eager_method.cc 83.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/core/ddim.h"
62
#include "paddle/phi/core/tensor_utils.h"
63
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
64

65 66 67
namespace paddle {
namespace pybind {

68 69
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
70
                                     const paddle::platform::Place& place,
71
                                     bool zero_copy);
72

73
extern PyTypeObject* p_tensor_type;
74

J
Jiabin Yang 已提交
75 76 77
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
78
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
79
    PADDLE_ENFORCE_EQ(
80 81
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
82 83 84 85 86 87 88 89
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
90
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
91 92 93 94
        "method, when you reach this means we got another type index."));
  }
}

95 96
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
97 98
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
99 100 101 102 103 104 105 106 107
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
108 109 110 111 112
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
113 114 115 116 117
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
118 119
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
120
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
121 122
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
123
  size_t py_rank = tensor_dims.size();
124
  size_t numel = 1;
125
  if (py_rank == 0) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    Py_ssize_t args_num = PyTuple_Size(args);
    bool set_to_1d = true;
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
      // 0D Tensor hack process to 1D numpy, will remove in future
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
             "removed in future. Please modify "
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
             "possible, "
             "otherwise 'Tensor.numpy()[0]' will raise error";
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
149 150 151 152 153 154
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
155
  }
W
wanghuancoder 已提交
156

157
  PyObject* array = api.PyArray_NewFromDescr_(
158 159
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
160
      py_rank,
161 162 163
      py_dims,
      py_strides,
      nullptr,
164 165 166 167
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
168
  if (!self->tensor.impl()->initialized()) {
169 170 171 172
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
173 174 175 176 177 178
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
179 180 181 182 183
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
184 185 186
    return array;
  }

187
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
188
    eager_gil_scoped_release guard;
189
    platform::CPUPlace place;
190 191 192 193
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
194 195
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
196 197 198 199 200

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
201 202 203
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
204 205 206 207 208 209 210 211
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
212 213 214
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
215 216
    }

217
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
218
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
219
    eager_gil_scoped_release guard;
220 221 222 223 224
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
225 226 227 228
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
229 230
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
231
      paddle::platform::GpuMemcpySync(
232 233
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
234
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
235
          kind);
236 237 238 239 240
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
241 242
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
243
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
244
          kind);
245
    }
246
#endif
C
Chen Weihang 已提交
247 248 249 250 251 252 253
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
254 255
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
C
Chen Weihang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
274 275
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
276
    eager_gil_scoped_release guard;
277 278 279 280
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
281 282
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
283 284 285 286
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
287
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
288 289 290 291
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
292 293
      // TODO(qili93): temporary for ascned npu performance to be removed along
      // with npu_identity op
294
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
295 296 297 298 299
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
300 301 302 303
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
304
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
305 306
    }
#endif
307 308 309
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
310
    RETURN_PY_NONE
311 312 313 314 315 316
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
332 333 334 335 336
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
350 351
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
375 376 377
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
378 379 380 381
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
382
    RETURN_PY_NONE
J
Jack Zhou 已提交
383 384 385 386
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

387 388 389 390
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
391
  return ToPyObject(self->tensor.initialized());
392 393 394
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

409
static void IncreaseTensorReferenceCountUntilCopyComplete(
410
    const paddle::Tensor& tensor, const platform::Place& place) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

427 428
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
429 430
                                        PyObject* kwargs) {
  EAGER_TRY
431 432
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
433
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
434 435 436 437 438 439 440 441 442 443
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
444
  }
445 446 447 448
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

449 450
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
451 452
                                   PyObject* kwargs) {
  EAGER_TRY
453
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
454 455 456 457 458 459 460 461
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
462 463 464 465
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

466 467 468 469
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
470
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
471
  std::string orig_name = self->tensor.name();
472 473
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
474
  self->tensor = src_tensor;
475 476

  // Recover source name
477
  self->tensor.set_name(orig_name);
478 479

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
480
          << " to " << self->tensor.name();
481 482
  RETURN_PY_NONE

