eager_method.cc 97.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
L
LiYuRio 已提交
66 67 68
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
69

70
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
71
DECLARE_bool(use_stride_kernel);
72

73 74 75
namespace paddle {
namespace pybind {

76 77
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
78
                                     const paddle::platform::Place& place,
79
                                     bool zero_copy);
80

81
extern PyTypeObject* p_tensor_type;
82

J
Jiabin Yang 已提交
83
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
84
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
85
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
86
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
87
    PADDLE_ENFORCE_EQ(
88 89
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
90 91 92 93 94 95 96 97
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
98
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
99 100 101 102
        "method, when you reach this means we got another type index."));
  }
}

W
wanghuancoder 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
PyDoc_STRVAR(tensor_method_numpy__doc__, R"DOC(numpy($self, /)
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

124 125
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
126 127
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
128 129 130 131 132 133 134 135 136
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
137 138 139 140 141
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
142 143 144 145 146
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
147 148
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
149
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
150 151
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
152
  size_t py_rank = tensor_dims.size();
153
  size_t numel = 1;
154
  if (py_rank == 0) {
155
    Py_ssize_t args_num = PyTuple_Size(args);
156 157
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
158 159 160 161 162 163 164
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
165
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
166 167 168 169 170
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
171 172
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
173
             "modify "
174
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
175
             "possible, "
176
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
177 178 179 180
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
181 182 183 184 185 186 187 188
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
189 190 191 192 193 194
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
195
  }
W
wanghuancoder 已提交
196 197

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
198 199 200 201 202 203 204 205 206 207 208
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

209
    if (tensor_dims.empty()) {
210 211 212
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
213 214 215 216 217 218
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
219 220 221 222 223
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
224 225 226
    return array;
  }

W
wanghuancoder 已提交
227 228 229
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

230
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
231
    eager_gil_scoped_release guard;
232
    platform::CPUPlace place;
233 234 235 236
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
237 238
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
239 240 241 242 243
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
244
      // deep copy
W
wanghuancoder 已提交
245 246 247 248 249
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
250 251 252 253
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
254 255 256 257 258
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
259
      // deep copy
W
wanghuancoder 已提交
260 261 262 263 264
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
265 266
    }

267
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
268
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
269
    eager_gil_scoped_release guard;
270 271 272 273 274
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
275 276 277 278
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
279 280
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
281 282 283 284 285 286 287 288 289
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
290 291 292 293
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
294 295 296 297 298 299 300 301 302
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
303
    }
304
#endif
C
Chen Weihang 已提交
305 306 307 308 309 310 311
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
312 313
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
314 315 316 317 318 319 320 321 322 323
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
324 325 326 327
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
328 329 330 331 332 333 334 335 336 337
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
338 339
    }
#endif
340 341
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
342
    eager_gil_scoped_release guard;
343 344 345 346
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
347 348
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
349 350 351 352 353
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
354
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
355 356 357
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
358 359 360 361
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
362
      // TODO(qili93): temporary for ascend npu performance to be removed along
363
      // with npu_identity op
364
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
365 366 367 368 369
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
370 371 372 373 374
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
375
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
376 377 378
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
379 380
    }
#endif
381 382 383
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
384
    RETURN_PY_NONE
385 386
  }

W
wanghuancoder 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

407 408 409 410
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
426 427 428 429 430
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
444 445
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
446 447 448 449 450 451 452 453 454 455 456 457
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
458 459
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
460 461 462 463 464 465 466 467 468 469
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
470 471 472
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
473 474 475 476
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
477
    RETURN_PY_NONE
J
Jack Zhou 已提交
478 479 480 481
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

482 483 484 485
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
486
  return ToPyObject(self->tensor.initialized());
487 488 489
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

504
static void IncreaseTensorReferenceCountUntilCopyComplete(
505
    const paddle::Tensor& tensor, const platform::Place& place) {
506 507 508 509 510 511 512 513
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
514
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
515 516 517 518 519 520 521
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

522 523
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
524 525
                                        PyObject* kwargs) {
  EAGER_TRY
526 527
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
528
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
529 530 531 532 533 534 535 536 537 538
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
539
  }
540 541 542 543
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

544 545 546 547
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
548
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
549
  std::string orig_name = self->tensor.name();
550 551
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
552
  self->tensor = src_tensor;
553 554

