eager_method.cc 97.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
L
LiYuRio 已提交
66 67 68
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
69

70
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
71
DECLARE_bool(use_stride_kernel);
72

73 74 75
namespace paddle {
namespace pybind {

76 77
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
78
                                     const paddle::platform::Place& place,
79
                                     bool zero_copy);
80

81
extern PyTypeObject* p_tensor_type;
82

J
Jiabin Yang 已提交
83
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
84
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
85
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
86
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
87
    PADDLE_ENFORCE_EQ(
88 89
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
90 91 92 93 94 95 96 97
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
98
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
99 100 101 102
        "method, when you reach this means we got another type index."));
  }
}

W
wanghuancoder 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
PyDoc_STRVAR(tensor_method_numpy__doc__, R"DOC(numpy($self, /)
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

124 125
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
126 127
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
128 129 130 131 132 133 134 135 136
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
137 138 139 140 141
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
142 143 144 145 146
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
147 148
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
149
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
150 151
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
152
  size_t py_rank = tensor_dims.size();
153
  size_t numel = 1;
154
  if (py_rank == 0) {
155
    Py_ssize_t args_num = PyTuple_Size(args);
156 157
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
158 159 160 161 162 163 164
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
165
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
166 167 168 169 170
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
171 172
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
173
             "modify "
174
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
175
             "possible, "
176
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
177 178 179 180
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
181 182 183 184 185 186 187 188
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
189 190 191 192 193 194
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
195
  }
W
wanghuancoder 已提交
196 197

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
198 199 200 201 202 203 204 205 206 207 208
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

209
    if (tensor_dims.empty()) {
210 211 212
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
213 214 215 216 217 218
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
219 220 221 222 223
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
224 225 226
    return array;
  }

W
wanghuancoder 已提交
227 228 229
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

230
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
231
    eager_gil_scoped_release guard;
232
    platform::CPUPlace place;
233 234 235 236
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
237 238
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
239 240 241 242 243
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
244
      // deep copy
W
wanghuancoder 已提交
245 246 247 248 249
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
250 251 252 253
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
254 255 256 257 258
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
259
      // deep copy
W
wanghuancoder 已提交
260 261 262 263 264
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
265 266
    }

267
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
268
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
269
    eager_gil_scoped_release guard;
270 271 272 273 274
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
275 276 277 278
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
279 280
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
281 282 283 284 285 286 287 288 289
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
290 291 292 293
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
294 295 296 297 298 299 300 301 302
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
303
    }
304
#endif
C
Chen Weihang 已提交
305 306 307 308 309 310 311
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
312 313
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
314 315 316 317 318 319 320 321 322 323
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
324 325 326 327
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
328 329 330 331 332 333 334 335 336 337
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
338 339
    }
#endif
340 341
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
342
    eager_gil_scoped_release guard;
343 344 345 346
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
347 348
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
349 350 351 352 353
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
354
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
355 356 357
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
358 359 360 361
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
362
      // TODO(qili93): temporary for ascend npu performance to be removed along
363
      // with npu_identity op
364
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
365 366 367 368 369
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
370 371 372 373 374
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
375
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
376 377 378
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
379 380
    }
#endif
381 382 383
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
384
    RETURN_PY_NONE
385 386
  }

W
wanghuancoder 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

407 408 409 410
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
426 427 428 429 430
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
444 445
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
469 470 471
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
472 473 474 475
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
476
    RETURN_PY_NONE
J
Jack Zhou 已提交
477 478 479 480
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

481 482 483 484
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
485
  return ToPyObject(self->tensor.initialized());
486 487 488
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

503
static void IncreaseTensorReferenceCountUntilCopyComplete(
504
    const paddle::Tensor& tensor, const platform::Place& place) {
505 506 507 508 509 510 511 512
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
513
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
514 515 516 517 518 519 520
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

521 522
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
523 524
                                        PyObject* kwargs) {
  EAGER_TRY
525 526
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
527
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
528 529 530 531 532 533 534 535 536 537
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
538
  }
539 540 541 542
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

543 544 545 546
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
547
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
548
  std::string orig_name = self->tensor.name();
549 550
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
551
  self->tensor = src_tensor;
552 553

