Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1322cd92
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1322cd92
编写于
8月 18, 2023
作者:
zhouweiwei2014
提交者:
GitHub
8月 18, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Docs] add some Tensor API en doc (#56402)
上级
2b5466f9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
298 addition
and
22 deletion
+298
-22
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+288
-12
paddle/phi/core/sparse_coo_tensor.h
paddle/phi/core/sparse_coo_tensor.h
+4
-4
paddle/phi/core/sparse_csr_tensor.h
paddle/phi/core/sparse_csr_tensor.h
+6
-6
未找到文件。
paddle/fluid/pybind/eager_method.cc
浏览文件 @
1322cd92
...
...
@@ -1968,6 +1968,32 @@ static PyObject* tensor_method_get_map_tensor(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_method_nnz__doc__
,
R"DOC(nnz($self, /)
--
Note:
**This API is only available for SparseCooTensor or SparseCsrTensor.**
Returns the total number of non zero elements in input SparseCooTensor/SparseCsrTensor.
Returns:
int
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.nnz()
# 3
)DOC"
);
static
PyObject
*
tensor_method_get_non_zero_nums
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -1989,6 +2015,34 @@ static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_method_indices__doc__
,
R"DOC(indices($self, /)
--
Note:
**This API is only available for SparseCooTensor.**
Returns the indices of non zero elements in input SparseCooTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.indices()
# Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[0, 1, 2],
# [1, 2, 0]])
)DOC"
);
static
PyObject
*
tensor_method_get_non_zero_indices
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2004,6 +2058,33 @@ static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_method_values__doc__
,
R"DOC(values($self, /)
--
Note:
**This API is only available for SparseCooTensor or SparseCsrTensor.**
Returns the values of non zero elements in input SparseCooTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.values()
# Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [1., 2., 3.])
)DOC"
);
static
PyObject
*
tensor_method_get_non_zero_elements
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2029,6 +2110,34 @@ static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_method_crows__doc__
,
R"DOC(crows($self, /)
--
Note:
**This API is only available for SparseCsrTensor.**
Returns the compressed row index of non zero elements in input SparseCsrTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr.crows()
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [0, 2, 3, 5])
)DOC"
);
static
PyObject
*
tensor_method_get_non_zero_crows
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2044,6 +2153,34 @@ static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_method_cols__doc__
,
R"DOC(cols($self, /)
--
Note:
**This API is only available for SparseCsrTensor.**
Returns the column index of non zero elements in input SparseCsrTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr.cols()
# Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 3, 2, 0, 1])
)DOC"
);
static
PyObject
*
tensor_method_get_non_zero_cols
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2115,6 +2252,30 @@ static PyObject* tensor_method_is_dist(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_is_sparse__doc__
,
R"DOC(is_sparse($self, /)
--
Returns whether the input Tensor is SparseCooTensor or SparseCsrTensor.
When input is SparseCooTensor/SparseCsrTensor, will return True. When input is DenseTensor, will return False.
Returns:
bool
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.is_sparse()
# True
)DOC"
);
static
PyObject
*
tensor_method_is_sparse
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2127,6 +2288,31 @@ static PyObject* tensor_method_is_sparse(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_is_sparse_coo__doc__
,
R"DOC(is_sparse_coo($self, /)
--
Returns whether the input Tensor is SparseCooTensor.
When input is SparseCooTensor, will return True. When input is DenseTensor/SparseCsrTensor, will return False.
Returns:
bool
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.is_sparse_coo()
# True
)DOC"
);
static
PyObject
*
tensor_method_is_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2138,6 +2324,32 @@ static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_is_sparse_csr__doc__
,
R"DOC(is_sparse_csr($self, /)
--
Returns whether the input Tensor is SparseCsrTensor.
When input is SparseCsrTensor, will return True. When input is DenseTensor/SparseCooTensor, will return False.
Returns:
bool
Examples:
.. code-block:: python
import paddle
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr.is_sparse_csr()
# True
)DOC"
);
static
PyObject
*
tensor_method_is_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2149,6 +2361,37 @@ static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_to_sparse_csr__doc__
,
R"DOC(to_sparse_csr($self, /)
--
Note:
**This API is only available for DenseTensor or SparseCooTensor.**
Convert input Tensor to SparseCsrTensor.
When input is SparseCooTensor, will convert `COO` to `CSR` . When input is DenseTensor, will convert `Dense` to `CSR` .
Returns:
SparseCsrTensor
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.to_sparse_csr()
# Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 1, 2, 3],
# cols=[1, 2, 0],
# values=[1., 2., 3.])
)DOC"
);
static
PyObject
*
tensor_method_to_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2164,6 +2407,38 @@ static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR
(
tensor_is_same_shape__doc__
,
R"DOC(is_same_shape($self, y, /)
--
Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.
Args:
x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
Returns:
bool: True for same shape and False for different shape.
