eager_method.cc 113.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
L
LiYuRio 已提交
64 65
#include "paddle/phi/core/distributed/auto_parallel/reshard_function.h"
#include "paddle/phi/core/distributed/auto_parallel/reshard_utils.h"
66
#include "paddle/phi/core/flags.h"
67
#include "paddle/phi/core/tensor_utils.h"
68
#include "paddle/phi/kernels/funcs/math_function.h"
69
#include "paddle/utils/pybind.h"
J
Jiabin Yang 已提交
70

71
PHI_DECLARE_bool(set_to_1d);
72
PD_DECLARE_bool(use_stride_kernel);
73

74 75 76
namespace paddle {
namespace pybind {

77 78
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
79
                                     const paddle::platform::Place& place,
80
                                     bool zero_copy);
81

82
extern PyTypeObject* p_tensor_type;
83

J
Jiabin Yang 已提交
84
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
85
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
86
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
87
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
88
    PADDLE_ENFORCE_EQ(
89 90
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
91 92 93 94 95 96 97 98
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
99
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
100 101 102 103
        "method, when you reach this means we got another type index."));
  }
}

L
LiYuRio 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
namespace {
#ifdef PADDLE_WITH_DISTRIBUTE
phi::DenseTensor ReshardXToReplicated(
    phi::distributed::DistTensor* dist_tensor) {
  if (!phi::distributed::IsDimsMappingReplicated(
          dist_tensor->dist_attr().dims_mapping())) {
    phi::distributed::TensorDistAttr dist_attr(dist_tensor->dist_attr());
    std::vector<int64_t> dims_mapping(dist_tensor->dims().size(), -1);
    dist_attr.set_dims_mapping(dims_mapping);

    // reshard to replicate dist tensor
    auto* func =
        phi::distributed::ChooseProperReshardFunction(*dist_tensor, dist_attr);
    auto* dev_ctx =
        phi::DeviceContextPool::Instance().Get(dist_tensor->place());
    auto out_tensor = func->Eval(dev_ctx, *dist_tensor, dist_attr);
    return out_tensor->value();
  } else {
    return dist_tensor->value();
  }
}
#endif
}  // namespace

128 129
PyDoc_STRVAR(tensor_method_numpy__doc__,  // NOLINT
             R"DOC(numpy($self, /)
W
wanghuancoder 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

150 151
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
152 153
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
154 155
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
156 157
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
W
wanghuancoder 已提交
158 159 160 161 162
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
163 164 165 166 167
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
168 169 170 171 172
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
173 174
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
175
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
176 177
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
178
  size_t py_rank = tensor_dims.size();
179
  size_t numel = 1;
180
  if (py_rank == 0) {
181
    Py_ssize_t args_num = PyTuple_Size(args);
182 183
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
184 185 186 187 188 189 190
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
191
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
192 193 194 195 196
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
197 198
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
199
             "modify "
200
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
201
             "possible, "
202
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
203 204 205 206
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
207 208 209 210 211 212 213 214
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
215 216 217 218 219 220
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
221
  }
W
wanghuancoder 已提交
222 223

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
224 225 226 227 228 229 230 231 232 233 234
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

235
    if (tensor_dims.empty()) {
236 237 238
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
239 240 241 242 243 244
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
245 246 247 248 249
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
250 251 252
    return array;
  }

W
wanghuancoder 已提交
253 254 255
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

256
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
257
    eager_gil_scoped_release guard;
258
    platform::CPUPlace place;
259 260 261 262
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
263 264
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
265 266 267 268 269
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
270
      // deep copy
W
wanghuancoder 已提交
271 272 273 274 275
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
276
    } else if (self->tensor.is_dist_tensor()) {
277
#ifdef PADDLE_WITH_DISTRIBUTE
278 279 280
      VLOG(6) << "Getting DistTensor's numpy value";
      auto* dist_tensor =
          static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
L
LiYuRio 已提交
281 282
      auto dense_tensor = ReshardXToReplicated(dist_tensor);

283 284 285 286 287 288 289 290 291 292 293 294
      cpu_tensor.set_meta(dense_tensor.meta());
      // deep copy
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor.Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      // deep copy
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor.Holder()->ptr(),
                           dense_tensor.Holder()->size());
295 296 297 298 299 300 301
#else
      PADDLE_THROW(
          platform::errors::Unavailable("The `numpy()` method of (Dist)Tensor "
                                        "is not supported in the current "
                                        "PaddlePaddle, please recompile and "
                                        "installPaddlePaddle with the option "
                                        "of `WITH_DISTRIBUTE=ON`."));
302
#endif
303 304 305 306
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
307 308 309 310 311
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
312
      // deep copy
W
wanghuancoder 已提交
313 314 315 316 317
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
318 319
    }

320
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
321
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
322
    eager_gil_scoped_release guard;
323 324 325 326
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
327
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
328
#endif
329 330 331 332
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
333 334
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
335 336 337 338 339 340 341 342 343
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
344
    } else if (self->tensor.is_dist_tensor()) {
345
#ifdef PADDLE_WITH_DISTRIBUTE
346 347 348
      VLOG(6) << "Getting DistTensor's numpy value";
      auto* dist_tensor =
          static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
L
LiYuRio 已提交
349 350
      auto dense_tensor = ReshardXToReplicated(dist_tensor);

