eager_method.cc 79.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20
#include <Python.h>

#include <string>
21
#include <unordered_map>
22 23
#include <vector>

24
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
25
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
27
#include "paddle/fluid/eager/autograd_meta.h"
28 29
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
30
#include "paddle/fluid/eager/utils.h"
31
#include "paddle/fluid/framework/convert_utils.h"
32 33 34 35 36 37
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
38
#include "paddle/fluid/pybind/slice_utils.h"
39
#include "paddle/fluid/pybind/uva_utils.h"
40 41 42 43
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
44 45
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
46
#include "pybind11/detail/internals.h"
47 48
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
49
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
50
#include "paddle/fluid/eager/amp_utils.h"
51
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
52
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
53
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
54
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
56
#include "paddle/phi/core/ddim.h"
57
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
58

59 60 61
namespace paddle {
namespace pybind {

62 63
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
64
                                     const paddle::platform::Place& place,
65
                                     bool zero_copy);
66

67
extern PyTypeObject* p_tensor_type;
68

J
Jiabin Yang 已提交
69 70 71 72 73
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
74 75
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

93 94
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
95 96
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
97 98 99 100 101 102 103 104 105
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
106 107 108 109 110
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
111 112 113 114 115
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
116 117
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
118
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
119 120 121 122 123 124 125 126
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
127

128
  PyObject* array = api.PyArray_NewFromDescr_(
129 130 131 132 133 134
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(),
      py_dims,
      py_strides,
      nullptr,
135 136 137 138
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
139
  if (!self->tensor.impl()->initialized()) {
140 141 142 143
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
144 145 146 147 148 149
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
150 151 152 153 154
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
155 156 157
    return array;
  }

158
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
159
    platform::CPUPlace place;
160 161 162 163 164 165 166 167 168 169 170
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
171 172 173
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
174 175 176 177 178 179 180 181
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
182 183 184
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
185 186
    }

187
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
188
  } else if (self->tensor.is_gpu()) {
189 190 191 192 193
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
194 195 196 197 198 199 200
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      paddle::platform::GpuMemcpySync(
201 202
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
203 204
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
205
          kind);
206 207 208 209 210
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
211 212
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
213 214
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
215
          kind);
216
    }
217
#endif
C
Chen Weihang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
              paddle::framework::DataTypeSize(dense_tensor->dtype()) *
                  dense_tensor->numel());
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
              paddle::framework::DataTypeSize(dense_tensor->dtype()) *
                  dense_tensor->numel());
    }
#endif
271 272 273
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
274
    RETURN_PY_NONE
275 276 277 278 279 280
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
296 297 298 299 300
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
    // Get the max unicode length of StringTensor to create numpy unicode string
    // array.
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
339 340 341
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
342 343 344 345
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
346
    RETURN_PY_NONE
J
Jack Zhou 已提交
347 348 349 350
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

351 352 353 354
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
355
  return ToPyObject(self->tensor.initialized());
356 357 358
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static void IncreaseTensorReferenceCountUntilCopyComplete(
    const paddle::experimental::Tensor& tensor, const platform::Place& place) {
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

391 392
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
393 394
                                        PyObject* kwargs) {
  EAGER_TRY
395 396
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
397
  auto cp_tensor = self->tensor.copy_to(place, blocking);
398 399 400
  if (!blocking) {
    IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
  }
401 402 403
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
404
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
405 406 407 408
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

409 410
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
411 412
                                   PyObject* kwargs) {
  EAGER_TRY
413
  auto cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
414 415 416 417 418 419 420 421
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

422 423 424 425
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
426 427 428
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
429 430
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
431
  self->tensor = src_tensor;
432 433

  // Recover source name
434
  self->tensor.set_name(orig_name);
435 436

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
437
          << " to " << self->tensor.name();
438 439
  RETURN_PY_NONE

440 441 442
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

443 444
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
445 446
                                     PyObject* kwargs) {
  EAGER_TRY
447 448
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
449
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
450
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
451
          << self->tensor.name();
452
  if (!self->tensor.initialized()) {
453
    egr::EagerUtils::autograd_meta(&(self->tensor))
454 455
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
456
    egr::EagerUtils::autograd_meta(&(self->tensor))
457 458
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
459
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
460
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
461 462 463
    }
  } else {
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
464
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
465
    }
466 467
  }

468
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
469
          << self->tensor.name();
470 471
  RETURN_PY_NONE

