eager_method.cc 80.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20
#include <Python.h>

#include <string>
21
#include <unordered_map>
22 23
#include <vector>

24
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
25
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
27
#include "paddle/fluid/eager/autograd_meta.h"
28 29
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
30
#include "paddle/fluid/eager/utils.h"
31
#include "paddle/fluid/framework/convert_utils.h"
32 33 34 35 36 37
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
38
#include "paddle/fluid/pybind/slice_utils.h"
39
#include "paddle/fluid/pybind/uva_utils.h"
40 41 42 43
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
44 45
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
46
#include "pybind11/detail/internals.h"
47 48
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
49
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
50
#include "paddle/fluid/eager/amp_utils.h"
51
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
52
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
53
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
54
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
56
#include "paddle/phi/core/ddim.h"
57
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
58

59 60 61
namespace paddle {
namespace pybind {

62 63
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
64
                                     const paddle::platform::Place& place,
65
                                     bool zero_copy);
66

67
extern PyTypeObject* p_tensor_type;
68

J
Jiabin Yang 已提交
69 70 71 72 73
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
74 75
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

93 94
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
95 96
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
97 98 99 100 101 102 103 104 105
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
106 107 108 109 110
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
111 112 113 114 115
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
116 117
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
118
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
119 120 121 122 123 124 125 126
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
127

128
  PyObject* array = api.PyArray_NewFromDescr_(
129 130 131 132 133 134
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(),
      py_dims,
      py_strides,
      nullptr,
135 136 137 138
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
139
  if (!self->tensor.impl()->initialized()) {
140 141 142 143
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
144 145 146 147 148 149
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
150 151 152 153 154
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
155 156 157
    return array;
  }

158
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
159
    eager_gil_scoped_release guard;
160
    platform::CPUPlace place;
161 162 163 164
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
165 166
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
167 168 169 170 171

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
172 173 174
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
175 176 177 178 179 180 181 182
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
183 184 185
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
186 187
    }

188
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
189
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
190
    eager_gil_scoped_release guard;
191 192 193 194 195
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
196 197 198 199
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
200 201
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
202
      paddle::platform::GpuMemcpySync(
203 204
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
205 206
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
207
          kind);
208 209 210 211 212
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
213 214
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
215 216
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
217
          kind);
218
    }
219
#endif
C
Chen Weihang 已提交
220 221 222 223 224 225 226
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
227 228
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
C
Chen Weihang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
247 248
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
249
    eager_gil_scoped_release guard;
250 251 252 253
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
254 255
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
              paddle::framework::DataTypeSize(dense_tensor->dtype()) *
                  dense_tensor->numel());
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
              paddle::framework::DataTypeSize(dense_tensor->dtype()) *
                  dense_tensor->numel());
    }
#endif
274 275 276
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
277
    RETURN_PY_NONE
278 279 280 281 282 283
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
299 300 301 302 303
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
317 318
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
342 343 344
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
345 346 347 348
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
349
    RETURN_PY_NONE
J
Jack Zhou 已提交
350 351 352 353
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

354 355 356 357
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
358
  return ToPyObject(self->tensor.initialized());
359 360 361
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
static void IncreaseTensorReferenceCountUntilCopyComplete(
    const paddle::experimental::Tensor& tensor, const platform::Place& place) {
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

394 395
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
396 397
                                        PyObject* kwargs) {
  EAGER_TRY
398 399
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
400 401 402 403 404 405 406 407 408 409 410
  paddle::experimental::Tensor cp_tensor;
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
411
  }
412 413 414 415
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

416 417
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
418 419
                                   PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
420 421 422 423 424 425 426 427 428
  paddle::experimental::Tensor cp_tensor;
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
429 430 431 432
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

433 434 435 436
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
437 438 439
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
440 441
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
442
  self->tensor = src_tensor;
443 444

  // Recover source name
445
  self->tensor.set_name(orig_name);
446 447

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
448
          << " to " << self->tensor.name();
449 450
  RETURN_PY_NONE

451 452 453
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

454 455
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
456 457
                                     PyObject* kwargs) {
  EAGER_TRY
458 459
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
460
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
461
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
462
          << self->tensor.name();
463
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
464
    eager_gil_scoped_release guard;
465
    egr::EagerUtils::autograd_meta(&(self->tensor))
466 467
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
468
    egr::EagerUtils::autograd_meta(&(self->tensor))
469 470
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
471
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
472
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
473 474 475
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
476
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
477
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
478
    }
479 480
  }