351 352 353 354 355 356 357 358 359
      cpu_tensor.set_meta(dense_tensor.meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor.Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor.Holder()->ptr(),
                                      dense_tensor.Holder()->size(),
                                      kind);
360 361 362 363 364 365 366
#else
      PADDLE_THROW(
          platform::errors::Unavailable("The `numpy()` method of (Dist)Tensor "
                                        "is not supported in the current "
                                        "PaddlePaddle, please recompile and "
                                        "installPaddlePaddle with the option "
                                        "of `WITH_DISTRIBUTE=ON`."));
367
#endif
368 369 370 371
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
372 373 374 375 376 377 378 379 380
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
381
    }
382
#endif
C
Chen Weihang 已提交
383 384 385 386 387 388 389
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
390 391
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
392 393 394 395 396 397 398 399 400 401
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
402 403 404 405
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
406 407 408 409 410 411 412 413 414 415
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
416 417
    }
#endif
418 419
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
420
    eager_gil_scoped_release guard;
421
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
422 423 424 425
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
426 427
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
428 429 430 431 432
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
433
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
434 435 436
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
437 438 439 440
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
441
      // TODO(qili93): temporary for ascend npu performance to be removed along
442
      // with npu_identity op
443
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
444 445 446 447 448
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
449 450 451 452 453
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
454
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
455 456 457
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
458 459
    }
#endif
460 461 462
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
463
    RETURN_PY_NONE
464 465
  }

W
wanghuancoder 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

486 487 488 489
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
490 491 492 493 494 495 496 497
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
498 499
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
J
Jack Zhou 已提交
500 501 502 503 504
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
505 506 507 508 509
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
523 524
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
525 526 527 528 529 530 531 532 533 534 535 536
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
537 538
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
539 540 541 542 543 544 545 546 547 548
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
549 550 551
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
552 553 554 555
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
556
    RETURN_PY_NONE
J
Jack Zhou 已提交
557 558 559 560
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

561 562 563 564
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
565
  return ToPyObject(self->tensor.initialized());
566 567 568
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

583
static void IncreaseTensorReferenceCountUntilCopyComplete(
584
    const paddle::Tensor& tensor, const platform::Place& place) {
585 586 587 588 589 590 591 592
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
593
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
594 595 596 597 598 599 600
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

601 602
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
603 604
                                        PyObject* kwargs) {
  EAGER_TRY
605 606
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
607
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
608 609 610 611 612 613 614 615 616 617
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
618
  }
619 620 621 622
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
PyDoc_STRVAR(tensor_reconstruct_from___doc__,
             R"DOC(reconstruct_from_($self, other/)
--

Reconstruct the self with other Tensor. It is a deep copy of 'self = other'.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      t1 = paddle.to_tensor([1.0], stop_gradient=False)
      t2 = paddle.to_tensor([2.0], stop_gradient=True)

      t1.reconstruct_from_(t2)

      print(t1)
)DOC");

645 646 647 648
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
649
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
650
  std::string orig_name = self->tensor.name();
651 652
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
653
  self->tensor = src_tensor;
654 655

  // Recover source name
656
  self->tensor.set_name(orig_name);
657 658

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
659
          << " to " << self->tensor.name();
660 661
  RETURN_PY_NONE

662 663 664
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

665 666
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
667 668
                                     PyObject* kwargs) {
  EAGER_TRY
669
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
670
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
671
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
672
          << self->tensor.name();
673
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
674
    eager_gil_scoped_release guard;
675
    egr::EagerUtils::autograd_meta(&(self->tensor))
676 677
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
678
    egr::EagerUtils::autograd_meta(&(self->tensor))
679 680
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
681
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
682
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
683 684 685
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
686
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
687
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
688
    }
689 690
  }

691
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
692
          << self->tensor.name();
693 694
  RETURN_PY_NONE

695 696 697
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

698 699
PyDoc_STRVAR(tensor_method_clone__doc__,  // NOLINT
             R"DOC(clone($self, /)
W
wanghuancoder 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

734 735 736 737
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
738
  paddle::Tensor out;
W
wanghuancoder 已提交
739 740 741 742 743 744 745 746 747
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
748

W
wanghuancoder 已提交
749 750
    out = assign_ad_func(self->tensor);
  }
751 752 753 754
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
PyDoc_STRVAR(tensor_method_retain_grads__doc__, R"DOC(retain_grads($self, /)
--

Enables this Tensor to have their grad populated during backward(). It is a no-op for leaf tensors.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # [1., 1., 1.]

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      # y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # None
)DOC");

787 788
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
789
                                     PyObject* kwargs) {
790
  EAGER_TRY
791
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
792
    eager_gil_scoped_release guard;
793
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
794
    if (!meta->GetMutableGradNode()) {
795
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
796
              << "become accumulation node";
797
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
798
    }
799
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
800
  }
801 802
  RETURN_PY_NONE

803 804 805
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

806
PyDoc_STRVAR(tensor_clear_gradient__doc__,  // NOLINT
W
wanghuancoder 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

836 837
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
838
                                       PyObject* kwargs) {
839
  EAGER_TRY
840
  VLOG(4) << "ClearGradient " << self->tensor.name();
841

842 843 844
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
845
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
846 847
  }

848
  paddle::Tensor* grad;
849
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
850
  if (is_leaf) {
851 852 853
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
854
                       "Detected nullptr grad"
855 856
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
857
  } else {
858
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
859
    grad = meta->MutableGrad();
860 861
  }