  // Recover source name
554
  self->tensor.set_name(orig_name);
555 556

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
557
          << " to " << self->tensor.name();
558 559
  RETURN_PY_NONE

560 561 562
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

563 564
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
565 566
                                     PyObject* kwargs) {
  EAGER_TRY
567
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
568
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
569
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
570
          << self->tensor.name();
571
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
572
    eager_gil_scoped_release guard;
573
    egr::EagerUtils::autograd_meta(&(self->tensor))
574 575
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
576
    egr::EagerUtils::autograd_meta(&(self->tensor))
577 578
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
579
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
580
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
581 582 583
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
584
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
585
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
586
    }
587 588
  }

589
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
590
          << self->tensor.name();
591 592
  RETURN_PY_NONE

593 594 595
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
PyDoc_STRVAR(tensor_method_clone__doc__, R"DOC(clone($self, /)
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

631 632 633 634
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
635
  paddle::Tensor out;
W
wanghuancoder 已提交
636 637 638 639 640 641 642 643 644
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
645

W
wanghuancoder 已提交
646 647
    out = assign_ad_func(self->tensor);
  }
648 649 650 651
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

652 653
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
654
                                     PyObject* kwargs) {
655
  EAGER_TRY
656
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
657
    eager_gil_scoped_release guard;
658
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
659
    if (!meta->GetMutableGradNode()) {
660
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
661
              << "become accumulation node";
662
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
663
    }
664
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
665
  }
666 667
  RETURN_PY_NONE

668 669 670
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
PyDoc_STRVAR(tensor_clear_gradient__doc__,
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

701 702
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
703
                                       PyObject* kwargs) {
704
  EAGER_TRY
705
  VLOG(4) << "ClearGradient " << self->tensor.name();
706

707 708 709
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
710
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
711 712
  }

713
  paddle::Tensor* grad;
714
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
715
  if (is_leaf) {
716 717 718 719 720 721
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
722
  } else {
723
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
724
    grad = meta->MutableGrad();
725 726
  }

727
  if (grad->impl()) {
W
wanghuancoder 已提交
728
    eager_gil_scoped_release guard;
729 730 731 732 733 734 735 736 737 738
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
739 740 741 742
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
743 744 745 746 747
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
748 749 750 751 752 753 754
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
755 756
      }
    }
757
  }
758

759 760
  RETURN_PY_NONE

761 762 763
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

764 765
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
766
                                    PyObject* kwargs) {
767
  EAGER_TRY
768
  VLOG(4) << "ZeroGrads " << self->tensor.name();
769

770
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
771
    eager_gil_scoped_release guard;
772
    // Add RetainGrad as PostHook to AccumulationNode
773
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
774 775 776 777 778 779
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
780 781 782 783 784 785 786
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
787
    }
788
  } else {
W
wanghuancoder 已提交
789
    eager_gil_scoped_release guard;
790
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
791
    if (meta->MutableGrad()->initialized()) {
792 793 794 795 796 797 798 799 800
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
801
    }
802 803
  }

804 805
  RETURN_PY_NONE

806 807 808
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

809 810
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
811 812
                                         PyObject* kwargs) {
  EAGER_TRY
813
  paddle::Tensor* dst_ptr =
814
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
815 816
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
817 818 819
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
820
                        self->tensor.name()));
821
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
822 823 824
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
825
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
826
  dst_tensor->ShareBufferWith(*src_tensor);
827
  dst_tensor->ShareDataTypeWith(*src_tensor);
828 829
  RETURN_PY_NONE

830 831 832
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

833 834 835 836
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
837
  paddle::Tensor* dst_ptr =
838
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
839 840
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
841 842 843
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
844
                        self->tensor.name()));
845
  bool res = false;
846
  if (!self->tensor.defined() || !dst_ptr->defined()) {
847 848
    return ToPyObject(res);
  }
849 850
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
851 852 853 854 855
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

856 857 858 859
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
860
  paddle::Tensor* src_ptr =
861
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
862 863
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
864 865 866
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
867 868
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
869 870
  RETURN_PY_NONE