481
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
482
          << self->tensor.name();
483 484
  RETURN_PY_NONE

485 486 487
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

488 489 490 491
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
492 493 494 495 496 497 498 499 500 501
  paddle::experimental::Tensor out;
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
502

W
wanghuancoder 已提交
503 504
    out = assign_ad_func(self->tensor);
  }
505 506 507 508
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

509 510
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
511
                                     PyObject* kwargs) {
512
  EAGER_TRY
513
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
514
    eager_gil_scoped_release guard;
515
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
516
    if (!meta->GetMutableGradNode()) {
517
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
518
              << "become accumulation node";
519
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
520
    }
521
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
522
  }
523 524
  RETURN_PY_NONE

525 526 527
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

528 529
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
530
                                       PyObject* kwargs) {
531
  EAGER_TRY
532
  VLOG(4) << "ClearGradient " << self->tensor.name();
533

534 535 536
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
537
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
538 539
  }

540
  paddle::experimental::Tensor* grad;
J
Jiabin Yang 已提交
541 542
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
543 544 545 546 547 548
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
549
  } else {
550
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
551
    grad = meta->MutableGrad();
552 553
  }

554
  if (grad->impl()) {
W
wanghuancoder 已提交
555
    eager_gil_scoped_release guard;
556 557 558 559 560 561 562 563 564 565
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
566 567 568 569
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
570 571 572 573 574
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
575 576 577 578 579 580 581
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
582 583
      }
    }
584
  }
585

586 587
  RETURN_PY_NONE

588 589 590
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

591 592
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
593
                                    PyObject* kwargs) {
594
  EAGER_TRY
595
  VLOG(4) << "ZeroGrads " << self->tensor.name();
596

597
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
598
    eager_gil_scoped_release guard;
599
    // Add RetainGrad as PostHook to AccumulationNode
600 601 602 603 604 605 606 607
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
608 609 610 611 612 613 614
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
615
    }
616
  } else {
W
wanghuancoder 已提交
617
    eager_gil_scoped_release guard;
618
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
619
    if (meta->MutableGrad()->initialized()) {
620 621 622 623 624 625 626 627 628
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
629
    }
630 631
  }

632 633
  RETURN_PY_NONE

634 635 636
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

637 638
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
639 640
                                         PyObject* kwargs) {
  EAGER_TRY
641 642
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
643 644
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
645 646 647
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
648
                        self->tensor.name()));
649
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
650 651 652
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
653
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
654
  dst_tensor->ShareBufferWith(*src_tensor);
655
  dst_tensor->ShareDataTypeWith(*src_tensor);
656 657
  RETURN_PY_NONE

658 659 660
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

661 662 663 664
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
665 666
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
667 668
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
669 670 671
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
672
                        self->tensor.name()));
673
  bool res = false;
674
  if (!self->tensor.defined() || !dst_ptr->defined()) {
675 676
    return ToPyObject(res);
  }
677 678
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
679 680 681 682 683
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

684 685 686 687
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
688 689
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
690 691
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
692 693 694
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
695 696
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
697 698
  RETURN_PY_NONE

699 700 701
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

702 703 704 705
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
706 707
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
708 709
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
710 711 712 713 714
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
715
  if (!self->tensor.defined() || !src_tensor.defined()) {
716 717
    return ToPyObject(res);
  }
718
  res = (self->tensor.impl().get() == src_tensor.impl().get());
719 720 721 722
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

723 724
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
725 726
                                      PyObject* kwargs) {
  EAGER_TRY
727
  PADDLE_ENFORCE_EQ(
728 729
      self->tensor.initialized(),
      true,
730
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
731
                                        self->tensor.name()));
732

733
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
734
  if (obj) {
735 736 737 738 739 740
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
741 742 743 744 745 746 747 748 749 750
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

751 752 753 754
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
755
  if (!self->tensor.defined()) {
756 757 758
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
759
  }
760
  if (self->tensor.is_dense_tensor()) {
761
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
762 763 764
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
765
    RETURN_PY_NONE
766 767 768 769
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

770 771 772 773 774
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
775
    RETURN_PY_NONE
776 777 778 779 780 781
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
782
    RETURN_PY_NONE
783 784 785 786
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