862
  if (grad->impl()) {
W
wanghuancoder 已提交
863
    eager_gil_scoped_release guard;
864 865 866 867 868 869 870 871 872 873
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
874 875 876 877
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
878 879 880 881 882
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
883 884 885 886 887 888 889
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
890 891
      }
    }
892
  }
893

894 895
  RETURN_PY_NONE

896 897 898
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

899 900
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
901
                                    PyObject* kwargs) {
902
  EAGER_TRY
903
  VLOG(4) << "ZeroGrads " << self->tensor.name();
904

905
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
906
    eager_gil_scoped_release guard;
907
    // Add RetainGrad as PostHook to AccumulationNode
908
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
909 910
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
911
                       "Detected nullptr grad"
912 913 914
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
915 916 917 918 919 920 921
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
922
    }
923
  } else {
W
wanghuancoder 已提交
924
    eager_gil_scoped_release guard;
925
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
926
    if (meta->MutableGrad()->initialized()) {
927 928 929 930 931 932 933 934 935
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
936
    }
937 938
  }

939 940
  RETURN_PY_NONE

941 942 943
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

944 945
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
946 947
                                         PyObject* kwargs) {
  EAGER_TRY
948
  paddle::Tensor* dst_ptr =
949
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
950 951
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
952 953 954
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
955
                        self->tensor.name()));
956
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
957 958 959
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
960
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
961
  dst_tensor->ShareBufferWith(*src_tensor);
962
  dst_tensor->ShareDataTypeWith(*src_tensor);
963 964
  RETURN_PY_NONE

965 966 967
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

968 969 970 971
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
972
  paddle::Tensor* dst_ptr =
973
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
974 975
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
976 977 978
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
979
                        self->tensor.name()));
980
  bool res = false;
981
  if (!self->tensor.defined() || !dst_ptr->defined()) {
982 983
    return ToPyObject(res);
  }
984 985
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
986 987 988 989 990
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

991 992 993 994
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
995
  paddle::Tensor* src_ptr =
996
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
997 998
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
999 1000 1001
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
1002 1003
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
1004 1005
  RETURN_PY_NONE

1006 1007 1008
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1009 1010 1011 1012
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
1013
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1014 1015
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
1016 1017 1018 1019 1020
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
1021
  if (!self->tensor.defined() || !src_tensor.defined()) {
1022 1023
    return ToPyObject(res);
  }
1024
  res = (self->tensor.impl().get() == src_tensor.impl().get());
1025 1026 1027 1028
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1029 1030
PyDoc_STRVAR(tensor_method_detach__doc__,  // NOLINT
             R"DOC(detach($self, /)
W
wanghuancoder 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

1070 1071
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
1072 1073
                                      PyObject* kwargs) {
  EAGER_TRY
1074
  PADDLE_ENFORCE_EQ(
1075
      self->tensor.defined(),
1076
      true,
1077
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
1078
                                        self->tensor.name()));
1079

1080
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
1081
  if (obj) {
1082
    auto v = reinterpret_cast<TensorObject*>(obj);
1083
    new (&(v->tensor)) paddle::Tensor();
1084 1085 1086 1087
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
PyDoc_STRVAR(tensor_method_detach___doc__, R"DOC(detach_($self, /)
--

Detach self from the current graph, and returns self Tensor.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.
)DOC");

W
wanghuancoder 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
PyDoc_STRVAR(tensor_method_get_tensor__doc__, R"DOC(get_tensor($self, /)
--

Returns the underline tensor in the origin Tensor.

Returns:
    Underline tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      underline_x = x.get_tensor()
      print(underline_x) # a Dense Tensor info
)DOC");

1145 1146 1147 1148
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
1149
  if (!self->tensor.defined()) {
1150 1151 1152
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
1153
  }
1154
  if (self->tensor.is_dense_tensor()) {
1155
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1156 1157
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
1158 1159
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1160 1161
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1162
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1163 1164
    return ToPyObject(tensor);
#else
1165 1166 1167 1168
    PADDLE_THROW(platform::errors::Unavailable(
        "The `get_tensor()` method of (Dist)Tensor is not supported in the "
        "current PaddlePaddle, please recompile and installPaddlePaddle "
        "with the option of `WITH_DISTRIBUTE=ON`."));
L
LiYuRio 已提交
1169
#endif
1170
  } else {
1171
    RETURN_PY_NONE
1172 1173 1174 1175
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1176 1177 1178 1179 1180
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1181
    RETURN_PY_NONE
1182 1183 1184 1185 1186 1187
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1188
    RETURN_PY_NONE
1189 1190 1191 1192
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1207 1208
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1209
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1210

1211
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1212 1213 1214 1215 1216 1217 1218
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1219 1220 1221
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1222
  EAGER_TRY
J
Jiabin Yang 已提交
1223 1224 1225
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1226 1227
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1228 1229
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1230 1231
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1232
  PADDLE_ENFORCE_EQ(
1233
      self->tensor.defined(),
1234
      true,
J
Jiabin Yang 已提交
1235 1236 1237 1238 1239
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1251

1252 1253 1254 1255
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1272 1273 1274 1275 1276 1277
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1278
    if (op_type == "slice") {
W
wanghuancoder 已提交
1279
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1280 1281 1282 1283 1284 1285
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1286
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1287
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1288
      out = strided_slice_ad_func(
1289
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1290 1291 1292
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1302
  bool set_to_1d = FLAGS_set_to_1d;
1303 1304 1305 1306 1307 1308

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1309
      VLOG(1)
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1322 1323 1324
        none_axes.pop_back();
      }
    }
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1339 1340
          }
        }
1341
        axis -= len;
J
Jiabin Yang 已提交
1342
      }
1343
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1344
    }
1345
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1346 1347 1348 1349
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1350
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1364 1365 1366
  }

  return ToPyObject(out);
1367 1368 1369
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1370 1371
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1372 1373
                                             PyObject* kwargs) {
  EAGER_TRY
1374 1375 1376 1377 1378 1379 1380 1381
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1382 1383 1384
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1385 1386
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1387 1388
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1389 1390 1391 1392 1393 1394 1395
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1396
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1397 1398 1399 1400 1401 1402 1403 1404

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1405 1406
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1407 1408 1409 1410 1411 1412
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1413 1414
        offset,
        numel,
W
wanghuancoder 已提交
1415 1416 1417
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1418 1419
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1420 1421 1422 1423 1424 1425
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1426 1427
          index,
          dims[i],
W
wanghuancoder 已提交
1428
          platform::errors::InvalidArgument(
1429 1430 1431
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1432
              dims[i]));
W
wanghuancoder 已提交
1433
      offset += index * stride[i];
W
wanghuancoder 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
1457 1458
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];    /* NOLINT */  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank]; /* NOLINT */  \
W
wanghuancoder 已提交
1459 1460
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1461 1462
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1463
        0,                                                                   \
1464 1465 1466
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1467 1468 1469 1470 1471
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1472 1473
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1525 1526
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1527 1528
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1550
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1551
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1552 1553 1554 1555 1556
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1557 1558
    }

1559
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1560 1561 1562 1563

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1564
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1565 1566 1567 1568
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1569
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1570 1571 1572
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1573
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1574 1575 1576
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1577
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1578 1579 1580
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1581
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1582 1583 1584
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1585
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1586 1587 1588
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1599 1600 1601 1602
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1603
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1604 1605 1606
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1607 1608 1609 1610 1611
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1612 1613 1614 1615 1616 1617 1618

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1619 1620
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1621
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1622 1623
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1624
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1625 1626
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1627
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1628 1629
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1630
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1631 1632
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1633
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1634 1635
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1636
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1637 1638 1639 1640 1641 1642 1643 1644
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1645 1646 1647 1648
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1649 1650
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1651 1652 1653 1654 1655 1656 1657
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1658
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1659 1660 1661 1662 1663 1664 1665
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1666
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1667 1668
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1669
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1670 1671 1672 1673 1674 1675 1676
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1677 1678 1679
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1680
      }
1681 1682
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1683 1684 1685 1686 1687 1688 1689 1690 1691
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1692 1693
    }
  } else {
1694
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1706
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1707
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1708 1709 1710 1711
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1712
#else
1713 1714 1715 1716
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1717 1718
#endif
    } else {
1719 1720
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1721 1722
    }
  }
1723 1724
  RETURN_PY_NONE

W
wanghuancoder 已提交
1725 1726 1727
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1728 1729
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1730 1731 1732
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1733
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1734
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1735 1736 1737 1738 1739

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1740
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1741 1742 1743 1744 1745 1746
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1747 1748 1749 1750 1751 1752 1753 1754 1755
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1756 1757
        rank_info.first,
        rank_info.second,
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1770 1771
        rank_info.first,
        rank_info.second,
1772 1773 1774 1775 1776 1777
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1778 1779
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1804
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,  // NOLINT
W
wanghuancoder 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1828 1829
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1830 1831 1832 1833 1834 1835
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1836
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1837
                    true,
1838 1839 1840 1841
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1842 1843 1844 1845
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1846 1847
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1848
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1849 1850 1851 1852 1853 1854 1855
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1856
      std::make_shared<PyVoidHook>(hook_func));
1857

1858 1859
  RETURN_PY_NONE

1860 1861 1862
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1863 1864
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1865
                                       PyObject* kwargs) {
1866 1867 1868
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1869
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1870
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1871
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1872
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1873
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1874
  }
1875 1876
  RETURN_PY_NONE

1877 1878 1879
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1880 1881
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1882 1883 1884
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1885 1886
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1887 1888 1889
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1890 1891 1892 1893 1894 1895 1896 1897 1898
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1899 1900
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1901 1902 1903
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1904
  if (self->tensor.initialized()) {
1905 1906
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1907 1908
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1909 1910
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1911 1912 1913 1914 1915
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1916 1917
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1918 1919 1920 1921
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1922 1923
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1924 1925 1926 1927
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1928 1929
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1930 1931
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1932

1933 1934 1935
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1936 1937 1938
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1939
                     "function _use_gpudnn is only effective for DenseTensor"));
1940

1941
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1942

1943
  // Set the same use_gpudnn attribute, return directly
1944 1945 1946 1947
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1948
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1949 1950 1951
    return ToPyObject(self->tensor);
  }

1952
  // Share all other members of Tensor except use_gpudnn
1953
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1954
  target_dense_meta.use_gpudnn = use_gpudnn;
1955 1956 1957 1958
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1959
  paddle::Tensor target_tensor(
1960 1961 1962 1963
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1964
          << " set use_gpudnn = " << use_gpudnn;
1965 1966 1967 1968 1969

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1970 1971
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1972 1973
                                         PyObject* kwargs) {
  EAGER_TRY
1974
  using Vocab = paddle::framework::Vocab;
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1987
  using Strings = paddle::framework::Strings;
1988
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
2001 2002
      egr::IsVariableCompatTensor(self->tensor),
      true,
2003 2004
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
2005
  using Vocab = paddle::framework::Vocab;
2006 2007 2008 2009 2010 2011
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
PyDoc_STRVAR(tensor_method_nnz__doc__,
             R"DOC(nnz($self, /)
--

Note:
    **This API is only available for SparseCooTensor or SparseCsrTensor.**

Returns the total number of non zero elements in input SparseCooTensor/SparseCsrTensor.