483 484 485
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

486 487
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
488 489
                                     PyObject* kwargs) {
  EAGER_TRY
490
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
491
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
492
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
493
          << self->tensor.name();
494
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
495
    eager_gil_scoped_release guard;
496
    egr::EagerUtils::autograd_meta(&(self->tensor))
497 498
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
499
    egr::EagerUtils::autograd_meta(&(self->tensor))
500 501
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
502
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
503
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
504 505 506
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
507
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
508
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
509
    }
510 511
  }

512
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
513
          << self->tensor.name();
514 515
  RETURN_PY_NONE

516 517 518
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

519 520 521 522
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
523
  paddle::Tensor out;
W
wanghuancoder 已提交
524 525 526 527 528 529 530 531 532
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
533

W
wanghuancoder 已提交
534 535
    out = assign_ad_func(self->tensor);
  }
536 537 538 539
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

540 541
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
542
                                     PyObject* kwargs) {
543
  EAGER_TRY
544
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
545
    eager_gil_scoped_release guard;
546
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
547
    if (!meta->GetMutableGradNode()) {
548
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
549
              << "become accumulation node";
550
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
551
    }
552
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
553
  }
554 555
  RETURN_PY_NONE

556 557 558
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

559 560
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
561
                                       PyObject* kwargs) {
562
  EAGER_TRY
563
  VLOG(4) << "ClearGradient " << self->tensor.name();
564

565 566 567
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
568
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
569 570
  }

571
  paddle::Tensor* grad;
J
Jiabin Yang 已提交
572 573
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
574 575 576 577 578 579
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
580
  } else {
581
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
582
    grad = meta->MutableGrad();
583 584
  }

585
  if (grad->impl()) {
W
wanghuancoder 已提交
586
    eager_gil_scoped_release guard;
587 588 589 590 591 592 593 594 595 596
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
597 598 599 600
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
601 602 603 604 605
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
606 607 608 609 610 611 612
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
613 614
      }
    }
615
  }
616

617 618
  RETURN_PY_NONE

619 620 621
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

622 623
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
624
                                    PyObject* kwargs) {
625
  EAGER_TRY
626
  VLOG(4) << "ZeroGrads " << self->tensor.name();
627

628
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
629
    eager_gil_scoped_release guard;
630
    // Add RetainGrad as PostHook to AccumulationNode
631
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
632 633 634 635 636 637
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
638 639 640 641 642 643 644
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
645
    }
646
  } else {
W
wanghuancoder 已提交
647
    eager_gil_scoped_release guard;
648
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
649
    if (meta->MutableGrad()->initialized()) {
650 651 652 653 654 655 656 657 658
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
659
    }
660 661
  }

662 663
  RETURN_PY_NONE

664 665 666
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

667 668
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
669 670
                                         PyObject* kwargs) {
  EAGER_TRY
671
  paddle::Tensor* dst_ptr =
672
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
673 674
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
675 676 677
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
678
                        self->tensor.name()));
679
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
680 681 682
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
683
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
684
  dst_tensor->ShareBufferWith(*src_tensor);
685
  dst_tensor->ShareDataTypeWith(*src_tensor);
686 687
  RETURN_PY_NONE

688 689 690
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

691 692 693 694
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
695
  paddle::Tensor* dst_ptr =
696
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
697 698
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
699 700 701
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
702
                        self->tensor.name()));
703
  bool res = false;
704
  if (!self->tensor.defined() || !dst_ptr->defined()) {
705 706
    return ToPyObject(res);
  }
707 708
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
709 710 711 712 713
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

714 715 716 717
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
718
  paddle::Tensor* src_ptr =
719
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
720 721
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
722 723 724
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
725 726
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
727 728
  RETURN_PY_NONE

729 730 731
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

732 733 734 735
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
736
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
737 738
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
739 740 741 742 743
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
744
  if (!self->tensor.defined() || !src_tensor.defined()) {
745 746
    return ToPyObject(res);
  }
747
  res = (self->tensor.impl().get() == src_tensor.impl().get());
748 749 750 751
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