871 872 873
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

874 875 876 877
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
878
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
879 880
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
881 882 883 884 885
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
886
  if (!self->tensor.defined() || !src_tensor.defined()) {
887 888
    return ToPyObject(res);
  }
889
  res = (self->tensor.impl().get() == src_tensor.impl().get());
890 891 892 893
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
PyDoc_STRVAR(tensor_method_detach__doc__, R"DOC(detach($self, /)
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

934 935
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
936 937
                                      PyObject* kwargs) {
  EAGER_TRY
938
  PADDLE_ENFORCE_EQ(
939
      self->tensor.defined(),
940
      true,
941
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
942
                                        self->tensor.name()));
943

944
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
945
  if (obj) {
946
    auto v = reinterpret_cast<TensorObject*>(obj);
947
    new (&(v->tensor)) paddle::Tensor();
948 949 950 951
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
952 953 954 955 956 957 958 959 960 961
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

981 982 983 984
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
985
  if (!self->tensor.defined()) {
986 987 988
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
989
  }
990
  if (self->tensor.is_dense_tensor()) {
991
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
992 993
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
994 995
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
996 997
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
998
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
999 1000 1001 1002
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1003
  } else {
1004
    RETURN_PY_NONE
1005 1006 1007 1008
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1009 1010 1011 1012 1013
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1014
    RETURN_PY_NONE
1015 1016 1017 1018 1019 1020
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1021
    RETURN_PY_NONE
1022 1023 1024 1025
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1040 1041
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1042
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1043

1044
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1045 1046 1047 1048 1049 1050 1051
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1052 1053 1054
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1055
  EAGER_TRY
J
Jiabin Yang 已提交
1056 1057 1058
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1059 1060
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1061 1062
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1063 1064
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1065
  PADDLE_ENFORCE_EQ(
1066
      self->tensor.defined(),
1067
      true,
J
Jiabin Yang 已提交
1068 1069 1070 1071 1072
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1084

1085 1086 1087 1088
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1105 1106 1107 1108 1109 1110
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1111
    if (op_type == "slice") {
W
wanghuancoder 已提交
1112
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1113 1114 1115 1116 1117 1118
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1119
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1120
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1121
      out = strided_slice_ad_func(
1122
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1123 1124 1125
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1135
  bool set_to_1d = FLAGS_set_to_1d;
1136 1137 1138 1139 1140 1141

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1142
      VLOG(1)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1155 1156 1157
        none_axes.pop_back();
      }
    }
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1172 1173
          }
        }
1174
        axis -= len;
J
Jiabin Yang 已提交
1175
      }
1176
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1177
    }
1178
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1179 1180 1181 1182
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1183
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1197 1198 1199
  }

  return ToPyObject(out);
1200 1201 1202
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1203 1204
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1205 1206
                                             PyObject* kwargs) {
  EAGER_TRY
1207 1208 1209 1210 1211 1212 1213 1214
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1215 1216 1217
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1218 1219
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1220 1221
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1222 1223 1224 1225 1226 1227 1228
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1229
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1230 1231 1232 1233 1234 1235 1236 1237

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1238 1239
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1240 1241 1242 1243 1244 1245
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1246 1247
        offset,
        numel,
W
wanghuancoder 已提交
1248 1249 1250
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1251 1252
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1253 1254 1255 1256 1257 1258
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1259 1260
          index,
          dims[i],
W
wanghuancoder 已提交
1261
          platform::errors::InvalidArgument(
1262 1263 1264
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1265
              dims[i]));
W
wanghuancoder 已提交
1266
      offset += index * stride[i];
W
wanghuancoder 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1294 1295
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1296
        0,                                                                   \
1297 1298 1299
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1300 1301 1302 1303 1304
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1305 1306
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1358 1359
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1360 1361
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1383
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1384
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1385 1386 1387 1388 1389
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1390 1391
    }

1392
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1393 1394 1395 1396

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1397
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1398 1399 1400 1401
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1402
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1403 1404 1405
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1406
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1407 1408 1409
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1410
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1411 1412 1413
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1414
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1415 1416 1417
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1418
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1419 1420 1421
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1432 1433 1434 1435
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1436
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1437 1438 1439
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1440 1441 1442 1443 1444
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1445 1446 1447 1448 1449 1450 1451

