eager_method.cc 98.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
66
#include "paddle/utils/pybind.h"
L
LiYuRio 已提交
67 68 69
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
70

71
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
72
DECLARE_bool(use_stride_kernel);
73

74 75 76
namespace paddle {
namespace pybind {

77 78
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
79
                                     const paddle::platform::Place& place,
80
                                     bool zero_copy);
81

82
extern PyTypeObject* p_tensor_type;
83

J
Jiabin Yang 已提交
84
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
85
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
86
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
87
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
88
    PADDLE_ENFORCE_EQ(
89 90
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
91 92 93 94 95 96 97 98
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
99
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
100 101 102 103
        "method, when you reach this means we got another type index."));
  }
}

W
wanghuancoder 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
PyDoc_STRVAR(tensor_method_numpy__doc__, R"DOC(numpy($self, /)
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

125 126
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
127 128
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
129 130 131 132 133 134 135 136 137
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
138 139 140 141 142
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
143 144 145 146 147
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
148 149
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
150
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
151 152
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
153
  size_t py_rank = tensor_dims.size();
154
  size_t numel = 1;
155
  if (py_rank == 0) {
156
    Py_ssize_t args_num = PyTuple_Size(args);
157 158
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
159 160 161 162 163 164 165
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
166
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
167 168 169 170 171
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
172 173
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
174
             "modify "
175
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
176
             "possible, "
177
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
178 179 180 181
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
182 183 184 185 186 187 188 189
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
190 191 192 193 194 195
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
196
  }
W
wanghuancoder 已提交
197 198

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
199 200 201 202 203 204 205 206 207 208 209
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

210
    if (tensor_dims.empty()) {
211 212 213
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
214 215 216 217 218 219
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
220 221 222 223 224
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
225 226 227
    return array;
  }

W
wanghuancoder 已提交
228 229 230
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

231
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
232
    eager_gil_scoped_release guard;
233
    platform::CPUPlace place;
234 235 236 237
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
238 239
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
240 241 242 243 244
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
245
      // deep copy
W
wanghuancoder 已提交
246 247 248 249 250
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
251 252 253 254
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
255 256 257 258 259
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
260
      // deep copy
W
wanghuancoder 已提交
261 262 263 264 265
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
266 267
    }

268
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
269
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
270
    eager_gil_scoped_release guard;
271 272 273 274 275
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
276 277 278 279
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
280 281
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
282 283 284 285 286 287 288 289 290
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
291 292 293 294
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
295 296 297 298 299 300 301 302 303
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
304
    }
305
#endif
C
Chen Weihang 已提交
306 307 308 309 310 311 312
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
313 314
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
315 316 317 318 319 320 321 322 323 324
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
325 326 327 328
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
329 330 331 332 333 334 335 336 337 338
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
339 340
    }
#endif
341 342
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
343
    eager_gil_scoped_release guard;
344 345 346 347
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
348 349
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
350 351 352 353 354
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
355
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
356 357 358
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
359 360 361 362
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
363
      // TODO(qili93): temporary for ascend npu performance to be removed along
364
      // with npu_identity op
365
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
366 367 368 369 370
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
371 372 373 374 375
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
376
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
377 378 379
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
380 381
    }
#endif
382 383 384
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
385
    RETURN_PY_NONE
386 387
  }

W
wanghuancoder 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

408 409 410 411
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
427 428 429 430 431
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
445 446
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
447 448 449 450 451 452 453 454 455 456 457 458
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
459 460
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
461 462 463 464 465 466 467 468 469 470
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
471 472 473
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
474 475 476 477
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
478
    RETURN_PY_NONE
J
Jack Zhou 已提交
479 480 481 482
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

483 484 485 486
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
487
  return ToPyObject(self->tensor.initialized());
488 489 490
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

505
static void IncreaseTensorReferenceCountUntilCopyComplete(
506
    const paddle::Tensor& tensor, const platform::Place& place) {
507 508 509 510 511 512 513 514
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
515
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
516 517 518 519 520 521 522
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

523 524
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
525 526
                                        PyObject* kwargs) {
  EAGER_TRY
527 528
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
529
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
530 531 532 533 534 535 536 537 538 539
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
540
  }
541 542 543 544
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

545 546 547 548
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
549
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
550
  std::string orig_name = self->tensor.name();
551 552
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
553
  self->tensor = src_tensor;
554 555