752 753
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
754 755
                                      PyObject* kwargs) {
  EAGER_TRY
756
  PADDLE_ENFORCE_EQ(
757
      self->tensor.defined(),
758
      true,
759
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
760
                                        self->tensor.name()));
761

762
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
763
  if (obj) {
764
    auto v = reinterpret_cast<TensorObject*>(obj);
765
    new (&(v->tensor)) paddle::Tensor();
766 767 768 769
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
770 771 772 773 774 775 776 777 778 779
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

780 781 782 783
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
784
  if (!self->tensor.defined()) {
785 786 787
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
788
  }
789
  if (self->tensor.is_dense_tensor()) {
790
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
791 792 793
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
794
    RETURN_PY_NONE
795 796 797 798
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

799 800 801 802 803
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
804
    RETURN_PY_NONE
805 806 807 808 809 810
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
811
    RETURN_PY_NONE
812 813 814 815
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

830 831
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
832
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
833

834
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
835 836 837 838 839 840 841
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
842 843 844
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
845
  EAGER_TRY
J
Jiabin Yang 已提交
846 847 848 849 850 851
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
852 853
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
854
  PADDLE_ENFORCE_EQ(
855
      self->tensor.defined(),
856
      true,
J
Jiabin Yang 已提交
857 858 859 860 861
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
862 863 864 865 866 867 868 869 870 871 872
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
873

874 875 876 877
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
894 895 896 897 898 899
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
900
    if (op_type == "slice") {
W
wanghuancoder 已提交
901
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
902 903 904 905 906 907
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
908
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
909
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
910
      out = strided_slice_ad_func(
911
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
934
      paddle::Tensor new_out;
W
wanghuancoder 已提交
935 936 937 938 939 940 941 942 943 944 945 946
      {
        eager_gil_scoped_release guard;
        // Deal with cases that decrease_axes is not empty
        // For example:
        // # x.shape: (2,3,4)
        // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for (auto& axis : none_axes) {
          int len = 0;
          for (int da : decrease_axis) {
            if (da < axis) {
              len++;
            }
J
Jiabin Yang 已提交
947
          }
W
wanghuancoder 已提交
948
          axis -= len;
J
Jiabin Yang 已提交
949
        }
W
wanghuancoder 已提交
950
        new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
951 952 953 954 955 956 957
      }
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
958
    eager_gil_scoped_release guard;
959 960
    auto select_index =
        paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
961
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
962
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
963 964
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
965 966
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
967
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
968
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
969 970 971
  }

  return ToPyObject(out);
972 973 974
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

975 976
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
977 978 979
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
980 981 982
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
983 984
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
985 986
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1004 1005
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1006 1007 1008 1009 1010 1011
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1012 1013
        offset,
        numel,
W
wanghuancoder 已提交
1014 1015 1016
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1017 1018
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1019 1020 1021 1022 1023 1024
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1025 1026
          index,
          dims[i],
W
wanghuancoder 已提交
1027
          platform::errors::InvalidArgument(
1028 1029 1030
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1062 1063 1064 1065 1066 1067
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1068 1069 1070 1071 1072
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1073 1074
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1152 1153 1154 1155 1156
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1157 1158
    }

1159
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1160 1161 1162 1163

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1164
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1200 1201 1202 1203 1204
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
1231 1232 1233 1234
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT16) {
          attrs["fp16_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
W
wanghuancoder 已提交
1235 1236 1237 1238
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1239
              "float32, int32, int64 or float16, "
W
wanghuancoder 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1255
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1256 1257
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1258
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1259 1260 1261 1262 1263 1264 1265
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1266 1267 1268
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1269
      }
1270 1271
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1272 1273 1274 1275 1276 1277 1278 1279 1280
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1295
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1296
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1297 1298 1299 1300
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1301
#else
1302 1303 1304 1305
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1306 1307
#endif
    } else {
1308 1309
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1310 1311
    }
  }
1312 1313
  RETURN_PY_NONE

