eager_method.cc 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
23
#include "paddle/fluid/eager/autograd_meta.h"
24 25
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
26
#include "paddle/fluid/eager/utils.h"
27
#include "paddle/fluid/framework/convert_utils.h"
28 29 30 31 32 33
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
34
#include "paddle/fluid/pybind/slice_utils.h"
35 36 37 38
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
J
Jiabin Yang 已提交
39

40 41 42
namespace paddle {
namespace pybind {

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
namespace py = ::pybind11;

class PyTensorHook : public egr::TensorHook {
 public:
  explicit PyTensorHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  paddle::experimental::Tensor operator()(
      const paddle::experimental::Tensor& var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorHook for var " << var.name();

    PyObject* res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, ToPyObject(var), nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }
    return reinterpret_cast<TensorObject*>(res)->tensor;
  }

 private:
  PyObject* py_func_;
};

class PyTensorVoidHook : public egr::TensorVoidHook {
 public:
  explicit PyTensorVoidHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorVoidHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  void operator()() override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorVoidHook";

    try {
      PyObject_CallFunctionObjArgs(py_func_, nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }
  }

 private:
  PyObject* py_func_;
};

119 120 121
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
                                     bool zero_copy);
122

123
extern PyTypeObject* p_tensor_type;
124

J
Jiabin Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
        tensor.initialized(), true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

148 149 150
static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
151
  PADDLE_ENFORCE_EQ(
152
      self->tensor.initialized(), true,
153 154 155
      platform::errors::InvalidArgument(
          "Tensor data of %s is Empty that indicates we have null tensor for "
          "now, please check if it has no data and initialize it first.",
156 157 158
          self->tensor.name()));
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
159
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

176
  if (self->tensor.is_cpu()) {
177
    auto dense_tensor =
178
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
179 180 181 182 183 184
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
185
  } else if (self->tensor.is_cuda()) {
186
    auto dense_tensor =
187
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
188 189 190

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
191 192
        paddle::framework::DataTypeSize(dense_tensor->dtype()) *
            dense_tensor->numel(),
193 194 195 196 197 198 199 200 201 202 203 204 205
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

206 207 208 209
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
210
  return ToPyObject(self->tensor.initialized());
211 212 213
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

214 215 216
static PyObject* tensor_method__copy_to(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
217 218 219
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
220
      self->tensor.copy_to(phi::TransToPhiBackend(place), blocking);
221 222 223
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
224
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
225 226 227 228
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

229 230 231 232
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
233 234 235
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
236 237
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
238
  self->tensor = src_tensor;
239 240

  // Recover source name
241
  self->tensor.set_name(orig_name);
242 243

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
244
          << " to " << self->tensor.name();
245 246 247 248 249
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

250 251 252
static PyObject* tensor_method_copy_(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
253 254
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
255
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
256
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
257 258 259
          << self->tensor.name();
  if (!self->tensor.defined()) {
    egr::EagerUtils::autograd_meta(&(self->tensor))
260 261
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
262
    egr::EagerUtils::autograd_meta(&(self->tensor))
263 264 265 266
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
  }

267
  self->tensor.copy_(src_tensor, blocking);
268

269
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
270
          << self->tensor.name();
271 272 273 274 275
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

276 277
static PyObject* tensor_retain_grads(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
278
  EAGER_TRY
279
  if (egr::Controller::Instance().HasGrad()) {
280
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
281
    if (!meta->GetMutableGradNode()) {
282
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
283
              << "become accumulation node";
284
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
285
    }
286
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
287
  }
288 289 290 291 292
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

293 294
static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
                                       PyObject* kwargs) {
295
  EAGER_TRY
296
  VLOG(4) << "ClearGradient " << self->tensor.name();
297

298 299 300 301 302 303
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

304 305
  paddle::experimental::Tensor* grad;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
306 307 308 309 310 311
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
312
  } else {
313
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
314
    grad = meta->MutableGrad();
315 316
  }

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  if (grad->is_selected_rows()) {
    auto selected_rows =
        std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
    if (selected_rows->mutable_value()->IsInitialized()) {
      selected_rows->mutable_rows()->clear();
      selected_rows->mutable_value()->clear();
    }
  } else if (grad->is_dense_tensor()) {
    if (grad->initialized()) {
      if (set_to_zero) {
        grad->set_impl(paddle::experimental::zeros_like(*grad).impl());
      } else {
        VLOG(4) << "Gradient of " << self->tensor.name()
                << " is initialized, will be released.";
        auto dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
        dense_tensor->MoveMemoryHolder();
      }
    }
336
  }
337

338 339 340 341 342
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

343 344
static PyObject* tensor__zero_grads(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
345
  EAGER_TRY
346
  VLOG(4) << "ZeroGrads " << self->tensor.name();
347

348
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
349
    // Add RetainGrad as PostHook to AccumulationNode
350 351 352 353 354 355 356 357 358
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
      grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
359
    }
360
  } else {
361
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
362
    if (meta->MutableGrad()->initialized()) {
363 364
      meta->MutableGrad()->set_impl(
          paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
365
    }
366 367 368 369 370 371 372
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

373 374 375
static PyObject* tensor__share_buffer_to(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
376 377 378
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
379 380 381
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
382
                        self->tensor.name()));
383
  auto* src_tensor =
384
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
385 386 387 388
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  dst_tensor->ShareDataWith(*src_tensor);
  dst_tensor->ShareDataTypeWith(*src_tensor);
389 390 391 392 393
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