Returns:
    int

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.nnz()
        # 3

)DOC");

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
PyDoc_STRVAR(tensor_method_indices__doc__,
             R"DOC(indices($self, /)
--

Note:
    **This API is only available for SparseCooTensor.**

Returns the indices of non zero elements in input SparseCooTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.indices()
        # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [[0, 1, 2],
        #         [1, 2, 0]])

)DOC");

2087 2088 2089 2090 2091 2092 2093 2094 2095
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
2096
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2097 2098 2099 2100 2101
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
PyDoc_STRVAR(tensor_method_values__doc__,
             R"DOC(values($self, /)
--

Note:
    **This API is only available for SparseCooTensor or SparseCsrTensor.**

Returns the values of non zero elements in input SparseCooTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.values()
        # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
        #        [1., 2., 3.])

)DOC");

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
2141
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2142 2143 2144 2145 2146
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2147
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2148 2149 2150 2151 2152 2153
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
PyDoc_STRVAR(tensor_method_crows__doc__,
             R"DOC(crows($self, /)
--

Note:
    **This API is only available for SparseCsrTensor.**

Returns the compressed row index of non zero elements in input SparseCsrTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.crows()
        # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [0, 2, 3, 5])

)DOC");

2182 2183 2184 2185 2186 2187 2188 2189 2190
static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2191
  paddle::Tensor tensor(
2192 2193 2194 2195 2196
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
PyDoc_STRVAR(tensor_method_cols__doc__,
             R"DOC(cols($self, /)
--

Note:
    **This API is only available for SparseCsrTensor.**

Returns the column index of non zero elements in input SparseCsrTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.cols()
        # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [1, 3, 2, 0, 1])

)DOC");

2225 2226 2227 2228 2229 2230 2231 2232 2233
static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2234
  paddle::Tensor tensor(
2235 2236 2237 2238 2239
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
PyDoc_STRVAR(tensor_method_is_dense__doc__, R"DOC(is_dense($self, /)
--

Whether the Tensor is a Dense Tensor.

Returns:
    Whether the Tensor is a Dense Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dense())
)DOC");

2257 2258
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
2259 2260 2261 2262 2263 2264 2265 2266 2267
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
PyDoc_STRVAR(tensor_method_is_dist__doc__, R"DOC(is_dist($self, /)
--

Whether the Tensor is a Distributed Tensor.

Returns:
    Whether the Tensor is a Distributed Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dist()) # False
)DOC");

L
LiYuRio 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
PyDoc_STRVAR(tensor_is_sparse__doc__,
             R"DOC(is_sparse($self, /)
--

Returns whether the input Tensor is SparseCooTensor or SparseCsrTensor.

When input is SparseCooTensor/SparseCsrTensor, will return True. When input is DenseTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.is_sparse()
        # True

)DOC");
2320 2321
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
2322 2323
                                         PyObject* kwargs) {
  EAGER_TRY
2324 2325 2326
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2327 2328 2329 2330 2331
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
PyDoc_STRVAR(tensor_is_sparse_coo__doc__,
             R"DOC(is_sparse_coo($self, /)
--

Returns whether the input Tensor is SparseCooTensor.

When input is SparseCooTensor, will return True. When input is DenseTensor/SparseCsrTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.is_sparse_coo()
        # True

)DOC");

2357 2358
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
2359 2360
                                             PyObject* kwargs) {
  EAGER_TRY
2361 2362 2363
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2364 2365 2366 2367
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
PyDoc_STRVAR(tensor_is_sparse_csr__doc__,
             R"DOC(is_sparse_csr($self, /)
--

Returns whether the input Tensor is SparseCsrTensor.

When input is SparseCsrTensor, will return True. When input is DenseTensor/SparseCooTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.is_sparse_csr()
        # True

)DOC");

2394 2395
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
2396 2397
                                             PyObject* kwargs) {
  EAGER_TRY
2398 2399 2400
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2401 2402 2403 2404
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
PyDoc_STRVAR(tensor_to_sparse_csr__doc__,
             R"DOC(to_sparse_csr($self, /)
--

Note:
    **This API is only available for DenseTensor or SparseCooTensor.**

Convert input Tensor to SparseCsrTensor.

When input is SparseCooTensor, will convert `COO` to `CSR` . When input is DenseTensor, will convert `Dense` to `CSR` .

Returns:
    SparseCsrTensor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.to_sparse_csr()
        # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
        #        crows=[0, 1, 2, 3],
        #        cols=[1, 2, 0],
        #        values=[1., 2., 3.])

)DOC");

2436 2437
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
PyDoc_STRVAR(tensor_is_same_shape__doc__,
             R"DOC(is_same_shape($self, y, /)
--

Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.

Args:
    x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
    y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.

Returns:
    bool: True for same shape and False for different shape.

