未验证 提交 1322cd92 编写于 作者: zhouweiwei2014's avatar zhouweiwei2014 提交者: GitHub

[Docs] add some Tensor API en doc (#56402)

上级 2b5466f9
......@@ -1968,6 +1968,32 @@ static PyObject* tensor_method_get_map_tensor(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_method_nnz__doc__,
R"DOC(nnz($self, /)
--
Note:
**This API is only available for SparseCooTensor or SparseCsrTensor.**
Returns the total number of non zero elements in input SparseCooTensor/SparseCsrTensor.
Returns:
int
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.nnz()
# 3
)DOC");
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -1989,6 +2015,34 @@ static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_method_indices__doc__,
R"DOC(indices($self, /)
--
Note:
**This API is only available for SparseCooTensor.**
Returns the indices of non zero elements in input SparseCooTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.indices()
# Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[0, 1, 2],
# [1, 2, 0]])
)DOC");
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2004,6 +2058,33 @@ static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_method_values__doc__,
R"DOC(values($self, /)
--
Note:
**This API is only available for SparseCooTensor or SparseCsrTensor.**
Returns the values of non zero elements in input SparseCooTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.values()
# Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [1., 2., 3.])
)DOC");
static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2029,6 +2110,34 @@ static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_method_crows__doc__,
R"DOC(crows($self, /)
--
Note:
**This API is only available for SparseCsrTensor.**
Returns the compressed row index of non zero elements in input SparseCsrTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr.crows()
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [0, 2, 3, 5])
)DOC");
static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2044,6 +2153,34 @@ static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_method_cols__doc__,
R"DOC(cols($self, /)
--
Note:
**This API is only available for SparseCsrTensor.**
Returns the column index of non zero elements in input SparseCsrTensor.
Returns:
DenseTesnor
Examples:
.. code-block:: python
import paddle
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr.cols()
# Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 3, 2, 0, 1])
)DOC");
static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2115,6 +2252,30 @@ static PyObject* tensor_method_is_dist(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_is_sparse__doc__,
R"DOC(is_sparse($self, /)
--
Returns whether the input Tensor is SparseCooTensor or SparseCsrTensor.
When input is SparseCooTensor/SparseCsrTensor, will return True. When input is DenseTensor, will return False.
Returns:
bool
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.is_sparse()
# True
)DOC");
static PyObject* tensor_method_is_sparse(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2127,6 +2288,31 @@ static PyObject* tensor_method_is_sparse(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_is_sparse_coo__doc__,
R"DOC(is_sparse_coo($self, /)
--
Returns whether the input Tensor is SparseCooTensor.
When input is SparseCooTensor, will return True. When input is DenseTensor/SparseCsrTensor, will return False.
Returns:
bool
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.is_sparse_coo()
# True
)DOC");
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2138,6 +2324,32 @@ static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_is_sparse_csr__doc__,
R"DOC(is_sparse_csr($self, /)
--
Returns whether the input Tensor is SparseCsrTensor.
When input is SparseCsrTensor, will return True. When input is DenseTensor/SparseCooTensor, will return False.
Returns:
bool
Examples:
.. code-block:: python
import paddle
crows = [0, 2, 3, 5]
cols = [1, 3, 2, 0, 1]
values = [1, 2, 3, 4, 5]
dense_shape = [3, 4]
csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
csr.is_sparse_csr()
# True
)DOC");
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2149,6 +2361,37 @@ static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_to_sparse_csr__doc__,
R"DOC(to_sparse_csr($self, /)
--
Note:
**This API is only available for DenseTensor or SparseCooTensor.**
Convert input Tensor to SparseCsrTensor.
When input is SparseCooTensor, will convert `COO` to `CSR` . When input is DenseTensor, will convert `Dense` to `CSR` .
Returns:
SparseCsrTensor
Examples:
.. code-block:: python
import paddle
indices = [[0, 1, 2], [1, 2, 0]]
values = [1.0, 2.0, 3.0]
dense_shape = [3, 3]
coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
coo.to_sparse_csr()
# Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 1, 2, 3],
# cols=[1, 2, 0],
# values=[1., 2., 3.])
)DOC");
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2164,6 +2407,38 @@ static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
PyDoc_STRVAR(tensor_is_same_shape__doc__,
R"DOC(is_same_shape($self, y, /)
--
Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.
Args:
x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
Returns:
bool: True for same shape and False for different shape.
