eager_method.cc 97.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
L
LiYuRio 已提交
66 67 68
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
69

70
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
71
DECLARE_bool(use_stride_kernel);
72

73 74 75
namespace paddle {
namespace pybind {

76 77
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
78
                                     const paddle::platform::Place& place,
79
                                     bool zero_copy);
80

81
extern PyTypeObject* p_tensor_type;
82

J
Jiabin Yang 已提交
83
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
84
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
85
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
86
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
87
    PADDLE_ENFORCE_EQ(
88 89
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
90 91 92 93 94 95 96 97
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
98
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
99 100 101 102
        "method, when you reach this means we got another type index."));
  }
}

W
wanghuancoder 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
PyDoc_STRVAR(tensor_method_numpy__doc__, R"DOC(numpy($self, /)
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

124 125
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
126 127
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
128 129 130 131 132 133 134 135 136
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
137 138 139 140 141
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
142 143 144 145 146
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
147 148
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
149
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
150 151
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
152
  size_t py_rank = tensor_dims.size();
153
  size_t numel = 1;
154
  if (py_rank == 0) {
155
    Py_ssize_t args_num = PyTuple_Size(args);
156 157
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
158 159 160 161 162 163 164
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
165
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
166 167 168 169 170
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
171 172
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
173
             "modify "
174
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
175
             "possible, "
176
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
177 178 179 180
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
181 182 183 184 185 186 187 188
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
189 190 191 192 193 194
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
195
  }
W
wanghuancoder 已提交
196 197

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
198 199 200 201 202 203 204 205 206 207 208
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

209
    if (tensor_dims.empty()) {
210 211 212
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
213 214 215 216 217 218
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
219 220 221 222 223
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
224 225 226
    return array;
  }

W
wanghuancoder 已提交
227 228 229
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

230
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
231
    eager_gil_scoped_release guard;
232
    platform::CPUPlace place;
233 234 235 236
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
237 238
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
239 240 241 242 243
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
244
      // deep copy
W
wanghuancoder 已提交
245 246 247 248 249
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
250 251 252 253
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
254 255 256 257 258
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
259
      // deep copy
W
wanghuancoder 已提交
260 261 262 263 264
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
265 266
    }

267
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
268
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
269
    eager_gil_scoped_release guard;
270 271 272 273 274
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
275 276 277 278
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
279 280
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
281 282 283 284 285 286 287 288 289
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
290 291 292 293
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
294 295 296 297 298 299 300 301 302
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
303
    }
304
#endif
C
Chen Weihang 已提交
305 306 307 308 309 310 311
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
312 313
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
314 315 316 317 318 319 320 321 322 323
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
324 325 326 327
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
328 329 330 331 332 333 334 335 336 337
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
338 339
    }
#endif
340 341
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
342
    eager_gil_scoped_release guard;
343 344 345 346
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
347 348
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
349 350 351 352 353
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
354
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
355 356 357
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
358 359 360 361
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
362
      // TODO(qili93): temporary for ascend npu performance to be removed along
363
      // with npu_identity op
364
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
365 366 367 368 369
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
370 371 372 373 374
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
375
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
376 377 378
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
379 380
    }
#endif
381 382 383
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
384
    RETURN_PY_NONE
385 386
  }

W
wanghuancoder 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

407 408 409 410
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
426 427 428 429 430
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
444 445
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
469 470 471
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
472 473 474 475
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
476
    RETURN_PY_NONE
J
Jack Zhou 已提交
477 478 479 480
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

481 482 483 484
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
485
  return ToPyObject(self->tensor.initialized());
486 487 488
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

503
static void IncreaseTensorReferenceCountUntilCopyComplete(
504
    const paddle::Tensor& tensor, const platform::Place& place) {
505 506 507 508 509 510 511 512
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
513
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
514 515 516 517 518 519 520
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

521 522
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
523 524
                                        PyObject* kwargs) {
  EAGER_TRY
525 526
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
527
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
528 529 530 531 532 533 534 535 536 537
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
538
  }
539 540 541 542
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

