eager_method.cc 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
23
#include "paddle/fluid/eager/utils.h"
24 25 26 27 28 29
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
30
#include "paddle/pten/api/include/api.h"
31 32 33 34 35 36 37
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/include/core.h"
namespace paddle {
namespace pybind {

38
extern PyTypeObject* p_eager_tensor_type;
39 40 41

static PyObject* eager_tensor_method_numpy(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
J
Jiabin Yang 已提交
42
  EAGER_SYNC_TRY
43 44 45 46 47 48
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument(
          "Tensor data of %s is Empty that indicates we have null tensor for "
          "now, please check if it has no data and initialize it first.",
          self->eager_tensor.name()));
J
Jiabin Yang 已提交
49 50 51
  auto tensor_dims = self->eager_tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->eager_tensor.type());
  auto sizeof_dtype = pten::DataTypeSize(self->eager_tensor.type());
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

J
Jiabin Yang 已提交
68
  if (self->eager_tensor.is_cpu()) {
69
    auto dense_tensor =
J
Jiabin Yang 已提交
70
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
71 72 73 74 75 76
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
J
Jiabin Yang 已提交
77
  } else if (self->eager_tensor.is_cuda()) {
78
    auto dense_tensor =
J
Jiabin Yang 已提交
79
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
        pten::DataTypeSize(dense_tensor->dtype()) * dense_tensor->numel(),
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

97 98 99
static PyObject* eager_tensor_method__is_initialized(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
J
Jiabin Yang 已提交
100 101
  EAGER_SYNC_TRY
  return ToPyObject(self->eager_tensor.initialized());
102 103 104
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
static PyObject* eager_tensor_method__copy_to(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
      self->eager_tensor.copy_to(pten::TransToPtenBackend(place), blocking);
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->eager_tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_method_copy_(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
127 128
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
129 130 131 132 133 134 135 136 137
  if (!self->eager_tensor.defined()) {
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
  }

138
  self->eager_tensor.copy_(src_tensor, blocking);
139

140 141 142 143 144 145 146 147 148 149
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_retain_grads(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_TRY
150 151 152 153 154 155 156 157
  if (egr::Controller::Instance().HasGrad()) {
    auto meta = egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    if (!meta->GetMutableGradNode()) {
      VLOG(6) << "Make grad node of tensor: " << self->eager_tensor.name()
              << "become accumulation node";
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
    }
    egr::egr_utils_api::RetainGradForTensor(self->eager_tensor);
158
  }
159 160 161 162 163
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

164 165 166 167 168 169
static PyObject* eager_tensor__clear_gradient(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  VLOG(4) << "ClearGradient " << self->eager_tensor.name();

170
  egr::EagerTensor* grad;
171 172 173 174 175 176 177 178 179 180 181 182 183 184
  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    grad = accumulation_grad_node->Grad();
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
185
    grad = meta->MutableGrad();
186 187
  }

188
  if (grad->initialized()) {
189 190 191
    VLOG(4) << "Gradient of " << self->eager_tensor.name()
            << " is initialized, will be released.";
    auto dense_tensor =
192
        std::dynamic_pointer_cast<pten::DenseTensor>(grad->impl());
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    dense_tensor->release();
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__zero_grads(EagerTensorObject* self,
                                          PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "ZeroGrads " << self->eager_tensor.name();

  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
216 217 218 219 220 221
    if (accumulation_grad_node->Grad()->initialized()) {
      accumulation_grad_node->Grad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(accumulation_grad_node->Grad()->Tensor().get()))));
    }
222 223
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
224 225 226 227 228 229
    if (meta->MutableGrad()->initialized()) {
      meta->MutableGrad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(meta->MutableGrad()->Tensor().get()))));
    }
230 231 232 233 234 235 236
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
static PyObject* eager_tensor_method_detach(EagerTensorObject* self,
                                            PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->eager_tensor.name()));

  PyObject* obj = p_eager_tensor_type->tp_alloc(p_eager_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<EagerTensorObject*>(obj);
    new (&(v->eager_tensor)) egr::EagerTensor();
    v->eager_tensor.set_impl(self->eager_tensor.impl());
    v->eager_tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src =
        egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->eager_tensor));
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

264 265 266 267
PyMethodDef variable_methods[] = {
    {"numpy", (PyCFunction)(void (*)(void))eager_tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
268 269 270 271 272
     (PyCFunction)(void (*)(void))eager_tensor_method__is_initialized,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_to", (PyCFunction)(void (*)(void))eager_tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"copy_", (PyCFunction)(void (*)(void))eager_tensor_method_copy_,
273
     METH_VARARGS | METH_KEYWORDS, NULL},
274 275
    {"retain_grads", (PyCFunction)(void (*)(void))eager_tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
276 277 278 279 280
    {"_clear_gradient",
     (PyCFunction)(void (*)(void))eager_tensor__clear_gradient,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_zero_grads", (PyCFunction)(void (*)(void))eager_tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
281 282
    {"detach", (PyCFunction)(void (*)(void))eager_tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS, NULL},
283 284 285 286
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle