eager_method.cc 98.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
66
#include "paddle/utils/pybind.h"
L
LiYuRio 已提交
67 68 69
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
70

71
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
72
DECLARE_bool(use_stride_kernel);
73

74 75 76
namespace paddle {
namespace pybind {

77 78
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
79
                                     const paddle::platform::Place& place,
80
                                     bool zero_copy);
81

82
extern PyTypeObject* p_tensor_type;
83

J
Jiabin Yang 已提交
84
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
85
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
86
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
87
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
88
    PADDLE_ENFORCE_EQ(
89 90
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
91 92 93 94 95 96 97 98
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
99
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
100 101 102 103
        "method, when you reach this means we got another type index."));
  }
}

W
wanghuancoder 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
PyDoc_STRVAR(tensor_method_numpy__doc__, R"DOC(numpy($self, /)
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

125 126
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
127 128
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
129 130 131 132 133 134 135 136 137
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
138 139 140 141 142
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
143 144 145 146 147
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
148 149
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
150
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
151 152
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
153
  size_t py_rank = tensor_dims.size();
154
  size_t numel = 1;
155
  if (py_rank == 0) {
156
    Py_ssize_t args_num = PyTuple_Size(args);
157 158
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
159 160 161 162 163 164 165
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
166
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
167 168 169 170 171
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
172 173
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
174
             "modify "
175
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
176
             "possible, "
177
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
178 179 180 181
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
182 183 184 185 186 187 188 189
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
190 191 192 193 194 195
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
196
  }
W
wanghuancoder 已提交
197 198

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
199 200 201 202 203 204 205 206 207 208 209
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

210
    if (tensor_dims.empty()) {
211 212 213
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
214 215 216 217 218 219
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
220 221 222 223 224
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
225 226 227
    return array;
  }

W
wanghuancoder 已提交
228 229 230
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

231
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
232
    eager_gil_scoped_release guard;
233
    platform::CPUPlace place;
234 235 236 237
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
238 239
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
240 241 242 243 244
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
245
      // deep copy
W
wanghuancoder 已提交
246 247 248 249 250
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
251 252 253 254
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
255 256 257 258 259
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
260
      // deep copy
W
wanghuancoder 已提交
261 262 263 264 265
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
266 267
    }

268
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
269
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
270
    eager_gil_scoped_release guard;
271 272 273 274
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
275
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
276
#endif
277 278 279 280
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
281 282
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
283 284 285 286 287 288 289 290 291
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
292 293 294 295
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
296 297 298 299 300 301 302 303 304
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
305
    }
306
#endif
C
Chen Weihang 已提交
307 308 309 310 311 312 313
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
314 315
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
316 317 318 319 320 321 322 323 324 325
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
326 327 328 329
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
330 331 332 333 334 335 336 337 338 339
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
340 341
    }
#endif
342 343
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
344
    eager_gil_scoped_release guard;
345
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
346 347 348 349
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
350 351
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
352 353 354 355 356
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
357
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
358 359 360
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
361 362 363 364
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
365
      // TODO(qili93): temporary for ascend npu performance to be removed along
366
      // with npu_identity op
367
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
368 369 370 371 372
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
373 374 375 376 377
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
378
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
379 380 381
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
382 383
    }
#endif
384 385 386
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
387
    RETURN_PY_NONE
388 389
  }

W
wanghuancoder 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

410 411 412 413
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
429 430 431 432 433
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
447 448
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
449 450 451 452 453 454 455 456 457 458 459 460
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
461 462
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
463 464 465 466 467 468 469 470 471 472
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
473 474 475
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
476 477 478 479
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
480
    RETURN_PY_NONE
J
Jack Zhou 已提交
481 482 483 484
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

485 486 487 488
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
489
  return ToPyObject(self->tensor.initialized());
490 491 492
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

507
static void IncreaseTensorReferenceCountUntilCopyComplete(
508
    const paddle::Tensor& tensor, const platform::Place& place) {
509 510 511 512 513 514 515 516
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
517
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
518 519 520 521 522 523 524
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

525 526
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
527 528
                                        PyObject* kwargs) {
  EAGER_TRY
529 530
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
531
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
532 533 534 535 536 537 538 539 540 541
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
542
  }
543 544 545 546
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