  // Recover source name
555
  self->tensor.set_name(orig_name);
556 557

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
558
          << " to " << self->tensor.name();
559 560
  RETURN_PY_NONE

561 562 563
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

564 565
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
566 567
                                     PyObject* kwargs) {
  EAGER_TRY
568
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
569
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
570
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
571
          << self->tensor.name();
572
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
573
    eager_gil_scoped_release guard;
574
    egr::EagerUtils::autograd_meta(&(self->tensor))
575 576
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
577
    egr::EagerUtils::autograd_meta(&(self->tensor))
578 579
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
580
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
581
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
582 583 584
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
585
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
586
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
587
    }
588 589
  }

590
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
591
          << self->tensor.name();
592 593
  RETURN_PY_NONE

594 595 596
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
PyDoc_STRVAR(tensor_method_clone__doc__, R"DOC(clone($self, /)
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

632 633 634 635
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
636
  paddle::Tensor out;
W
wanghuancoder 已提交
637 638 639 640 641 642 643 644 645
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
646

W
wanghuancoder 已提交
647 648
    out = assign_ad_func(self->tensor);
  }
649 650 651 652
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

653 654
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
655
                                     PyObject* kwargs) {
656
  EAGER_TRY
657
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
658
    eager_gil_scoped_release guard;
659
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
660
    if (!meta->GetMutableGradNode()) {
661
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
662
              << "become accumulation node";
663
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
664
    }
665
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
666
  }
667 668
  RETURN_PY_NONE

669 670 671
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
PyDoc_STRVAR(tensor_clear_gradient__doc__,
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

702 703
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
704
                                       PyObject* kwargs) {
705
  EAGER_TRY
706
  VLOG(4) << "ClearGradient " << self->tensor.name();
707

708 709 710
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
711
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
712 713
  }

714
  paddle::Tensor* grad;
715
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
716
  if (is_leaf) {
717 718 719
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
720
                       "Detected nullptr grad"
721 722
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
723
  } else {
724
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
725
    grad = meta->MutableGrad();
726 727
  }

728
  if (grad->impl()) {
W
wanghuancoder 已提交
729
    eager_gil_scoped_release guard;
730 731 732 733 734 735 736 737 738 739
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
740 741 742 743
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
744 745 746 747 748
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
749 750 751 752 753 754 755
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
756 757
      }
    }
758
  }
759

760 761
  RETURN_PY_NONE

762 763 764
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

765 766
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
767
                                    PyObject* kwargs) {
768
  EAGER_TRY
769
  VLOG(4) << "ZeroGrads " << self->tensor.name();
770

771
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
772
    eager_gil_scoped_release guard;
773
    // Add RetainGrad as PostHook to AccumulationNode
774
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
775 776
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
777
                       "Detected nullptr grad"
778 779 780
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
781 782 783 784 785 786 787
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
788
    }
789
  } else {
W
wanghuancoder 已提交
790
    eager_gil_scoped_release guard;
791
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
792
    if (meta->MutableGrad()->initialized()) {
793 794 795 796 797 798 799 800 801
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
802
    }
803 804
  }

805 806
  RETURN_PY_NONE

807 808 809
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

810 811
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
812 813
                                         PyObject* kwargs) {
  EAGER_TRY
814
  paddle::Tensor* dst_ptr =
815
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
816 817
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
818 819 820
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
821
                        self->tensor.name()));
822
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
823 824 825
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
826
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
827
  dst_tensor->ShareBufferWith(*src_tensor);
828
  dst_tensor->ShareDataTypeWith(*src_tensor);
829 830
  RETURN_PY_NONE

831 832 833
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

834 835 836 837
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
838
  paddle::Tensor* dst_ptr =
839
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
840 841
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
842 843 844
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
845
                        self->tensor.name()));
846
  bool res = false;
847
  if (!self->tensor.defined() || !dst_ptr->defined()) {
848 849
    return ToPyObject(res);
  }
850 851
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
852 853 854 855 856
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

857 858 859 860
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
861
  paddle::Tensor* src_ptr =
862
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
863 864
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
865 866 867
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
868 869
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
870 871
  RETURN_PY_NONE

