eager_method.cc 82.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20
#include <Python.h>

#include <string>
21
#include <unordered_map>
22 23
#include <vector>

24
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
25
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
27
#include "paddle/fluid/eager/autograd_meta.h"
28 29
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
30
#include "paddle/fluid/eager/utils.h"
31
#include "paddle/fluid/framework/convert_utils.h"
32 33 34 35 36 37
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
38
#include "paddle/fluid/pybind/slice_utils.h"
39
#include "paddle/fluid/pybind/uva_utils.h"
40 41 42 43
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
44 45
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
46
#include "pybind11/detail/internals.h"
47 48
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
49
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
50
#include "paddle/fluid/eager/amp_utils.h"
51
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
52
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
53
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
54
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
56
#include "paddle/phi/core/ddim.h"
57
#include "paddle/phi/core/tensor_utils.h"
58
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
59

60 61 62
namespace paddle {
namespace pybind {

63 64
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
65
                                     const paddle::platform::Place& place,
66
                                     bool zero_copy);
67

68
extern PyTypeObject* p_tensor_type;
69

J
Jiabin Yang 已提交
70 71 72 73 74
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
75 76
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

94 95
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
96 97
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
98 99 100 101 102 103 104 105 106
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
107 108 109 110 111
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
112 113 114 115 116
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
117 118
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
119
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
120 121 122 123 124 125 126 127
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
128

129
  PyObject* array = api.PyArray_NewFromDescr_(
130 131 132 133 134 135
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(),
      py_dims,
      py_strides,
      nullptr,
136 137 138 139
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
140
  if (!self->tensor.impl()->initialized()) {
141 142 143 144
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
145 146 147 148 149 150
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
151 152 153 154 155
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
156 157 158
    return array;
  }

159
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
160
    eager_gil_scoped_release guard;
161
    platform::CPUPlace place;
162 163 164 165
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
166 167
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
168 169 170 171 172

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
173 174 175
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
176 177 178 179 180 181 182 183
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
184 185 186
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
187 188
    }

189
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
190
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
191
    eager_gil_scoped_release guard;
192 193 194 195 196
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
197 198 199 200
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
201 202
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
203
      paddle::platform::GpuMemcpySync(
204 205
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
206
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
207
          kind);
208 209 210 211 212
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
213 214
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
215
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
216
          kind);
217
    }
218
#endif
C
Chen Weihang 已提交
219 220 221 222 223 224 225
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
226 227
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
C
Chen Weihang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
246 247
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
248
    eager_gil_scoped_release guard;
249 250 251 252
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
253 254
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
255 256 257 258
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
259
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
260 261 262 263 264 265 266 267
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
268
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
269 270
    }
#endif
271 272 273
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
274
    RETURN_PY_NONE
275 276 277 278 279 280
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
296 297 298 299 300
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
314 315
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
339 340 341
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
342 343 344 345
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
346
    RETURN_PY_NONE
J
Jack Zhou 已提交
347 348 349 350
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

351 352 353 354
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
355
  return ToPyObject(self->tensor.initialized());
356 357 358
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static void IncreaseTensorReferenceCountUntilCopyComplete(
    const paddle::experimental::Tensor& tensor, const platform::Place& place) {
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

391 392
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
393 394
                                        PyObject* kwargs) {
  EAGER_TRY
395 396
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
W
wanghuancoder 已提交
397 398 399 400 401 402 403 404 405 406 407
  paddle::experimental::Tensor cp_tensor;
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
408
  }
409 410 411 412
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

413 414
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
415 416
                                   PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
417 418 419 420 421 422 423 424 425
  paddle::experimental::Tensor cp_tensor;
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
426 427 428 429
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

430 431 432 433
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
434 435 436
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
437 438
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
439
  self->tensor = src_tensor;
440 441

  // Recover source name
442
  self->tensor.set_name(orig_name);
443 444

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
445
          << " to " << self->tensor.name();
446 447
  RETURN_PY_NONE

448 449 450
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

451 452
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
453 454
                                     PyObject* kwargs) {
  EAGER_TRY
455 456
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
457
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
458
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
459
          << self->tensor.name();
460
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
461
    eager_gil_scoped_release guard;
462
    egr::EagerUtils::autograd_meta(&(self->tensor))
463 464
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
465
    egr::EagerUtils::autograd_meta(&(self->tensor))
466 467
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
468
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
469
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
470 471 472
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
473
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
474
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
475
    }
476 477
  }

478
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
479
          << self->tensor.name();
480 481
  RETURN_PY_NONE

482 483 484
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

485 486 487 488
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
489 490 491 492 493 494 495 496 497 498
  paddle::experimental::Tensor out;
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
499