472 473 474
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY

  PADDLE_ENFORCE_EQ(
      self->tensor.initialized(),
      true,
      paddle::platform::errors::InvalidArgument(
          "We can only support initialized tensor in clone, however we got "
          "uninitialized tensor %s, please check your code.",
          self->tensor.name()));

  auto out = assign_ad_func(self->tensor);
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

493 494
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
495
                                     PyObject* kwargs) {
496
  EAGER_TRY
497
  if (egr::Controller::Instance().HasGrad()) {
498
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
499
    if (!meta->GetMutableGradNode()) {
500
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
501
              << "become accumulation node";
502
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
503
    }
504
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
505
  }
506 507
  RETURN_PY_NONE

508 509 510
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

511 512
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
513
                                       PyObject* kwargs) {
514
  EAGER_TRY
515
  VLOG(4) << "ClearGradient " << self->tensor.name();
516

517 518 519
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
520
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
521 522
  }

523
  paddle::experimental::Tensor* grad;
J
Jiabin Yang 已提交
524 525
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
526 527 528 529 530 531
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
532
  } else {
533
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
534
    grad = meta->MutableGrad();
535 536
  }

537 538 539 540 541 542 543 544 545 546 547
  if (grad->impl()) {
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
548 549 550 551
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
552 553 554 555 556
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
557 558 559 560 561 562 563
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
564 565
      }
    }
566
  }
567

568 569
  RETURN_PY_NONE

570 571 572
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

573 574
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
575
                                    PyObject* kwargs) {
576
  EAGER_TRY
577
  VLOG(4) << "ZeroGrads " << self->tensor.name();
578

579
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
580
    // Add RetainGrad as PostHook to AccumulationNode
581 582 583 584 585 586 587 588
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
589 590 591 592 593 594 595
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
596
    }
597
  } else {
598
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
599
    if (meta->MutableGrad()->initialized()) {
600 601 602 603 604 605 606 607 608
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
609
    }
610 611
  }

612 613
  RETURN_PY_NONE

614 615 616
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

617 618
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
619 620
                                         PyObject* kwargs) {
  EAGER_TRY
621 622
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
623 624
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
625 626 627
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
628
                        self->tensor.name()));
629
  auto* src_tensor =
630
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
631 632 633
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
634 635
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
636
  dst_tensor->ShareBufferWith(*src_tensor);
637
  dst_tensor->ShareDataTypeWith(*src_tensor);
638 639
  RETURN_PY_NONE

640 641 642
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

643 644 645 646
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
647 648
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
649 650
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
651 652 653
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
654
                        self->tensor.name()));
655
  bool res = false;
656
  if (!self->tensor.defined() || !dst_ptr->defined()) {
657 658 659
    return ToPyObject(res);
  }
  auto* self_ptr =
660
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
661 662 663 664 665 666 667
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

668 669 670 671
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
672 673
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
674 675
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
676 677 678
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
679 680
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
681 682
  RETURN_PY_NONE

683 684 685
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

686 687 688 689
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
690 691
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
692 693
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
694 695 696 697 698
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
699
  if (!self->tensor.defined() || !src_tensor.defined()) {
700 701
    return ToPyObject(res);
  }
702
  res = (self->tensor.impl().get() == src_tensor.impl().get());
703 704 705 706
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

707 708
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
709 710
                                      PyObject* kwargs) {
  EAGER_TRY
711
  PADDLE_ENFORCE_EQ(
712 713
      self->tensor.initialized(),
      true,
714
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
715
                                        self->tensor.name()));
716

717
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
718
  if (obj) {
719 720 721 722 723 724
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
725 726 727 728 729 730 731 732 733 734
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

735 736 737 738
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
739
  if (!self->tensor.defined()) {
740 741 742
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
743
  }
744 745 746
  if (self->tensor.is_dense_tensor()) {
    auto* tensor =
        static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
747 748 749
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
750
    RETURN_PY_NONE
751 752 753 754
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

755 756 757 758 759
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
760
    RETURN_PY_NONE
761 762 763 764 765 766
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
767
    RETURN_PY_NONE
768 769 770 771
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

  auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
      selected_rows->mutable_value());
  VLOG(1) << "dense_tensor: " << dense_tensor->IsInitialized();

  auto t = paddle::experimental::Tensor(
      egr::Controller::Instance().GenerateUniqueName());
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
799 800 801
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
802
  EAGER_TRY
J
Jiabin Yang 已提交
803 804 805 806 807 808
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
809 810
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
811
  PADDLE_ENFORCE_EQ(
812
      self->tensor.defined(),
813
      true,
J
Jiabin Yang 已提交
814 815 816 817 818
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
819 820 821 822 823 824 825 826 827 828 829
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
851 852 853 854 855 856
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
857
    if (op_type == "slice") {
J
Jiabin Yang 已提交
858 859 860 861 862 863
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
864
    } else if (op_type == "strided_slice") {
J
Jiabin Yang 已提交
865
      out = strided_slice_ad_func(
866
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
          }
        }
        axis -= len;
      }

      paddle::experimental::Tensor new_out;
J
Jiabin Yang 已提交
904
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
905 906 907 908 909 910 911 912 913
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
914
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
915 916
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
917 918
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
919
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
920
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
921 922 923
  }

  return ToPyObject(out);
924 925 926
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

927 928
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
929 930 931
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
932 933 934
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
935 936
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
937 938
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
956 957
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
958 959 960 961 962 963
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
964 965
        offset,
        numel,
W
wanghuancoder 已提交
966 967 968
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
969 970
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
971 972 973 974 975 976
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
977 978
          index,
          dims[i],
W
wanghuancoder 已提交
979
          platform::errors::InvalidArgument(
980 981 982
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1014 1015 1016 1017 1018 1019
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1020 1021 1022 1023 1024
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1025 1026
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1104 1105 1106 1107 1108
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

1152
      if (!value_tensor_tmp.initialized()) {
W
wanghuancoder 已提交
1153 1154 1155
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
1156 1157 1158
            value,
            platform::Place(platform::CUDAPlace(0)),
            false);
W
wanghuancoder 已提交
1159 1160 1161
#else
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
1162 1163 1164
            value,
            platform::Place(platform::CPUPlace()),
            false);
W
wanghuancoder 已提交
1165 1166 1167 1168
#endif
      } else {
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
1169 1170 1171
            value,
            value_tensor_tmp.place(),
            false);
W
wanghuancoder 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
      }

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
              "float32, int32 or int64, "
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }

    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1220
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
        paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
      }
1232 1233
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1234 1235 1236 1237 1238 1239 1240 1241 1242
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1257
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1258
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1259 1260 1261 1262
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1263
#else
1264 1265 1266 1267
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1268 1269
#endif
    } else {
1270 1271
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1272 1273
    }
  }
1274 1275
  RETURN_PY_NONE

W
wanghuancoder 已提交
1276 1277 1278
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1279 1280
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1281 1282 1283 1284 1285
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1298 1299 1300 1301 1302 1303 1304 1305 1306
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1307 1308
        rank_info.first,
        rank_info.second,
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1321 1322
        rank_info.first,
        rank_info.second,
1323 1324 1325 1326 1327 1328
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1329 1330
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1343 1344
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1345 1346 1347 1348 1349 1350
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1351 1352
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1353 1354 1355 1356
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1357 1358 1359 1360
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1371
      std::make_shared<PyVoidHook>(hook_func));
1372

1373 1374
  RETURN_PY_NONE

1375 1376 1377
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1378 1379
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1380
                                       PyObject* kwargs) {
1381 1382 1383
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1384
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1385
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1386
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1387
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1388
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1389
  }
1390 1391
  RETURN_PY_NONE

1392 1393 1394
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1395 1396
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1397 1398 1399
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1400 1401
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1402 1403 1404
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1405 1406
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1407 1408 1409
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1410
  if (self->tensor.initialized()) {
1411 1412
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1413 1414
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1415 1416
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1417 1418 1419 1420 1421
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1422 1423
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1424 1425 1426 1427
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1428 1429
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1430 1431 1432 1433
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1434 1435
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1436 1437
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1438

1439 1440
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
                                         PyObject* kwargs) {
  EAGER_TRY
  using Vocab = std::unordered_map<std::wstring, int>;
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  using Strings = std::vector<std::string>;
  auto strings = CastPyArg2Strings(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1470 1471
      egr::IsVariableCompatTensor(self->tensor),
      true,
1472 1473 1474 1475 1476 1477 1478 1479 1480
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
  using Vocab = std::unordered_map<std::wstring, int>;
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1572 1573
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1574 1575 1576 1577 1578 1579 1580 1581 1582
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1583 1584
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1585 1586
                                         PyObject* kwargs) {
  EAGER_TRY
1587 1588 1589
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1590 1591 1592 1593 1594
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1595 1596
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1597 1598
                                             PyObject* kwargs) {
  EAGER_TRY
1599 1600 1601
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1602 1603 1604 1605
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1606 1607
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1608 1609
                                             PyObject* kwargs) {
  EAGER_TRY
1610 1611 1612
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1613 1614 1615 1616
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1617 1618
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1632 1633 1634 1635 1636 1637 1638 1639 1640
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1641 1642
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1643 1644 1645 1646 1647 1648 1649 1650
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1651 1652
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1653 1654 1655 1656 1657 1658 1659 1660
                                            PyObject* kwargs) {
  EAGER_TRY
  uint32_t element_size = framework::DataTypeSize(self->tensor.dtype());