872 873 874
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

875 876 877 878
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
879
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
880 881
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
882 883 884 885 886
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
887
  if (!self->tensor.defined() || !src_tensor.defined()) {
888 889
    return ToPyObject(res);
  }
890
  res = (self->tensor.impl().get() == src_tensor.impl().get());
891 892 893 894
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
PyDoc_STRVAR(tensor_method_detach__doc__, R"DOC(detach($self, /)
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

935 936
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
937 938
                                      PyObject* kwargs) {
  EAGER_TRY
939
  PADDLE_ENFORCE_EQ(
940
      self->tensor.defined(),
941
      true,
942
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
943
                                        self->tensor.name()));
944

945
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
946
  if (obj) {
947
    auto v = reinterpret_cast<TensorObject*>(obj);
948
    new (&(v->tensor)) paddle::Tensor();
949 950 951 952
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
953 954 955 956 957 958 959 960 961 962
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

982 983 984 985
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
986
  if (!self->tensor.defined()) {
987 988 989
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
990
  }
991
  if (self->tensor.is_dense_tensor()) {
992
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
993 994
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
995 996
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
997 998
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
999
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1000 1001 1002 1003
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1004
  } else {
1005
    RETURN_PY_NONE
1006 1007 1008 1009
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1010 1011 1012 1013 1014
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1015
    RETURN_PY_NONE
1016 1017 1018 1019 1020 1021
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1022
    RETURN_PY_NONE
1023 1024 1025 1026
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1041 1042
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1043
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1044

1045
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1046 1047 1048 1049 1050 1051 1052
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1053 1054 1055
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1056
  EAGER_TRY
J
Jiabin Yang 已提交
1057 1058 1059
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1060 1061
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1062 1063
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1064 1065
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1066
  PADDLE_ENFORCE_EQ(
1067
      self->tensor.defined(),
1068
      true,
J
Jiabin Yang 已提交
1069 1070 1071 1072 1073
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1085

1086 1087 1088 1089
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1106 1107 1108 1109 1110 1111
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1112
    if (op_type == "slice") {
W
wanghuancoder 已提交
1113
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1114 1115 1116 1117 1118 1119
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1120
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1121
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1122
      out = strided_slice_ad_func(
1123
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1124 1125 1126
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1136
  bool set_to_1d = FLAGS_set_to_1d;
1137 1138 1139 1140 1141 1142

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1143
      VLOG(1)
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1156 1157 1158
        none_axes.pop_back();
      }
    }
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1173 1174
          }
        }
1175
        axis -= len;
J
Jiabin Yang 已提交
1176
      }
1177
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1178
    }
1179
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1180 1181 1182 1183
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1184
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1198 1199 1200
  }

  return ToPyObject(out);
1201 1202 1203
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1204 1205
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1206 1207
                                             PyObject* kwargs) {
  EAGER_TRY
1208 1209 1210 1211 1212 1213 1214 1215
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1216 1217 1218
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1219 1220
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1221 1222
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1223 1224 1225 1226 1227 1228 1229
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1230
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1231 1232 1233 1234 1235 1236 1237 1238

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1239 1240
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1241 1242 1243 1244 1245 1246
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1247 1248
        offset,
        numel,
W
wanghuancoder 已提交
1249 1250 1251
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1252 1253
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1254 1255 1256 1257 1258 1259
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1260 1261
          index,
          dims[i],
W
wanghuancoder 已提交
1262
          platform::errors::InvalidArgument(
1263 1264 1265
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1266
              dims[i]));
W
wanghuancoder 已提交
1267
      offset += index * stride[i];
W
wanghuancoder 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1295 1296
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1297
        0,                                                                   \
1298 1299 1300
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1301 1302 1303 1304 1305
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1306 1307
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1359 1360
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1361 1362
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1384
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1385
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1386 1387 1388 1389 1390
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1391 1392
    }

1393
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1394 1395 1396 1397

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1398
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1399 1400 1401 1402
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1403
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1404 1405 1406
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1407
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1408 1409 1410
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1411
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1412 1413 1414
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1415
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1416 1417 1418
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1419
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1420 1421 1422
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1433 1434 1435 1436
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1437
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1438 1439 1440
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1441 1442 1443 1444 1445
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1446 1447 1448 1449 1450 1451 1452