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1452 1453
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1454
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1455 1456
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1457
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1458 1459
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1460
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1461 1462
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1463
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1464 1465
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1466
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1467 1468
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1469
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1470 1471 1472 1473 1474 1475 1476 1477
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1478 1479 1480 1481
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1482 1483
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1484 1485 1486 1487 1488 1489 1490
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1491
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1492 1493 1494 1495 1496 1497 1498
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1499
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1500 1501
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1502
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1503 1504 1505 1506 1507 1508 1509
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1510 1511 1512
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1513
      }
1514 1515
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1516 1517 1518 1519 1520 1521 1522 1523 1524
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1525 1526
    }
  } else {
1527
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1539
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1540
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1541 1542 1543 1544
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1545
#else
1546 1547 1548 1549
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1550 1551
#endif
    } else {
1552 1553
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1554 1555
    }
  }
1556 1557
  RETURN_PY_NONE

W
wanghuancoder 已提交
1558 1559 1560
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1561 1562
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1563 1564 1565
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1566
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1567
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1580 1581 1582 1583 1584 1585 1586 1587 1588
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1589 1590
        rank_info.first,
        rank_info.second,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1603 1604
        rank_info.first,
        rank_info.second,
1605 1606 1607 1608 1609 1610
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1611 1612
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1649 1650
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1651 1652 1653 1654 1655 1656
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1657
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1658
                    true,
1659 1660 1661 1662
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1663 1664 1665 1666
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1677
      std::make_shared<PyVoidHook>(hook_func));
1678

1679 1680
  RETURN_PY_NONE

1681 1682 1683
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1684 1685
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1686
                                       PyObject* kwargs) {
1687 1688 1689
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1690
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1691
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1692
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1693
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1694
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1695
  }
1696 1697
  RETURN_PY_NONE

1698 1699 1700
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1701 1702
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1703 1704 1705
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1706 1707
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1708 1709 1710
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1711 1712 1713 1714 1715 1716 1717 1718 1719
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1720 1721
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1722 1723 1724
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1725
  if (self->tensor.initialized()) {
1726 1727
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1728 1729
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1730 1731
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1732 1733 1734 1735 1736
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1737 1738
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1739 1740 1741 1742
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1743 1744
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1745 1746 1747 1748
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1749 1750
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1751 1752
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1753

1754 1755 1756
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1757 1758 1759
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1760
                     "function _use_gpudnn is only effective for DenseTensor"));
1761

1762
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1763

1764
  // Set the same use_gpudnn attribute, return directly
1765 1766 1767 1768
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1769
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1770 1771 1772
    return ToPyObject(self->tensor);
  }

1773
  // Share all other members of Tensor except use_gpudnn
1774
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1775
  target_dense_meta.use_gpudnn = use_gpudnn;
1776 1777 1778 1779
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1780
  paddle::Tensor target_tensor(
1781 1782 1783 1784
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1785
          << " set use_gpudnn = " << use_gpudnn;
1786 1787 1788 1789 1790

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1791 1792
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1793 1794
                                         PyObject* kwargs) {
  EAGER_TRY
1795
  using Vocab = paddle::framework::Vocab;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1808
  using Strings = paddle::framework::Strings;
1809
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1822 1823
      egr::IsVariableCompatTensor(self->tensor),
      true,
1824 1825
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1826
  using Vocab = paddle::framework::Vocab;
1827 1828 1829 1830 1831 1832
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1854 1855 1856 1857 1858 1859 1860 1861 1862
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1863
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1881
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1882 1883 1884 1885 1886
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1887
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1903
  paddle::Tensor tensor(
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1918
  paddle::Tensor tensor(
1919 1920 1921 1922 1923
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1924 1925
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1926 1927 1928 1929 1930 1931 1932 1933 1934
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1946 1947
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1948 1949
                                         PyObject* kwargs) {
  EAGER_TRY
1950 1951 1952
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1953 1954 1955 1956 1957
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1958 1959
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1960 1961
                                             PyObject* kwargs) {
  EAGER_TRY
1962 1963 1964
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1965 1966 1967 1968
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1969 1970
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1971 1972
                                             PyObject* kwargs) {
  EAGER_TRY
1973 1974 1975
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1976 1977 1978 1979
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1980 1981
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1995 1996 1997 1998 1999 2000 2001 2002 2003
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2004 2005
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2006 2007 2008 2009 2010 2011 2012 2013
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
PyDoc_STRVAR(tensor_method_element_size__doc__, R"DOC(element_size($self, /)
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2043 2044
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2045 2046
                                            PyObject* kwargs) {
  EAGER_TRY
2047
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2048 2049 2050 2051 2052