Examples:

    .. code-block:: python

        import paddle

        x = paddle.rand([2, 3, 8])
        y = paddle.rand([2, 3, 8])
        y = y.to_sparse_csr()
        z = paddle.rand([2, 5])

        x.is_same_shape(y)
        # True
        x.is_same_shape(z)
        # False

)DOC");

2483 2484 2485 2486 2487 2488 2489 2490 2491
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2492 2493
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2494 2495 2496 2497 2498 2499 2500 2501
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2502 2503
PyDoc_STRVAR(tensor_method_element_size__doc__,  // NOLINT
             R"DOC(element_size($self, /)
W
wanghuancoder 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2532 2533
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2534 2535
                                            PyObject* kwargs) {
  EAGER_TRY
2536
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2537 2538 2539 2540 2541

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2542
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,  // NOLINT
W
wanghuancoder 已提交
2543 2544 2545
             R"DOC(_bump_inplace_version($self, /)
--

2546
Note:
W
wanghuancoder 已提交
2547 2548
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
2549

W
wanghuancoder 已提交
2550 2551
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2552 2553 2554 2555 2556
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2557
  RETURN_PY_NONE
2558 2559 2560
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2561 2562 2563 2564
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2565 2566 2567
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2568 2569 2570 2571
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2572 2573
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2595
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2596 2597 2598 2599
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2600 2601
  RETURN_PY_NONE

2602 2603 2604
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2605 2606
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2607 2608 2609
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2610 2611
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2628 2629 2630 2631 2632
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2633 2634 2635 2636 2637
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2638 2639
  RETURN_PY_NONE

W
wanghuancoder 已提交
2640 2641 2642 2643
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2644 2645
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2646 2647 2648 2649
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2650 2651
      t->IsInitialized(),
      true,
2652 2653 2654 2655 2656 2657 2658
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2659 2660
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2661 2662
                                   PyObject* kwargs) {
  EAGER_TRY
2663
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2664 2665 2666 2667 2668 2669
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2670 2671 2672 2673
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2674 2675
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2676 2677
                                    PyObject* kwargs) {
  EAGER_TRY
2678
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2679 2680 2681 2682 2683 2684
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2685 2686

  if (!grad->defined()) {
2687
    RETURN_PY_NONE
2688 2689
  }
  if (grad->is_dense_tensor()) {
2690
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2691 2692 2693 2694
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2695
    RETURN_PY_NONE
2696 2697 2698 2699
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static PyObject* tensor__local_value(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
    phi::distributed::DistTensor* dist_tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
    paddle::Tensor result(
        std::make_shared<phi::DenseTensor>(dist_tensor->value()));
    return ToPyObject(result);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "The `_local_value` method of (Dist)Tensor is not supported "
        "in the current PaddlePaddle, please recompile and install "
        "PaddlePaddle "
        "with the option of `WITH_DISTRIBUTE=ON`."));
#endif
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2724 2725
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2726 2727
                                          PyObject* kwargs) {
  EAGER_TRY
2728
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2729 2730 2731 2732 2733 2734
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2735

2736
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2737 2738 2739 2740 2741 2742 2743 2744 2745
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
PyDoc_STRVAR(tensor_data_ptr__doc__,
             R"DOC(data_ptr($self, /)
--

Returns the address of the first element of current Tensor.

Returns:
    int, The address of the first element of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        print(x.data_ptr())
)DOC");

2764 2765 2766 2767 2768
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2769 2770 2771 2772
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2773 2774 2775 2776 2777
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
PyDoc_STRVAR(tensor_get_strides__doc__,
             R"DOC(get_strides($self, /)
--

Returns the strides of current Tensor.

Returns:
    List, the strides of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.get_strides())
)DOC");

W
wanghuancoder 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
PyDoc_STRVAR(tensor_contiguous__doc__,
             R"DOC(contiguous($self, /)
--

Returns a contiguous in memory tensor containing the same data as current Tensor.
If self tensor is already contiguous, this function returns the current Tensor.

Returns:
    Tensor, The contiguous Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        y = y.contiguous()
        print(y)
)DOC");

W
wanghuancoder 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
W
wanghuancoder 已提交
2863 2864 2865 2866
      self->tensor.set_impl(std::make_shared<phi::DenseTensor>(std::move(
          paddle::experimental::Trans2Contiguous(*(dense_tensor.get())))));
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
W
wanghuancoder 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
PyDoc_STRVAR(tensor_is_contiguous__doc__,
             R"DOC(is_contiguous($self, /)
--

Whether the Tensor is contiguous.

Returns:
    Bool, Whether the Tensor is contiguous.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.is_contiguous())
)DOC");
W
wanghuancoder 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2908
#if defined(PADDLE_WITH_CUDA)
2909 2910
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2911 2912 2913
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2914 2915
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2916 2917 2918
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2919 2920
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2921 2922 2923 2924
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2925
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2926 2927
  tensor_uva(self_tensor, device_id);

2928 2929
  RETURN_PY_NONE

2930 2931 2932
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2945

2946
PyMethodDef variable_methods[] = {  // NOLINT
2947
    {"numpy",
2948
     (PyCFunction)(void (*)())tensor_method_numpy,
2949
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2950
     tensor_method_numpy__doc__},
2951
    {"_is_initialized",
2952
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2953
     METH_VARARGS | METH_KEYWORDS,
2954
     nullptr},
W
wanghuancoder 已提交
2955
    {"_is_dense_tensor_hold_allocation",
2956 2957
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2958
     METH_VARARGS | METH_KEYWORDS,
2959
     nullptr},
2960
    {"_copy_to",
2961
     (PyCFunction)(void (*)())tensor_method__copy_to,
2962
     METH_VARARGS | METH_KEYWORDS,
2963
     nullptr},
2964
    {"copy_",
2965
     (PyCFunction)(void (*)())tensor_method_copy_,
2966
     METH_VARARGS | METH_KEYWORDS,
2967
     nullptr},
2968
    {"clone",
2969
     (PyCFunction)(void (*)())tensor_method_clone,
2970
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2971
     tensor_method_clone__doc__},
2972
    {"reconstruct_from_",
2973
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2974
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2975
     tensor_reconstruct_from___doc__},
2976
    {"retain_grads",
2977
     (PyCFunction)(void (*)())tensor_retain_grads,
2978
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2979
     tensor_method_retain_grads__doc__},
2980
    {"clear_gradient",
2981
     (PyCFunction)(void (*)())tensor_clear_gradient,
2982
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2983
     tensor_clear_gradient__doc__},
2984
    {"is_dense",
2985
     (PyCFunction)(void (*)())tensor_method_is_dense,
2986
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2987
     tensor_method_is_dense__doc__},
L
LiYuRio 已提交
2988
    {"is_dist",
2989
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2990
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2991
     tensor_method_is_dist__doc__},
2992
    {"_zero_grads",
2993
     (PyCFunction)(void (*)())tensor__zero_grads,
2994
     METH_VARARGS | METH_KEYWORDS,
2995
     nullptr},
2996
    {"_share_buffer_to",
2997
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2998
     METH_VARARGS | METH_KEYWORDS,
2999
     nullptr},
3000
    {"_is_shared_buffer_with",
3001
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
3002
     METH_VARARGS | METH_KEYWORDS,
3003
     nullptr},
3004
    {"_share_underline_tensor_to",
3005
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
3006
     METH_VARARGS | METH_KEYWORDS,
3007
     nullptr},
3008
    {"_is_shared_underline_tensor_with",
3009
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
3010
     METH_VARARGS | METH_KEYWORDS,
3011
     nullptr},
3012
    {"detach",
3013
     (PyCFunction)(void (*)())tensor_method_detach,
3014
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3015
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
3016 3017 3018
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3019
     tensor_method_detach___doc__},
3020
    {"get_tensor",
3021
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
3022
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3023
     tensor_method_get_tensor__doc__},
3024
    {"get_selected_rows",
3025
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
3026
     METH_VARARGS | METH_KEYWORDS,
3027
     nullptr},
3028
    {"_get_tensor_from_selected_rows",
3029
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
3030
     METH_VARARGS | METH_KEYWORDS,
3031
     nullptr},
J
Jiabin Yang 已提交
3032
    {"_getitem_index_not_tensor",
3033
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
3034
     METH_VARARGS | METH_KEYWORDS,
3035
     nullptr},
W
wanghuancoder 已提交
3036
    {"_getitem_from_offset",
3037
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
3038
     METH_VARARGS | METH_KEYWORDS,
3039
     nullptr},
W
wanghuancoder 已提交
3040
    {"__setitem_eager_tensor__",
3041
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
3042
     METH_VARARGS | METH_KEYWORDS,
3043
     nullptr},
3044
    {"_register_grad_hook",
3045
     (PyCFunction)(void (*)())tensor_register_grad_hook,
3046
     METH_VARARGS | METH_KEYWORDS,
3047
     nullptr},
3048 3049 3050 3051
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
3052
    {"_remove_grad_hook",
3053
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
3054
     METH_VARARGS | METH_KEYWORDS,
3055
     nullptr},
3056
    {"_register_backward_hook",
3057
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
3058
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3059
     tensor_method__register_reduce_hook__doc__},
3060
    {"_set_grad_type",
3061
     (PyCFunction)(void (*)())tensor__set_grad_type,
3062
     METH_VARARGS | METH_KEYWORDS,
3063
     nullptr},
3064
    {"_clear",
3065
     (PyCFunction)(void (*)())tensor__clear,
3066
     METH_VARARGS | METH_KEYWORDS,
3067
     nullptr},
3068
    {"_clear_dataptr",
3069
     (PyCFunction)(void (*)())tensor__clear_dataptr,
3070
     METH_VARARGS | METH_KEYWORDS,
3071
     nullptr},
J
Jiabin Yang 已提交
3072
    {"_copy_gradient_from",
3073
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
3074
     METH_VARARGS | METH_KEYWORDS,
3075
     nullptr},
3076
    {"_tensor_use_gpudnn",
3077
     (PyCFunction)(void (*)())tensor__use_gpudnn,
3078
     METH_VARARGS | METH_KEYWORDS,
3079
     nullptr},
3080 3081
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
3082
     (PyCFunction)(void (*)())tensor_method_set_string_list,
3083
     METH_VARARGS | METH_KEYWORDS,
3084
     nullptr},
3085
    {"set_vocab",
3086
     (PyCFunction)(void (*)())tensor_method_set_vocab,
3087
     METH_VARARGS | METH_KEYWORDS,
3088
     nullptr},
3089
    {"get_map_tensor",
3090
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
3091
     METH_VARARGS | METH_KEYWORDS,
3092
     nullptr},
3093
    /***the method of sparse tensor****/
3094
    {"nnz",
3095
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
3096
     METH_VARARGS | METH_KEYWORDS,
3097
     tensor_method_nnz__doc__},
3098
    {"indices",
3099
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
3100
     METH_VARARGS | METH_KEYWORDS,
3101
     tensor_method_indices__doc__},
3102
    {"values",
3103
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
3104
     METH_VARARGS | METH_KEYWORDS,
3105
     tensor_method_values__doc__},
3106
    {"crows",
3107
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
3108
     METH_VARARGS | METH_KEYWORDS,
3109
     tensor_method_crows__doc__},
3110
    {"cols",
3111
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
3112
     METH_VARARGS | METH_KEYWORDS,
3113
     tensor_method_cols__doc__},
3114
    {"is_sparse",
3115
     (PyCFunction)(void (*)())tensor_method_is_sparse,
3116
     METH_VARARGS | METH_KEYWORDS,
3117
     tensor_is_sparse__doc__},
3118
    {"is_sparse_coo",
3119
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
3120
     METH_VARARGS | METH_KEYWORDS,
3121
     tensor_is_sparse_coo__doc__},
3122
    {"is_sparse_csr",
3123
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
3124
     METH_VARARGS | METH_KEYWORDS,
3125
     tensor_is_sparse_csr__doc__},
3126
    {"is_same_shape",
3127
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
3128
     METH_VARARGS | METH_KEYWORDS,
3129
     tensor_is_same_shape__doc__},
3130
    {"to_sparse_csr",
3131
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
3132
     METH_VARARGS | METH_KEYWORDS,
3133 3134
     tensor_to_sparse_csr__doc__},
    /***the method of sparse tensor****/
3135
    {"element_size",
3136
     (PyCFunction)(void (*)())tensor_method_element_size,
3137
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3138
     tensor_method_element_size__doc__},
3139
    {"_inplace_version",
3140
     (PyCFunction)(void (*)())tensor__inplace_version,
3141
     METH_VARARGS | METH_KEYWORDS,
3142
     nullptr},
3143
    {"_bump_inplace_version",
3144
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
3145
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3146
     tensor_method__bump_inplace_version__doc__},
3147
    {"is_selected_rows",
3148
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
3149
     METH_VARARGS | METH_KEYWORDS,
3150
     nullptr},
3151
    {"rows",
3152
     (PyCFunction)(void (*)())tensor_method_get_rows,
3153
     METH_VARARGS | METH_KEYWORDS,
3154
     nullptr},
3155
    {"_reset_grad_inplace_version",
3156
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
3157
     METH_VARARGS | METH_KEYWORDS,
3158
     nullptr},
3159
    {"_share_memory",
3160
     (PyCFunction)(void (*)())tensor_method__share_memory,
3161
     METH_VARARGS | METH_KEYWORDS,
3162
     nullptr},
3163
    {"_offset",
3164
     (PyCFunction)(void (*)())tensor__offset,
3165
     METH_VARARGS | METH_KEYWORDS,
3166
     nullptr},
3167
    {"_grad_name",
3168
     (PyCFunction)(void (*)())tensor__grad_name,
3169
     METH_VARARGS | METH_KEYWORDS,
3170
     nullptr},
3171
    {"_grad_value",
3172
     (PyCFunction)(void (*)())tensor__grad_value,
3173
     METH_VARARGS | METH_KEYWORDS,
3174
     nullptr},
L
LiYuRio 已提交
3175 3176 3177 3178
    {"_local_value",
     (PyCFunction)(void (*)())tensor__local_value,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
3179
    {"_unset_fake_empty",
3180
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
3181
     METH_VARARGS | METH_KEYWORDS,
3182
     nullptr},
3183
    {"data_ptr",
3184
     (PyCFunction)(void (*)())tensor_data_ptr,
3185
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3186
     tensor_data_ptr__doc__},
W
wanghuancoder 已提交
3187
    {"_grad_ivar",
3188
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
3189
     METH_VARARGS | METH_KEYWORDS,
3190
     nullptr},
W
wanghuancoder 已提交
3191 3192 3193
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3194
     tensor_contiguous__doc__},
W
wanghuancoder 已提交
3195 3196 3197
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3198
     tensor_is_contiguous__doc__},
W
wanghuancoder 已提交
3199 3200 3201
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3202
     tensor_get_strides__doc__},
3203
#if defined(PADDLE_WITH_CUDA)
3204
    {"_tensor_uva",
3205
     (PyCFunction)(void (*)())tensor_method__uva,
3206
     METH_VARARGS | METH_KEYWORDS,
3207
     nullptr},
3208
#endif
3209
    {nullptr, nullptr, 0, nullptr}};
3210

J
Jack Zhou 已提交
3211
// variable_methods for core.eager.StringTensor
3212
PyMethodDef string_tensor_variable_methods[] = {  // NOLINT
J
Jack Zhou 已提交
3213
    {"numpy",
3214
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
3215
     METH_VARARGS | METH_KEYWORDS,
3216
     nullptr},
J
Jack Zhou 已提交
3217
    {"_is_initialized",
3218
     (PyCFunction)(void (*)())tensor_method__is_initialized,
3219
     METH_VARARGS | METH_KEYWORDS,
3220
     nullptr},
J
Jack Zhou 已提交
3221
    {"_is_string_tensor_hold_allocation",
3222 3223
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
3224
     METH_VARARGS | METH_KEYWORDS,
3225
     nullptr},
J
Jack Zhou 已提交
3226
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
3227
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
3228

3229 3230
}  // namespace pybind
}  // namespace paddle