547 548 549 550
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
551
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
552
  std::string orig_name = self->tensor.name();
553 554
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
555
  self->tensor = src_tensor;
556 557

  // Recover source name
558
  self->tensor.set_name(orig_name);
559 560

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
561
          << " to " << self->tensor.name();
562 563
  RETURN_PY_NONE

564 565 566
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

567 568
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
569 570
                                     PyObject* kwargs) {
  EAGER_TRY
571
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
572
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
573
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
574
          << self->tensor.name();
575
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
576
    eager_gil_scoped_release guard;
577
    egr::EagerUtils::autograd_meta(&(self->tensor))
578 579
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
580
    egr::EagerUtils::autograd_meta(&(self->tensor))
581 582
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
583
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
584
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
585 586 587
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
588
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
589
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
590
    }
591 592
  }

593
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
594
          << self->tensor.name();
595 596
  RETURN_PY_NONE

597 598 599
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
PyDoc_STRVAR(tensor_method_clone__doc__, R"DOC(clone($self, /)
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

635 636 637 638
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
639
  paddle::Tensor out;
W
wanghuancoder 已提交
640 641 642 643 644 645 646 647 648
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
649

W
wanghuancoder 已提交
650 651
    out = assign_ad_func(self->tensor);
  }
652 653 654 655
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

656 657
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
658
                                     PyObject* kwargs) {
659
  EAGER_TRY
660
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
661
    eager_gil_scoped_release guard;
662
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
663
    if (!meta->GetMutableGradNode()) {
664
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
665
              << "become accumulation node";
666
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
667
    }
668
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
669
  }
670 671
  RETURN_PY_NONE

672 673 674
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
PyDoc_STRVAR(tensor_clear_gradient__doc__,
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

705 706
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
707
                                       PyObject* kwargs) {
708
  EAGER_TRY
709
  VLOG(4) << "ClearGradient " << self->tensor.name();
710

711 712 713
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
714
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
715 716
  }

717
  paddle::Tensor* grad;
718
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
719
  if (is_leaf) {
720 721 722
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
723
                       "Detected nullptr grad"
724 725
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
726
  } else {
727
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
728
    grad = meta->MutableGrad();
729 730
  }

731
  if (grad->impl()) {
W
wanghuancoder 已提交
732
    eager_gil_scoped_release guard;
733 734 735 736 737 738 739 740 741 742
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
743 744 745 746
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
747 748 749 750 751
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
752 753 754 755 756 757 758
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
759 760
      }
    }
761
  }
762

763 764
  RETURN_PY_NONE

765 766 767
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

768 769
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
770
                                    PyObject* kwargs) {
771
  EAGER_TRY
772
  VLOG(4) << "ZeroGrads " << self->tensor.name();
773

774
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
775
    eager_gil_scoped_release guard;
776
    // Add RetainGrad as PostHook to AccumulationNode
777
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
778 779
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
780
                       "Detected nullptr grad"
781 782 783
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
784 785 786 787 788 789 790
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
791
    }
792
  } else {
W
wanghuancoder 已提交
793
    eager_gil_scoped_release guard;
794
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
795
    if (meta->MutableGrad()->initialized()) {
796 797 798 799 800 801 802 803 804
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
805
    }
806 807
  }

808 809
  RETURN_PY_NONE

810 811 812
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

813 814
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
815 816
                                         PyObject* kwargs) {
  EAGER_TRY
817
  paddle::Tensor* dst_ptr =
818
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
819 820
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
821 822 823
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
824
                        self->tensor.name()));
825
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
826 827 828
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
829
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
830
  dst_tensor->ShareBufferWith(*src_tensor);
831
  dst_tensor->ShareDataTypeWith(*src_tensor);
832 833
  RETURN_PY_NONE

834 835 836
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

837 838 839 840
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
841
  paddle::Tensor* dst_ptr =
842
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
843 844
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
845 846 847
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
848
                        self->tensor.name()));
849
  bool res = false;
850
  if (!self->tensor.defined() || !dst_ptr->defined()) {
851 852
    return ToPyObject(res);
  }
853 854
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
855 856 857 858 859
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

860 861 862 863
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
864
  paddle::Tensor* src_ptr =
865
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
866 867
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
868 869 870
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
871 872
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
873 874
  RETURN_PY_NONE

875 876 877
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

878 879 880 881
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
882
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
883 884
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
885 886 887 888 889
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
890
  if (!self->tensor.defined() || !src_tensor.defined()) {
891 892
    return ToPyObject(res);
  }
893
  res = (self->tensor.impl().get() == src_tensor.impl().get());
894 895 896 897
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
PyDoc_STRVAR(tensor_method_detach__doc__, R"DOC(detach($self, /)
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

938 939
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
940 941
                                      PyObject* kwargs) {
  EAGER_TRY
942
  PADDLE_ENFORCE_EQ(
943
      self->tensor.defined(),
944
      true,
945
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
946
                                        self->tensor.name()));
947

948
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
949
  if (obj) {
950
    auto v = reinterpret_cast<TensorObject*>(obj);
951
    new (&(v->tensor)) paddle::Tensor();
952 953 954 955
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
956 957 958 959 960 961 962 963 964 965
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

985 986 987 988
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
989
  if (!self->tensor.defined()) {
990 991 992
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
993
  }
994
  if (self->tensor.is_dense_tensor()) {
995
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
996 997
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
998 999
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1000 1001
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1002
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1003 1004 1005 1006
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1007
  } else {
1008
    RETURN_PY_NONE
1009 1010 1011 1012
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1013 1014 1015 1016 1017
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1018
    RETURN_PY_NONE
1019 1020 1021 1022 1023 1024
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1025
    RETURN_PY_NONE
1026 1027 1028 1029
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1044 1045
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1046
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1047

1048
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1049 1050 1051 1052 1053 1054 1055
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1056 1057 1058
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1059
  EAGER_TRY
J
Jiabin Yang 已提交
1060 1061 1062
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1063 1064
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1065 1066
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1067 1068
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1069
  PADDLE_ENFORCE_EQ(
1070
      self->tensor.defined(),
1071
      true,
J
Jiabin Yang 已提交
1072 1073 1074 1075 1076
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1088

1089 1090 1091 1092
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1109 1110 1111 1112 1113 1114
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1115
    if (op_type == "slice") {
W
wanghuancoder 已提交
1116
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1117 1118 1119 1120 1121 1122
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1123
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1124
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1125
      out = strided_slice_ad_func(
1126
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1127 1128 1129
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1139
  bool set_to_1d = FLAGS_set_to_1d;
1140 1141 1142 1143 1144 1145

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1146
      VLOG(1)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1159 1160 1161
        none_axes.pop_back();
      }
    }
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1176 1177
          }
        }
1178
        axis -= len;
J
Jiabin Yang 已提交
1179
      }
1180
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1181
    }
1182
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1183 1184 1185 1186
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1187
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1201 1202 1203
  }

  return ToPyObject(out);
1204 1205 1206
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1207 1208
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1209 1210
                                             PyObject* kwargs) {
  EAGER_TRY
1211 1212 1213 1214 1215 1216 1217 1218
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1219 1220 1221
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1222 1223
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1224 1225
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1226 1227 1228 1229 1230 1231 1232
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1233
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1234 1235 1236 1237 1238 1239 1240 1241

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1242 1243
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1244 1245 1246 1247 1248 1249
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1250 1251
        offset,
        numel,
W
wanghuancoder 已提交
1252 1253 1254
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1255 1256
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1257 1258 1259 1260 1261 1262
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1263 1264
          index,
          dims[i],
W
wanghuancoder 已提交
1265
          platform::errors::InvalidArgument(
1266 1267 1268
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1269
              dims[i]));
W
wanghuancoder 已提交
1270
      offset += index * stride[i];
W
wanghuancoder 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1298 1299
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1300
        0,                                                                   \
1301 1302 1303
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1304 1305 1306 1307 1308
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1309 1310
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1362 1363
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1364 1365
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1387
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1388
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1389 1390 1391 1392 1393
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1394 1395
    }

1396
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1397 1398 1399 1400

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1401
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1402 1403 1404 1405
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1406
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1407 1408 1409
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1410
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1411 1412 1413
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1414
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1415 1416 1417
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1418
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1419 1420 1421
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1422
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1423 1424 1425
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1436 1437 1438 1439
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1440
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1441 1442 1443
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1444 1445 1446 1447 1448
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1449 1450 1451 1452 1453 1454 1455

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1456 1457
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1458
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1459 1460
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1461
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1462 1463
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1464
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1465 1466
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1467
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1468 1469
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1470
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1471 1472
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1473
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1474 1475 1476 1477 1478 1479 1480 1481
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1482 1483 1484 1485
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1486 1487
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1488 1489 1490 1491 1492 1493 1494
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1495
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1496 1497 1498 1499 1500 1501 1502
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1503
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1504 1505
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1506
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1507 1508 1509 1510 1511 1512 1513
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1514 1515 1516
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1517
      }
1518 1519
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1520 1521 1522 1523 1524 1525 1526 1527 1528
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1529 1530
    }
  } else {
1531
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1543
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1544
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1545 1546 1547 1548
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1549
#else
1550 1551 1552 1553
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1554 1555
#endif
    } else {
1556 1557
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1558 1559
    }
  }
1560 1561
  RETURN_PY_NONE

W
wanghuancoder 已提交
1562 1563 1564
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1565 1566
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1567 1568 1569
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1570
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1571
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1572 1573 1574 1575 1576

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1577
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1578 1579 1580 1581 1582 1583
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1584 1585 1586 1587 1588 1589 1590 1591 1592
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1593 1594
        rank_info.first,
        rank_info.second,
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1607 1608
        rank_info.first,
        rank_info.second,
1609 1610 1611 1612 1613 1614
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1615 1616
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1665 1666
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1667 1668 1669 1670 1671 1672
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1673
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1674
                    true,
1675 1676 1677 1678
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1679 1680 1681 1682
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1683 1684
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1685
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1686 1687 1688 1689 1690 1691 1692
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1693
      std::make_shared<PyVoidHook>(hook_func));
1694

1695 1696
  RETURN_PY_NONE

1697 1698 1699
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1700 1701
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1702
                                       PyObject* kwargs) {
1703 1704 1705
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1706
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1707
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1708
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1709
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1710
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1711
  }
1712 1713
  RETURN_PY_NONE

1714 1715 1716
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1717 1718
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1719 1720 1721
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1722 1723
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1724 1725 1726
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1727 1728 1729 1730 1731 1732 1733 1734 1735
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1736 1737
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1738 1739 1740
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1741
  if (self->tensor.initialized()) {
1742 1743
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1744 1745
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1746 1747
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1748 1749 1750 1751 1752
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1753 1754
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1755 1756 1757 1758
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1759 1760
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1761 1762 1763 1764
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1765 1766
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1767 1768
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1769

1770 1771 1772
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1773 1774 1775
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1776
                     "function _use_gpudnn is only effective for DenseTensor"));
1777

1778
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1779

1780
  // Set the same use_gpudnn attribute, return directly
1781 1782 1783 1784
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1785
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1786 1787 1788
    return ToPyObject(self->tensor);
  }

1789
  // Share all other members of Tensor except use_gpudnn
1790
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1791
  target_dense_meta.use_gpudnn = use_gpudnn;
1792 1793 1794 1795
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1796
  paddle::Tensor target_tensor(
1797 1798 1799 1800
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1801
          << " set use_gpudnn = " << use_gpudnn;
1802 1803 1804 1805 1806

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1807 1808
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1809 1810
                                         PyObject* kwargs) {
  EAGER_TRY
1811
  using Vocab = paddle::framework::Vocab;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1824
  using Strings = paddle::framework::Strings;
1825
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1838 1839
      egr::IsVariableCompatTensor(self->tensor),
      true,
1840 1841
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1842
  using Vocab = paddle::framework::Vocab;
1843 1844 1845 1846 1847 1848
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1870 1871 1872 1873 1874 1875 1876 1877 1878
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1879
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1897
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1898 1899 1900 1901 1902
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1903
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1919
  paddle::Tensor tensor(
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1934
  paddle::Tensor tensor(
1935 1936 1937 1938 1939
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1940 1941
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1942 1943 1944 1945 1946 1947 1948 1949 1950
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1962 1963
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1964 1965
                                         PyObject* kwargs) {
  EAGER_TRY
1966 1967 1968
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1969 1970 1971 1972 1973
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1974 1975
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1976 1977
                                             PyObject* kwargs) {
  EAGER_TRY
1978 1979 1980
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1981 1982 1983 1984
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1985 1986
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1987 1988
                                             PyObject* kwargs) {
  EAGER_TRY
1989 1990 1991
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1992 1993 1994 1995
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1996 1997
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2011 2012 2013 2014 2015 2016 2017 2018 2019
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2020 2021
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2022 2023 2024 2025 2026 2027 2028 2029
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
PyDoc_STRVAR(tensor_method_element_size__doc__, R"DOC(element_size($self, /)
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2059 2060
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2061 2062
                                            PyObject* kwargs) {
  EAGER_TRY
2063
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2064 2065 2066 2067 2068

