eager_method.cc 98.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
66
#include "paddle/utils/pybind.h"
L
LiYuRio 已提交
67 68 69
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
70

71
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
72
DECLARE_bool(use_stride_kernel);
73

74 75 76
namespace paddle {
namespace pybind {

77 78
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
79
                                     const paddle::platform::Place& place,
80
                                     bool zero_copy);
81

82
extern PyTypeObject* p_tensor_type;
83

J
Jiabin Yang 已提交
84
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
85
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
86
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
87
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
88
    PADDLE_ENFORCE_EQ(
89 90
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
91 92 93 94 95 96 97 98
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
99
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
100 101 102 103
        "method, when you reach this means we got another type index."));
  }
}

104 105
PyDoc_STRVAR(tensor_method_numpy__doc__,  // NOLINT
             R"DOC(numpy($self, /)
W
wanghuancoder 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

126 127
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
128 129
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
130 131
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
132 133
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
W
wanghuancoder 已提交
134 135 136 137 138
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
139 140 141 142 143
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
144 145 146 147 148
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
149 150
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
151
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
152 153
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
154
  size_t py_rank = tensor_dims.size();
155
  size_t numel = 1;
156
  if (py_rank == 0) {
157
    Py_ssize_t args_num = PyTuple_Size(args);
158 159
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
160 161 162 163 164 165 166
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
167
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
168 169 170 171 172
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
173 174
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
175
             "modify "
176
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
177
             "possible, "
178
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
179 180 181 182
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
183 184 185 186 187 188 189 190
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
191 192 193 194 195 196
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
197
  }
W
wanghuancoder 已提交
198 199

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
200 201 202 203 204 205 206 207 208 209 210
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

211
    if (tensor_dims.empty()) {
212 213 214
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
215 216 217 218 219 220
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
221 222 223 224 225
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
226 227 228
    return array;
  }

W
wanghuancoder 已提交
229 230 231
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

232
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
233
    eager_gil_scoped_release guard;
234
    platform::CPUPlace place;
235 236 237 238
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
239 240
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
241 242 243 244 245
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
246
      // deep copy
W
wanghuancoder 已提交
247 248 249 250 251
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
252 253 254 255
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
256 257 258 259 260
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
261
      // deep copy
W
wanghuancoder 已提交
262 263 264 265 266
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
267 268
    }

269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
270
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
271
    eager_gil_scoped_release guard;
272 273 274 275
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
276
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
277
#endif
278 279 280 281
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
282 283
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
284 285 286 287 288 289 290 291 292
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
293 294 295 296
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
297 298 299 300 301 302 303 304 305
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
306
    }
307
#endif
C
Chen Weihang 已提交
308 309 310 311 312 313 314
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
315 316
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
317 318 319 320 321 322 323 324 325 326
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
327 328 329 330
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
331 332 333 334 335 336 337 338 339 340
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
341 342
    }
#endif
343 344
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
345
    eager_gil_scoped_release guard;
346
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
347 348 349 350
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
351 352
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
353 354 355 356 357
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
358
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
359 360 361
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
362 363 364 365
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
366
      // TODO(qili93): temporary for ascend npu performance to be removed along
367
      // with npu_identity op
368
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
369 370 371 372 373
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
374 375 376 377 378
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
379
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
380 381 382
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
383 384
    }
#endif
385 386 387
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
388
    RETURN_PY_NONE
389 390
  }

W
wanghuancoder 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

411 412 413 414
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
415 416 417 418 419 420 421 422
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
423 424
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
J
Jack Zhou 已提交
425 426 427 428 429
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
430 431 432 433 434
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
448 449
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
450 451 452 453 454 455 456 457 458 459 460 461
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
462 463
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
464 465 466 467 468 469 470 471 472 473
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
474 475 476
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
477 478 479 480
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
481
    RETURN_PY_NONE
J
Jack Zhou 已提交
482 483 484 485
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