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1661 1662 1663 1664 1665
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1666
  RETURN_PY_NONE
1667 1668 1669
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1670 1671 1672 1673
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1674 1675 1676
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1677 1678 1679 1680
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1681 1682
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1694 1695
static PyObject* tensor_methon_element_size(TensorObject* self,
                                            PyObject* args,
1696 1697 1698 1699 1700 1701
                                            PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(paddle::experimental::SizeOf(self->tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1718 1719
  RETURN_PY_NONE

1720 1721 1722
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1723 1724
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1725 1726 1727
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1728 1729
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1746 1747 1748 1749 1750
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1751 1752 1753 1754 1755
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1756 1757
  RETURN_PY_NONE

W
wanghuancoder 已提交
1758 1759 1760 1761
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1762 1763
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1764 1765 1766 1767
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1768 1769
      t->IsInitialized(),
      true,
1770 1771 1772 1773 1774 1775 1776
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1777 1778
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1779 1780 1781 1782
                                   PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1783 1784
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1785 1786 1787 1788 1789 1790 1791
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1792 1793
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1794 1795 1796 1797
                                    PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1798 1799
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1800 1801 1802 1803 1804
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1805
    RETURN_PY_NONE
1806 1807 1808 1809 1810 1811 1812 1813
  }
  if (grad->is_dense_tensor()) {
    auto* grad_tensor =
        static_cast<paddle::framework::LoDTensor*>(grad->impl().get());
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1814
    RETURN_PY_NONE
1815 1816 1817 1818
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1819 1820
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1821 1822 1823 1824
                                          PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1825 1826
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1841
#if defined(PADDLE_WITH_CUDA)
1842 1843
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1844 1845 1846
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1847 1848
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1849 1850 1851
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1852 1853
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1854 1855 1856 1857 1858 1859 1860 1861
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
  auto* self_tensor =
      static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
  tensor_uva(self_tensor, device_id);

1862 1863
  RETURN_PY_NONE

1864 1865 1866
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1879

1880
PyMethodDef variable_methods[] = {
1881 1882 1883 1884
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1885
    {"_is_initialized",
1886
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1887 1888
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1889
    {"_is_dense_tensor_hold_allocation",
1890 1891
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1902 1903 1904 1905
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1906
    {"reconstruct_from_",
1907
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1930
    {"_is_shared_buffer_with",
1931
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
1932 1933
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1934
    {"_share_underline_tensor_to",
1935
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
1936 1937
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1938
    {"_is_shared_underline_tensor_with",
1939
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
1940 1941 1942 1943 1944 1945
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1946
    {"get_tensor",
1947
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
1948 1949
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1950 1951
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
1952 1953
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1954 1955 1956 1957
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
1958 1959
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
1960 1961
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1962 1963
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
1964 1965
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1966 1967
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
1968 1969
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1970 1971
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
1972 1973 1974 1975 1976 1977
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1978 1979
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
1990 1991
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
1992 1993
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1994 1995 1996
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
1997 1998 1999 2000 2001 2002
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2003 2004
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2005 2006
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2007
    /***the method of sparse tensor****/
2008 2009 2010 2011
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2040 2041 2042 2043
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2044 2045 2046 2047 2048 2049 2050 2051
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2052
    /***the method of sparse tensor****/
2053 2054 2055 2056
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2057 2058
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2059 2060
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2061 2062
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_methon_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2073 2074
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2097
#if defined(PADDLE_WITH_CUDA)
2098 2099 2100 2101
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2102
#endif
2103 2104
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2105 2106 2107 2108
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2109 2110
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2111 2112
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2113 2114
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2115
    {"_is_string_tensor_hold_allocation",
2116 2117
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2118 2119
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2120 2121 2122
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2123 2124
}  // namespace pybind
}  // namespace paddle