eager_method.cc 82.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/core/ddim.h"
62
#include "paddle/phi/core/tensor_utils.h"
63
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
64

65 66 67
namespace paddle {
namespace pybind {

68 69
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
70
                                     const paddle::platform::Place& place,
71
                                     bool zero_copy);
72

73
extern PyTypeObject* p_tensor_type;
74

J
Jiabin Yang 已提交
75 76 77
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
78
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
79
    PADDLE_ENFORCE_EQ(
80 81
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
82 83 84 85 86 87 88 89
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
90
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
91 92 93 94
        "method, when you reach this means we got another type index."));
  }
}

95 96
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
97 98
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
99 100 101 102 103 104 105 106 107
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
108 109 110 111 112
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
113 114 115 116 117
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
118 119
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
120
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
121 122
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
123
  size_t py_rank = tensor_dims.size();
124
  size_t numel = 1;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  if (py_rank == 0) {
    // 0D Tensor hack process to 1D numpy, will remove in future
    VLOG(0) << "Warning:: 0D Tensor cannot be used as Tensor.numpy()[0], Now "
               "0D will be changed to 1D numpy to avoid this problem, but it's "
               "not correct and will be removed in future. Please change "
               "'Tensor.numpy()[0]' to 'float(Tensor)' or "
               "'Tensor.numpy().item()' as soon as possible.";
    py_rank = 1;
    py_dims[0] = 1;
    py_strides[0] = sizeof_dtype * numel;
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
141
  }
W
wanghuancoder 已提交
142

143
  PyObject* array = api.PyArray_NewFromDescr_(
144 145 146 147 148 149
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(),
      py_dims,
      py_strides,
      nullptr,
150 151 152 153
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
154
  if (!self->tensor.impl()->initialized()) {
155 156 157 158
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
159 160 161 162 163 164
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
165 166 167 168 169
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
170 171 172
    return array;
  }

173
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
174
    eager_gil_scoped_release guard;
175
    platform::CPUPlace place;
176 177 178 179
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
180 181
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
182 183 184 185 186

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
187 188 189
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
190 191 192 193 194 195 196 197
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
198 199 200
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
201 202
    }

203
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
204
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
205
    eager_gil_scoped_release guard;
206 207 208 209 210
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
211 212 213 214
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
215 216
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
217
      paddle::platform::GpuMemcpySync(
218 219
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
220
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
221
          kind);
222 223 224 225 226
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
227 228
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
229
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
230
          kind);
231
    }
232
#endif
C
Chen Weihang 已提交
233 234 235 236 237 238 239
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
240 241
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
C
Chen Weihang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
260 261
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
262
    eager_gil_scoped_release guard;
263 264 265 266
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
267 268
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
269 270 271 272
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
273
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
274 275 276 277
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
278 279
      // TODO(qili93): temporary for ascned npu performance to be removed along
      // with npu_identity op
280
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
281 282 283 284 285
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
286 287 288 289
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
290
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
291 292
    }
#endif
293 294 295
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
296
    RETURN_PY_NONE
297 298 299 300 301 302
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
318 319 320 321 322
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
336 337
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
361 362 363
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
364 365 366 367
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
368
    RETURN_PY_NONE
J
Jack Zhou 已提交
369 370 371 372
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

373 374 375 376
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
377
  return ToPyObject(self->tensor.initialized());
378 379 380
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

395
static void IncreaseTensorReferenceCountUntilCopyComplete(
396
    const paddle::Tensor& tensor, const platform::Place& place) {
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

413 414
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
415 416
                                        PyObject* kwargs) {
  EAGER_TRY
417 418
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
419
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
420 421 422 423 424 425 426 427 428 429
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
430
  }
431 432 433 434
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

435 436
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
437 438
                                   PyObject* kwargs) {
  EAGER_TRY
439
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
440 441 442 443 444 445 446 447
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
448 449 450 451
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

452 453 454 455
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
456
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
457
  std::string orig_name = self->tensor.name();
458 459
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
460
  self->tensor = src_tensor;
461 462

  // Recover source name
463
  self->tensor.set_name(orig_name);
464 465

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
466
          << " to " << self->tensor.name();
467 468
  RETURN_PY_NONE

469 470 471
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

472 473
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
474 475
                                     PyObject* kwargs) {
  EAGER_TRY
476
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
477
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
478
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
479
          << self->tensor.name();
480
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
481
    eager_gil_scoped_release guard;
482
    egr::EagerUtils::autograd_meta(&(self->tensor))
483 484
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
485
    egr::EagerUtils::autograd_meta(&(self->tensor))
486 487
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
488
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
489
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
490 491 492
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
493
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
494
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
495
    }
496 497
  }

498
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
499
          << self->tensor.name();
500 501
  RETURN_PY_NONE

502 503 504
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

505 506 507 508
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
509
  paddle::Tensor out;
W
wanghuancoder 已提交
510 511 512 513 514 515 516 517 518
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
519

W
wanghuancoder 已提交
520 521
    out = assign_ad_func(self->tensor);
  }
522 523 524 525
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

526 527
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
528
                                     PyObject* kwargs) {
529
  EAGER_TRY
530
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
531
    eager_gil_scoped_release guard;
532
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
533
    if (!meta->GetMutableGradNode()) {
534
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
535
              << "become accumulation node";
536
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
537
    }
538
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
539
  }
540 541
  RETURN_PY_NONE

542 543 544
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

545 546
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
547
                                       PyObject* kwargs) {
548
  EAGER_TRY
549
  VLOG(4) << "ClearGradient " << self->tensor.name();
550

551 552 553
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
554
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
555 556
  }

557
  paddle::Tensor* grad;
J
Jiabin Yang 已提交
558 559
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
560 561 562 563 564 565
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
566
  } else {
567
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
568
    grad = meta->MutableGrad();
569 570
  }

571
  if (grad->impl()) {
W
wanghuancoder 已提交
572
    eager_gil_scoped_release guard;
573 574 575 576 577 578 579 580 581 582
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
583 584 585 586
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
587 588 589 590 591
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
592 593 594 595 596 597 598
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
599 600
      }
    }
601
  }
602

603 604
  RETURN_PY_NONE

605 606 607
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

608 609
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
610
                                    PyObject* kwargs) {
611
  EAGER_TRY
612
  VLOG(4) << "ZeroGrads " << self->tensor.name();
613

614
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
615
    eager_gil_scoped_release guard;
616
    // Add RetainGrad as PostHook to AccumulationNode
617
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
618 619 620 621 622 623
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
624 625 626 627 628 629 630
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
631
    }
632
  } else {
W
wanghuancoder 已提交
633
    eager_gil_scoped_release guard;
634
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
635
    if (meta->MutableGrad()->initialized()) {
636 637 638 639 640 641 642 643 644
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
645
    }
646 647
  }

648 649
  RETURN_PY_NONE

650 651 652
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

653 654
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
655 656
                                         PyObject* kwargs) {
  EAGER_TRY
657
  paddle::Tensor* dst_ptr =
658
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
659 660
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
661 662 663
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
664
                        self->tensor.name()));
665
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
666 667 668
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
669
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
670
  dst_tensor->ShareBufferWith(*src_tensor);
671
  dst_tensor->ShareDataTypeWith(*src_tensor);
672 673
  RETURN_PY_NONE

674 675 676
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

677 678 679 680
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
681
  paddle::Tensor* dst_ptr =
682
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
683 684
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
685 686 687
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
688
                        self->tensor.name()));
689
  bool res = false;
690
  if (!self->tensor.defined() || !dst_ptr->defined()) {
691 692
    return ToPyObject(res);
  }
693 694
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
695 696 697 698 699
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

700 701 702 703
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
704
  paddle::Tensor* src_ptr =
705
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
706 707
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
708 709 710
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
711 712
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
713 714
  RETURN_PY_NONE