486 487 488 489
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
490
  return ToPyObject(self->tensor.initialized());
491 492 493
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

508
static void IncreaseTensorReferenceCountUntilCopyComplete(
509
    const paddle::Tensor& tensor, const platform::Place& place) {
510 511 512 513 514 515 516 517
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
518
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
519 520 521 522 523 524 525
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

526 527
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
528 529
                                        PyObject* kwargs) {
  EAGER_TRY
530 531
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
532
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
533 534 535 536 537 538 539 540 541 542
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
543
  }
544 545 546 547
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

548 549 550 551
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
552
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
553
  std::string orig_name = self->tensor.name();
554 555
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
556
  self->tensor = src_tensor;
557 558

  // Recover source name
559
  self->tensor.set_name(orig_name);
560 561

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
562
          << " to " << self->tensor.name();
563 564
  RETURN_PY_NONE

565 566 567
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

568 569
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
570 571
                                     PyObject* kwargs) {
  EAGER_TRY
572
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
573
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
574
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
575
          << self->tensor.name();
576
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
577
    eager_gil_scoped_release guard;
578
    egr::EagerUtils::autograd_meta(&(self->tensor))
579 580
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
581
    egr::EagerUtils::autograd_meta(&(self->tensor))
582 583
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
584
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
585
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
586 587 588
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
589
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
590
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
591
    }
592 593
  }

594
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
595
          << self->tensor.name();
596 597
  RETURN_PY_NONE

598 599 600
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

601 602
PyDoc_STRVAR(tensor_method_clone__doc__,  // NOLINT
             R"DOC(clone($self, /)
W
wanghuancoder 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

637 638 639 640
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
641
  paddle::Tensor out;
W
wanghuancoder 已提交
642 643 644 645 646 647 648 649 650
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
651

W
wanghuancoder 已提交
652 653
    out = assign_ad_func(self->tensor);
  }
654 655 656 657
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

658 659
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
660
                                     PyObject* kwargs) {
661
  EAGER_TRY
662
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
663
    eager_gil_scoped_release guard;
664
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
665
    if (!meta->GetMutableGradNode()) {
666
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
667
              << "become accumulation node";
668
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
669
    }
670
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
671
  }
672 673
  RETURN_PY_NONE

674 675 676
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

677
PyDoc_STRVAR(tensor_clear_gradient__doc__,  // NOLINT
W
wanghuancoder 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

707 708
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
709
                                       PyObject* kwargs) {
710
  EAGER_TRY
711
  VLOG(4) << "ClearGradient " << self->tensor.name();
712

713 714 715
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
716
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
717 718
  }

719
  paddle::Tensor* grad;
720
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
721
  if (is_leaf) {
722 723 724
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
725
                       "Detected nullptr grad"
726 727
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
728
  } else {
729
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
730
    grad = meta->MutableGrad();
731 732
  }

733
  if (grad->impl()) {
W
wanghuancoder 已提交
734
    eager_gil_scoped_release guard;
735 736 737 738 739 740 741 742 743 744
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
745 746 747 748
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
749 750 751 752 753
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
754 755 756 757 758 759 760
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
761 762
      }
    }
763
  }
764

765 766
  RETURN_PY_NONE

767 768 769
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

770 771
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
772
                                    PyObject* kwargs) {
773
  EAGER_TRY
774
  VLOG(4) << "ZeroGrads " << self->tensor.name();
775

776
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
777
    eager_gil_scoped_release guard;
778
    // Add RetainGrad as PostHook to AccumulationNode
779
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
780 781
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
782
                       "Detected nullptr grad"
783 784 785
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
786 787 788 789 790 791 792
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
793
    }
794
  } else {
W
wanghuancoder 已提交
795
    eager_gil_scoped_release guard;
796
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
797
    if (meta->MutableGrad()->initialized()) {
798 799 800 801 802 803 804 805 806
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
807
    }
808 809
  }