W
wanghuancoder 已提交
1314 1315 1316
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1317 1318
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1319 1320 1321 1322 1323
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1336 1337 1338 1339 1340 1341 1342 1343 1344
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1345 1346
        rank_info.first,
        rank_info.second,
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1359 1360
        rank_info.first,
        rank_info.second,
1361 1362 1363 1364 1365 1366
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1367 1368
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1381 1382
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1383 1384 1385 1386 1387 1388
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1389 1390
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1391 1392 1393 1394
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1395 1396 1397 1398
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1409
      std::make_shared<PyVoidHook>(hook_func));
1410

1411 1412
  RETURN_PY_NONE

1413 1414 1415
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1416 1417
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1418
                                       PyObject* kwargs) {
1419 1420 1421
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1422
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1423
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1424
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1425
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1426
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1427
  }
1428 1429
  RETURN_PY_NONE

1430 1431 1432
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1433 1434
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1435 1436 1437
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1438 1439
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1440 1441 1442
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1443 1444
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1445 1446 1447
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1448
  if (self->tensor.initialized()) {
1449 1450
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1451 1452
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1453 1454
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1455 1456 1457 1458 1459
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1460 1461
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1462 1463 1464 1465
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1466 1467
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1468 1469 1470 1471
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1472 1473
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1474 1475
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1476

1477 1478 1479
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1480 1481 1482
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1483
                     "function _use_gpudnn is only effective for DenseTensor"));
1484

1485
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1486

1487
  // Set the same use_gpudnn attribute, return directly
1488 1489 1490 1491
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1492
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1493 1494 1495
    return ToPyObject(self->tensor);
  }

1496
  // Share all other members of Tensor except use_gpudnn
1497
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1498
  target_dense_meta.use_gpudnn = use_gpudnn;
1499 1500 1501 1502
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1503
  paddle::Tensor target_tensor(
1504 1505 1506 1507
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1508
          << " set use_gpudnn = " << use_gpudnn;
1509 1510 1511 1512 1513

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1514 1515
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1516 1517
                                         PyObject* kwargs) {
  EAGER_TRY
1518
  using Vocab = paddle::framework::Vocab;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1531
  using Strings = paddle::framework::Strings;
1532
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1545 1546
      egr::IsVariableCompatTensor(self->tensor),
      true,
1547 1548
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1549
  using Vocab = paddle::framework::Vocab;
1550 1551 1552 1553 1554 1555
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1577 1578 1579 1580 1581 1582 1583 1584 1585
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1586
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1604
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1605 1606 1607 1608 1609
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1610
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1626
  paddle::Tensor tensor(
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1641
  paddle::Tensor tensor(
1642 1643 1644 1645 1646
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1647 1648
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1649 1650 1651 1652 1653 1654 1655 1656 1657
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1658 1659
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1660 1661
                                         PyObject* kwargs) {
  EAGER_TRY
1662 1663 1664
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1665 1666 1667 1668 1669
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1670 1671
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1672 1673
                                             PyObject* kwargs) {
  EAGER_TRY
1674 1675 1676
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1677 1678 1679 1680
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1681 1682
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1683 1684
                                             PyObject* kwargs) {
  EAGER_TRY
1685 1686 1687
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1688 1689 1690 1691
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1692 1693
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1707 1708 1709 1710 1711 1712 1713 1714 1715
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1716 1717
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1718 1719 1720 1721 1722 1723 1724 1725
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1726 1727
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1728 1729
                                            PyObject* kwargs) {
  EAGER_TRY
1730
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
1731 1732 1733 1734 1735

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1736 1737 1738 1739 1740
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1741
  RETURN_PY_NONE
1742 1743 1744
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1745 1746 1747 1748
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1749 1750 1751
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1752 1753 1754 1755
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1756 1757
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