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2062 2063 2064 2065 2066
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2067
  RETURN_PY_NONE
2068 2069 2070
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2071 2072 2073 2074
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2075 2076 2077
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2078 2079 2080 2081
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2082 2083
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2105
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2106 2107 2108 2109
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2110 2111
  RETURN_PY_NONE

2112 2113 2114
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2115 2116
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2117 2118 2119
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2120 2121
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2138 2139 2140 2141 2142
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2143 2144 2145 2146 2147
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2148 2149
  RETURN_PY_NONE

W
wanghuancoder 已提交
2150 2151 2152 2153
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2154 2155
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2156 2157 2158 2159
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2160 2161
      t->IsInitialized(),
      true,
2162 2163 2164 2165 2166 2167 2168
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2169 2170
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2171 2172
                                   PyObject* kwargs) {
  EAGER_TRY
2173
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2174 2175
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2176 2177 2178 2179 2180 2181 2182
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2183 2184
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2185 2186
                                    PyObject* kwargs) {
  EAGER_TRY
2187
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2188 2189
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2190 2191 2192 2193 2194
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
2195
    RETURN_PY_NONE
2196 2197
  }
  if (grad->is_dense_tensor()) {
2198
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2199 2200 2201 2202
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2203
    RETURN_PY_NONE
2204 2205 2206 2207
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2208 2209
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2210 2211
                                          PyObject* kwargs) {
  EAGER_TRY
2212
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2213 2214
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2215 2216 2217 2218
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

2219
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2220 2221 2222 2223 2224 2225 2226 2227 2228
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2229 2230 2231 2232 2233
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2234 2235 2236 2237
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2238 2239 2240 2241 2242
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2314
#if defined(PADDLE_WITH_CUDA)
2315 2316
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2317 2318 2319
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2320 2321
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2322 2323 2324
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2325 2326
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2327 2328 2329 2330
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2331
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2332 2333
  tensor_uva(self_tensor, device_id);

2334 2335
  RETURN_PY_NONE

2336 2337 2338
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2351

2352
PyMethodDef variable_methods[] = {
2353
    {"numpy",
2354
     (PyCFunction)(void (*)())tensor_method_numpy,
2355
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2356
     tensor_method_numpy__doc__},
2357
    {"_is_initialized",
2358
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2359 2360
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2361
    {"_is_dense_tensor_hold_allocation",
2362 2363
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2364 2365 2366
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
2367
     (PyCFunction)(void (*)())tensor_method__copy_to,
2368 2369 2370
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
2371
     (PyCFunction)(void (*)())tensor_method_copy_,
2372 2373
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2374
    {"clone",
2375
     (PyCFunction)(void (*)())tensor_method_clone,
2376
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2377
     tensor_method_clone__doc__},
2378
    {"reconstruct_from_",
2379
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2380 2381 2382
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
2383
     (PyCFunction)(void (*)())tensor_retain_grads,
2384 2385 2386
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
2387
     (PyCFunction)(void (*)())tensor_clear_gradient,
2388
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2389
     tensor_clear_gradient__doc__},
2390
    {"is_dense",
2391
     (PyCFunction)(void (*)())tensor_method_is_dense,
2392 2393
     METH_VARARGS | METH_KEYWORDS,
     NULL},
L
LiYuRio 已提交
2394
    {"is_dist",
2395
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2396 2397
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2398
    {"_zero_grads",
2399
     (PyCFunction)(void (*)())tensor__zero_grads,
2400 2401 2402
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
2403
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2404 2405
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2406
    {"_is_shared_buffer_with",
2407
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2408 2409
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2410
    {"_share_underline_tensor_to",
2411
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2412 2413
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2414
    {"_is_shared_underline_tensor_with",
2415
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2416 2417 2418
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
2419
     (PyCFunction)(void (*)())tensor_method_detach,
2420
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2421
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2422 2423 2424 2425
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2426
    {"get_tensor",
2427
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2428 2429
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2430
    {"get_selected_rows",
2431
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2432 2433
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2434
    {"_get_tensor_from_selected_rows",
2435
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2436 2437
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2438
    {"_getitem_index_not_tensor",
2439
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2440 2441
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2442
    {"_getitem_from_offset",
2443
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2444 2445
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2446
    {"__setitem_eager_tensor__",
2447
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2448 2449
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2450
    {"_register_grad_hook",
2451
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2452 2453 2454
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
2455
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2456 2457
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2458
    {"_register_backward_hook",
2459
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2460
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2461
     tensor_method__register_reduce_hook__doc__},
2462
    {"_set_grad_type",
2463
     (PyCFunction)(void (*)())tensor__set_grad_type,
2464 2465 2466
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
2467
     (PyCFunction)(void (*)())tensor__clear,
2468 2469
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2470
    {"_clear_dataptr",
2471
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2472 2473
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2474
    {"_copy_gradient_from",
2475
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2476 2477
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2478
    {"_tensor_use_gpudnn",
2479
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2480 2481
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2482 2483
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2484
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2485 2486 2487
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
2488
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2489 2490
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2491
    {"get_map_tensor",
2492
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2493 2494
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2495
    /***the method of sparse tensor****/
2496
    {"nnz",
2497
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2498 2499
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2500
    {"indices",
2501
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2502 2503 2504
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
2505
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2506 2507 2508
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
2509
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2510 2511 2512
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
2513
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2514 2515 2516
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
2517
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2518 2519 2520
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
2521
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2522 2523 2524
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
2525
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2526 2527
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2528
    {"is_same_shape",
2529
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2530 2531
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2532
    {"to_sparse_csr",
2533
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2534 2535 2536
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
2537
     (PyCFunction)(void (*)())tensor_method_element_size,
2538
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2539
     tensor_method_element_size__doc__},
2540
    /***the method of sparse tensor****/
2541
    {"_inplace_version",
2542
     (PyCFunction)(void (*)())tensor__inplace_version,
2543 2544
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2545
    {"_bump_inplace_version",
2546
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2547
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2548
     tensor_method__bump_inplace_version__doc__},
2549
    {"is_selected_rows",
2550
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2551 2552 2553
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
2554
     (PyCFunction)(void (*)())tensor_method_get_rows,
2555 2556
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2557
    {"_reset_grad_inplace_version",
2558
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2559 2560 2561
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
2562
     (PyCFunction)(void (*)())tensor_method__share_memory,
2563 2564 2565
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
2566
     (PyCFunction)(void (*)())tensor__offset,
2567 2568 2569
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
2570
     (PyCFunction)(void (*)())tensor__grad_name,
2571 2572 2573
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
2574
     (PyCFunction)(void (*)())tensor__grad_value,
2575 2576 2577
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
2578
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2579 2580
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2581
    {"data_ptr",
2582
     (PyCFunction)(void (*)())tensor_data_ptr,
2583 2584
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2585
    {"_grad_ivar",
2586
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2587 2588
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2601
#if defined(PADDLE_WITH_CUDA)
2602
    {"_tensor_uva",
2603
     (PyCFunction)(void (*)())tensor_method__uva,
2604 2605
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2606
#endif
2607 2608
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2609 2610 2611
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
2612
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2613 2614
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2615
    {"_is_initialized",
2616
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2617 2618
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2619
    {"_is_string_tensor_hold_allocation",
2620 2621
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2622 2623
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2624 2625 2626
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2627 2628
}  // namespace pybind
}  // namespace paddle