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1453 1454
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1455
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1456 1457
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1458
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1459 1460
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1461
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1462 1463
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1464
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1465 1466
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1467
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1468 1469
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1470
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1471 1472 1473 1474 1475 1476 1477 1478
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1479 1480 1481 1482
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1483 1484
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1485 1486 1487 1488 1489 1490 1491
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1492
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1493 1494 1495 1496 1497 1498 1499
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1500
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1501 1502
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1503
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1504 1505 1506 1507 1508 1509 1510
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1511 1512 1513
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1514
      }
1515 1516
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1517 1518 1519 1520 1521 1522 1523 1524 1525
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1526 1527
    }
  } else {
1528
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1540
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1541
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1542 1543 1544 1545
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1546
#else
1547 1548 1549 1550
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1551 1552
#endif
    } else {
1553 1554
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1555 1556
    }
  }
1557 1558
  RETURN_PY_NONE

W
wanghuancoder 已提交
1559 1560 1561
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1562 1563
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1564 1565 1566
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1567
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1568
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1569 1570 1571 1572 1573

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1574
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1575 1576 1577 1578 1579 1580
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1581 1582 1583 1584 1585 1586 1587 1588 1589
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1590 1591
        rank_info.first,
        rank_info.second,
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1604 1605
        rank_info.first,
        rank_info.second,
1606 1607 1608 1609 1610 1611
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1612 1613
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1650 1651
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1652 1653 1654 1655 1656 1657
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1658
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1659
                    true,
1660 1661 1662 1663
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1664 1665 1666 1667
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1668 1669
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1670
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1671 1672 1673 1674 1675 1676 1677
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1678
      std::make_shared<PyVoidHook>(hook_func));
1679

1680 1681
  RETURN_PY_NONE

1682 1683 1684
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1685 1686
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1687
                                       PyObject* kwargs) {
1688 1689 1690
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1691
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1692
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1693
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1694
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1695
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1696
  }
1697 1698
  RETURN_PY_NONE

1699 1700 1701
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1702 1703
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1704 1705 1706
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1707 1708
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1709 1710 1711
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1712 1713 1714 1715 1716 1717 1718 1719 1720
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1721 1722
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1723 1724 1725
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1726
  if (self->tensor.initialized()) {
1727 1728
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1729 1730
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1731 1732
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1733 1734 1735 1736 1737
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1738 1739
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1740 1741 1742 1743
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1744 1745
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1746 1747 1748 1749
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1750 1751
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1752 1753
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1754

1755 1756 1757
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1758 1759 1760
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1761
                     "function _use_gpudnn is only effective for DenseTensor"));
1762

1763
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1764

1765
  // Set the same use_gpudnn attribute, return directly
1766 1767 1768 1769
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1770
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1771 1772 1773
    return ToPyObject(self->tensor);
  }

1774
  // Share all other members of Tensor except use_gpudnn
1775
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1776
  target_dense_meta.use_gpudnn = use_gpudnn;
1777 1778 1779 1780
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1781
  paddle::Tensor target_tensor(
1782 1783 1784 1785
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1786
          << " set use_gpudnn = " << use_gpudnn;
1787 1788 1789 1790 1791

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1792 1793
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1794 1795
                                         PyObject* kwargs) {
  EAGER_TRY
1796
  using Vocab = paddle::framework::Vocab;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1809
  using Strings = paddle::framework::Strings;
1810
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1823 1824
      egr::IsVariableCompatTensor(self->tensor),
      true,
1825 1826
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1827
  using Vocab = paddle::framework::Vocab;
1828 1829 1830 1831 1832 1833
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1855 1856 1857 1858 1859 1860 1861 1862 1863
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1864
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1882
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1883 1884 1885 1886 1887
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1888
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1904
  paddle::Tensor tensor(
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1919
  paddle::Tensor tensor(
1920 1921 1922 1923 1924
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1925 1926
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1927 1928 1929 1930 1931 1932 1933 1934 1935
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1947 1948
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1949 1950
                                         PyObject* kwargs) {
  EAGER_TRY
1951 1952 1953
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1954 1955 1956 1957 1958
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1959 1960
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1961 1962
                                             PyObject* kwargs) {
  EAGER_TRY
1963 1964 1965
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1966 1967 1968 1969
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1970 1971
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1972 1973
                                             PyObject* kwargs) {
  EAGER_TRY
1974 1975 1976
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1977 1978 1979 1980
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1981 1982
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1996 1997 1998 1999 2000 2001 2002 2003 2004
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2005 2006
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2007 2008 2009 2010 2011 2012 2013 2014
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
PyDoc_STRVAR(tensor_method_element_size__doc__, R"DOC(element_size($self, /)
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2044 2045
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2046 2047
                                            PyObject* kwargs) {
  EAGER_TRY
2048
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2049 2050 2051 2052 2053