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2078 2079 2080 2081 2082
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2083
  RETURN_PY_NONE
2084 2085 2086
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2087 2088 2089 2090
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2091 2092 2093
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2094 2095 2096 2097
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2098 2099
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2121
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2122 2123 2124 2125
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2126 2127
  RETURN_PY_NONE

2128 2129 2130
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2131 2132
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2133 2134 2135
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2136 2137
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2154 2155 2156 2157 2158
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2159 2160 2161 2162 2163
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2164 2165
  RETURN_PY_NONE

W
wanghuancoder 已提交
2166 2167 2168 2169
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2170 2171
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2172 2173 2174 2175
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2176 2177
      t->IsInitialized(),
      true,
2178 2179 2180 2181 2182 2183 2184
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2185 2186
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2187 2188
                                   PyObject* kwargs) {
  EAGER_TRY
2189
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2190 2191 2192 2193 2194 2195
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2196 2197 2198 2199
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2200 2201
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2202 2203
                                    PyObject* kwargs) {
  EAGER_TRY
2204
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2205 2206 2207 2208 2209 2210
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2211 2212

  if (!grad->defined()) {
2213
    RETURN_PY_NONE
2214 2215
  }
  if (grad->is_dense_tensor()) {
2216
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2217 2218 2219 2220
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2221
    RETURN_PY_NONE
2222 2223 2224 2225
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2226 2227
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2228 2229
                                          PyObject* kwargs) {
  EAGER_TRY
2230
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2231 2232 2233 2234 2235 2236
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2237

2238
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2239 2240 2241 2242 2243 2244 2245 2246 2247
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2248 2249 2250 2251 2252
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2253 2254 2255 2256
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2257 2258 2259 2260 2261
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2333
#if defined(PADDLE_WITH_CUDA)
2334 2335
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2336 2337 2338
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2339 2340
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2341 2342 2343
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2344 2345
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2346 2347 2348 2349
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2350
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2351 2352
  tensor_uva(self_tensor, device_id);