810 811
  RETURN_PY_NONE

812 813 814
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

815 816
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
817 818
                                         PyObject* kwargs) {
  EAGER_TRY
819
  paddle::Tensor* dst_ptr =
820
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
821 822
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
823 824 825
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
826
                        self->tensor.name()));
827
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
828 829 830
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
831
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
832
  dst_tensor->ShareBufferWith(*src_tensor);
833
  dst_tensor->ShareDataTypeWith(*src_tensor);
834 835
  RETURN_PY_NONE

836 837 838
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

839 840 841 842
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
843
  paddle::Tensor* dst_ptr =
844
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
845 846
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
847 848 849
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
850
                        self->tensor.name()));
851
  bool res = false;
852
  if (!self->tensor.defined() || !dst_ptr->defined()) {
853 854
    return ToPyObject(res);
  }
855 856
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
857 858 859 860 861
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

862 863 864 865
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
866
  paddle::Tensor* src_ptr =
867
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
868 869
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
870 871 872
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
873 874
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
875 876
  RETURN_PY_NONE

877 878 879
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

880 881 882 883
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
884
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
885 886
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
887 888 889 890 891
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
892
  if (!self->tensor.defined() || !src_tensor.defined()) {
893 894
    return ToPyObject(res);
  }
895
  res = (self->tensor.impl().get() == src_tensor.impl().get());
896 897 898 899
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

900 901
PyDoc_STRVAR(tensor_method_detach__doc__,  // NOLINT
             R"DOC(detach($self, /)
W
wanghuancoder 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

941 942
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
943 944
                                      PyObject* kwargs) {
  EAGER_TRY
945
  PADDLE_ENFORCE_EQ(
946
      self->tensor.defined(),
947
      true,
948
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
949
                                        self->tensor.name()));
950

951
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
952
  if (obj) {
953
    auto v = reinterpret_cast<TensorObject*>(obj);
954
    new (&(v->tensor)) paddle::Tensor();
955 956 957 958
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
959 960 961 962 963 964 965 966 967 968
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

988 989 990 991
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
992
  if (!self->tensor.defined()) {
993 994 995
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
996
  }
997
  if (self->tensor.is_dense_tensor()) {
998
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
999 1000
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
1001 1002
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1003 1004
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1005
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1006 1007 1008 1009
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1010
  } else {
1011
    RETURN_PY_NONE
1012 1013 1014 1015
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1016 1017 1018 1019 1020
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1021
    RETURN_PY_NONE
1022 1023 1024 1025 1026 1027
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1028
    RETURN_PY_NONE
1029 1030 1031 1032
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1047 1048
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1049
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1050

1051
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1052 1053 1054 1055 1056 1057 1058
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1059 1060 1061
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1062
  EAGER_TRY
J
Jiabin Yang 已提交
1063 1064 1065
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1066 1067
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1068 1069
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1070 1071
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1072
  PADDLE_ENFORCE_EQ(
1073
      self->tensor.defined(),
1074
      true,
J
Jiabin Yang 已提交
1075 1076 1077 1078 1079
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1091

1092 1093 1094 1095
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1112 1113 1114 1115 1116 1117
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1118
    if (op_type == "slice") {
W
wanghuancoder 已提交
1119
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1120 1121 1122 1123 1124 1125
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1126
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1127
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1128
      out = strided_slice_ad_func(
1129
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1130 1131 1132
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1142
  bool set_to_1d = FLAGS_set_to_1d;
1143 1144 1145 1146 1147 1148

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1149
      VLOG(1)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1162 1163 1164
        none_axes.pop_back();
      }
    }
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1179 1180
          }
        }
1181
        axis -= len;
J
Jiabin Yang 已提交
1182
      }
1183
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1184
    }
1185
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1186 1187 1188 1189
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1190
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1204 1205 1206
  }

  return ToPyObject(out);
1207 1208 1209
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1210 1211
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1212 1213
                                             PyObject* kwargs) {
  EAGER_TRY
1214 1215 1216 1217 1218 1219 1220 1221
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1222 1223 1224
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1225 1226
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1227 1228
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1229 1230 1231 1232 1233 1234 1235
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1236
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1237 1238 1239 1240 1241 1242 1243 1244