Examples:
.. code-block:: python
import paddle
x = paddle.rand([2, 3, 8])
y = paddle.rand([2, 3, 8])
y = y.to_sparse_csr()
z = paddle.rand([2, 5])
x.is_same_shape(y)
# True
x.is_same_shape(z)
# False
)DOC");
static PyObject* tensor_method_is_same_shape(TensorObject* self,
PyObject* args,
PyObject* kwargs) {
......@@ -2227,9 +2502,10 @@ PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__, // NOLINT
R"DOC(_bump_inplace_version($self, /)
--
**Notes**:
Note:
**This API is ONLY available in Dygraph mode.**
**This is a very low level API. Users should not use it directly. **
Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
static PyObject* tensor__bump_inplace_version(TensorObject* self,
......@@ -2752,48 +3028,48 @@ PyMethodDef variable_methods[] = { // NOLINT
{"nnz",
(PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_method_nnz__doc__},
{"indices",
(PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_method_indices__doc__},
{"values",
(PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_method_values__doc__},
{"crows",
(PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_method_crows__doc__},
{"cols",
(PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_method_cols__doc__},
{"is_sparse",
(PyCFunction)(void (*)())tensor_method_is_sparse,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_is_sparse__doc__},
{"is_sparse_coo",
(PyCFunction)(void (*)())tensor_method_is_sparse_coo,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_is_sparse_coo__doc__},
{"is_sparse_csr",
(PyCFunction)(void (*)())tensor_method_is_sparse_csr,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_is_sparse_csr__doc__},
{"is_same_shape",
(PyCFunction)(void (*)())tensor_method_is_same_shape,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_is_same_shape__doc__},
{"to_sparse_csr",
(PyCFunction)(void (*)())tensor_method_to_sparse_csr,
METH_VARARGS | METH_KEYWORDS,
nullptr},
tensor_to_sparse_csr__doc__},
/***the method of sparse tensor****/
{"element_size",
(PyCFunction)(void (*)())tensor_method_element_size,
METH_VARARGS | METH_KEYWORDS,
tensor_method_element_size__doc__},
/***the method of sparse tensor****/
{"_inplace_version",
(PyCFunction)(void (*)())tensor__inplace_version,
METH_VARARGS | METH_KEYWORDS,
......
......@@ -63,15 +63,15 @@ class SparseCooTensor : public TensorBase,
/// \brief Destroy the tensor object and release exclusive resources.
virtual ~SparseCooTensor() = default;
/// \brief Returns the indices of non zero elemetns in original dense tensor.
/// \return The indices of non zero elemetns in original dense tensor.
/// \brief Returns the indices of non zero elements in original dense tensor.
/// \return The indices of non zero elements in original dense tensor.
const DenseTensor& indices() const { return non_zero_indices_; }
/// Note: This function will removed soon. It is recommended to use indices()
const DenseTensor& non_zero_indices() const { return non_zero_indices_; }
/// \brief Returns the non zero elemetns in original dense tensor.
/// \return The non zero elemetns in original dense tensor.
/// \brief Returns the non zero elements in original dense tensor.
/// \return The non zero elements in original dense tensor.
const DenseTensor& values() const { return non_zero_elements_; }
/// Note: This function will removed soon. It is recommended to use values()
......
......@@ -70,25 +70,25 @@ class SparseCsrTensor : public TensorBase,
/// \return The name of the class.
static const char* name() { return "SparseCsrTensor"; }
/// \brief Returns the compressed row index of non zero elemetns in original
/// \brief Returns the compressed row index of non zero elements in original
/// dense tensor.
/// \return The compressed row index of non zero elemetns in original dense
/// \return The compressed row index of non zero elements in original dense
/// tensor.
const DenseTensor& crows() const { return non_zero_crows_; }
/// Note: This function will removed soon. It is recommended to use crows()
const DenseTensor& non_zero_crows() const { return non_zero_crows_; }
/// \brief Returns the column index of non zero elemetns in original dense
/// \brief Returns the column index of non zero elements in original dense
/// tensor.
/// \return The column index of non zero elemetns in original dense tensor.
/// \return The column index of non zero elements in original dense tensor.
const DenseTensor& cols() const { return non_zero_cols_; }
/// Note: This function will removed soon. It is recommended to use cols()
const DenseTensor& non_zero_cols() const { return non_zero_cols_; }
/// \brief Returns the non zero elemetns in original dense tensor.
/// \return The non zero elemetns in original dense tensor.
/// \brief Returns the non zero elements in original dense tensor.
/// \return The non zero elements in original dense tensor.
const DenseTensor& values() const { return non_zero_elements_; }
/// Note: This function will removed soon. It is recommended to use indices()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册