  // Recover source name
556
  self->tensor.set_name(orig_name);
557 558

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
559
          << " to " << self->tensor.name();
560 561
  RETURN_PY_NONE

562 563 564
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

565 566
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
567 568
                                     PyObject* kwargs) {
  EAGER_TRY
569
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
570
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
571
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
572
          << self->tensor.name();
573
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
574
    eager_gil_scoped_release guard;
575
    egr::EagerUtils::autograd_meta(&(self->tensor))
576 577
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
578
    egr::EagerUtils::autograd_meta(&(self->tensor))
579 580
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
581
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
582
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
583 584 585
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
586
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
587
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
588
    }
589 590
  }

591
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
592
          << self->tensor.name();
593 594
  RETURN_PY_NONE

595 596 597
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
PyDoc_STRVAR(tensor_method_clone__doc__, R"DOC(clone($self, /)
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

633 634 635 636
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
637
  paddle::Tensor out;
W
wanghuancoder 已提交
638 639 640 641 642 643 644 645 646
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
647

W
wanghuancoder 已提交
648 649
    out = assign_ad_func(self->tensor);
  }
650 651 652 653
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

654 655
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
656
                                     PyObject* kwargs) {
657
  EAGER_TRY
658
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
659
    eager_gil_scoped_release guard;
660
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
661
    if (!meta->GetMutableGradNode()) {
662
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
663
              << "become accumulation node";
664
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
665
    }
666
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
667
  }
668 669
  RETURN_PY_NONE

670 671 672
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
PyDoc_STRVAR(tensor_clear_gradient__doc__,
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

703 704
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
705
                                       PyObject* kwargs) {
706
  EAGER_TRY
707
  VLOG(4) << "ClearGradient " << self->tensor.name();
708

709 710 711
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
712
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
713 714
  }

715
  paddle::Tensor* grad;
716
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
717
  if (is_leaf) {
718 719 720
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
721
                       "Detected nullptr grad"
722 723
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
724
  } else {
725
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
726
    grad = meta->MutableGrad();
727 728
  }

729
  if (grad->impl()) {
W
wanghuancoder 已提交
730
    eager_gil_scoped_release guard;
731 732 733 734 735 736 737 738 739 740
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
741 742 743 744
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
745 746 747 748 749
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
750 751 752 753 754 755 756
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
757 758
      }
    }
759
  }
760

761 762
  RETURN_PY_NONE

763 764 765
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

766 767
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
768
                                    PyObject* kwargs) {
769
  EAGER_TRY
770
  VLOG(4) << "ZeroGrads " << self->tensor.name();
771

772
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
773
    eager_gil_scoped_release guard;
774
    // Add RetainGrad as PostHook to AccumulationNode
775
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
776 777
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
778
                       "Detected nullptr grad"
779 780 781
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
782 783 784 785 786 787 788
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
789
    }
790
  } else {
W
wanghuancoder 已提交
791
    eager_gil_scoped_release guard;
792
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
793
    if (meta->MutableGrad()->initialized()) {
794 795 796 797 798 799 800 801 802
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
803
    }
804 805
  }

806 807
  RETURN_PY_NONE

808 809 810
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

811 812
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
813 814
                                         PyObject* kwargs) {
  EAGER_TRY
815
  paddle::Tensor* dst_ptr =
816
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
817 818
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
819 820 821
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
822
                        self->tensor.name()));
823
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
824 825 826
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
827
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
828
  dst_tensor->ShareBufferWith(*src_tensor);
829
  dst_tensor->ShareDataTypeWith(*src_tensor);
830 831
  RETURN_PY_NONE

832 833 834
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

835 836 837 838
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
839
  paddle::Tensor* dst_ptr =
840
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
841 842
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
843 844 845
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
846
                        self->tensor.name()));
847
  bool res = false;
848
  if (!self->tensor.defined() || !dst_ptr->defined()) {
849 850
    return ToPyObject(res);
  }
851 852
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
853 854 855 856 857
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

858 859 860 861
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
862
  paddle::Tensor* src_ptr =
863
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
864 865
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
866 867 868
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
869 870
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
871 872
  RETURN_PY_NONE

