___doc__},
2975
    {"retain_grads",
2976
     (PyCFunction)(void (*)())tensor_retain_grads,
2977
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2978
     tensor_method_retain_grads__doc__},
2979
    {"clear_gradient",
2980
     (PyCFunction)(void (*)())tensor_clear_gradient,
2981
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2982
     tensor_clear_gradient__doc__},
2983
    {"is_dense",
2984
     (PyCFunction)(void (*)())tensor_method_is_dense,
2985
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2986
     tensor_method_is_dense__doc__},
L
LiYuRio 已提交
2987
    {"is_dist",
2988
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2989
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2990
     tensor_method_is_dist__doc__},
2991
    {"_zero_grads",
2992
     (PyCFunction)(void (*)())tensor__zero_grads,
2993
     METH_VARARGS | METH_KEYWORDS,
2994
     nullptr},
2995
    {"_share_buffer_to",
2996
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2997
     METH_VARARGS | METH_KEYWORDS,
2998
     nullptr},
2999
    {"_is_shared_buffer_with",
3000
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
3001
     METH_VARARGS | METH_KEYWORDS,
3002
     nullptr},
3003
    {"_share_underline_tensor_to",
3004
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
3005
     METH_VARARGS | METH_KEYWORDS,
3006
     nullptr},
3007
    {"_is_shared_underline_tensor_with",
3008
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
3009
     METH_VARARGS | METH_KEYWORDS,
3010
     nullptr},
3011
    {"detach",
3012
     (PyCFunction)(void (*)())tensor_method_detach,
3013
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3014
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
3015 3016 3017
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3018
     tensor_method_detach___doc__},
3019
    {"get_tensor",
3020
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
3021
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3022
     tensor_method_get_tensor__doc__},
3023
    {"get_selected_rows",
3024
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
3025
     METH_VARARGS | METH_KEYWORDS,
3026
     nullptr},
3027
    {"_get_tensor_from_selected_rows",
3028
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
3029
     METH_VARARGS | METH_KEYWORDS,
3030
     nullptr},
J
Jiabin Yang 已提交
3031
    {"_getitem_index_not_tensor",
3032
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
3033
     METH_VARARGS | METH_KEYWORDS,
3034
     nullptr},
W
wanghuancoder 已提交
3035
    {"_getitem_from_offset",
3036
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
3037
     METH_VARARGS | METH_KEYWORDS,
3038
     nullptr},
W
wanghuancoder 已提交
3039
    {"__setitem_eager_tensor__",
3040
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
3041
     METH_VARARGS | METH_KEYWORDS,
3042
     nullptr},
3043
    {"_register_grad_hook",
3044
     (PyCFunction)(void (*)())tensor_register_grad_hook,
3045
     METH_VARARGS | METH_KEYWORDS,
3046
     nullptr},
3047 3048 3049 3050
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
3051
    {"_remove_grad_hook",
3052
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
3053
     METH_VARARGS | METH_KEYWORDS,
3054
     nullptr},
3055
    {"_register_backward_hook",
3056
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
3057
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3058
     tensor_method__register_reduce_hook__doc__},
3059
    {"_set_grad_type",
3060
     (PyCFunction)(void (*)())tensor__set_grad_type,
3061
     METH_VARARGS | METH_KEYWORDS,
3062
     nullptr},
3063
    {"_clear",
3064
     (PyCFunction)(void (*)())tensor__clear,
3065
     METH_VARARGS | METH_KEYWORDS,
3066
     nullptr},
3067
    {"_clear_dataptr",
3068
     (PyCFunction)(void (*)())tensor__clear_dataptr,
3069
     METH_VARARGS | METH_KEYWORDS,
3070
     nullptr},
J
Jiabin Yang 已提交
3071
    {"_copy_gradient_from",
3072
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
3073
     METH_VARARGS | METH_KEYWORDS,
3074
     nullptr},
3075
    {"_tensor_use_gpudnn",
3076
     (PyCFunction)(void (*)())tensor__use_gpudnn,
3077
     METH_VARARGS | METH_KEYWORDS,
3078
     nullptr},
3079 3080
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
3081
     (PyCFunction)(void (*)())tensor_method_set_string_list,
3082
     METH_VARARGS | METH_KEYWORDS,
3083
     nullptr},
3084
    {"set_vocab",
3085
     (PyCFunction)(void (*)())tensor_method_set_vocab,
3086
     METH_VARARGS | METH_KEYWORDS,
3087
     nullptr},
3088
    {"get_map_tensor",
3089
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
3090
     METH_VARARGS | METH_KEYWORDS,
3091
     nullptr},
3092
    /***the method of sparse tensor****/
3093
    {"nnz",
3094
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
3095
     METH_VARARGS | METH_KEYWORDS,
3096
     tensor_method_nnz__doc__},
3097
    {"indices",
3098
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
3099
     METH_VARARGS | METH_KEYWORDS,
3100
     tensor_method_indices__doc__},