1779
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1780 1781 1782 1783
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1784 1785
  RETURN_PY_NONE

1786 1787 1788
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1789 1790
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1791 1792 1793
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1794 1795
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1812 1813 1814 1815 1816
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1817 1818 1819 1820 1821
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1822 1823
  RETURN_PY_NONE

W
wanghuancoder 已提交
1824 1825 1826 1827
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1828 1829
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1830 1831 1832 1833
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1834 1835
      t->IsInitialized(),
      true,
1836 1837 1838 1839 1840 1841 1842
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1843 1844
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1845 1846
                                   PyObject* kwargs) {
  EAGER_TRY
1847
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1848 1849
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1850 1851 1852 1853 1854 1855 1856
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1857 1858
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1859 1860
                                    PyObject* kwargs) {
  EAGER_TRY
1861
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1862 1863
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1864 1865 1866 1867 1868
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1869
    RETURN_PY_NONE
1870 1871
  }
  if (grad->is_dense_tensor()) {
1872
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
1873 1874 1875 1876
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1877
    RETURN_PY_NONE
1878 1879 1880 1881
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1882 1883
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1884 1885
                                          PyObject* kwargs) {
  EAGER_TRY
1886
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1887 1888
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1903 1904 1905 1906 1907
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
1908 1909 1910 1911
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
1912 1913 1914 1915 1916
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1932
#if defined(PADDLE_WITH_CUDA)
1933 1934
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1935 1936 1937
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1938 1939
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1940 1941 1942
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1943 1944
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1945 1946 1947 1948
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
1949
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1950 1951
  tensor_uva(self_tensor, device_id);

1952 1953
  RETURN_PY_NONE

1954 1955 1956
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1969

1970
PyMethodDef variable_methods[] = {
1971 1972 1973 1974
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1975
    {"_is_initialized",
1976
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1977 1978
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1979
    {"_is_dense_tensor_hold_allocation",
1980 1981
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1992 1993 1994 1995
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1996
    {"reconstruct_from_",
1997
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2020
    {"_is_shared_buffer_with",
2021
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
2022 2023
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2024
    {"_share_underline_tensor_to",
2025
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
2026 2027
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2028
    {"_is_shared_underline_tensor_with",
2029
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
2030 2031 2032 2033 2034 2035
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2036
    {"get_tensor",
2037
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
2038 2039
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2040 2041
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
2042 2043
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2044 2045 2046 2047
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2048 2049
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
2050 2051
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2052 2053
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
2054 2055
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2056 2057
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
2058 2059
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2060 2061
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
2062 2063 2064 2065 2066 2067
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2068 2069
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2080 2081
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
2082 2083
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2084 2085
    {"_tensor_use_gpudnn",
     (PyCFunction)(void (*)(void))tensor__use_gpudnn,
2086 2087
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2088 2089 2090
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
2091 2092 2093 2094 2095 2096
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2097 2098
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2099 2100
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2101
    /***the method of sparse tensor****/
2102 2103 2104 2105
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2134 2135 2136 2137
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2138 2139 2140 2141 2142 2143 2144 2145
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2146
    /***the method of sparse tensor****/
2147 2148 2149 2150
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2151 2152
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2153 2154
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2155 2156
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2157 2158 2159 2160 2161 2162
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2163 2164
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2187 2188 2189 2190
    {"data_ptr",
     (PyCFunction)(void (*)(void))tensor_data_ptr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2191 2192 2193 2194
    {"_grad_ivar",
     (PyCFunction)(void (*)(void))tensor__grad_ivar,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2195
#if defined(PADDLE_WITH_CUDA)
2196 2197 2198 2199
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2200
#endif
2201 2202
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2203 2204 2205 2206
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2207 2208
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2209 2210
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2211 2212
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2213
    {"_is_string_tensor_hold_allocation",
2214 2215
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2216 2217
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2218 2219 2220
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2221 2222
}  // namespace pybind
}  // namespace paddle