W
wanghuancoder 已提交
500 501
    out = assign_ad_func(self->tensor);
  }
502 503 504 505
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

506 507
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
508
                                     PyObject* kwargs) {
509
  EAGER_TRY
510
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
511
    eager_gil_scoped_release guard;
512
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
513
    if (!meta->GetMutableGradNode()) {
514
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
515
              << "become accumulation node";
516
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
517
    }
518
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
519
  }
520 521
  RETURN_PY_NONE

522 523 524
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

525 526
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
527
                                       PyObject* kwargs) {
528
  EAGER_TRY
529
  VLOG(4) << "ClearGradient " << self->tensor.name();
530

531 532 533
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
534
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
535 536
  }

537
  paddle::experimental::Tensor* grad;
J
Jiabin Yang 已提交
538 539
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
540 541 542 543 544 545
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
546
  } else {
547
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
548
    grad = meta->MutableGrad();
549 550
  }

551
  if (grad->impl()) {
W
wanghuancoder 已提交
552
    eager_gil_scoped_release guard;
553 554 555 556 557 558 559 560 561 562
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
563 564 565 566
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
567 568 569 570 571
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
572 573 574 575 576 577 578
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
579 580
      }
    }
581
  }
582

583 584
  RETURN_PY_NONE

585 586 587
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

588 589
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
590
                                    PyObject* kwargs) {
591
  EAGER_TRY
592
  VLOG(4) << "ZeroGrads " << self->tensor.name();
593

594
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
595
    eager_gil_scoped_release guard;
596
    // Add RetainGrad as PostHook to AccumulationNode
597 598 599 600 601 602 603 604
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
605 606 607 608 609 610 611
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
612
    }
613
  } else {
W
wanghuancoder 已提交
614
    eager_gil_scoped_release guard;
615
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
616
    if (meta->MutableGrad()->initialized()) {
617 618 619 620 621 622 623 624 625
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
626
    }
627 628
  }

629 630
  RETURN_PY_NONE

631 632 633
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

634 635
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
636 637
                                         PyObject* kwargs) {
  EAGER_TRY
638 639
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
640 641
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
642 643 644
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
645
                        self->tensor.name()));
646
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
647 648 649
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
650
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
651
  dst_tensor->ShareBufferWith(*src_tensor);
652
  dst_tensor->ShareDataTypeWith(*src_tensor);
653 654
  RETURN_PY_NONE

655 656 657
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

658 659 660 661
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
662 663
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
664 665
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
666 667 668
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
669
                        self->tensor.name()));
670
  bool res = false;
671
  if (!self->tensor.defined() || !dst_ptr->defined()) {
672 673
    return ToPyObject(res);
  }
674 675
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
676 677 678 679 680
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

681 682 683 684
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
685 686
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
687 688
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
689 690 691
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
692 693
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
694 695
  RETURN_PY_NONE

696 697 698
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

699 700 701 702
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
703 704
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
705 706
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
707 708 709 710 711
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
712
  if (!self->tensor.defined() || !src_tensor.defined()) {
713 714
    return ToPyObject(res);
  }
715
  res = (self->tensor.impl().get() == src_tensor.impl().get());
716 717 718 719
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

720 721
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
722 723
                                      PyObject* kwargs) {
  EAGER_TRY
724
  PADDLE_ENFORCE_EQ(
725 726
      self->tensor.initialized(),
      true,
727
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
728
                                        self->tensor.name()));
729

730
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
731
  if (obj) {
732 733 734 735 736 737
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
738 739 740 741 742 743 744 745 746 747
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

748 749 750 751
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
752
  if (!self->tensor.defined()) {
753 754 755
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
756
  }
757
  if (self->tensor.is_dense_tensor()) {
758
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
759 760 761
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
762
    RETURN_PY_NONE
763 764 765 766
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

767 768 769 770 771
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
772
    RETURN_PY_NONE
773 774 775 776 777 778
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
779
    RETURN_PY_NONE
780 781 782 783
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