715 716 717
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

718 719 720 721
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
722
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
723 724
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
725 726 727 728 729
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
730
  if (!self->tensor.defined() || !src_tensor.defined()) {
731 732
    return ToPyObject(res);
  }
733
  res = (self->tensor.impl().get() == src_tensor.impl().get());
734 735 736 737
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

738 739
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
740 741
                                      PyObject* kwargs) {
  EAGER_TRY
742
  PADDLE_ENFORCE_EQ(
743
      self->tensor.defined(),
744
      true,
745
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
746
                                        self->tensor.name()));
747

748
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
749
  if (obj) {
750
    auto v = reinterpret_cast<TensorObject*>(obj);
751
    new (&(v->tensor)) paddle::Tensor();
752 753 754 755
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
756 757 758 759 760 761 762 763 764 765
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

766 767 768 769
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
770
  if (!self->tensor.defined()) {
771 772 773
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
774
  }
775
  if (self->tensor.is_dense_tensor()) {
776
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
777 778 779
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
780
    RETURN_PY_NONE
781 782 783 784
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

785 786 787 788 789
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
790
    RETURN_PY_NONE
791 792 793 794 795 796
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
797
    RETURN_PY_NONE
798 799 800 801
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

816 817
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
818
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
819

820
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
821 822 823 824 825 826 827
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
828 829 830
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
831
  EAGER_TRY
J
Jiabin Yang 已提交
832 833 834 835 836 837
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
838 839
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
840
  PADDLE_ENFORCE_EQ(
841
      self->tensor.defined(),
842
      true,
J
Jiabin Yang 已提交
843 844 845 846 847
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
848 849 850 851 852 853 854 855 856 857 858
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
859

860 861 862 863
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
880 881 882 883 884 885
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
886
    if (op_type == "slice") {
W
wanghuancoder 已提交
887
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
888 889 890 891 892 893
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
894
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
895
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
896
      out = strided_slice_ad_func(
897
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
920
      paddle::Tensor new_out;
W
wanghuancoder 已提交
921 922 923 924 925 926 927 928 929 930 931 932
      {
        eager_gil_scoped_release guard;
        // Deal with cases that decrease_axes is not empty
        // For example:
        // # x.shape: (2,3,4)
        // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for (auto& axis : none_axes) {
          int len = 0;
          for (int da : decrease_axis) {
            if (da < axis) {
              len++;
            }
J
Jiabin Yang 已提交
933
          }
W
wanghuancoder 已提交
934
          axis -= len;
J
Jiabin Yang 已提交
935
        }
W
wanghuancoder 已提交
936
        new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
937 938 939 940 941 942 943
      }
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
944
    eager_gil_scoped_release guard;
945 946
    auto select_index =
        paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
947
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
948
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
949 950
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
951 952
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
953
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
954
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
955 956 957
  }

  return ToPyObject(out);
958 959 960
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

961 962
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
963 964 965
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
966 967 968
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
969 970
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
971 972
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
990 991
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
992 993 994 995 996 997
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
998 999
        offset,
        numel,
W
wanghuancoder 已提交
1000 1001 1002
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1003 1004
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1005 1006 1007 1008 1009 1010
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1011 1012
          index,
          dims[i],
W
wanghuancoder 已提交
1013
          platform::errors::InvalidArgument(
1014 1015 1016
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1048 1049 1050 1051 1052 1053
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1054 1055 1056 1057 1058
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1059 1060
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1138 1139 1140 1141 1142
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1143 1144
    }

1145
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1146 1147 1148 1149

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1150
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1186 1187 1188 1189 1190
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
1217 1218 1219 1220
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT16) {
          attrs["fp16_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
W
wanghuancoder 已提交
1221 1222 1223 1224
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1225
              "float32, int32, int64 or float16, "
W
wanghuancoder 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1241
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1242 1243
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1244
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1245 1246 1247 1248 1249 1250 1251
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1252 1253 1254
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1255
      }
1256 1257
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1258 1259 1260 1261 1262 1263 1264 1265 1266
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1281
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1282
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1283 1284 1285 1286
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1287
#else
1288 1289 1290 1291
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1292 1293
#endif
    } else {
1294 1295
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1296 1297
    }
  }
1298 1299
  RETURN_PY_NONE

W
wanghuancoder 已提交
1300 1301 1302
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1303 1304
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1305 1306 1307 1308 1309
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1322 1323 1324 1325 1326 1327 1328 1329 1330
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1331 1332
        rank_info.first,
        rank_info.second,
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1345 1346
        rank_info.first,
        rank_info.second,
1347 1348 1349 1350 1351 1352
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1353 1354
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1367 1368
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1369 1370 1371 1372 1373 1374
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1375 1376
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1377 1378 1379 1380
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1381 1382 1383 1384
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1395
      std::make_shared<PyVoidHook>(hook_func));
1396

1397 1398
  RETURN_PY_NONE

1399 1400 1401
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1402 1403
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1404
                                       PyObject* kwargs) {
1405 1406 1407
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1408
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1409
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1410
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1411
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1412
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1413
  }
1414 1415
  RETURN_PY_NONE

1416 1417 1418
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1419 1420
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1421 1422 1423
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1424 1425
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1426 1427 1428
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1429 1430
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1431 1432 1433
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1434
  if (self->tensor.initialized()) {
1435 1436
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1437 1438
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1439 1440
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1441 1442 1443 1444 1445
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1446 1447
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1448 1449 1450 1451
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1452 1453
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1454 1455 1456 1457
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1458 1459
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1460 1461
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1462

1463 1464 1465
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1466 1467 1468
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1469
                     "function _use_gpudnn is only effective for DenseTensor"));
1470

1471
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1472

1473
  // Set the same use_gpudnn attribute, return directly
1474 1475 1476 1477
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1478
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1479 1480 1481
    return ToPyObject(self->tensor);
  }

1482
  // Share all other members of Tensor except use_gpudnn
1483
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1484
  target_dense_meta.use_gpudnn = use_gpudnn;
1485 1486 1487 1488
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1489
  paddle::Tensor target_tensor(
1490 1491 1492 1493
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1494
          << " set use_gpudnn = " << use_gpudnn;
1495 1496 1497 1498 1499

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1500 1501
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1502 1503
                                         PyObject* kwargs) {
  EAGER_TRY
1504
  using Vocab = paddle::framework::Vocab;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1517
  using Strings = paddle::framework::Strings;
1518
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1531 1532
      egr::IsVariableCompatTensor(self->tensor),
      true,
1533 1534
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1535
  using Vocab = paddle::framework::Vocab;
1536 1537 1538 1539 1540 1541
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1563 1564 1565 1566 1567 1568 1569 1570 1571
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1572
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1590
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1591 1592 1593 1594 1595
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1596
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1612
  paddle::Tensor tensor(
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1627
  paddle::Tensor tensor(
1628 1629 1630 1631 1632
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1633 1634
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1635 1636 1637 1638 1639 1640 1641 1642 1643
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1644 1645
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1646 1647
                                         PyObject* kwargs) {
  EAGER_TRY
1648 1649 1650
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1651 1652 1653 1654 1655
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1656 1657
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1658 1659
                                             PyObject* kwargs) {
  EAGER_TRY
1660 1661 1662
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1663 1664 1665 1666
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1667 1668
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1669 1670
                                             PyObject* kwargs) {
  EAGER_TRY
1671 1672 1673
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1674 1675 1676 1677
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1678 1679
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1693 1694 1695 1696 1697 1698 1699 1700 1701
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1702 1703
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1704 1705 1706 1707 1708 1709 1710 1711
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1712 1713
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1714 1715
                                            PyObject* kwargs) {
  EAGER_TRY
1716
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
1717 1718 1719 1720 1721

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1722 1723 1724 1725 1726
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1727
  RETURN_PY_NONE
1728 1729 1730
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1731 1732 1733 1734
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1735 1736 1737
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1738 1739 1740 1741
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1742 1743
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