873 874 875
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

876 877 878 879
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
880
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
881 882
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
883 884 885 886 887
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
888
  if (!self->tensor.defined() || !src_tensor.defined()) {
889 890
    return ToPyObject(res);
  }
891
  res = (self->tensor.impl().get() == src_tensor.impl().get());
892 893 894 895
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
PyDoc_STRVAR(tensor_method_detach__doc__, R"DOC(detach($self, /)
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

936 937
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
938 939
                                      PyObject* kwargs) {
  EAGER_TRY
940
  PADDLE_ENFORCE_EQ(
941
      self->tensor.defined(),
942
      true,
943
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
944
                                        self->tensor.name()));
945

946
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
947
  if (obj) {
948
    auto v = reinterpret_cast<TensorObject*>(obj);
949
    new (&(v->tensor)) paddle::Tensor();
950 951 952 953
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
954 955 956 957 958 959 960 961 962 963
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

983 984 985 986
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
987
  if (!self->tensor.defined()) {
988 989 990
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
991
  }
992
  if (self->tensor.is_dense_tensor()) {
993
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
994 995
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
996 997
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
998 999
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1000
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1001 1002 1003 1004
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1005
  } else {
1006
    RETURN_PY_NONE
1007 1008 1009 1010
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1011 1012 1013 1014 1015
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1016
    RETURN_PY_NONE
1017 1018 1019 1020 1021 1022
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1023
    RETURN_PY_NONE
1024 1025 1026 1027
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1042 1043
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1044
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1045

1046
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1047 1048 1049 1050 1051 1052 1053
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1054 1055 1056
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1057
  EAGER_TRY
J
Jiabin Yang 已提交
1058 1059 1060
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1061 1062
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1063 1064
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1065 1066
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1067
  PADDLE_ENFORCE_EQ(
1068
      self->tensor.defined(),
1069
      true,
J
Jiabin Yang 已提交
1070 1071 1072 1073 1074
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1086

1087 1088 1089 1090
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1107 1108 1109 1110 1111 1112
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1113
    if (op_type == "slice") {
W
wanghuancoder 已提交
1114
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1115 1116 1117 1118 1119 1120
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1121
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1122
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1123
      out = strided_slice_ad_func(
1124
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1125 1126 1127
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1137
  bool set_to_1d = FLAGS_set_to_1d;
1138 1139 1140 1141 1142 1143

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1144
      VLOG(1)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1157 1158 1159
        none_axes.pop_back();
      }
    }
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1174 1175
          }
        }
1176
        axis -= len;
J
Jiabin Yang 已提交
1177
      }
1178
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1179
    }
1180
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1181 1182 1183 1184
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1185
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1199 1200 1201
  }

  return ToPyObject(out);
1202 1203 1204
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1205 1206
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1207 1208
                                             PyObject* kwargs) {
  EAGER_TRY
1209 1210 1211 1212 1213 1214 1215 1216
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1217 1218 1219
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1220 1221
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1222 1223
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1224 1225 1226 1227 1228 1229 1230
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1231
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1232 1233 1234 1235 1236 1237 1238 1239

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1240 1241
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1242 1243 1244 1245 1246 1247
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1248 1249
        offset,
        numel,
W
wanghuancoder 已提交
1250 1251 1252
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1253 1254
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1255 1256 1257 1258 1259 1260
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1261 1262
          index,
          dims[i],
W
wanghuancoder 已提交
1263
          platform::errors::InvalidArgument(
1264 1265 1266
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1267
              dims[i]));
W
wanghuancoder 已提交
1268
      offset += index * stride[i];
W
wanghuancoder 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1296 1297
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1298
        0,                                                                   \
1299 1300 1301
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1302 1303 1304 1305 1306
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1307 1308
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1360 1361
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1362 1363
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1385
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1386
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1387 1388 1389 1390 1391
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1392 1393
    }

1394
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1395 1396 1397 1398

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1399
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1400 1401 1402 1403
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1404
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1405 1406 1407
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1408
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1409 1410 1411
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1412
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1413 1414 1415
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1416
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1417 1418 1419
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1420
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1421 1422 1423
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1434 1435 1436 1437
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1438
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1439 1440 1441
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1442 1443 1444 1445 1446
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1447 1448 1449 1450 1451 1452 1453