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1245 1246
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1247 1248 1249 1250 1251 1252
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1253 1254
        offset,
        numel,
W
wanghuancoder 已提交
1255 1256 1257
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1258 1259
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1260 1261 1262 1263 1264 1265
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1266 1267
          index,
          dims[i],
W
wanghuancoder 已提交
1268
          platform::errors::InvalidArgument(
1269 1270 1271
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1272
              dims[i]));
W
wanghuancoder 已提交
1273
      offset += index * stride[i];
W
wanghuancoder 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
1297 1298
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];    /* NOLINT */  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank]; /* NOLINT */  \
W
wanghuancoder 已提交
1299 1300
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1301 1302
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1303
        0,                                                                   \
1304 1305 1306
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1307 1308 1309 1310 1311
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1312 1313
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1365 1366
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1367 1368
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1390
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1391
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1392 1393 1394 1395 1396
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1397 1398
    }

1399
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1400 1401 1402 1403

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1404
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1405 1406 1407 1408
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1409
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1410 1411 1412
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1413
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1414 1415 1416
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1417
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1418 1419 1420
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1421
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1422 1423 1424
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1425
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1426 1427 1428
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1439 1440 1441 1442
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1443
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1444 1445 1446
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1447 1448 1449 1450 1451
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1452 1453 1454 1455 1456 1457 1458

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1459 1460
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1461
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1462 1463
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1464
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1465 1466
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1467
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1468 1469
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1470
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1471 1472
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1473
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1474 1475
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1476
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1477 1478 1479 1480 1481 1482 1483 1484
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1485 1486 1487 1488
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1489 1490
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1491 1492 1493 1494 1495 1496 1497
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1498
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1499 1500 1501 1502 1503 1504 1505
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1506
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1507 1508
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1509
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1510 1511 1512 1513 1514 1515 1516
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1517 1518 1519
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1520
      }
1521 1522
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1523 1524 1525 1526 1527 1528 1529 1530 1531
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1532 1533
    }
  } else {
1534
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1546
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1547
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1548 1549 1550 1551
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1552
#else
1553 1554 1555 1556
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1557 1558
#endif
    } else {
1559 1560
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1561 1562
    }
  }
1563 1564
  RETURN_PY_NONE

W
wanghuancoder 已提交
1565 1566 1567
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1568 1569
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1570 1571 1572
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1573
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1574
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1575 1576 1577 1578 1579

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1580
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1581 1582 1583 1584 1585 1586
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1587 1588 1589 1590 1591 1592 1593 1594 1595
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1596 1597
        rank_info.first,
        rank_info.second,
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1610 1611
        rank_info.first,
        rank_info.second,
1612 1613 1614 1615 1616 1617
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1618 1619
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1644
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,  // NOLINT
W
wanghuancoder 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1668 1669
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1670 1671 1672 1673 1674 1675
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1676
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1677
                    true,
1678 1679 1680 1681
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1682 1683 1684 1685
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1686 1687
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1688
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1689 1690 1691 1692 1693 1694 1695
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1696
      std::make_shared<PyVoidHook>(hook_func));
1697

1698 1699
  RETURN_PY_NONE

1700 1701 1702
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1703 1704
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1705
                                       PyObject* kwargs) {
1706 1707 1708
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1709
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1710
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1711
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1712
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1713
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1714
  }
1715 1716
  RETURN_PY_NONE