798 799
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
800
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
801 802 803 804 805 806 807 808 809 810

  auto t = paddle::experimental::Tensor(
      egr::Controller::Instance().GenerateUniqueName());
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
811 812 813
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
814
  EAGER_TRY
J
Jiabin Yang 已提交
815 816 817 818 819 820
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
821 822
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
823
  PADDLE_ENFORCE_EQ(
824
      self->tensor.defined(),
825
      true,
J
Jiabin Yang 已提交
826 827 828 829 830
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
831 832 833 834 835 836 837 838 839 840 841
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
863 864 865 866 867 868
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
869
    if (op_type == "slice") {
W
wanghuancoder 已提交
870
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
871 872 873 874 875 876
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
877
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
878
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
879
      out = strided_slice_ad_func(
880
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
W
wanghuancoder 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915
      paddle::experimental::Tensor new_out;
      {
        eager_gil_scoped_release guard;
        // Deal with cases that decrease_axes is not empty
        // For example:
        // # x.shape: (2,3,4)
        // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for (auto& axis : none_axes) {
          int len = 0;
          for (int da : decrease_axis) {
            if (da < axis) {
              len++;
            }
J
Jiabin Yang 已提交
916
          }
W
wanghuancoder 已提交
917
          axis -= len;
J
Jiabin Yang 已提交
918
        }
W
wanghuancoder 已提交
919
        new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
920 921 922 923 924 925 926
      }
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
927
    eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
928 929 930
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
931
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
932 933
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
934 935
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
936
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
937
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
938 939 940
  }

  return ToPyObject(out);
941 942 943
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

944 945
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
946 947 948
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
949 950 951
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
952 953
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
954 955
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
973 974
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
975 976 977 978 979 980
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
981 982
        offset,
        numel,
W
wanghuancoder 已提交
983 984 985
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
986 987
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
988 989 990 991 992 993
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
994 995
          index,
          dims[i],
W
wanghuancoder 已提交
996
          platform::errors::InvalidArgument(
997 998 999
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1031 1032 1033 1034 1035 1036
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
        1,                                                                   \
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1037 1038 1039 1040 1041
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1042 1043
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1121 1122 1123 1124 1125
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1169 1170 1171 1172 1173
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
1200 1201 1202 1203
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT16) {
          attrs["fp16_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
W
wanghuancoder 已提交
1204 1205 1206 1207
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1208
              "float32, int32, int64 or float16, "
W
wanghuancoder 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }

    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1225
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
        paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
      }
1237 1238
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1239 1240 1241 1242 1243 1244 1245 1246 1247
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1262
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1263
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1264 1265 1266 1267
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1268
#else
1269 1270 1271 1272
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1273 1274
#endif
    } else {
1275 1276
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1277 1278
    }
  }
1279 1280
  RETURN_PY_NONE

W
wanghuancoder 已提交
1281 1282 1283
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1284 1285
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1286 1287 1288 1289 1290
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1303 1304 1305 1306 1307 1308 1309 1310 1311
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1312 1313
        rank_info.first,
        rank_info.second,
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1326 1327
        rank_info.first,
        rank_info.second,
1328 1329 1330 1331 1332 1333
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1334 1335
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1348 1349
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1350 1351 1352 1353 1354 1355
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1356 1357
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1358 1359 1360 1361
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1362 1363 1364 1365
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1376
      std::make_shared<PyVoidHook>(hook_func));
1377

1378 1379
  RETURN_PY_NONE

1380 1381 1382
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1383 1384
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1385
                                       PyObject* kwargs) {
1386 1387 1388
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1389
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1390
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1391
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1392
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1393
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1394
  }
1395 1396
  RETURN_PY_NONE

1397 1398 1399
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1400 1401
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1402 1403 1404
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1405 1406
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1407 1408 1409
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1410 1411
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1412 1413 1414
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1415
  if (self->tensor.initialized()) {
1416 1417
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1418 1419
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1420 1421
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1422 1423 1424 1425 1426
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1427 1428
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1429 1430 1431 1432
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1433 1434
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1435 1436 1437 1438
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1439 1440
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1441 1442
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static PyObject* tensor__use_cudnn(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "function _use_cudnn is only effective for DenseTensor"));

  bool use_cudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);

  // Set the same use_cudnn attribute, return directly
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
  if (use_cudnn == dense_tensor_meta->use_cudnn) {
    return ToPyObject(self->tensor);
  }

  // Share all other members of Tensor except use_cudnn
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
  target_dense_meta.use_cudnn = use_cudnn;
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
  paddle::experimental::Tensor target_tensor(
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
          << " set use_cudnn = " << use_cudnn;