Examples:
.. code-block:: python
import paddle
x = paddle.rand([2, 3, 8])
y = paddle.rand([2, 3, 8])
y = y.to_sparse_csr()
z = paddle.rand([2, 5])
x.is_same_shape(y)
# True
x.is_same_shape(z)
# False
)DOC"
);
static
PyObject
*
tensor_method_is_same_shape
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -2227,9 +2502,10 @@ PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__, // NOLINT
R"DOC(_bump_inplace_version($self, /)
--
**Notes**
:
Note
:
**This API is ONLY available in Dygraph mode.**
**This is a very low level API. Users should not use it directly. **
Bump the version whenever the Tensor is modified through an inplace operation.
)DOC"
);
static
PyObject
*
tensor__bump_inplace_version
(
TensorObject
*
self
,
...
...
@@ -2752,48 +3028,48 @@ PyMethodDef variable_methods[] = { // NOLINT
{
"nnz"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_get_non_zero_nums
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_method_nnz__doc__
},
{
"indices"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_method_indices__doc__
},
{
"values"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_method_values__doc__
},
{
"crows"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_method_crows__doc__
},
{
"cols"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_method_cols__doc__
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_is_sparse__doc__
},
{
"is_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_is_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_is_sparse_coo__doc__
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_is_sparse_csr__doc__
},
{
"is_same_shape"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_is_same_shape
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_is_same_shape__doc__
},
{
"to_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_to_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
nullptr
},
tensor_to_sparse_csr__doc__
},
/***the method of sparse tensor****/
{
"element_size"
,
(
PyCFunction
)(
void
(
*
)())
tensor_method_element_size
,
METH_VARARGS
|
METH_KEYWORDS
,
tensor_method_element_size__doc__
},
/***the method of sparse tensor****/
{
"_inplace_version"
,
(
PyCFunction
)(
void
(
*
)())
tensor__inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
...
...
paddle/phi/core/sparse_coo_tensor.h
浏览文件 @
1322cd92
...
...
@@ -63,15 +63,15 @@ class SparseCooTensor : public TensorBase,
/// \brief Destroy the tensor object and release exclusive resources.
virtual
~
SparseCooTensor
()
=
default
;
/// \brief Returns the indices of non zero eleme
tn
s in original dense tensor.
/// \return The indices of non zero eleme
tn
s in original dense tensor.
/// \brief Returns the indices of non zero eleme
nt
s in original dense tensor.
/// \return The indices of non zero eleme
nt
s in original dense tensor.
const
DenseTensor
&
indices
()
const
{
return
non_zero_indices_
;
}
/// Note: This function will removed soon. It is recommended to use indices()
const
DenseTensor
&
non_zero_indices
()
const
{
return
non_zero_indices_
;
}
/// \brief Returns the non zero eleme
tn
s in original dense tensor.
/// \return The non zero eleme
tn
s in original dense tensor.
/// \brief Returns the non zero eleme
nt
s in original dense tensor.
/// \return The non zero eleme
nt
s in original dense tensor.
const
DenseTensor
&
values
()
const
{
return
non_zero_elements_
;
}
/// Note: This function will removed soon. It is recommended to use values()
...
...
paddle/phi/core/sparse_csr_tensor.h
浏览文件 @
1322cd92
...
...
@@ -70,25 +70,25 @@ class SparseCsrTensor : public TensorBase,
/// \return The name of the class.
static
const
char
*
name
()
{
return
"SparseCsrTensor"
;
}
/// \brief Returns the compressed row index of non zero eleme
tn
s in original
/// \brief Returns the compressed row index of non zero eleme
nt
s in original
/// dense tensor.
/// \return The compressed row index of non zero eleme
tn
s in original dense
/// \return The compressed row index of non zero eleme
nt
s in original dense
/// tensor.
const
DenseTensor
&
crows
()
const
{
return
non_zero_crows_
;
}
/// Note: This function will removed soon. It is recommended to use crows()
const
DenseTensor
&
non_zero_crows
()
const
{
return
non_zero_crows_
;
}
/// \brief Returns the column index of non zero eleme
tn
s in original dense
/// \brief Returns the column index of non zero eleme
nt
s in original dense
/// tensor.
/// \return The column index of non zero eleme
tn
s in original dense tensor.
/// \return The column index of non zero eleme
nt
s in original dense tensor.
const
DenseTensor
&
cols
()
const
{
return
non_zero_cols_
;
}
/// Note: This function will removed soon. It is recommended to use cols()
const
DenseTensor
&
non_zero_cols
()
const
{
return
non_zero_cols_
;
}
/// \brief Returns the non zero eleme
tn
s in original dense tensor.
/// \return The non zero eleme
tn
s in original dense tensor.
/// \brief Returns the non zero eleme
nt
s in original dense tensor.
/// \return The non zero eleme
nt
s in original dense tensor.
const
DenseTensor
&
values
()
const
{
return
non_zero_elements_
;
}
/// Note: This function will removed soon. It is recommended to use indices()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录