1717 1718 1719
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1720 1721
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1722 1723 1724
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1725 1726
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1727 1728 1729
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1730 1731 1732 1733 1734 1735 1736 1737 1738
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1739 1740
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1741 1742 1743
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1744
  if (self->tensor.initialized()) {
1745 1746
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1747 1748
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1749 1750
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1751 1752 1753 1754 1755
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1756 1757
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1758 1759 1760 1761
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1762 1763
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1764 1765 1766 1767
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1768 1769
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1770 1771
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1772

1773 1774 1775
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1776 1777 1778
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1779
                     "function _use_gpudnn is only effective for DenseTensor"));
1780

1781
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1782

1783
  // Set the same use_gpudnn attribute, return directly
1784 1785 1786 1787
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1788
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1789 1790 1791
    return ToPyObject(self->tensor);
  }

1792
  // Share all other members of Tensor except use_gpudnn
1793
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1794
  target_dense_meta.use_gpudnn = use_gpudnn;
1795 1796 1797 1798
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1799
  paddle::Tensor target_tensor(
1800 1801 1802 1803
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1804
          << " set use_gpudnn = " << use_gpudnn;
1805 1806 1807 1808 1809

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1810 1811
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1812 1813
                                         PyObject* kwargs) {
  EAGER_TRY
1814
  using Vocab = paddle::framework::Vocab;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1827
  using Strings = paddle::framework::Strings;
1828
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1841 1842
      egr::IsVariableCompatTensor(self->tensor),
      true,
1843 1844
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1845
  using Vocab = paddle::framework::Vocab;
1846 1847 1848 1849 1850 1851
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1873 1874 1875 1876 1877 1878 1879 1880 1881
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1882
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1900
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1901 1902 1903 1904 1905
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1906
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1922
  paddle::Tensor tensor(
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1937
  paddle::Tensor tensor(
1938 1939 1940 1941 1942
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1943 1944
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1945 1946 1947 1948 1949 1950 1951 1952 1953
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1965 1966
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1967 1968
                                         PyObject* kwargs) {
  EAGER_TRY
1969 1970 1971
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1972 1973 1974 1975 1976
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1977 1978
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1979 1980
                                             PyObject* kwargs) {
  EAGER_TRY
1981 1982 1983
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1984 1985 1986 1987
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1988 1989
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1990 1991
                                             PyObject* kwargs) {
  EAGER_TRY
1992 1993 1994
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1995 1996 1997 1998
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1999 2000
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2014 2015 2016 2017 2018 2019 2020 2021 2022
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2023 2024
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2025 2026 2027 2028 2029 2030 2031 2032
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2033 2034
PyDoc_STRVAR(tensor_method_element_size__doc__,  // NOLINT
             R"DOC(element_size($self, /)
W
wanghuancoder 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2063 2064
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2065 2066
                                            PyObject* kwargs) {
  EAGER_TRY
2067
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2068 2069 2070 2071 2072

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2073
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,  // NOLINT
W
wanghuancoder 已提交
2074 2075 2076 2077 2078 2079 2080 2081
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2082 2083 2084 2085 2086
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2087
  RETURN_PY_NONE
2088 2089 2090
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2091 2092 2093 2094
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2095 2096 2097
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2098 2099 2100 2101
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2102 2103
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2125
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2126 2127 2128 2129
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2130 2131
  RETURN_PY_NONE

2132 2133 2134
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2135 2136
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2137 2138 2139
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2140 2141
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2158 2159 2160 2161 2162
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2163 2164 2165 2166 2167
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2168 2169
  RETURN_PY_NONE

W
wanghuancoder 已提交
2170 2171 2172 2173
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2174 2175
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2176 2177 2178 2179
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2180 2181
      t->IsInitialized(),
      true,
2182 2183 2184 2185 2186 2187 2188
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2189 2190
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2191 2192
                                   PyObject* kwargs) {
  EAGER_TRY
2193
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2194 2195 2196 2197 2198 2199
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2200 2201 2202 2203
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2204 2205
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2206 2207
                                    PyObject* kwargs) {
  EAGER_TRY
2208
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2209 2210 2211 2212 2213 2214
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2215 2216

  if (!grad->defined()) {
2217
    RETURN_PY_NONE
2218 2219
  }
  if (grad->is_dense_tensor()) {
2220
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2221 2222 2223 2224
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2225
    RETURN_PY_NONE
2226 2227 2228 2229
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2230 2231
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2232 2233
                                          PyObject* kwargs) {
  EAGER_TRY
2234
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2235 2236 2237 2238 2239 2240
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2241

2242
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2243 2244 2245 2246 2247 2248 2249 2250 2251
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2252 2253 2254 2255 2256
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2257 2258 2259 2260
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2261 2262 2263 2264 2265
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2337
#if defined(PADDLE_WITH_CUDA)
2338 2339
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2340 2341 2342
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2343 2344
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2345 2346 2347
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2348 2349
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2350 2351 2352 2353
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2354
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2355 2356
  tensor_uva(self_tensor, device_id);

2357 2358
  RETURN_PY_NONE

2359 2360 2361
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2374

2375
PyMethodDef variable_methods[] = {  // NOLINT
2376
    {"numpy",
2377
     (PyCFunction)(void (*)())tensor_method_numpy,
2378
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2379
     tensor_method_numpy__doc__},
2380
    {"_is_initialized",
2381
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2382
     METH_VARARGS | METH_KEYWORDS,
2383
     nullptr},
W
wanghuancoder 已提交
2384
    {"_is_dense_tensor_hold_allocation",
2385 2386
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2387
     METH_VARARGS | METH_KEYWORDS,
2388
     nullptr},
2389
    {"_copy_to",
2390
     (PyCFunction)(void (*)())tensor_method__copy_to,
2391
     METH_VARARGS | METH_KEYWORDS,
2392
     nullptr},
2393
    {"copy_",
2394
     (PyCFunction)(void (*)())tensor_method_copy_,
2395
     METH_VARARGS | METH_KEYWORDS,
2396
     nullptr},
2397
    {"clone",
2398
     (PyCFunction)(void (*)())tensor_method_clone,
2399
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2400
     tensor_method_clone__doc__},
2401
    {"reconstruct_from_",
2402
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2403
     METH_VARARGS | METH_KEYWORDS,
2404
     nullptr},
2405
    {"retain_grads",
2406
     (PyCFunction)(void (*)())tensor_retain_grads,
2407
     METH_VARARGS | METH_KEYWORDS,
2408
     nullptr},
2409
    {"clear_gradient",
2410
     (PyCFunction)(void (*)())tensor_clear_gradient,
2411
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2412
     tensor_clear_gradient__doc__},
2413
    {"is_dense",
2414
     (PyCFunction)(void (*)())tensor_method_is_dense,
2415
     METH_VARARGS | METH_KEYWORDS,
2416
     nullptr},
L
LiYuRio 已提交
2417
    {"is_dist",
2418
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2419
     METH_VARARGS | METH_KEYWORDS,
2420
     nullptr},
2421
    {"_zero_grads",
2422
     (PyCFunction)(void (*)())tensor__zero_grads,
2423
     METH_VARARGS | METH_KEYWORDS,
2424
     nullptr},
2425
    {"_share_buffer_to",
2426
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2427
     METH_VARARGS | METH_KEYWORDS,
2428
     nullptr},
2429
    {"_is_shared_buffer_with",
2430
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2431
     METH_VARARGS | METH_KEYWORDS,
2432
     nullptr},
2433
    {"_share_underline_tensor_to",
2434
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2435
     METH_VARARGS | METH_KEYWORDS,
2436
     nullptr},
2437
    {"_is_shared_underline_tensor_with",
2438
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2439
     METH_VARARGS | METH_KEYWORDS,
2440
     nullptr},
2441
    {"detach",
2442
     (PyCFunction)(void (*)())tensor_method_detach,
2443
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2444
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2445 2446 2447
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
2448
     nullptr},
2449
    {"get_tensor",
2450
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2451
     METH_VARARGS | METH_KEYWORDS,
2452
     nullptr},
2453
    {"get_selected_rows",
2454
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2455
     METH_VARARGS | METH_KEYWORDS,
2456
     nullptr},
2457
    {"_get_tensor_from_selected_rows",
2458
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2459
     METH_VARARGS | METH_KEYWORDS,
2460
     nullptr},
J
Jiabin Yang 已提交
2461
    {"_getitem_index_not_tensor",
2462
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2463
     METH_VARARGS | METH_KEYWORDS,
2464
     nullptr},
W
wanghuancoder 已提交
2465
    {"_getitem_from_offset",
2466
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2467
     METH_VARARGS | METH_KEYWORDS,
2468
     nullptr},
W
wanghuancoder 已提交
2469
    {"__setitem_eager_tensor__",
2470
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2471
     METH_VARARGS | METH_KEYWORDS,
2472
     nullptr},
2473
    {"_register_grad_hook",
2474
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2475
     METH_VARARGS | METH_KEYWORDS,
2476
     nullptr},
2477 2478 2479 2480
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
2481
    {"_remove_grad_hook",
2482
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2483
     METH_VARARGS | METH_KEYWORDS,
2484
     nullptr},
2485
    {"_register_backward_hook",
2486
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2487
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2488
     tensor_method__register_reduce_hook__doc__},
2489
    {"_set_grad_type",
2490
     (PyCFunction)(void (*)())tensor__set_grad_type,
2491
     METH_VARARGS | METH_KEYWORDS,
2492
     nullptr},
2493
    {"_clear",
2494
     (PyCFunction)(void (*)())tensor__clear,
2495
     METH_VARARGS | METH_KEYWORDS,
2496
     nullptr},
2497
    {"_clear_dataptr",
2498
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2499
     METH_VARARGS | METH_KEYWORDS,
2500
     nullptr},
J
Jiabin Yang 已提交
2501
    {"_copy_gradient_from",
2502
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2503
     METH_VARARGS | METH_KEYWORDS,
2504
     nullptr},
2505
    {"_tensor_use_gpudnn",
2506
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2507
     METH_VARARGS | METH_KEYWORDS,
2508
     nullptr},
2509 2510
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2511