543 544 545 546
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
547
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
548
  std::string orig_name = self->tensor.name();
549 550
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
551
  self->tensor = src_tensor;
552 553

  // Recover source name
554
  self->tensor.set_name(orig_name);
555 556

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
557
          << " to " << self->tensor.name();
558 559
  RETURN_PY_NONE

560 561 562
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

563 564
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
565 566
                                     PyObject* kwargs) {
  EAGER_TRY
567
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
568
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
569
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
570
          << self->tensor.name();
571
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
572
    eager_gil_scoped_release guard;
573
    egr::EagerUtils::autograd_meta(&(self->tensor))
574 575
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
576
    egr::EagerUtils::autograd_meta(&(self->tensor))
577 578
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
579
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
580
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
581 582 583
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
584
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
585
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
586
    }
587 588
  }

589
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
590
          << self->tensor.name();
591 592
  RETURN_PY_NONE

593 594 595
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
PyDoc_STRVAR(tensor_method_clone__doc__, R"DOC(clone($self, /)
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

631 632 633 634
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
635
  paddle::Tensor out;
W
wanghuancoder 已提交
636 637 638 639 640 641 642 643 644
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
645

W
wanghuancoder 已提交
646 647
    out = assign_ad_func(self->tensor);
  }
648 649 650 651
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

652 653
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
654
                                     PyObject* kwargs) {
655
  EAGER_TRY
656
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
657
    eager_gil_scoped_release guard;
658
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
659
    if (!meta->GetMutableGradNode()) {
660
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
661
              << "become accumulation node";
662
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
663
    }
664
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
665
  }
666 667
  RETURN_PY_NONE

668 669 670
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
PyDoc_STRVAR(tensor_clear_gradient__doc__,
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

701 702
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
703
                                       PyObject* kwargs) {
704
  EAGER_TRY
705
  VLOG(4) << "ClearGradient " << self->tensor.name();
706

707 708 709
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
710
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
711 712
  }

713
  paddle::Tensor* grad;
714
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
715
  if (is_leaf) {
716 717 718 719 720 721
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
722
  } else {
723
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
724
    grad = meta->MutableGrad();
725 726
  }

727
  if (grad->impl()) {
W
wanghuancoder 已提交
728
    eager_gil_scoped_release guard;
729 730 731 732 733 734 735 736 737 738
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
739 740 741 742
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
743 744 745 746 747
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
748 749 750 751 752 753 754
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
755 756
      }
    }
757
  }
758

759 760
  RETURN_PY_NONE

761 762 763
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

764 765
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
766
                                    PyObject* kwargs) {
767
  EAGER_TRY
768
  VLOG(4) << "ZeroGrads " << self->tensor.name();
769

770
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
771
    eager_gil_scoped_release guard;
772
    // Add RetainGrad as PostHook to AccumulationNode
773
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
774 775 776 777 778 779
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
780 781 782 783 784 785 786
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
787
    }
788
  } else {
W
wanghuancoder 已提交
789
    eager_gil_scoped_release guard;
790
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
791
    if (meta->MutableGrad()->initialized()) {
792 793 794 795 796 797 798 799 800
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
801
    }
802 803
  }

804 805
  RETURN_PY_NONE

806 807 808
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

809 810
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
811 812
                                         PyObject* kwargs) {
  EAGER_TRY
813
  paddle::Tensor* dst_ptr =
814
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
815 816
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
817 818 819
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
820
                        self->tensor.name()));
821
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
822 823 824
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
825
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
826
  dst_tensor->ShareBufferWith(*src_tensor);
827
  dst_tensor->ShareDataTypeWith(*src_tensor);
828 829
  RETURN_PY_NONE

830 831 832
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

833 834 835 836
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
837
  paddle::Tensor* dst_ptr =
838
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
839 840
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
841 842 843
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
844
                        self->tensor.name()));
845
  bool res = false;
846
  if (!self->tensor.defined() || !dst_ptr->defined()) {
847 848
    return ToPyObject(res);
  }
849 850
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
851 852 853 854 855
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

856 857 858 859
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
860
  paddle::Tensor* src_ptr =
861
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
862 863
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
864 865 866
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
867 868
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
869 870
  RETURN_PY_NONE

