eager_method.cc 82.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20
#include <Python.h>

#include <string>
21
#include <unordered_map>
22 23
#include <vector>

24
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
25
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
27
#include "paddle/fluid/eager/autograd_meta.h"
28 29
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
30
#include "paddle/fluid/eager/utils.h"
31
#include "paddle/fluid/framework/convert_utils.h"
32
#include "paddle/fluid/framework/string_array.h"
33 34 35 36 37 38
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
39
#include "paddle/fluid/pybind/slice_utils.h"
40
#include "paddle/fluid/pybind/uva_utils.h"
41 42 43 44
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
45 46
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
47
#include "pybind11/detail/internals.h"
48 49
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
50
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
51
#include "paddle/fluid/eager/amp_utils.h"
52
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
53
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
54
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
56
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
57
#include "paddle/phi/core/ddim.h"
58
#include "paddle/phi/core/tensor_utils.h"
59
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
60

61 62 63
namespace paddle {
namespace pybind {

64 65
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
66
                                     const paddle::platform::Place& place,
67
                                     bool zero_copy);
68

69
extern PyTypeObject* p_tensor_type;
70

J
Jiabin Yang 已提交
71 72 73 74 75
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
76 77
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

91 92
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
93 94
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
95 96 97 98 99 100 101 102 103
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
104 105 106 107 108
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
109 110 111 112 113
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
114 115
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
116
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
117 118 119 120 121 122 123 124
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
125

126
  PyObject* array = api.PyArray_NewFromDescr_(
127 128 129 130 131 132
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(),
      py_dims,
      py_strides,
      nullptr,
133 134 135 136
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
137
  if (!self->tensor.impl()->initialized()) {
138 139 140 141
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
142 143 144 145 146 147
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
148 149 150 151 152
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
153 154 155
    return array;
  }

156
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
157
    eager_gil_scoped_release guard;
158
    platform::CPUPlace place;
159 160 161 162
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
163 164
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
165 166 167 168 169

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
170 171 172
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
173 174 175 176 177 178 179 180
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
181 182 183
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
184 185
    }

186
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
187
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
188
    eager_gil_scoped_release guard;
189 190 191 192 193
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
194 195 196 197
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
198 199
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
200
      paddle::platform::GpuMemcpySync(
201 202
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
203
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
204
          kind);
205 206 207 208 209
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
210 211
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
212
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
213
          kind);
214
    }
215
#endif
C
Chen Weihang 已提交
216 217 218 219 220 221 222
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
223 224
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
C
Chen Weihang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
243 244
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
245
    eager_gil_scoped_release guard;
246 247 248 249
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
250 251
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
252 253 254 255
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
256
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
257 258 259 260
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
261 262 263 264 265 266 267 268 269
      // TODO(qili93): temporary for ascned npu performance to be removed along
      // with npu_identity op
      paddle::experimental::Tensor temp_tensor(
          std::make_shared<phi::DenseTensor>());
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
270 271 272 273
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
274
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
275 276
    }
#endif
277 278 279
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
280
    RETURN_PY_NONE
281 282 283 284 285 286
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
302 303 304 305 306
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
320 321
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
345 346 347
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
348 349 350 351
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
352
    RETURN_PY_NONE
J
Jack Zhou 已提交
353 354 355 356
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

357 358 359 360
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
361
  return ToPyObject(self->tensor.initialized());
362 363 364
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static void IncreaseTensorReferenceCountUntilCopyComplete(
    const paddle::experimental::Tensor& tensor, const platform::Place& place) {
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

397 398
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
399 400
                                        PyObject* kwargs) {
  EAGER_TRY
401 402
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
403 404 405 406 407 408 409 410 411 412 413
  paddle::experimental::Tensor cp_tensor;
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
414
  }
415 416 417 418
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

419 420
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
421 422
                                   PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
423 424 425 426 427 428 429 430 431
  paddle::experimental::Tensor cp_tensor;
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
432 433 434 435
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

436 437 438 439
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
440 441 442
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
443 444
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
445
  self->tensor = src_tensor;
446 447

  // Recover source name
448
  self->tensor.set_name(orig_name);
449 450

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
451
          << " to " << self->tensor.name();
452 453
  RETURN_PY_NONE

454 455 456
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

457 458
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
459 460
                                     PyObject* kwargs) {
  EAGER_TRY
461 462
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
463
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
464
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
465
          << self->tensor.name();
466
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
467
    eager_gil_scoped_release guard;
468
    egr::EagerUtils::autograd_meta(&(self->tensor))
469 470
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
471
    egr::EagerUtils::autograd_meta(&(self->tensor))
472 473
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
474
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
475
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
476 477 478
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
479
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
480
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
481
    }
482 483
  }

484
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
485
          << self->tensor.name();
486 487
  RETURN_PY_NONE

488 489 490
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

491 492 493 494
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
495 496 497 498 499 500 501 502 503 504
  paddle::experimental::Tensor out;
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
505

W
wanghuancoder 已提交
506 507
    out = assign_ad_func(self->tensor);
  }
508 509 510 511
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

512 513
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
514
                                     PyObject* kwargs) {
515
  EAGER_TRY
516
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
517
    eager_gil_scoped_release guard;
518
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
519
    if (!meta->GetMutableGradNode()) {
520
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
521
              << "become accumulation node";
522
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
523
    }
524
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
525
  }
526 527
  RETURN_PY_NONE

528 529 530
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

531 532
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
533
                                       PyObject* kwargs) {
534
  EAGER_TRY
535
  VLOG(4) << "ClearGradient " << self->tensor.name();
536

537 538 539
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
540
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
541 542
  }

543
  paddle::experimental::Tensor* grad;
J
Jiabin Yang 已提交
544 545
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
546 547 548 549 550 551
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
552
  } else {
553
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
554
    grad = meta->MutableGrad();
555 556
  }

557
  if (grad->impl()) {
W
wanghuancoder 已提交
558
    eager_gil_scoped_release guard;
559 560 561 562 563 564 565 566 567 568
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
569 570 571 572
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
573 574 575 576 577
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
578 579 580 581 582 583 584
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
585 586
      }
    }
587
  }
588

589 590
  RETURN_PY_NONE

591 592 593
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

594 595
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
596
                                    PyObject* kwargs) {
597
  EAGER_TRY
598
  VLOG(4) << "ZeroGrads " << self->tensor.name();
599

600
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
601
    eager_gil_scoped_release guard;
602
    // Add RetainGrad as PostHook to AccumulationNode
603 604 605 606 607 608 609 610
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
611 612 613 614 615 616 617
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
618
    }
619
  } else {
W
wanghuancoder 已提交
620
    eager_gil_scoped_release guard;
621
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
622
    if (meta->MutableGrad()->initialized()) {
623 624 625 626 627 628 629 630 631
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
632
    }
633 634
  }

635 636
  RETURN_PY_NONE

637 638 639
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

640 641
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
642 643
                                         PyObject* kwargs) {
  EAGER_TRY
644 645
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
646 647
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
648 649 650
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
651
                        self->tensor.name()));
652
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
653 654 655
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
656
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
657
  dst_tensor->ShareBufferWith(*src_tensor);
658
  dst_tensor->ShareDataTypeWith(*src_tensor);
659 660
  RETURN_PY_NONE

661 662 663
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

664 665 666 667
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
668 669
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
670 671
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
672 673 674
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
675
                        self->tensor.name()));
676
  bool res = false;
677
  if (!self->tensor.defined() || !dst_ptr->defined()) {
678 679
    return ToPyObject(res);
  }
680 681
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
682 683 684 685 686
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

687 688 689 690
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
691 692
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
693 694
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
695 696 697
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
698 699
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
700 701
  RETURN_PY_NONE

702 703 704
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

705 706 707 708
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
709 710
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
711 712
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
713 714 715 716 717
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
718
  if (!self->tensor.defined() || !src_tensor.defined()) {
719 720
    return ToPyObject(res);
  }
721
  res = (self->tensor.impl().get() == src_tensor.impl().get());
722 723 724 725
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

726 727
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
728 729
                                      PyObject* kwargs) {
  EAGER_TRY
730
  PADDLE_ENFORCE_EQ(
731 732
      self->tensor.initialized(),
      true,
733
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
734
                                        self->tensor.name()));
735

736
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
737
  if (obj) {
738 739 740 741 742 743
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
744 745 746 747 748 749 750 751 752 753
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

754 755 756 757
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
758
  if (!self->tensor.defined()) {
759 760 761
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
762
  }
763
  if (self->tensor.is_dense_tensor()) {
764
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
765 766 767
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
768
    RETURN_PY_NONE
769 770 771 772
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

773 774 775 776 777
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
778
    RETURN_PY_NONE
779 780 781 782 783 784
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
785
    RETURN_PY_NONE
786 787 788 789
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