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1454 1455
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1456
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1457 1458
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1459
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1460 1461
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1462
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1463 1464
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1465
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1466 1467
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1468
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1469 1470
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1471
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1472 1473 1474 1475 1476 1477 1478 1479
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1480 1481 1482 1483
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1484 1485
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1486 1487 1488 1489 1490 1491 1492
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1493
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1494 1495 1496 1497 1498 1499 1500
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1501
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1502 1503
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1504
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1505 1506 1507 1508 1509 1510 1511
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1512 1513 1514
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1515
      }
1516 1517
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1518 1519 1520 1521 1522 1523 1524 1525 1526
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1527 1528
    }
  } else {
1529
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1541
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1542
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1543 1544 1545 1546
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1547
#else
1548 1549 1550 1551
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1552 1553
#endif
    } else {
1554 1555
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1556 1557
    }
  }
1558 1559
  RETURN_PY_NONE

W
wanghuancoder 已提交
1560 1561 1562
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1563 1564
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1565 1566 1567
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1568
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1569
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1570 1571 1572 1573 1574

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1575
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1576 1577 1578 1579 1580 1581
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1582 1583 1584 1585 1586 1587 1588 1589 1590
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1591 1592
        rank_info.first,
        rank_info.second,
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1605 1606
        rank_info.first,
        rank_info.second,
1607 1608 1609 1610 1611 1612
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1613 1614
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1663 1664
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1665 1666 1667 1668 1669 1670
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1671
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1672
                    true,
1673 1674 1675 1676
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1677 1678 1679 1680
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1681 1682
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1683
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1684 1685 1686 1687 1688 1689 1690
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1691
      std::make_shared<PyVoidHook>(hook_func));
1692

1693 1694
  RETURN_PY_NONE

1695 1696 1697
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1698 1699
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1700
                                       PyObject* kwargs) {
1701 1702 1703
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1704
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1705
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1706
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1707
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1708
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1709
  }
1710 1711
  RETURN_PY_NONE

1712 1713 1714
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1715 1716
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1717 1718 1719
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1720 1721
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1722 1723 1724
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1725 1726 1727 1728 1729 1730 1731 1732 1733
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1734 1735
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1736 1737 1738
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1739
  if (self->tensor.initialized()) {
1740 1741
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1742 1743
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1744 1745
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1746 1747 1748 1749 1750
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1751 1752
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1753 1754 1755 1756
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1757 1758
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1759 1760 1761 1762
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1763 1764
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1765 1766
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1767

1768 1769 1770
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1771 1772 1773
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1774
                     "function _use_gpudnn is only effective for DenseTensor"));
1775

1776
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1777

1778
  // Set the same use_gpudnn attribute, return directly
1779 1780 1781 1782
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1783
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1784 1785 1786
    return ToPyObject(self->tensor);
  }

1787
  // Share all other members of Tensor except use_gpudnn
1788
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1789
  target_dense_meta.use_gpudnn = use_gpudnn;
1790 1791 1792 1793
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1794
  paddle::Tensor target_tensor(
1795 1796 1797 1798
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1799
          << " set use_gpudnn = " << use_gpudnn;
1800 1801 1802 1803 1804

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1805 1806
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1807 1808
                                         PyObject* kwargs) {
  EAGER_TRY
1809
  using Vocab = paddle::framework::Vocab;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1822
  using Strings = paddle::framework::Strings;
1823
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1836 1837
      egr::IsVariableCompatTensor(self->tensor),
      true,
1838 1839
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1840
  using Vocab = paddle::framework::Vocab;
1841 1842 1843 1844 1845 1846
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1868 1869 1870 1871 1872 1873 1874 1875 1876
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1877
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1895
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1896 1897 1898 1899 1900
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1901
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1917
  paddle::Tensor tensor(
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1932
  paddle::Tensor tensor(
1933 1934 1935 1936 1937
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1938 1939
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1940 1941 1942 1943 1944 1945 1946 1947 1948
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1960 1961
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1962 1963
                                         PyObject* kwargs) {
  EAGER_TRY
1964 1965 1966
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1967 1968 1969 1970 1971
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1972 1973
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1974 1975
                                             PyObject* kwargs) {
  EAGER_TRY
1976 1977 1978
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1979 1980 1981 1982
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1983 1984
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1985 1986
                                             PyObject* kwargs) {
  EAGER_TRY
1987 1988 1989
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1990 1991 1992 1993
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1994 1995
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2009 2010 2011 2012 2013 2014 2015 2016 2017
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2018 2019
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2020 2021 2022 2023 2024 2025 2026 2027
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
PyDoc_STRVAR(tensor_method_element_size__doc__, R"DOC(element_size($self, /)
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2057 2058
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2059 2060
                                            PyObject* kwargs) {
  EAGER_TRY
2061
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2062 2063 2064 2065 2066

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2076 2077 2078 2079 2080
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2081
  RETURN_PY_NONE
2082 2083 2084
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2085 2086 2087 2088
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2089 2090 2091
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2092 2093 2094 2095
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2096 2097
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2119
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2120 2121 2122 2123
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2124 2125
  RETURN_PY_NONE

2126 2127 2128
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2129 2130
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2131 2132 2133
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2134 2135
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2152 2153 2154 2155 2156
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2157 2158 2159 2160 2161
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2162 2163
  RETURN_PY_NONE

W
wanghuancoder 已提交
2164 2165 2166 2167
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2168 2169
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2170 2171 2172 2173
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2174 2175
      t->IsInitialized(),
      true,
2176 2177 2178 2179 2180 2181 2182
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2183 2184
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2185 2186
                                   PyObject* kwargs) {
  EAGER_TRY
2187
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2188 2189 2190 2191 2192 2193
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2194 2195 2196 2197
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2198 2199
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2200 2201
                                    PyObject* kwargs) {
  EAGER_TRY
2202
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2203 2204 2205 2206 2207 2208
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2209 2210

  if (!grad->defined()) {
2211
    RETURN_PY_NONE
2212 2213
  }
  if (grad->is_dense_tensor()) {
2214
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2215 2216 2217 2218
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2219
    RETURN_PY_NONE
2220 2221 2222 2223
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2224 2225
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2226 2227
                                          PyObject* kwargs) {
  EAGER_TRY
2228
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2229 2230 2231 2232 2233 2234
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2235

2236
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2237 2238 2239 2240 2241 2242 2243 2244 2245
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2246 2247 2248 2249 2250
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2251 2252 2253 2254
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2255 2256 2257 2258 2259
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2331
#if defined(PADDLE_WITH_CUDA)
2332 2333
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2334 2335 2336
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2337 2338
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2339 2340 2341
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2342 2343
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2344 2345 2346 2347
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2348
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2349 2350
  tensor_uva(self_tensor, device_id);