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1481 1482
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
                                         PyObject* kwargs) {
  EAGER_TRY
  using Vocab = std::unordered_map<std::wstring, int>;
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  using Strings = std::vector<std::string>;
1499
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1512 1513
      egr::IsVariableCompatTensor(self->tensor),
      true,
1514 1515 1516 1517 1518 1519 1520 1521 1522
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
  using Vocab = std::unordered_map<std::wstring, int>;
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1614 1615
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1616 1617 1618 1619 1620 1621 1622 1623 1624
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1625 1626
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1627 1628
                                         PyObject* kwargs) {
  EAGER_TRY
1629 1630 1631
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1632 1633 1634 1635 1636
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1637 1638
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1639 1640
                                             PyObject* kwargs) {
  EAGER_TRY
1641 1642 1643
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1644 1645 1646 1647
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1648 1649
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1650 1651
                                             PyObject* kwargs) {
  EAGER_TRY
1652 1653 1654
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1655 1656 1657 1658
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1659 1660
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1674 1675 1676 1677 1678 1679 1680 1681 1682
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1683 1684
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1685 1686 1687 1688 1689 1690 1691 1692
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1693 1694
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1695 1696
                                            PyObject* kwargs) {
  EAGER_TRY
1697
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
1698 1699 1700 1701 1702

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1703 1704 1705 1706 1707
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1708
  RETURN_PY_NONE
1709 1710 1711
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1712 1713 1714 1715
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1716 1717 1718
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1719 1720 1721 1722
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1723 1724
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1736 1737
static PyObject* tensor_methon_element_size(TensorObject* self,
                                            PyObject* args,
1738 1739 1740 1741 1742 1743
                                            PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(paddle::experimental::SizeOf(self->tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1760 1761
  RETURN_PY_NONE

1762 1763 1764
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1765 1766
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1767 1768 1769
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1770 1771
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1788 1789 1790 1791 1792
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1793 1794 1795 1796 1797
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1798 1799
  RETURN_PY_NONE

W
wanghuancoder 已提交
1800 1801 1802 1803
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1804 1805
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1806 1807 1808 1809
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1810 1811
      t->IsInitialized(),
      true,
1812 1813 1814 1815 1816 1817 1818
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1819 1820
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1821 1822 1823 1824
                                   PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1825 1826
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1827 1828 1829 1830 1831 1832 1833
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1834 1835
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1836 1837 1838 1839
                                    PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1840 1841
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1842 1843 1844 1845 1846
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1847
    RETURN_PY_NONE
1848 1849
  }
  if (grad->is_dense_tensor()) {
1850
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
1851 1852 1853 1854
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1855
    RETURN_PY_NONE
1856 1857 1858 1859
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1860 1861
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1862 1863 1864 1865
                                          PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
1866 1867
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
    ToPyObject((int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
                   self->tensor.impl())
                   ->data());
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1895
#if defined(PADDLE_WITH_CUDA)
1896 1897
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1898 1899 1900
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1901 1902
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1903 1904 1905
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1906 1907
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1908 1909 1910 1911
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
1912
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1913 1914
  tensor_uva(self_tensor, device_id);

1915 1916
  RETURN_PY_NONE

1917 1918 1919
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1932

1933
PyMethodDef variable_methods[] = {
1934 1935 1936 1937
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1938
    {"_is_initialized",
1939
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1940 1941
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
1942
    {"_is_dense_tensor_hold_allocation",
1943 1944
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1955 1956 1957 1958
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1959
    {"reconstruct_from_",
1960
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1983
    {"_is_shared_buffer_with",
1984
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
1985 1986
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1987
    {"_share_underline_tensor_to",
1988
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
1989 1990
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1991
    {"_is_shared_underline_tensor_with",
1992
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
1993 1994 1995 1996 1997 1998
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
1999
    {"get_tensor",
2000
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
2001 2002
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2003 2004
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
2005 2006
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2007 2008 2009 2010
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2011 2012
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
2013 2014
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2015 2016
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
2017 2018
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2019 2020
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
2021 2022
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2023 2024
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
2025 2026 2027 2028 2029 2030
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2031 2032
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2043 2044
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
2045 2046
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2047 2048 2049 2050
    {"_tensor_use_cudnn",
     (PyCFunction)(void (*)(void))tensor__use_cudnn,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2051 2052 2053
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
2054 2055 2056 2057 2058 2059
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2060 2061
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2062 2063
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2064
    /***the method of sparse tensor****/
2065 2066 2067 2068
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2097 2098 2099 2100
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2101 2102 2103 2104 2105 2106 2107 2108
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2109
    /***the method of sparse tensor****/
2110 2111 2112 2113
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2114 2115
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2116 2117
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2118 2119
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_methon_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2130 2131
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2154 2155 2156 2157
    {"data_ptr",
     (PyCFunction)(void (*)(void))tensor_data_ptr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2158
#if defined(PADDLE_WITH_CUDA)
2159 2160 2161 2162
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2163
#endif
2164 2165
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2166 2167 2168 2169
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2170 2171
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2172 2173
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2174 2175
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2176
    {"_is_string_tensor_hold_allocation",
2177 2178
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2179 2180
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2181 2182 2183
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2184 2185
}  // namespace pybind
}  // namespace paddle