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2063 2064 2065 2066 2067
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2068
  RETURN_PY_NONE
2069 2070 2071
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2072 2073 2074 2075
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2076 2077 2078
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2079 2080 2081 2082
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2083 2084
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2106
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2107 2108 2109 2110
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2111 2112
  RETURN_PY_NONE

2113 2114 2115
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2116 2117
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2118 2119 2120
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2121 2122
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2139 2140 2141 2142 2143
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2144 2145 2146 2147 2148
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2149 2150
  RETURN_PY_NONE

W
wanghuancoder 已提交
2151 2152 2153 2154
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2155 2156
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2157 2158 2159 2160
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2161 2162
      t->IsInitialized(),
      true,
2163 2164 2165 2166 2167 2168 2169
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2170 2171
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2172 2173
                                   PyObject* kwargs) {
  EAGER_TRY
2174
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2175 2176 2177 2178 2179 2180
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2181 2182 2183 2184
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2185 2186
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2187 2188
                                    PyObject* kwargs) {
  EAGER_TRY
2189
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2190 2191 2192 2193 2194 2195
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2196 2197

  if (!grad->defined()) {
2198
    RETURN_PY_NONE
2199 2200
  }
  if (grad->is_dense_tensor()) {
2201
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2202 2203 2204 2205
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2206
    RETURN_PY_NONE
2207 2208 2209 2210
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2211 2212
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2213 2214
                                          PyObject* kwargs) {
  EAGER_TRY
2215
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2216 2217 2218 2219 2220 2221
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2222

2223
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2224 2225 2226 2227 2228 2229 2230 2231 2232
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2233 2234 2235 2236 2237
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2238 2239 2240 2241
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2242 2243 2244 2245 2246
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2318
#if defined(PADDLE_WITH_CUDA)
2319 2320
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2321 2322 2323
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2324 2325
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2326 2327 2328
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2329 2330
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2331 2332 2333 2334
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2335
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2336 2337
  tensor_uva(self_tensor, device_id);