3101
    {"values",
3102
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
3103
     METH_VARARGS | METH_KEYWORDS,
3104
     tensor_method_values__doc__},
3105
    {"crows",
3106
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
3107
     METH_VARARGS | METH_KEYWORDS,
3108
     tensor_method_crows__doc__},
3109
    {"cols",
3110
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
3111
     METH_VARARGS | METH_KEYWORDS,
3112
     tensor_method_cols__doc__},
3113
    {"is_sparse",
3114
     (PyCFunction)(void (*)())tensor_method_is_sparse,
3115
     METH_VARARGS | METH_KEYWORDS,
3116
     tensor_is_sparse__doc__},
3117
    {"is_sparse_coo",
3118
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
3119
     METH_VARARGS | METH_KEYWORDS,
3120
     tensor_is_sparse_coo__doc__},
3121
    {"is_sparse_csr",
3122
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
3123
     METH_VARARGS | METH_KEYWORDS,
3124
     tensor_is_sparse_csr__doc__},
3125
    {"is_same_shape",
3126
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
3127
     METH_VARARGS | METH_KEYWORDS,
3128
     tensor_is_same_shape__doc__},
3129
    {"to_sparse_csr",
3130
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
3131
     METH_VARARGS | METH_KEYWORDS,
3132 3133
     tensor_to_sparse_csr__doc__},
    /***the method of sparse tensor****/
3134
    {"element_size",
3135
     (PyCFunction)(void (*)())tensor_method_element_size,
3136
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3137
     tensor_method_element_size__doc__},
3138
    {"_inplace_version",
3139
     (PyCFunction)(void (*)())tensor__inplace_version,
3140
     METH_VARARGS | METH_KEYWORDS,
3141
     nullptr},
3142
    {"_bump_inplace_version",
3143
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
3144
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3145
     tensor_method__bump_inplace_version__doc__},
3146
    {"is_selected_rows",
3147
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
3148
     METH_VARARGS | METH_KEYWORDS,
3149
     nullptr},
3150
    {"rows",
3151
     (PyCFunction)(void (*)())tensor_method_get_rows,
3152
     METH_VARARGS | METH_KEYWORDS,
3153
     nullptr},
3154
    {"_reset_grad_inplace_version",
3155
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
3156
     METH_VARARGS | METH_KEYWORDS,
3157
     nullptr},
3158
    {"_share_memory",
3159
     (PyCFunction)(void (*)())tensor_method__share_memory,
3160
     METH_VARARGS | METH_KEYWORDS,
3161
     nullptr},
3162
    {"_offset",
3163
     (PyCFunction)(void (*)())tensor__offset,
3164
     METH_VARARGS | METH_KEYWORDS,
3165
     nullptr},
3166
    {"_grad_name",
3167
     (PyCFunction)(void (*)())tensor__grad_name,
3168
     METH_VARARGS | METH_KEYWORDS,
3169
     nullptr},
3170
    {"_grad_value",
3171
     (PyCFunction)(void (*)())tensor__grad_value,
3172
     METH_VARARGS | METH_KEYWORDS,
3173
     nullptr},
L
LiYuRio 已提交
3174 3175 3176 3177
    {"_local_value",
     (PyCFunction)(void (*)())tensor__local_value,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
3178
    {"_unset_fake_empty",
3179
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
3180
     METH_VARARGS | METH_KEYWORDS,
3181
     nullptr},
3182
    {"data_ptr",
3183
     (PyCFunction)(void (*)())tensor_data_ptr,
3184
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3185
     tensor_data_ptr__doc__},
W
wanghuancoder 已提交
3186
    {"_grad_ivar",
3187
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
3188
     METH_VARARGS | METH_KEYWORDS,
3189
     nullptr},
W
wanghuancoder 已提交
3190 3191 3192
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3193
     tensor_contiguous__doc__},
W
wanghuancoder 已提交
3194 3195 3196
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3197
     tensor_is_contiguous__doc__},
W
wanghuancoder 已提交
3198 3199 3200
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3201
     tensor_get_strides__doc__},
3202
#if defined(PADDLE_WITH_CUDA)
3203
    {"_tensor_uva",
3204
     (PyCFunction)(void (*)())tensor_method__uva,
3205
     METH_VARARGS | METH_KEYWORDS,
3206
     nullptr},
3207
#endif
3208
    {nullptr, nullptr, 0, nullptr}};
3209

J
Jack Zhou 已提交
3210
// variable_methods for core.eager.StringTensor
3211
PyMethodDef string_tensor_variable_methods[] = {  // NOLINT
J
Jack Zhou 已提交
3212
    {"numpy",
3213
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
3214
     METH_VARARGS | METH_KEYWORDS,
3215
     nullptr},
J
Jack Zhou 已提交
3216
    {"_is_initialized",
3217
     (PyCFunction)(void (*)())tensor_method__is_initialized,
3218
     METH_VARARGS | METH_KEYWORDS,
3219
     nullptr},
J
Jack Zhou 已提交
3220
    {"_is_string_tensor_hold_allocation",
3221 3222
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
3223
     METH_VARARGS | METH_KEYWORDS,
3224
     nullptr},
J
Jack Zhou 已提交
3225
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
3226
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
3227

3228 3229
}  // namespace pybind
}  // namespace paddle