1765
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1766 1767 1768 1769
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1770 1771
  RETURN_PY_NONE

1772 1773 1774
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1775 1776
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1777 1778 1779
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1780 1781
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1798 1799 1800 1801 1802
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1803 1804 1805 1806 1807
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1808 1809
  RETURN_PY_NONE

W
wanghuancoder 已提交
1810 1811 1812 1813
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1814 1815
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1816 1817 1818 1819
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1820 1821
      t->IsInitialized(),
      true,
1822 1823 1824 1825 1826 1827 1828
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1829 1830
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1831 1832
                                   PyObject* kwargs) {
  EAGER_TRY
1833
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1834 1835
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1836 1837 1838 1839 1840 1841 1842
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1843 1844
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1845 1846
                                    PyObject* kwargs) {
  EAGER_TRY
1847
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1848 1849
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1850 1851 1852 1853 1854
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1855
    RETURN_PY_NONE
1856 1857
  }
  if (grad->is_dense_tensor()) {
1858
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
1859 1860 1861 1862
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1863
    RETURN_PY_NONE
1864 1865 1866 1867
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1868 1869
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1870 1871
                                          PyObject* kwargs) {
  EAGER_TRY
1872
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1873 1874
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1889 1890 1891 1892 1893
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
1894 1895 1896 1897
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
1898 1899 1900 1901 1902
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1918
#if defined(PADDLE_WITH_CUDA)
1919 1920
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1921 1922 1923
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1924 1925
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1926 1927 1928
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1929 1930
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1931 1932 1933 1934
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
1935
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1936 1937
  tensor_uva(self_tensor, device_id);

1938 1939
  RETURN_PY_NONE

1940 1941 1942
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1955

1956
PyMethodDef variable_methods[] = {
1957 1958 1959 1960
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1961
    {"_is_initialized",
1962
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1963 1964
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1965
    {"_is_dense_tensor_hold_allocation",
1966 1967
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1978 1979 1980 1981
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1982
    {"reconstruct_from_",
1983
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2006
    {"_is_shared_buffer_with",
2007
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
2008 2009
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2010
    {"_share_underline_tensor_to",
2011
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
2012 2013
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2014
    {"_is_shared_underline_tensor_with",
2015
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
2016 2017 2018 2019 2020 2021
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2022
    {"get_tensor",
2023
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
2024 2025
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2026 2027
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
2028 2029
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2030 2031 2032 2033
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2034 2035
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
2036 2037
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2038 2039
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
2040 2041
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2042 2043
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
2044 2045
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2046 2047
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
2048 2049 2050 2051 2052 2053
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2054 2055
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2066 2067
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
2068 2069
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2070 2071
    {"_tensor_use_gpudnn",
     (PyCFunction)(void (*)(void))tensor__use_gpudnn,
2072 2073
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2074 2075 2076
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
2077 2078 2079 2080 2081 2082
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2083 2084
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2085 2086
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2087
    /***the method of sparse tensor****/
2088 2089 2090 2091
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2120 2121 2122 2123
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2124 2125 2126 2127 2128 2129 2130 2131
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2132
    /***the method of sparse tensor****/
2133 2134 2135 2136
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2137 2138
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2139 2140
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2141 2142
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2143 2144 2145 2146 2147 2148
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2149 2150
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2173 2174 2175 2176
    {"data_ptr",
     (PyCFunction)(void (*)(void))tensor_data_ptr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2177 2178 2179 2180
    {"_grad_ivar",
     (PyCFunction)(void (*)(void))tensor__grad_ivar,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2181
#if defined(PADDLE_WITH_CUDA)
2182 2183 2184 2185
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2186
#endif
2187 2188
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2189 2190 2191 2192
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2193 2194
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2195 2196
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2197 2198
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2199
    {"_is_string_tensor_hold_allocation",
2200 2201
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2202 2203
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2204 2205 2206
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2207 2208
}  // namespace pybind
}  // namespace paddle