2353 2354
  RETURN_PY_NONE

2355 2356 2357
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2370

2371
PyMethodDef variable_methods[] = {
2372
    {"numpy",
2373
     (PyCFunction)(void (*)())tensor_method_numpy,
2374
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2375
     tensor_method_numpy__doc__},
2376
    {"_is_initialized",
2377
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2378
     METH_VARARGS | METH_KEYWORDS,
2379
     nullptr},
W
wanghuancoder 已提交
2380
    {"_is_dense_tensor_hold_allocation",
2381 2382
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2383
     METH_VARARGS | METH_KEYWORDS,
2384
     nullptr},
2385
    {"_copy_to",
2386
     (PyCFunction)(void (*)())tensor_method__copy_to,
2387
     METH_VARARGS | METH_KEYWORDS,
2388
     nullptr},
2389
    {"copy_",
2390
     (PyCFunction)(void (*)())tensor_method_copy_,
2391
     METH_VARARGS | METH_KEYWORDS,
2392
     nullptr},
2393
    {"clone",
2394
     (PyCFunction)(void (*)())tensor_method_clone,
2395
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2396
     tensor_method_clone__doc__},
2397
    {"reconstruct_from_",
2398
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2399
     METH_VARARGS | METH_KEYWORDS,
2400
     nullptr},
2401
    {"retain_grads",
2402
     (PyCFunction)(void (*)())tensor_retain_grads,
2403
     METH_VARARGS | METH_KEYWORDS,
2404
     nullptr},
2405
    {"clear_gradient",
2406
     (PyCFunction)(void (*)())tensor_clear_gradient,
2407
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2408
     tensor_clear_gradient__doc__},
2409
    {"is_dense",
2410
     (PyCFunction)(void (*)())tensor_method_is_dense,
2411
     METH_VARARGS | METH_KEYWORDS,
2412
     nullptr},
L
LiYuRio 已提交
2413
    {"is_dist",
2414
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2415
     METH_VARARGS | METH_KEYWORDS,
2416
     nullptr},
2417
    {"_zero_grads",
2418
     (PyCFunction)(void (*)())tensor__zero_grads,
2419
     METH_VARARGS | METH_KEYWORDS,
2420
     nullptr},
2421
    {"_share_buffer_to",
2422
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2423
     METH_VARARGS | METH_KEYWORDS,
2424
     nullptr},
2425
    {"_is_shared_buffer_with",
2426
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2427
     METH_VARARGS | METH_KEYWORDS,
2428
     nullptr},
2429
    {"_share_underline_tensor_to",
2430
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2431
     METH_VARARGS | METH_KEYWORDS,
2432
     nullptr},
2433
    {"_is_shared_underline_tensor_with",
2434
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2435
     METH_VARARGS | METH_KEYWORDS,
2436
     nullptr},
2437
    {"detach",
2438
     (PyCFunction)(void (*)())tensor_method_detach,
2439
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2440
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2441 2442 2443
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
2444
     nullptr},
2445
    {"get_tensor",
2446
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2447
     METH_VARARGS | METH_KEYWORDS,
2448
     nullptr},
2449
    {"get_selected_rows",
2450
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2451
     METH_VARARGS | METH_KEYWORDS,
2452
     nullptr},
2453
    {"_get_tensor_from_selected_rows",
2454
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2455
     METH_VARARGS | METH_KEYWORDS,
2456
     nullptr},
J
Jiabin Yang 已提交
2457
    {"_getitem_index_not_tensor",
2458
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2459
     METH_VARARGS | METH_KEYWORDS,
2460
     nullptr},
W
wanghuancoder 已提交
2461
    {"_getitem_from_offset",
2462
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2463
     METH_VARARGS | METH_KEYWORDS,
2464
     nullptr},
W
wanghuancoder 已提交
2465
    {"__setitem_eager_tensor__",
2466
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2467
     METH_VARARGS | METH_KEYWORDS,
2468
     nullptr},
2469
    {"_register_grad_hook",
2470
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2471
     METH_VARARGS | METH_KEYWORDS,
2472
     nullptr},
2473 2474 2475 2476
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
2477
    {"_remove_grad_hook",
2478
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2479
     METH_VARARGS | METH_KEYWORDS,
2480
     nullptr},
2481
    {"_register_backward_hook",
2482
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2483
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2484
     tensor_method__register_reduce_hook__doc__},
2485
    {"_set_grad_type",
2486
     (PyCFunction)(void (*)())tensor__set_grad_type,
2487
     METH_VARARGS | METH_KEYWORDS,
2488
     nullptr},
2489
    {"_clear",
2490
     (PyCFunction)(void (*)())tensor__clear,
2491
     METH_VARARGS | METH_KEYWORDS,
2492
     nullptr},
2493
    {"_clear_dataptr",
2494
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2495
     METH_VARARGS | METH_KEYWORDS,
2496
     nullptr},
J
Jiabin Yang 已提交
2497
    {"_copy_gradient_from",
2498
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2499
     METH_VARARGS | METH_KEYWORDS,
2500
     nullptr},
2501
    {"_tensor_use_gpudnn",
2502
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2503
     METH_VARARGS | METH_KEYWORDS,
2504
     nullptr},
2505 2506