2351 2352
  RETURN_PY_NONE

2353 2354 2355
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2368

2369
PyMethodDef variable_methods[] = {
2370
    {"numpy",
2371
     (PyCFunction)(void (*)())tensor_method_numpy,
2372
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2373
     tensor_method_numpy__doc__},
2374
    {"_is_initialized",
2375
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2376
     METH_VARARGS | METH_KEYWORDS,
2377
     nullptr},
W
wanghuancoder 已提交
2378
    {"_is_dense_tensor_hold_allocation",
2379 2380
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2381
     METH_VARARGS | METH_KEYWORDS,
2382
     nullptr},
2383
    {"_copy_to",
2384
     (PyCFunction)(void (*)())tensor_method__copy_to,
2385
     METH_VARARGS | METH_KEYWORDS,
2386
     nullptr},
2387
    {"copy_",
2388
     (PyCFunction)(void (*)())tensor_method_copy_,
2389
     METH_VARARGS | METH_KEYWORDS,
2390
     nullptr},
2391
    {"clone",
2392
     (PyCFunction)(void (*)())tensor_method_clone,
2393
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2394
     tensor_method_clone__doc__},
2395
    {"reconstruct_from_",
2396
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2397
     METH_VARARGS | METH_KEYWORDS,
2398
     nullptr},
2399
    {"retain_grads",
2400
     (PyCFunction)(void (*)())tensor_retain_grads,
2401
     METH_VARARGS | METH_KEYWORDS,
2402
     nullptr},
2403
    {"clear_gradient",
2404
     (PyCFunction)(void (*)())tensor_clear_gradient,
2405
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2406
     tensor_clear_gradient__doc__},
2407
    {"is_dense",
2408
     (PyCFunction)(void (*)())tensor_method_is_dense,
2409
     METH_VARARGS | METH_KEYWORDS,
2410
     nullptr},
L
LiYuRio 已提交
2411
    {"is_dist",
2412
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2413
     METH_VARARGS | METH_KEYWORDS,
2414
     nullptr},
2415
    {"_zero_grads",
2416
     (PyCFunction)(void (*)())tensor__zero_grads,
2417
     METH_VARARGS | METH_KEYWORDS,
2418
     nullptr},
2419
    {"_share_buffer_to",
2420
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2421
     METH_VARARGS | METH_KEYWORDS,
2422
     nullptr},
2423
    {"_is_shared_buffer_with",
2424
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2425
     METH_VARARGS | METH_KEYWORDS,
2426
     nullptr},
2427
    {"_share_underline_tensor_to",
2428
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2429
     METH_VARARGS | METH_KEYWORDS,
2430
     nullptr},
2431
    {"_is_shared_underline_tensor_with",
2432
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2433
     METH_VARARGS | METH_KEYWORDS,
2434
     nullptr},
2435
    {"detach",
2436
     (PyCFunction)(void (*)())tensor_method_detach,
2437
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2438
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2439 2440 2441
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
2442
     nullptr},
2443
    {"get_tensor",
2444
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2445
     METH_VARARGS | METH_KEYWORDS,
2446
     nullptr},
2447
    {"get_selected_rows",
2448
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2449
     METH_VARARGS | METH_KEYWORDS,
2450
     nullptr},
2451
    {"_get_tensor_from_selected_rows",
2452
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2453
     METH_VARARGS | METH_KEYWORDS,
2454
     nullptr},
J
Jiabin Yang 已提交
2455
    {"_getitem_index_not_tensor",
2456
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2457
     METH_VARARGS | METH_KEYWORDS,
2458
     nullptr},
W
wanghuancoder 已提交
2459
    {"_getitem_from_offset",
2460
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2461
     METH_VARARGS | METH_KEYWORDS,
2462
     nullptr},
W
wanghuancoder 已提交
2463
    {"__setitem_eager_tensor__",
2464
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2465
     METH_VARARGS | METH_KEYWORDS,
2466
     nullptr},
2467
    {"_register_grad_hook",
2468
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2469
     METH_VARARGS | METH_KEYWORDS,
2470
     nullptr},
2471 2472 2473 2474
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
2475
    {"_remove_grad_hook",
2476
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2477
     METH_VARARGS | METH_KEYWORDS,
2478
     nullptr},
2479
    {"_register_backward_hook",
2480
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2481
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2482
     tensor_method__register_reduce_hook__doc__},
2483
    {"_set_grad_type",
2484
     (PyCFunction)(void (*)())tensor__set_grad_type,
2485
     METH_VARARGS | METH_KEYWORDS,
2486
     nullptr},
2487
    {"_clear",
2488
     (PyCFunction)(void (*)())tensor__clear,
2489
     METH_VARARGS | METH_KEYWORDS,
2490
     nullptr},
2491
    {"_clear_dataptr",
2492
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2493
     METH_VARARGS | METH_KEYWORDS,
2494
     nullptr},
J
Jiabin Yang 已提交
2495
    {"_copy_gradient_from",
2496
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2497
     METH_VARARGS | METH_KEYWORDS,
2498
     nullptr},
2499
    {"_tensor_use_gpudnn",
2500
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2501
     METH_VARARGS | METH_KEYWORDS,
2502
     nullptr},
2503 2504