2338 2339
  RETURN_PY_NONE

2340 2341 2342
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2355

2356
PyMethodDef variable_methods[] = {
2357
    {"numpy",
2358
     (PyCFunction)(void (*)())tensor_method_numpy,
2359
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2360
     tensor_method_numpy__doc__},
2361
    {"_is_initialized",
2362
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2363
     METH_VARARGS | METH_KEYWORDS,
2364
     nullptr},
W
wanghuancoder 已提交
2365
    {"_is_dense_tensor_hold_allocation",
2366 2367
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2368
     METH_VARARGS | METH_KEYWORDS,
2369
     nullptr},
2370
    {"_copy_to",
2371
     (PyCFunction)(void (*)())tensor_method__copy_to,
2372
     METH_VARARGS | METH_KEYWORDS,
2373
     nullptr},
2374
    {"copy_",
2375
     (PyCFunction)(void (*)())tensor_method_copy_,
2376
     METH_VARARGS | METH_KEYWORDS,
2377
     nullptr},
2378
    {"clone",
2379
     (PyCFunction)(void (*)())tensor_method_clone,
2380
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2381
     tensor_method_clone__doc__},
2382
    {"reconstruct_from_",
2383
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2384
     METH_VARARGS | METH_KEYWORDS,
2385
     nullptr},
2386
    {"retain_grads",
2387
     (PyCFunction)(void (*)())tensor_retain_grads,
2388
     METH_VARARGS | METH_KEYWORDS,
2389
     nullptr},
2390
    {"clear_gradient",
2391
     (PyCFunction)(void (*)())tensor_clear_gradient,
2392
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2393
     tensor_clear_gradient__doc__},
2394
    {"is_dense",
2395
     (PyCFunction)(void (*)())tensor_method_is_dense,
2396
     METH_VARARGS | METH_KEYWORDS,
2397
     nullptr},
L
LiYuRio 已提交
2398
    {"is_dist",
2399
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2400
     METH_VARARGS | METH_KEYWORDS,
2401
     nullptr},
2402
    {"_zero_grads",
2403
     (PyCFunction)(void (*)())tensor__zero_grads,
2404
     METH_VARARGS | METH_KEYWORDS,
2405
     nullptr},
2406
    {"_share_buffer_to",
2407
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2408
     METH_VARARGS | METH_KEYWORDS,
2409
     nullptr},
2410
    {"_is_shared_buffer_with",
2411
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2412
     METH_VARARGS | METH_KEYWORDS,
2413
     nullptr},
2414
    {"_share_underline_tensor_to",
2415
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2416
     METH_VARARGS | METH_KEYWORDS,
2417
     nullptr},
2418
    {"_is_shared_underline_tensor_with",
2419
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2420
     METH_VARARGS | METH_KEYWORDS,
2421
     nullptr},
2422
    {"detach",
2423
     (PyCFunction)(void (*)())tensor_method_detach,
2424
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2425
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2426 2427 2428
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
2429
     nullptr},
2430
    {"get_tensor",
2431
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2432
     METH_VARARGS | METH_KEYWORDS,
2433
     nullptr},
2434
    {"get_selected_rows",
2435
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2436
     METH_VARARGS | METH_KEYWORDS,
2437
     nullptr},
2438
    {"_get_tensor_from_selected_rows",
2439
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2440
     METH_VARARGS | METH_KEYWORDS,
2441
     nullptr},
J
Jiabin Yang 已提交
2442
    {"_getitem_index_not_tensor",
2443
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2444
     METH_VARARGS | METH_KEYWORDS,
2445
     nullptr},
W
wanghuancoder 已提交
2446
    {"_getitem_from_offset",
2447
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2448
     METH_VARARGS | METH_KEYWORDS,
2449
     nullptr},
W
wanghuancoder 已提交
2450
    {"__setitem_eager_tensor__",
2451
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2452
     METH_VARARGS | METH_KEYWORDS,
2453
     nullptr},
2454
    {"_register_grad_hook",
2455
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2456
     METH_VARARGS | METH_KEYWORDS,
2457
     nullptr},
2458
    {"_remove_grad_hook",
2459
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2460
     METH_VARARGS | METH_KEYWORDS,
2461
     nullptr},
2462
    {"_register_backward_hook",
2463
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2464
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2465
     tensor_method__register_reduce_hook__doc__},
2466
    {"_set_grad_type",
2467
     (PyCFunction)(void (*)())tensor__set_grad_type,
2468
     METH_VARARGS | METH_KEYWORDS,
2469
     nullptr},
2470
    {"_clear",
2471
     (PyCFunction)(void (*)())tensor__clear,
2472
     METH_VARARGS | METH_KEYWORDS,
2473
     nullptr},
2474
    {"_clear_dataptr",
2475
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2476
     METH_VARARGS | METH_KEYWORDS,
2477
     nullptr},
J
Jiabin Yang 已提交
2478
    {"_copy_gradient_from",
2479
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2480
     METH_VARARGS | METH_KEYWORDS,
2481
     nullptr},
2482
    {"_tensor_use_gpudnn",
2483
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2484
     METH_VARARGS | METH_KEYWORDS,
2485
     nullptr},
2486 2487
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2488