804 805
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
806
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
807 808 809 810 811 812 813 814 815 816

  auto t = paddle::experimental::Tensor(
      egr::Controller::Instance().GenerateUniqueName());
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
817 818 819
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
820
  EAGER_TRY
J
Jiabin Yang 已提交
821 822 823 824 825 826
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
827 828
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
829
  PADDLE_ENFORCE_EQ(
830
      self->tensor.defined(),
831
      true,
J
Jiabin Yang 已提交
832 833 834 835 836
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
837 838 839 840 841 842 843 844 845 846 847
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
869 870 871 872 873 874
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
875
    if (op_type == "slice") {
W
wanghuancoder 已提交
876
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
877 878 879 880 881 882
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
883
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
884
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
885
      out = strided_slice_ad_func(
886
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
W
wanghuancoder 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921
      paddle::experimental::Tensor new_out;
      {
        eager_gil_scoped_release guard;
        // Deal with cases that decrease_axes is not empty
        // For example:
        // # x.shape: (2,3,4)
        // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for (auto& axis : none_axes) {
          int len = 0;
          for (int da : decrease_axis) {
            if (da < axis) {
              len++;
            }
J
Jiabin Yang 已提交
922
          }
W
wanghuancoder 已提交
923
          axis -= len;
J
Jiabin Yang 已提交
924
        }
W
wanghuancoder 已提交
925
        new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
926 927 928 929 930 931 932
      }
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
933
    eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
934 935 936
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
937
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
938 939
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
940 941
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
942
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
943
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
944 945 946
  }

  return ToPyObject(out);
947 948 949
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

950 951
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
952 953 954
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
955 956 957
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
958 959
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
960 961
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
979 980
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
981 982 983 984 985 986
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
987 988
        offset,
        numel,
W
wanghuancoder 已提交
989 990 991
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
992 993
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
994 995 996 997 998 999
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1000 1001
          index,
          dims[i],
W
wanghuancoder 已提交
1002
          platform::errors::InvalidArgument(
1003 1004 1005
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1037 1038 1039 1040 1041 1042
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1043 1044 1045 1046 1047
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1048 1049
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1127 1128 1129 1130 1131
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1175 1176 1177 1178 1179
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
1206 1207 1208 1209
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT16) {
          attrs["fp16_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
W
wanghuancoder 已提交
1210 1211 1212 1213
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1214
              "float32, int32, int64 or float16, "
W
wanghuancoder 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1230
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
        paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1241 1242 1243
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1244
      }
1245 1246
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1247 1248 1249 1250 1251 1252 1253 1254 1255
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1270
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1271
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1272 1273 1274 1275
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1276
#else
1277 1278 1279 1280
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1281 1282
#endif
    } else {
1283 1284
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1285 1286
    }
  }
1287 1288
  RETURN_PY_NONE

W
wanghuancoder 已提交
1289 1290 1291
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1292 1293
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1294 1295 1296 1297 1298
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1311 1312 1313 1314 1315 1316 1317 1318 1319
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1320 1321
        rank_info.first,
        rank_info.second,
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1334 1335
        rank_info.first,
        rank_info.second,
1336 1337 1338 1339 1340 1341
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1342 1343
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1356 1357
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1358 1359 1360 1361 1362 1363
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1364 1365
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1366 1367 1368 1369
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1370 1371 1372 1373
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1384
      std::make_shared<PyVoidHook>(hook_func));
1385

1386 1387
  RETURN_PY_NONE

1388 1389 1390
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1391 1392
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1393
                                       PyObject* kwargs) {
1394 1395 1396
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1397
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1398
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1399
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1400
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1401
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1402
  }
1403 1404
  RETURN_PY_NONE

1405 1406 1407
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1408 1409
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1410 1411 1412
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1413 1414
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1415 1416 1417
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1418 1419
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1420 1421 1422
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1423
  if (self->tensor.initialized()) {
1424 1425
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1426 1427
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1428 1429
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1430 1431 1432 1433 1434
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1435 1436
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1437 1438 1439 1440
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1441 1442
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1443 1444 1445 1446
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1447 1448
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1449 1450
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1451

1452 1453 1454
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1455 1456 1457
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1458
                     "function _use_gpudnn is only effective for DenseTensor"));
1459

1460
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1461

1462
  // Set the same use_gpudnn attribute, return directly
1463 1464 1465 1466
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1467
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1468 1469 1470
    return ToPyObject(self->tensor);
  }

1471
  // Share all other members of Tensor except use_gpudnn
1472
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1473
  target_dense_meta.use_gpudnn = use_gpudnn;
1474 1475 1476 1477 1478 1479 1480 1481 1482
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
  paddle::experimental::Tensor target_tensor(
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1483
          << " set use_gpudnn = " << use_gpudnn;
1484 1485 1486 1487 1488

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1489 1490
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1491 1492
                                         PyObject* kwargs) {
  EAGER_TRY
1493
  using Vocab = paddle::framework::Vocab;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  using Strings = std::vector<std::string>;
1507
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1520 1521
      egr::IsVariableCompatTensor(self->tensor),
      true,
1522 1523
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1524
  using Vocab = paddle::framework::Vocab;
1525 1526 1527 1528 1529 1530
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1622 1623
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1624 1625 1626 1627 1628 1629 1630 1631 1632
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1633 1634
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1635 1636
                                         PyObject* kwargs) {
  EAGER_TRY
1637 1638 1639
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1640 1641 1642 1643 1644
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1645 1646
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1647 1648
                                             PyObject* kwargs) {
  EAGER_TRY
1649 1650 1651
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1652 1653 1654 1655
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1656 1657
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1658 1659
                                             PyObject* kwargs) {
  EAGER_TRY
1660 1661 1662
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1663 1664 1665 1666
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1667 1668
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1682 1683 1684 1685 1686 1687 1688 1689 1690
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1691 1692
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1693 1694 1695 1696 1697 1698 1699 1700
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1701 1702
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1703 1704
                                            PyObject* kwargs) {
  EAGER_TRY
1705
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
1706 1707 1708 1709 1710

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1711 1712 1713 1714 1715
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1716
  RETURN_PY_NONE
1717 1718 1719
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1720 1721 1722 1723
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1724 1725 1726
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1727 1728 1729 1730
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1731 1732
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1760 1761
  RETURN_PY_NONE

1762 1763 1764
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1765 1766
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1767 1768 1769
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1770 1771
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1788 1789 1790 1791 1792
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1793 1794 1795 1796 1797
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1798 1799
  RETURN_PY_NONE

W
wanghuancoder 已提交
1800 1801 1802 1803
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1804 1805
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1806 1807 1808 1809
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1810 1811
      t->IsInitialized(),
      true,
1812 1813 1814 1815 1816 1817 1818
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1819 1820
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1821 1822 1823 1824
                                   PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1825 1826
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1827 1828 1829 1830 1831 1832 1833
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1834 1835
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1836 1837 1838 1839
                                    PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1840 1841
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1842 1843 1844 1845 1846
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1847
    RETURN_PY_NONE
1848 1849
  }
  if (grad->is_dense_tensor()) {
1850
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
1851 1852 1853 1854
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1855
    RETURN_PY_NONE
1856 1857 1858 1859
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1860 1861
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1862 1863 1864 1865
                                          PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1866 1867
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1882 1883 1884 1885 1886
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
1887 1888 1889 1890
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
1891 1892 1893 1894 1895
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1911
#if defined(PADDLE_WITH_CUDA)
1912 1913
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1914 1915 1916
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1917 1918
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1919 1920 1921
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1922 1923
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1924 1925 1926 1927
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
1928
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1929 1930
  tensor_uva(self_tensor, device_id);

1931 1932
  RETURN_PY_NONE

1933 1934 1935
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1948

1949
PyMethodDef variable_methods[] = {
1950 1951 1952 1953
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1954
    {"_is_initialized",
1955
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1956 1957
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1958
    {"_is_dense_tensor_hold_allocation",
1959 1960
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1971 1972 1973 1974
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1975
    {"reconstruct_from_",
1976
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1999
    {"_is_shared_buffer_with",
2000
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
2001 2002
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2003
    {"_share_underline_tensor_to",
2004
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
2005 2006
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2007
    {"_is_shared_underline_tensor_with",
2008
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
2009 2010 2011 2012 2013 2014
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2015
    {"get_tensor",
2016
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
2017 2018
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2019 2020
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
2021 2022
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2023 2024 2025 2026
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2027 2028
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
2029 2030
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2031 2032
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
2033 2034
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2035 2036
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
2037 2038
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2039 2040
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
2041 2042 2043 2044 2045 2046
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2047 2048
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2059 2060
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
2061 2062
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2063 2064
    {"_tensor_use_gpudnn",
     (PyCFunction)(void (*)(void))tensor__use_gpudnn,
2065 2066
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2067 2068 2069
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
2070 2071 2072 2073 2074 2075
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2076 2077
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2078 2079
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2080
    /***the method of sparse tensor****/
2081 2082 2083 2084
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2113 2114 2115 2116
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2117 2118 2119 2120 2121 2122 2123 2124
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2125
    /***the method of sparse tensor****/
2126 2127 2128 2129
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2130 2131
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2132 2133
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2134 2135
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2136 2137 2138 2139 2140 2141
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2142 2143
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2166 2167 2168 2169
    {"data_ptr",
     (PyCFunction)(void (*)(void))tensor_data_ptr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2170 2171 2172 2173
    {"_grad_ivar",
     (PyCFunction)(void (*)(void))tensor__grad_ivar,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2174
#if defined(PADDLE_WITH_CUDA)
2175 2176 2177 2178
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2179
#endif
2180 2181
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2182 2183 2184 2185
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2186 2187
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2188 2189
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2190 2191
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2192
    {"_is_string_tensor_hold_allocation",
2193 2194
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2195 2196
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2197 2198 2199
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2200 2201
}  // namespace pybind
}  // namespace paddle