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2505
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2506
     METH_VARARGS | METH_KEYWORDS,
2507
     nullptr},
2508
    {"set_vocab",
2509
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2510
     METH_VARARGS | METH_KEYWORDS,
2511
     nullptr},
2512
    {"get_map_tensor",
2513
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2514
     METH_VARARGS | METH_KEYWORDS,
2515
     nullptr},
2516
    /***the method of sparse tensor****/
2517
    {"nnz",
2518
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2519
     METH_VARARGS | METH_KEYWORDS,
2520
     nullptr},
2521
    {"indices",
2522
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2523
     METH_VARARGS | METH_KEYWORDS,
2524
     nullptr},
2525
    {"values",
2526
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2527
     METH_VARARGS | METH_KEYWORDS,
2528
     nullptr},
2529
    {"crows",
2530
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2531
     METH_VARARGS | METH_KEYWORDS,
2532
     nullptr},
2533
    {"cols",
2534
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2535
     METH_VARARGS | METH_KEYWORDS,
2536
     nullptr},
2537
    {"is_sparse",
2538
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2539
     METH_VARARGS | METH_KEYWORDS,
2540
     nullptr},
2541
    {"is_sparse_coo",
2542
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2543
     METH_VARARGS | METH_KEYWORDS,
2544
     nullptr},
2545
    {"is_sparse_csr",
2546
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2547
     METH_VARARGS | METH_KEYWORDS,
2548
     nullptr},
2549
    {"is_same_shape",
2550
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2551
     METH_VARARGS | METH_KEYWORDS,
2552
     nullptr},
2553
    {"to_sparse_csr",
2554
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2555
     METH_VARARGS | METH_KEYWORDS,
2556
     nullptr},
2557
    {"element_size",
2558
     (PyCFunction)(void (*)())tensor_method_element_size,
2559
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2560
     tensor_method_element_size__doc__},
2561
    /***the method of sparse tensor****/
2562
    {"_inplace_version",
2563
     (PyCFunction)(void (*)())tensor__inplace_version,
2564
     METH_VARARGS | METH_KEYWORDS,
2565
     nullptr},
2566
    {"_bump_inplace_version",
2567
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2568
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2569
     tensor_method__bump_inplace_version__doc__},
2570
    {"is_selected_rows",
2571
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2572
     METH_VARARGS | METH_KEYWORDS,
2573
     nullptr},
2574
    {"rows",
2575
     (PyCFunction)(void (*)())tensor_method_get_rows,
2576
     METH_VARARGS | METH_KEYWORDS,
2577
     nullptr},
2578
    {"_reset_grad_inplace_version",
2579
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2580
     METH_VARARGS | METH_KEYWORDS,
2581
     nullptr},
2582
    {"_share_memory",
2583
     (PyCFunction)(void (*)())tensor_method__share_memory,
2584
     METH_VARARGS | METH_KEYWORDS,
2585
     nullptr},
2586
    {"_offset",
2587
     (PyCFunction)(void (*)())tensor__offset,
2588
     METH_VARARGS | METH_KEYWORDS,
2589
     nullptr},
2590
    {"_grad_name",
2591
     (PyCFunction)(void (*)())tensor__grad_name,
2592
     METH_VARARGS | METH_KEYWORDS,
2593
     nullptr},
2594
    {"_grad_value",
2595
     (PyCFunction)(void (*)())tensor__grad_value,
2596
     METH_VARARGS | METH_KEYWORDS,
2597
     nullptr},
2598
    {"_unset_fake_empty",
2599
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2600
     METH_VARARGS | METH_KEYWORDS,
2601
     nullptr},
2602
    {"data_ptr",
2603
     (PyCFunction)(void (*)())tensor_data_ptr,
2604
     METH_VARARGS | METH_KEYWORDS,
2605
     nullptr},
W
wanghuancoder 已提交
2606
    {"_grad_ivar",
2607
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2608
     METH_VARARGS | METH_KEYWORDS,
2609
     nullptr},
W
wanghuancoder 已提交
2610 2611 2612
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2613
     nullptr},
W
wanghuancoder 已提交
2614 2615 2616
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
2617
     nullptr},
W
wanghuancoder 已提交
2618 2619 2620
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
2621
     nullptr},
2622
#if defined(PADDLE_WITH_CUDA)
2623
    {"_tensor_uva",
2624
     (PyCFunction)(void (*)())tensor_method__uva,
2625
     METH_VARARGS | METH_KEYWORDS,
2626
     nullptr},
2627
#endif
2628
    {nullptr, nullptr, 0, nullptr}};
2629

J
Jack Zhou 已提交
2630 2631 2632
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
2633
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2634
     METH_VARARGS | METH_KEYWORDS,
2635
     nullptr},
J
Jack Zhou 已提交
2636
    {"_is_initialized",
2637
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2638
     METH_VARARGS | METH_KEYWORDS,
2639
     nullptr},
J
Jack Zhou 已提交
2640
    {"_is_string_tensor_hold_allocation",
2641 2642
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2643
     METH_VARARGS | METH_KEYWORDS,
2644
     nullptr},
J
Jack Zhou 已提交
2645
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
2646
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
2647

2648 2649
}  // namespace pybind
}  // namespace paddle