871 872 873
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

874 875 876 877
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
878
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
879 880
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
881 882 883 884 885
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
886
  if (!self->tensor.defined() || !src_tensor.defined()) {
887 888
    return ToPyObject(res);
  }
889
  res = (self->tensor.impl().get() == src_tensor.impl().get());
890 891 892 893
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
PyDoc_STRVAR(tensor_method_detach__doc__, R"DOC(detach($self, /)
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

934 935
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
936 937
                                      PyObject* kwargs) {
  EAGER_TRY
938
  PADDLE_ENFORCE_EQ(
939
      self->tensor.defined(),
940
      true,
941
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
942
                                        self->tensor.name()));
943

944
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
945
  if (obj) {
946
    auto v = reinterpret_cast<TensorObject*>(obj);
947
    new (&(v->tensor)) paddle::Tensor();
948 949 950 951
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
952 953 954 955 956 957 958 959 960 961
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

981 982 983 984
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
985
  if (!self->tensor.defined()) {
986 987 988
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
989
  }
990
  if (self->tensor.is_dense_tensor()) {
991
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
992 993
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
994 995
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
996 997
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
998
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
999 1000 1001 1002
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1003
  } else {
1004
    RETURN_PY_NONE
1005 1006 1007 1008
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1009 1010 1011 1012 1013
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1014
    RETURN_PY_NONE
1015 1016 1017 1018 1019 1020
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1021
    RETURN_PY_NONE
1022 1023 1024 1025
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1040 1041
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1042
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1043

1044
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1045 1046 1047 1048 1049 1050 1051
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1052 1053 1054
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1055
  EAGER_TRY
J
Jiabin Yang 已提交
1056 1057 1058
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1059 1060
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1061 1062
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1063 1064
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1065
  PADDLE_ENFORCE_EQ(
1066
      self->tensor.defined(),
1067
      true,
J
Jiabin Yang 已提交
1068 1069 1070 1071 1072
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1084

1085 1086 1087 1088
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1105 1106 1107 1108 1109 1110
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1111
    if (op_type == "slice") {
W
wanghuancoder 已提交
1112
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1113 1114 1115 1116 1117 1118
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1119
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1120
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1121
      out = strided_slice_ad_func(
1122
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1132
  bool set_to_1d = FLAGS_set_to_1d;
1133 1134 1135 1136 1137 1138

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1139
      VLOG(1)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1152 1153 1154
        none_axes.pop_back();
      }
    }
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1169 1170
          }
        }
1171
        axis -= len;
J
Jiabin Yang 已提交
1172
      }
1173
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1174
    }
1175
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1176 1177 1178 1179
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1180
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1194 1195 1196
  }

  return ToPyObject(out);
1197 1198 1199
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1200 1201
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1202 1203
                                             PyObject* kwargs) {
  EAGER_TRY
1204 1205 1206 1207 1208 1209 1210 1211
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1212 1213 1214
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1215 1216
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1217 1218
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1219 1220 1221 1222 1223 1224 1225
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1226
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1227 1228 1229 1230 1231 1232 1233 1234

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1235 1236
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1237 1238 1239 1240 1241 1242
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1243 1244
        offset,
        numel,
W
wanghuancoder 已提交
1245 1246 1247
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1248 1249
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1250 1251 1252 1253 1254 1255
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1256 1257
          index,
          dims[i],
W
wanghuancoder 已提交
1258
          platform::errors::InvalidArgument(
1259 1260 1261
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1262
              dims[i]));
W
wanghuancoder 已提交
1263
      offset += index * stride[i];
W
wanghuancoder 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1291 1292
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1293
        0,                                                                   \
1294 1295 1296
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1297 1298 1299 1300 1301
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1302 1303
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1355 1356
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1357 1358
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1380
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1381
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1382 1383 1384 1385 1386
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1387 1388
    }

1389
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1390 1391 1392 1393

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1394
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1395 1396 1397 1398
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1399
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1400 1401 1402
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1403
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1404 1405 1406
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1407
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1408 1409 1410
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1411
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1412 1413 1414
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1415
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1416 1417 1418
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1429 1430 1431 1432
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1433
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1434 1435 1436
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1437 1438 1439 1440 1441
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1442 1443 1444 1445 1446 1447 1448

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1449 1450
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1451
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1452 1453
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1454
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1455 1456
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1457
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1458 1459
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1460
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1461 1462
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1463
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1464 1465
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1466
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1467 1468 1469 1470 1471 1472 1473 1474
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1475 1476 1477 1478
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1479 1480
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1481 1482 1483 1484 1485 1486 1487
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1488
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1489 1490 1491 1492 1493 1494 1495
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1496
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1497 1498
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1499
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1500 1501 1502 1503 1504 1505 1506
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1507 1508 1509
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1510
      }
1511 1512
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1513 1514 1515 1516 1517 1518 1519 1520 1521
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1522 1523
    }
  } else {
1524
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1536
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1537
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1538 1539 1540 1541
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1542
#else
1543 1544 1545 1546
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1547 1548
#endif
    } else {
1549 1550
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1551 1552
    }
  }
1553 1554
  RETURN_PY_NONE

W
wanghuancoder 已提交
1555 1556 1557
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1558 1559
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1560 1561 1562
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1563
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1564
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1577 1578 1579 1580 1581 1582 1583 1584 1585
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1586 1587
        rank_info.first,
        rank_info.second,
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1600 1601
        rank_info.first,
        rank_info.second,
1602 1603 1604 1605 1606 1607
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1608 1609
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1646 1647
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1648 1649 1650 1651 1652 1653
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1654
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1655
                    true,
1656 1657 1658 1659
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1660 1661 1662 1663
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1674
      std::make_shared<PyVoidHook>(hook_func));
1675

1676 1677
  RETURN_PY_NONE

1678 1679 1680
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1681 1682
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1683
                                       PyObject* kwargs) {
1684 1685 1686
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1687
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1688
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1689
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1690
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1691
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1692
  }
1693 1694
  RETURN_PY_NONE

1695 1696 1697
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1698 1699
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1700 1701 1702
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1703 1704
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1705 1706 1707
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1708 1709 1710 1711 1712 1713 1714 1715 1716
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1717 1718
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1719 1720 1721
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1722
  if (self->tensor.initialized()) {
1723 1724
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1725 1726
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1727 1728
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1729 1730 1731 1732 1733
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1734 1735
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1736 1737 1738 1739
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1740 1741
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1742 1743 1744 1745
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1746 1747
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1748 1749
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1750

1751 1752 1753
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1754 1755 1756
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1757
                     "function _use_gpudnn is only effective for DenseTensor"));
1758

1759
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1760

1761
  // Set the same use_gpudnn attribute, return directly
1762 1763 1764 1765
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1766
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1767 1768 1769
    return ToPyObject(self->tensor);
  }

1770
  // Share all other members of Tensor except use_gpudnn
1771
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1772
  target_dense_meta.use_gpudnn = use_gpudnn;
1773 1774 1775 1776
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1777
  paddle::Tensor target_tensor(
1778 1779 1780 1781
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1782
          << " set use_gpudnn = " << use_gpudnn;
1783 1784 1785 1786 1787

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1788 1789
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1790 1791
                                         PyObject* kwargs) {
  EAGER_TRY
1792
  using Vocab = paddle::framework::Vocab;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1805
  using Strings = paddle::framework::Strings;
1806
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1819 1820
      egr::IsVariableCompatTensor(self->tensor),
      true,
1821 1822
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1823
  using Vocab = paddle::framework::Vocab;
1824 1825 1826 1827 1828 1829
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1851 1852 1853 1854 1855 1856 1857 1858 1859
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1860
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1878
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1879 1880 1881 1882 1883
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1884
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1900
  paddle::Tensor tensor(
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1915
  paddle::Tensor tensor(
1916 1917 1918 1919 1920
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1921 1922
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1923 1924 1925 1926 1927 1928 1929 1930 1931
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1943 1944
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1945 1946
                                         PyObject* kwargs) {
  EAGER_TRY
1947 1948 1949
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1950 1951 1952 1953 1954
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1955 1956
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1957 1958
                                             PyObject* kwargs) {
  EAGER_TRY
1959 1960 1961
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1962 1963 1964 1965
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1966 1967
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1968 1969
                                             PyObject* kwargs) {
  EAGER_TRY
1970 1971 1972
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1973 1974 1975 1976
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1977 1978
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1992 1993 1994 1995 1996 1997 1998 1999 2000
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2001 2002
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2003 2004 2005 2006 2007 2008 2009 2010
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
PyDoc_STRVAR(tensor_method_element_size__doc__, R"DOC(element_size($self, /)
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2040 2041
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2042 2043
                                            PyObject* kwargs) {
  EAGER_TRY
2044
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2045 2046 2047 2048 2049

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2059 2060 2061 2062 2063
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2064
  RETURN_PY_NONE
2065 2066 2067
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2068 2069 2070 2071
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2072 2073 2074
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2075 2076 2077 2078
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2079 2080
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2102
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2103 2104 2105 2106
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2107 2108
  RETURN_PY_NONE

2109 2110 2111
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2112 2113
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2114 2115 2116
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2117 2118
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2135 2136 2137 2138 2139
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2140 2141 2142 2143 2144
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2145 2146
  RETURN_PY_NONE

W
wanghuancoder 已提交
2147 2148 2149 2150
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2151 2152
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2153 2154 2155 2156
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2157 2158
      t->IsInitialized(),
      true,
2159 2160 2161 2162 2163 2164 2165
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2166 2167
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2168 2169
                                   PyObject* kwargs) {
  EAGER_TRY
2170
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2171 2172
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2173 2174 2175 2176 2177 2178 2179
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2180 2181
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2182 2183
                                    PyObject* kwargs) {
  EAGER_TRY
2184
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2185 2186
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2187 2188 2189 2190 2191
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
2192
    RETURN_PY_NONE
2193 2194
  }
  if (grad->is_dense_tensor()) {
2195
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2196 2197 2198 2199
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2200
    RETURN_PY_NONE
2201 2202 2203 2204
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2205 2206
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2207 2208
                                          PyObject* kwargs) {
  EAGER_TRY
2209
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2210 2211
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2212 2213 2214 2215
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

2216
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2217 2218 2219 2220 2221 2222 2223 2224 2225
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2226 2227 2228 2229 2230
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2231 2232 2233 2234
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2235 2236 2237 2238 2239
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2311
#if defined(PADDLE_WITH_CUDA)
2312 2313
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2314 2315 2316
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2317 2318
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2319 2320 2321
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2322 2323
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2324 2325 2326 2327
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2328
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2329 2330
  tensor_uva(self_tensor, device_id);