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2507
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2508
     METH_VARARGS | METH_KEYWORDS,
2509
     nullptr},
2510
    {"set_vocab",
2511
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2512
     METH_VARARGS | METH_KEYWORDS,
2513
     nullptr},
2514
    {"get_map_tensor",
2515
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2516
     METH_VARARGS | METH_KEYWORDS,
2517
     nullptr},
2518
    /***the method of sparse tensor****/
2519
    {"nnz",
2520
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2521
     METH_VARARGS | METH_KEYWORDS,
2522
     nullptr},
2523
    {"indices",
2524
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2525
     METH_VARARGS | METH_KEYWORDS,
2526
     nullptr},
2527
    {"values",
2528
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2529
     METH_VARARGS | METH_KEYWORDS,
2530
     nullptr},
2531
    {"crows",
2532
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2533
     METH_VARARGS | METH_KEYWORDS,
2534
     nullptr},
2535
    {"cols",
2536
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2537
     METH_VARARGS | METH_KEYWORDS,
2538
     nullptr},
2539
    {"is_sparse",
2540
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2541
     METH_VARARGS | METH_KEYWORDS,
2542
     nullptr},
2543
    {"is_sparse_coo",
2544
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2545
     METH_VARARGS | METH_KEYWORDS,
2546
     nullptr},
2547
    {"is_sparse_csr",
2548
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2549
     METH_VARARGS | METH_KEYWORDS,
2550
     nullptr},
2551
    {"is_same_shape",
2552
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2553
     METH_VARARGS | METH_KEYWORDS,
2554
     nullptr},
2555
    {"to_sparse_csr",
2556
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2557
     METH_VARARGS | METH_KEYWORDS,
2558
     nullptr},
2559
    {"element_size",
2560
     (PyCFunction)(void (*)())tensor_method_element_size,
2561
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2562
     tensor_method_element_size__doc__},
2563
    /***the method of sparse tensor****/
2564
    {"_inplace_version",
2565
     (PyCFunction)(void (*)())tensor__inplace_version,
2566
     METH_VARARGS | METH_KEYWORDS,
2567
     nullptr},
2568
    {"_bump_inplace_version",
2569
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2570
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2571
     tensor_method__bump_inplace_version__doc__},
2572
    {"is_selected_rows",
2573
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2574
     METH_VARARGS | METH_KEYWORDS,
2575
     nullptr},
2576
    {"rows",
2577
     (PyCFunction)(void (*)())tensor_method_get_rows,
2578
     METH_VARARGS | METH_KEYWORDS,
2579
     nullptr},
2580
    {"_reset_grad_inplace_version",
2581
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2582
     METH_VARARGS | METH_KEYWORDS,
2583
     nullptr},
2584
    {"_share_memory",
2585
     (PyCFunction)(void (*)())tensor_method__share_memory,
2586
     METH_VARARGS | METH_KEYWORDS,
2587
     nullptr},
2588
    {"_offset",
2589
     (PyCFunction)(void (*)())tensor__offset,
2590
     METH_VARARGS | METH_KEYWORDS,
2591
     nullptr},
2592
    {"_grad_name",
2593
     (PyCFunction)(void (*)())tensor__grad_name,
2594
     METH_VARARGS | METH_KEYWORDS,
2595
     nullptr},
2596
    {"_grad_value",
2597
     (PyCFunction)(void (*)())tensor__grad_value,
2598
     METH_VARARGS | METH_KEYWORDS,
2599
     nullptr},
2600
    {"_unset_fake_empty",
2601
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2602
     METH_VARARGS | METH_KEYWORDS,
2603
     nullptr},
2604
    {"data_ptr",
2605
     (PyCFunction)(void (*)())tensor_data_ptr,
2606
     METH_VARARGS | METH_KEYWORDS,
2607
     nullptr},
W
wanghuancoder 已提交
2608
    {"_grad_ivar",
2609
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2610
     METH_VARARGS | METH_KEYWORDS,
2611
     nullptr},
W
wanghuancoder 已提交
2612 2613 2614
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2615
     nullptr},
W
wanghuancoder 已提交
2616 2617 2618
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2619
     nullptr},
W
wanghuancoder 已提交
2620 2621 2622
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
2623
     nullptr},
2624
#if defined(PADDLE_WITH_CUDA)
2625
    {"_tensor_uva",
2626
     (PyCFunction)(void (*)())tensor_method__uva,
2627
     METH_VARARGS | METH_KEYWORDS,
2628
     nullptr},
2629
#endif
2630
    {nullptr, nullptr, 0, nullptr}};
2631

J
Jack Zhou 已提交
2632 2633 2634
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
2635
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2636
     METH_VARARGS | METH_KEYWORDS,
2637
     nullptr},
J
Jack Zhou 已提交
2638
    {"_is_initialized",
2639
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2640
     METH_VARARGS | METH_KEYWORDS,
2641
     nullptr},
J
Jack Zhou 已提交
2642
    {"_is_string_tensor_hold_allocation",
2643 2644
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2645
     METH_VARARGS | METH_KEYWORDS,
2646
     nullptr},
J
Jack Zhou 已提交
2647
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
2648
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
2649

2650 2651
}  // namespace pybind
}  // namespace paddle