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2489
     METH_VARARGS | METH_KEYWORDS,
2490
     nullptr},
2491
    {"set_vocab",
2492
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2493
     METH_VARARGS | METH_KEYWORDS,
2494
     nullptr},
2495
    {"get_map_tensor",
2496
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2497
     METH_VARARGS | METH_KEYWORDS,
2498
     nullptr},
2499
    /***the method of sparse tensor****/
2500
    {"nnz",
2501
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2502
     METH_VARARGS | METH_KEYWORDS,
2503
     nullptr},
2504
    {"indices",
2505
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2506
     METH_VARARGS | METH_KEYWORDS,
2507
     nullptr},
2508
    {"values",
2509
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2510
     METH_VARARGS | METH_KEYWORDS,
2511
     nullptr},
2512
    {"crows",
2513
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2514
     METH_VARARGS | METH_KEYWORDS,
2515
     nullptr},
2516
    {"cols",
2517
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2518
     METH_VARARGS | METH_KEYWORDS,
2519
     nullptr},
2520
    {"is_sparse",
2521
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2522
     METH_VARARGS | METH_KEYWORDS,
2523
     nullptr},
2524
    {"is_sparse_coo",
2525
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2526
     METH_VARARGS | METH_KEYWORDS,
2527
     nullptr},
2528
    {"is_sparse_csr",
2529
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2530
     METH_VARARGS | METH_KEYWORDS,
2531
     nullptr},
2532
    {"is_same_shape",
2533
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2534
     METH_VARARGS | METH_KEYWORDS,
2535
     nullptr},
2536
    {"to_sparse_csr",
2537
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2538
     METH_VARARGS | METH_KEYWORDS,
2539
     nullptr},
2540
    {"element_size",
2541
     (PyCFunction)(void (*)())tensor_method_element_size,
2542
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2543
     tensor_method_element_size__doc__},
2544
    /***the method of sparse tensor****/
2545
    {"_inplace_version",
2546
     (PyCFunction)(void (*)())tensor__inplace_version,
2547
     METH_VARARGS | METH_KEYWORDS,
2548
     nullptr},
2549
    {"_bump_inplace_version",
2550
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2551
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2552
     tensor_method__bump_inplace_version__doc__},
2553
    {"is_selected_rows",
2554
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2555
     METH_VARARGS | METH_KEYWORDS,
2556
     nullptr},
2557
    {"rows",
2558
     (PyCFunction)(void (*)())tensor_method_get_rows,
2559
     METH_VARARGS | METH_KEYWORDS,
2560
     nullptr},
2561
    {"_reset_grad_inplace_version",
2562
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2563
     METH_VARARGS | METH_KEYWORDS,
2564
     nullptr},
2565
    {"_share_memory",
2566
     (PyCFunction)(void (*)())tensor_method__share_memory,
2567
     METH_VARARGS | METH_KEYWORDS,
2568
     nullptr},
2569
    {"_offset",
2570
     (PyCFunction)(void (*)())tensor__offset,
2571
     METH_VARARGS | METH_KEYWORDS,
2572
     nullptr},
2573
    {"_grad_name",
2574
     (PyCFunction)(void (*)())tensor__grad_name,
2575
     METH_VARARGS | METH_KEYWORDS,
2576
     nullptr},
2577
    {"_grad_value",
2578
     (PyCFunction)(void (*)())tensor__grad_value,
2579
     METH_VARARGS | METH_KEYWORDS,
2580
     nullptr},
2581
    {"_unset_fake_empty",
2582
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2583
     METH_VARARGS | METH_KEYWORDS,
2584
     nullptr},
2585
    {"data_ptr",
2586
     (PyCFunction)(void (*)())tensor_data_ptr,
2587
     METH_VARARGS | METH_KEYWORDS,
2588
     nullptr},
W
wanghuancoder 已提交
2589
    {"_grad_ivar",
2590
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2591
     METH_VARARGS | METH_KEYWORDS,
2592
     nullptr},
W
wanghuancoder 已提交
2593 2594 2595
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2596
     nullptr},
W
wanghuancoder 已提交
2597 2598 2599
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2600
     nullptr},
W
wanghuancoder 已提交
2601 2602 2603
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
2604
     nullptr},
2605
#if defined(PADDLE_WITH_CUDA)
2606
    {"_tensor_uva",
2607
     (PyCFunction)(void (*)())tensor_method__uva,
2608
     METH_VARARGS | METH_KEYWORDS,
2609
     nullptr},
2610
#endif
2611
    {nullptr, nullptr, 0, nullptr}};
2612

J
Jack Zhou 已提交
2613 2614 2615
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
2616
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2617
     METH_VARARGS | METH_KEYWORDS,
2618
     nullptr},
J
Jack Zhou 已提交
2619
    {"_is_initialized",
2620
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2621
     METH_VARARGS | METH_KEYWORDS,
2622
     nullptr},
J
Jack Zhou 已提交
2623
    {"_is_string_tensor_hold_allocation",
2624 2625
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2626
     METH_VARARGS | METH_KEYWORDS,
2627
     nullptr},
J
Jack Zhou 已提交
2628
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
2629
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
2630

2631 2632
}  // namespace pybind
}  // namespace paddle