2331 2332
  RETURN_PY_NONE

2333 2334 2335
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2348

2349
PyMethodDef variable_methods[] = {
2350
    {"numpy",
2351
     (PyCFunction)(void (*)())tensor_method_numpy,
2352
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2353
     tensor_method_numpy__doc__},
2354
    {"_is_initialized",
2355
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2356 2357
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2358
    {"_is_dense_tensor_hold_allocation",
2359 2360
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2361 2362 2363
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
2364
     (PyCFunction)(void (*)())tensor_method__copy_to,
2365 2366 2367
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
2368
     (PyCFunction)(void (*)())tensor_method_copy_,
2369 2370
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2371
    {"clone",
2372
     (PyCFunction)(void (*)())tensor_method_clone,
2373
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2374
     tensor_method_clone__doc__},
2375
    {"reconstruct_from_",
2376
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2377 2378 2379
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
2380
     (PyCFunction)(void (*)())tensor_retain_grads,
2381 2382 2383
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
2384
     (PyCFunction)(void (*)())tensor_clear_gradient,
2385
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2386
     tensor_clear_gradient__doc__},
2387
    {"is_dense",
2388
     (PyCFunction)(void (*)())tensor_method_is_dense,
2389 2390
     METH_VARARGS | METH_KEYWORDS,
     NULL},
L
LiYuRio 已提交
2391
    {"is_dist",
2392
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2393 2394
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2395
    {"_zero_grads",
2396
     (PyCFunction)(void (*)())tensor__zero_grads,
2397 2398 2399
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
2400
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2401 2402
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2403
    {"_is_shared_buffer_with",
2404
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2405 2406
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2407
    {"_share_underline_tensor_to",
2408
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2409 2410
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2411
    {"_is_shared_underline_tensor_with",
2412
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2413 2414 2415
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
2416
     (PyCFunction)(void (*)())tensor_method_detach,
2417
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2418
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2419 2420 2421 2422
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2423
    {"get_tensor",
2424
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2425 2426
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2427
    {"get_selected_rows",
2428
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2429 2430
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2431
    {"_get_tensor_from_selected_rows",
2432
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2433 2434
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2435
    {"_getitem_index_not_tensor",
2436
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2437 2438
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2439
    {"_getitem_from_offset",
2440
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2441 2442
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2443
    {"__setitem_eager_tensor__",
2444
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2445 2446
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2447
    {"_register_grad_hook",
2448
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2449 2450 2451
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
2452
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2453 2454
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2455
    {"_register_backward_hook",
2456
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2457
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2458
     tensor_method__register_reduce_hook__doc__},
2459
    {"_set_grad_type",
2460
     (PyCFunction)(void (*)())tensor__set_grad_type,
2461 2462 2463
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
2464
     (PyCFunction)(void (*)())tensor__clear,
2465 2466
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2467
    {"_clear_dataptr",
2468
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2469 2470
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2471
    {"_copy_gradient_from",
2472
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2473 2474
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2475
    {"_tensor_use_gpudnn",
2476
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2477 2478
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2479 2480
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2481
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2482 2483 2484
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
2485
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2486 2487
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2488
    {"get_map_tensor",
2489
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2490 2491
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2492
    /***the method of sparse tensor****/
2493
    {"nnz",
2494
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2495 2496
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2497
    {"indices",
2498
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2499 2500 2501
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
2502
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2503 2504 2505
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
2506
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2507 2508 2509
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
2510
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2511 2512 2513
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
2514
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2515 2516 2517
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
2518
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2519 2520 2521
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
2522
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2523 2524
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2525
    {"is_same_shape",
2526
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2527 2528
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2529
    {"to_sparse_csr",
2530
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2531 2532 2533
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
2534
     (PyCFunction)(void (*)())tensor_method_element_size,
2535
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2536
     tensor_method_element_size__doc__},
2537
    /***the method of sparse tensor****/
2538
    {"_inplace_version",
2539
     (PyCFunction)(void (*)())tensor__inplace_version,
2540 2541
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2542
    {"_bump_inplace_version",
2543
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2544
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2545
     tensor_method__bump_inplace_version__doc__},
2546
    {"is_selected_rows",
2547
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2548 2549 2550
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
2551
     (PyCFunction)(void (*)())tensor_method_get_rows,
2552 2553
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2554
    {"_reset_grad_inplace_version",
2555
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2556 2557 2558
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
2559
     (PyCFunction)(void (*)())tensor_method__share_memory,
2560 2561 2562
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
2563
     (PyCFunction)(void (*)())tensor__offset,
2564 2565 2566
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
2567
     (PyCFunction)(void (*)())tensor__grad_name,
2568 2569 2570
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
2571
     (PyCFunction)(void (*)())tensor__grad_value,
2572 2573 2574
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
2575
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2576 2577
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2578
    {"data_ptr",
2579
     (PyCFunction)(void (*)())tensor_data_ptr,
2580 2581
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2582
    {"_grad_ivar",
2583
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2584 2585
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2598
#if defined(PADDLE_WITH_CUDA)
2599
    {"_tensor_uva",
2600
     (PyCFunction)(void (*)())tensor_method__uva,
2601 2602
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2603
#endif
2604 2605
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2606 2607 2608
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
2609
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2610 2611
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2612
    {"_is_initialized",
2613
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2614 2615
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2616
    {"_is_string_tensor_hold_allocation",
2617 2618
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2619 2620
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2621 2622 2623
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2624 2625
}  // namespace pybind
}  // namespace paddle