801 802
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
803 804 805 806 807 808 809 810 811 812 813
  VLOG(1) << "dense_tensor: " << dense_tensor->IsInitialized();

  auto t = paddle::experimental::Tensor(
      egr::Controller::Instance().GenerateUniqueName());
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
814 815 816
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
817
  EAGER_TRY
J
Jiabin Yang 已提交
818 819 820 821 822 823
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
824 825
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
826
  PADDLE_ENFORCE_EQ(
827
      self->tensor.defined(),
828
      true,
J
Jiabin Yang 已提交
829 830 831 832 833
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
834 835 836 837 838 839 840 841 842 843 844
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
866 867 868 869 870 871
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
872
    if (op_type == "slice") {
W
wanghuancoder 已提交
873
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
874 875 876 877 878 879
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
880
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
881
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
882
      out = strided_slice_ad_func(
883
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
W
wanghuancoder 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
      paddle::experimental::Tensor new_out;
      {
        eager_gil_scoped_release guard;
        // Deal with cases that decrease_axes is not empty
        // For example:
        // # x.shape: (2,3,4)
        // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for (auto& axis : none_axes) {
          int len = 0;
          for (int da : decrease_axis) {
            if (da < axis) {
              len++;
            }
J
Jiabin Yang 已提交
919
          }
W
wanghuancoder 已提交
920
          axis -= len;
J
Jiabin Yang 已提交
921
        }
W
wanghuancoder 已提交
922
        new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
923 924 925 926 927 928 929
      }
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
930
    eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
931 932 933
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
934
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
935 936
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
937 938
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
939
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
940
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
941 942 943
  }

  return ToPyObject(out);
944 945 946
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

947 948
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
949 950 951
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
952 953 954
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
955 956
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
957 958
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
976 977
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
978 979 980 981 982 983
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
984 985
        offset,
        numel,
W
wanghuancoder 已提交
986 987 988
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
989 990
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
991 992 993 994 995 996
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
997 998
          index,
          dims[i],
W
wanghuancoder 已提交
999
          platform::errors::InvalidArgument(
1000 1001 1002
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1034 1035 1036 1037 1038 1039
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1040 1041 1042 1043 1044
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1045 1046
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1124 1125 1126 1127 1128
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1172 1173 1174 1175 1176
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
1203 1204 1205 1206
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT16) {
          attrs["fp16_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
W
wanghuancoder 已提交
1207 1208 1209 1210
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1211
              "float32, int32, int64 or float16, "
W
wanghuancoder 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }

    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1228
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
        paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
      }
1240 1241
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1242 1243 1244 1245 1246 1247 1248 1249 1250
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1265
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1266
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1267 1268 1269 1270
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1271
#else
1272 1273 1274 1275
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1276 1277
#endif
    } else {
1278 1279
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1280 1281
    }
  }
1282 1283
  RETURN_PY_NONE

W
wanghuancoder 已提交
1284 1285 1286
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1287 1288
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1289 1290 1291 1292 1293
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1306 1307 1308 1309 1310 1311 1312 1313 1314
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1315 1316
        rank_info.first,
        rank_info.second,
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1329 1330
        rank_info.first,
        rank_info.second,
1331 1332 1333 1334 1335 1336
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1337 1338
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1351 1352
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1353 1354 1355 1356 1357 1358
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1359 1360
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1361 1362 1363 1364
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1365 1366 1367 1368
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1379
      std::make_shared<PyVoidHook>(hook_func));
1380

1381 1382
  RETURN_PY_NONE

1383 1384 1385
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1386 1387
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1388
                                       PyObject* kwargs) {
1389 1390 1391
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1392
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1393
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1394
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1395
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1396
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1397
  }
1398 1399
  RETURN_PY_NONE

1400 1401 1402
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1403 1404
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1405 1406 1407
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1408 1409
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1410 1411 1412
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1413 1414
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1415 1416 1417
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1418
  if (self->tensor.initialized()) {
1419 1420
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1421 1422
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1423 1424
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1425 1426 1427 1428 1429
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1430 1431
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1432 1433 1434 1435
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1436 1437
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1438 1439 1440 1441
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1442 1443
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1444 1445
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1446

1447 1448
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
                                         PyObject* kwargs) {
  EAGER_TRY
  using Vocab = std::unordered_map<std::wstring, int>;
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  using Strings = std::vector<std::string>;
  auto strings = CastPyArg2Strings(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1478 1479
      egr::IsVariableCompatTensor(self->tensor),
      true,
1480 1481 1482 1483 1484 1485 1486 1487 1488
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
  using Vocab = std::unordered_map<std::wstring, int>;
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1580 1581
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1582 1583 1584 1585 1586 1587 1588 1589 1590
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1591 1592
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1593 1594
                                         PyObject* kwargs) {
  EAGER_TRY
1595 1596 1597
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1598 1599 1600 1601 1602
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1603 1604
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1605 1606
                                             PyObject* kwargs) {
  EAGER_TRY
1607 1608 1609
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1610 1611 1612 1613
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1614 1615
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1616 1617
                                             PyObject* kwargs) {
  EAGER_TRY
1618 1619 1620
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1621 1622 1623 1624
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1625 1626
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1640 1641 1642 1643 1644 1645 1646 1647 1648
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1649 1650
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1651 1652 1653 1654 1655 1656 1657 1658
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1659 1660
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1661 1662 1663 1664 1665 1666 1667 1668
                                            PyObject* kwargs) {
  EAGER_TRY
  uint32_t element_size = framework::DataTypeSize(self->tensor.dtype());

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1669 1670 1671 1672 1673
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1674
  RETURN_PY_NONE
1675 1676 1677
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1678 1679 1680 1681
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1682 1683 1684
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1685 1686 1687 1688
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1689 1690
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1702 1703
static PyObject* tensor_methon_element_size(TensorObject* self,
                                            PyObject* args,
1704 1705 1706 1707 1708 1709
                                            PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(paddle::experimental::SizeOf(self->tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1726 1727
  RETURN_PY_NONE

1728 1729 1730
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1731 1732
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1733 1734 1735
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1736 1737
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1754 1755 1756 1757 1758
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1759 1760 1761 1762 1763
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1764 1765
  RETURN_PY_NONE

W
wanghuancoder 已提交
1766 1767 1768 1769
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1770 1771
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1772 1773 1774 1775
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1776 1777
      t->IsInitialized(),
      true,
1778 1779 1780 1781 1782 1783 1784
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1785 1786
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1787 1788 1789 1790
                                   PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1791 1792
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1793 1794 1795 1796 1797 1798 1799
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1800 1801
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1802 1803 1804 1805
                                    PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1806 1807
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1808 1809 1810 1811 1812
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1813
    RETURN_PY_NONE
1814 1815
  }
  if (grad->is_dense_tensor()) {
1816
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
1817 1818 1819 1820
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1821
    RETURN_PY_NONE
1822 1823 1824 1825
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1826 1827
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1828 1829 1830 1831
                                          PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1832 1833
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1848
#if defined(PADDLE_WITH_CUDA)
1849 1850
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1851 1852 1853
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1854 1855
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1856 1857 1858
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1859 1860
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1861 1862 1863 1864
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
1865
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1866 1867
  tensor_uva(self_tensor, device_id);

1868 1869
  RETURN_PY_NONE

1870 1871 1872
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1885

1886
PyMethodDef variable_methods[] = {
1887 1888 1889 1890
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1891
    {"_is_initialized",
1892
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1893 1894
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1895
    {"_is_dense_tensor_hold_allocation",
1896 1897
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1908 1909 1910 1911
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1912
    {"reconstruct_from_",
1913
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1936
    {"_is_shared_buffer_with",
1937
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
1938 1939
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1940
    {"_share_underline_tensor_to",
1941
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
1942 1943
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1944
    {"_is_shared_underline_tensor_with",
1945
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
1946 1947 1948 1949 1950 1951
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1952
    {"get_tensor",
1953
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
1954 1955
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1956 1957
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
1958 1959
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1960 1961 1962 1963
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
1964 1965
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
1966 1967
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1968 1969
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
1970 1971
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1972 1973
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
1974 1975
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1976 1977
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
1978 1979 1980 1981 1982 1983
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1984 1985
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
1996 1997
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
1998 1999
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2000 2001 2002
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
2003 2004 2005 2006 2007 2008
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2009 2010
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2011 2012
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2013
    /***the method of sparse tensor****/
2014 2015 2016 2017
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2046 2047 2048 2049
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2050 2051 2052 2053 2054 2055 2056 2057
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2058
    /***the method of sparse tensor****/
2059 2060 2061 2062
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2063 2064
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2065 2066
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2067 2068
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_methon_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2079 2080
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2103
#if defined(PADDLE_WITH_CUDA)
2104 2105 2106 2107
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2108
#endif
2109 2110
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2111 2112 2113 2114
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2115 2116
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2117 2118
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2119 2120
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2121
    {"_is_string_tensor_hold_allocation",
2122 2123
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2124 2125
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2126 2127 2128
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2129 2130
}  // namespace pybind
}  // namespace paddle