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2512
     METH_VARARGS | METH_KEYWORDS,
2513
     nullptr},
2514
    {"set_vocab",
2515
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2516
     METH_VARARGS | METH_KEYWORDS,
2517
     nullptr},
2518
    {"get_map_tensor",
2519
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2520
     METH_VARARGS | METH_KEYWORDS,
2521
     nullptr},
2522
    /***the method of sparse tensor****/
2523
    {"nnz",
2524
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2525
     METH_VARARGS | METH_KEYWORDS,
2526
     nullptr},
2527
    {"indices",
2528
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2529
     METH_VARARGS | METH_KEYWORDS,
2530
     nullptr},
2531
    {"values",
2532
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2533
     METH_VARARGS | METH_KEYWORDS,
2534
     nullptr},
2535
    {"crows",
2536
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2537
     METH_VARARGS | METH_KEYWORDS,
2538
     nullptr},
2539
    {"cols",
2540
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2541
     METH_VARARGS | METH_KEYWORDS,
2542
     nullptr},
2543
    {"is_sparse",
2544
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2545
     METH_VARARGS | METH_KEYWORDS,
2546
     nullptr},
2547
    {"is_sparse_coo",
2548
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2549
     METH_VARARGS | METH_KEYWORDS,
2550
     nullptr},
2551
    {"is_sparse_csr",
2552
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2553
     METH_VARARGS | METH_KEYWORDS,
2554
     nullptr},
2555
    {"is_same_shape",
2556
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2557
     METH_VARARGS | METH_KEYWORDS,
2558
     nullptr},
2559
    {"to_sparse_csr",
2560
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2561
     METH_VARARGS | METH_KEYWORDS,
2562
     nullptr},
2563
    {"element_size",
2564
     (PyCFunction)(void (*)())tensor_method_element_size,
2565
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2566
     tensor_method_element_size__doc__},
2567
    /***the method of sparse tensor****/
2568
    {"_inplace_version",
2569
     (PyCFunction)(void (*)())tensor__inplace_version,
2570
     METH_VARARGS | METH_KEYWORDS,
2571
     nullptr},
2572
    {"_bump_inplace_version",
2573
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2574
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2575
     tensor_method__bump_inplace_version__doc__},
2576
    {"is_selected_rows",
2577
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2578
     METH_VARARGS | METH_KEYWORDS,
2579
     nullptr},
2580
    {"rows",
2581
     (PyCFunction)(void (*)())tensor_method_get_rows,
2582
     METH_VARARGS | METH_KEYWORDS,
2583
     nullptr},
2584
    {"_reset_grad_inplace_version",
2585
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2586
     METH_VARARGS | METH_KEYWORDS,
2587
     nullptr},
2588
    {"_share_memory",
2589
     (PyCFunction)(void (*)())tensor_method__share_memory,
2590
     METH_VARARGS | METH_KEYWORDS,
2591
     nullptr},
2592
    {"_offset",
2593
     (PyCFunction)(void (*)())tensor__offset,
2594
     METH_VARARGS | METH_KEYWORDS,
2595
     nullptr},
2596
    {"_grad_name",
2597
     (PyCFunction)(void (*)())tensor__grad_name,
2598
     METH_VARARGS | METH_KEYWORDS,
2599
     nullptr},
2600
    {"_grad_value",
2601
     (PyCFunction)(void (*)())tensor__grad_value,
2602
     METH_VARARGS | METH_KEYWORDS,
2603
     nullptr},
2604
    {"_unset_fake_empty",
2605
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2606
     METH_VARARGS | METH_KEYWORDS,
2607
     nullptr},
2608
    {"data_ptr",
2609
     (PyCFunction)(void (*)())tensor_data_ptr,
2610
     METH_VARARGS | METH_KEYWORDS,
2611
     nullptr},
W
wanghuancoder 已提交
2612
    {"_grad_ivar",
2613
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2614
     METH_VARARGS | METH_KEYWORDS,
2615
     nullptr},
W
wanghuancoder 已提交
2616 2617 2618
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2619
     nullptr},
W
wanghuancoder 已提交
2620 2621 2622
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2623
     nullptr},
W
wanghuancoder 已提交
2624 2625 2626
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
2627
     nullptr},
2628
#if defined(PADDLE_WITH_CUDA)
2629
    {"_tensor_uva",
2630
     (PyCFunction)(void (*)())tensor_method__uva,
2631
     METH_VARARGS | METH_KEYWORDS,
2632
     nullptr},
2633
#endif
2634
    {nullptr, nullptr, 0, nullptr}};
2635

J
Jack Zhou 已提交
2636
// variable_methods for core.eager.StringTensor
2637
PyMethodDef string_tensor_variable_methods[] = {  // NOLINT
J
Jack Zhou 已提交
2638
    {"numpy",
2639
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2640
     METH_VARARGS | METH_KEYWORDS,
2641
     nullptr},
J
Jack Zhou 已提交
2642
    {"_is_initialized",
2643
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2644
     METH_VARARGS | METH_KEYWORDS,
2645
     nullptr},
J
Jack Zhou 已提交
2646
    {"_is_string_tensor_hold_allocation",
2647 2648
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2649
     METH_VARARGS | METH_KEYWORDS,
2650
     nullptr},
J
Jack Zhou 已提交
2651
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
2652
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
2653

2654 2655
}  // namespace pybind
}  // namespace paddle