394 395 396 397
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
398 399 400
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
401 402 403
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
404
                        self->tensor.name()));
405
  bool res = false;
406
  if (!self->tensor.defined() || !dst_ptr->defined()) {
407 408 409
    return ToPyObject(res);
  }
  auto* self_ptr =
410
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
411 412 413 414 415 416 417
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

418 419 420 421
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
422 423 424
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
425 426 427
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
428 429
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
430 431 432 433 434
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

435 436 437 438
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
439 440
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
441 442 443 444 445 446
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
447
  if (!self->tensor.defined() || !src_tensor.defined()) {
448 449
    return ToPyObject(res);
  }
450
  res = (self->tensor.impl().get() == src_tensor.impl().get());
451 452 453 454
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

455 456 457
static PyObject* tensor_method_detach(TensorObject* self, PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
458
  PADDLE_ENFORCE_EQ(
459
      self->tensor.initialized(), true,
460
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
461
                                        self->tensor.name()));
462

463
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
464
  if (obj) {
465 466 467 468 469 470
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
471 472 473 474 475 476 477 478 479 480
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

481 482 483 484
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
485 486 487
  if (self->tensor.is_dense_tensor()) {
    auto* tensor =
        static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
488 489 490 491 492 493 494 495 496
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
497 498 499
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
500
  EAGER_TRY
J
Jiabin Yang 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
  PADDLE_ENFORCE_EQ(
      self->tensor.is_initialized(), true,
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  ParseIndexingSlice(tensor, _index, &slice_axes, &slice_starts, &slice_ends,
                     &slice_strides, &decrease_axis, &none_axes, &infer_flags,
                     &list_select_idxs, &list_select_flag);

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
    if (op_type == "slice") {
      out = slice_dygraph_function(self->tensor, paddle::experimental::Tensor(),
                                   paddle::experimental::Tensor(),
                                   std::move(attrs));
    } else if (op_type == "strided_slice") {
      out = strided_slice_dygraph_function(self->tensor, attrs);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
          }
        }
        axis -= len;
      }

      paddle::experimental::Tensor new_out;
      framework::AttributeMap attrs = {{"axes", none_axes}};
      new_out = std::get<0>(unsqueeze2_dygraph_function(out, std::move(attrs)));
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
    paddle::framework::TensorFromVector(list_select_idxs, *dev_ctx,
                                        idx_tensor.get());
    framework::AttributeMap attrs = {{"dim", 0}};
    out = index_select_dygraph_function(self->tensor, select_index,
                                        std::move(attrs));
  }

  return ToPyObject(out);
602 603 604
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation."));
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_remove_grad_hook(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_register_reduce_hook(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor), true,
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
      true, platform::errors::InvalidArgument(
                "Cannot register backward hook on a Tensor that stop "
                "gradient."));
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
      std::make_shared<PyTensorVoidHook>(hook_func));

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static PyObject* set_grad_type(TensorObject* self, PyObject* args,
                               PyObject* kwargs) {
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
      egr::EagerUtils::unsafe_autograd_meta(self->tensor)->Grad();
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
    grad_tensor.set_impl(std::make_shared<phi::DenseTensor>());
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
    grad_tensor.set_impl(std::make_shared<phi::SelectedRows>());
  }
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

706
PyMethodDef variable_methods[] = {
707
    {"numpy", (PyCFunction)(void (*)(void))tensor_method_numpy,
708 709
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
710
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
711
     METH_VARARGS | METH_KEYWORDS, NULL},
712
    {"_copy_to", (PyCFunction)(void (*)(void))tensor_method__copy_to,
713
     METH_VARARGS | METH_KEYWORDS, NULL},
714
    {"copy_", (PyCFunction)(void (*)(void))tensor_method_copy_,
715
     METH_VARARGS | METH_KEYWORDS, NULL},
716
    {"reconstruct_from_",
717
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
718
     METH_VARARGS | METH_KEYWORDS, NULL},
719
    {"retain_grads", (PyCFunction)(void (*)(void))tensor_retain_grads,
720
     METH_VARARGS | METH_KEYWORDS, NULL},
721
    {"clear_gradient", (PyCFunction)(void (*)(void))tensor_clear_gradient,
722
     METH_VARARGS | METH_KEYWORDS, NULL},
723
    {"_zero_grads", (PyCFunction)(void (*)(void))tensor__zero_grads,
724
     METH_VARARGS | METH_KEYWORDS, NULL},
725
    {"_share_buffer_to", (PyCFunction)(void (*)(void))tensor__share_buffer_to,
726
     METH_VARARGS | METH_KEYWORDS, NULL},
727
    {"_is_shared_buffer_with",
728
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
729
     METH_VARARGS | METH_KEYWORDS, NULL},
730
    {"_share_underline_tensor_to",
731
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
732 733
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_shared_underline_tensor_with",
734
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
735
     METH_VARARGS | METH_KEYWORDS, NULL},
736
    {"detach", (PyCFunction)(void (*)(void))tensor_method_detach,
737
     METH_VARARGS | METH_KEYWORDS, NULL},
738
    {"get_tensor",
739
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
740
     METH_VARARGS | METH_KEYWORDS, NULL},
J
Jiabin Yang 已提交
741 742
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
743
     METH_VARARGS | METH_KEYWORDS, NULL},
744 745 746 747 748 749 750 751
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_remove_grad_hook", (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
752 753
    {"_set_grad_type", (PyCFunction)(void (*)(void))set_grad_type,
     METH_VARARGS | METH_KEYWORDS, NULL},
754 755 756 757
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle