eager_method.cc 72.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20
#include <Python.h>

#include <string>
21
#include <unordered_map>
22 23
#include <vector>

24
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
25
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
27
#include "paddle/fluid/eager/autograd_meta.h"
28 29
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
30
#include "paddle/fluid/eager/utils.h"
31
#include "paddle/fluid/framework/convert_utils.h"
32 33 34 35 36 37
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
38
#include "paddle/fluid/pybind/slice_utils.h"
39
#include "paddle/fluid/pybind/uva_utils.h"
40 41 42 43
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
44 45
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
46
#include "pybind11/detail/internals.h"
47 48
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
49
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
50
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
W
wanghuancoder 已提交
51
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
52
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
54
#include "paddle/phi/core/ddim.h"
55
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
56

57 58 59
namespace paddle {
namespace pybind {

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
namespace py = ::pybind11;

class PyTensorHook : public egr::TensorHook {
 public:
  explicit PyTensorHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  paddle::experimental::Tensor operator()(
      const paddle::experimental::Tensor& var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorHook for var " << var.name();

    PyObject* res = nullptr;
    try {
J
Jiabin Yang 已提交
80 81 82
      PyObject* p_tmp_var = ToPyObject(var);
      res = PyObject_CallFunctionObjArgs(py_func_, p_tmp_var, nullptr);
      Py_DECREF(p_tmp_var);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }
J
Jiabin Yang 已提交
99 100 101
    auto res_tensor = reinterpret_cast<TensorObject*>(res)->tensor;
    Py_DECREF(res);
    return res_tensor;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  }

 private:
  PyObject* py_func_;
};

class PyTensorVoidHook : public egr::TensorVoidHook {
 public:
  explicit PyTensorVoidHook(PyObject* func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyTensorVoidHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  void operator()() override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyTensorVoidHook";

    try {
      PyObject_CallFunctionObjArgs(py_func_, nullptr);
    } catch (platform::EnforceNotMet& e) {
      throw std::move(e);
    } catch (std::exception& e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }
  }

 private:
  PyObject* py_func_;
};

140 141
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
142
                                     const paddle::platform::Place& place,
143
                                     bool zero_copy);
144

145
extern PyTypeObject* p_tensor_type;
146

J
Jiabin Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
    paddle::experimental::Tensor tensor = CastPyArg2Tensor(obj, 0);
    PADDLE_ENFORCE_EQ(
        tensor.initialized(), true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject* obj) {
  return PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type));
}

170 171 172
static PyObject* tensor_method_numpy(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_), 1,
        py_dims, py_strides, nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
189 190
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
191
  auto sizeof_dtype = paddle::framework::DataTypeSize(self->tensor.type());
192 193 194 195 196 197 198 199
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
W
wanghuancoder 已提交
200

201 202 203 204 205 206 207
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
208
  if (!self->tensor.impl()->initialized()) {
209 210 211 212 213 214 215 216 217 218 219
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
          api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype), 1,
          py_dims, py_strides, nullptr,
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
220 221 222
    return array;
  }

223
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
224
    platform::CPUPlace place;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          place, dense_tensor->data(), sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          place, dense_tensor->data(), sizeof_dtype * numel);
    }

248
#if defined(PADDLE_WITH_CUDA)
249
  } else if (self->tensor.is_gpu()) {
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
      auto* dense_tensor = static_cast<paddle::framework::LoDTensor*>(
          selected_rows->mutable_value());
      paddle::platform::GpuMemcpySync(
          pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
          cudaMemcpyDeviceToHost);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
          pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
          paddle::framework::DataTypeSize(dense_tensor->dtype()) *
              dense_tensor->numel(),
          cudaMemcpyDeviceToHost);
    }
271 272 273 274
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
275
    RETURN_PY_NONE
276 277 278 279 280 281
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_), 1,
        py_dims, py_strides, nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
    // Get the max unicode length of StringTensor to create numpy unicode string
    // array.
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
                    tensor_dims, {}, py_array_data);
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
342
    RETURN_PY_NONE
J
Jack Zhou 已提交
343 344 345 346
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

347 348 349 350
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
351
  return ToPyObject(self->tensor.initialized());
352 353 354
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static void IncreaseTensorReferenceCountUntilCopyComplete(
    const paddle::experimental::Tensor& tensor, const platform::Place& place) {
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

387 388 389
static PyObject* tensor_method__copy_to(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
390 391
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
392
  auto cp_tensor = self->tensor.copy_to(place, blocking);
393 394 395
  if (!blocking) {
    IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
  }
396 397 398
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
399
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
400 401 402 403
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

404 405 406
static PyObject* tensor_method_cpu(TensorObject* self, PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
407
  auto cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
408 409 410 411 412 413 414 415
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

416 417 418 419
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
420 421 422
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  std::string orig_name = self->tensor.name();
423 424
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
425
  self->tensor = src_tensor;
426 427

  // Recover source name
428
  self->tensor.set_name(orig_name);
429 430

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
431
          << " to " << self->tensor.name();
432 433
  RETURN_PY_NONE

434 435 436
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

437 438 439
static PyObject* tensor_method_copy_(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
440 441
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
442
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
443
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
444
          << self->tensor.name();
445
  if (!self->tensor.initialized()) {
446
    egr::EagerUtils::autograd_meta(&(self->tensor))
447 448
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
449
    egr::EagerUtils::autograd_meta(&(self->tensor))
450 451
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
452
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
453
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
454 455 456
    }
  } else {
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
457
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
458
    }
459 460
  }

461
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
462
          << self->tensor.name();
463 464
  RETURN_PY_NONE

465 466 467
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

468 469
static PyObject* tensor_retain_grads(TensorObject* self, PyObject* args,
                                     PyObject* kwargs) {
470
  EAGER_TRY
471
  if (egr::Controller::Instance().HasGrad()) {
472
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
473
    if (!meta->GetMutableGradNode()) {
474
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
475
              << "become accumulation node";
476
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
477
    }
478
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
479
  }
480 481
  RETURN_PY_NONE

482 483 484
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

485 486
static PyObject* tensor_clear_gradient(TensorObject* self, PyObject* args,
                                       PyObject* kwargs) {
487
  EAGER_TRY
488
  VLOG(4) << "ClearGradient " << self->tensor.name();
489

490 491 492
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
493
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
494 495
  }

496
  paddle::experimental::Tensor* grad;
J
Jiabin Yang 已提交
497 498
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
499 500 501 502 503 504
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
505
  } else {
506
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
507
    grad = meta->MutableGrad();
508 509
  }

510 511 512 513 514 515 516 517 518 519 520
  if (grad->impl()) {
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
521 522 523 524
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
525 526 527 528 529
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
530 531 532 533 534 535 536
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
537 538
      }
    }
539
  }
540

541 542
  RETURN_PY_NONE

543 544 545
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

546 547
static PyObject* tensor__zero_grads(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
548
  EAGER_TRY
549
  VLOG(4) << "ZeroGrads " << self->tensor.name();
550

551
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
552
    // Add RetainGrad as PostHook to AccumulationNode
553 554 555 556 557 558 559 560
    paddle::experimental::Tensor* grad =
        egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
561 562 563 564 565 566 567
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
568
    }
569
  } else {
570
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
571
    if (meta->MutableGrad()->initialized()) {
572 573 574 575 576 577 578 579 580
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
581
    }
582 583
  }

584 585
  RETURN_PY_NONE

586 587 588
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

589 590 591
static PyObject* tensor__share_buffer_to(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
592 593 594
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
595 596 597
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
598
                        self->tensor.name()));
599
  auto* src_tensor =
600
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
601 602 603
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
604 605
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
606
  dst_tensor->ShareBufferWith(*src_tensor);
607
  dst_tensor->ShareDataTypeWith(*src_tensor);
608 609
  RETURN_PY_NONE

610 611 612
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

613 614 615 616
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
617 618 619
  paddle::experimental::Tensor* dst_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
620 621 622
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
623
                        self->tensor.name()));
624
  bool res = false;
625
  if (!self->tensor.defined() || !dst_ptr->defined()) {
626 627 628
    return ToPyObject(res);
  }
  auto* self_ptr =
629
      static_cast<paddle::framework::Tensor*>(self->tensor.impl().get());
630 631 632 633 634 635 636
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

637 638 639 640
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
641 642 643
  paddle::experimental::Tensor* src_ptr =
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
  PADDLE_ENFORCE_EQ(self->tensor.initialized(), true,
644 645 646
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
647 648
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
649 650
  RETURN_PY_NONE

651 652 653
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

654 655 656 657
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
658 659
  paddle::experimental::Tensor src_tensor =
      CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
660 661 662 663 664 665
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
666
  if (!self->tensor.defined() || !src_tensor.defined()) {
667 668
    return ToPyObject(res);
  }
669
  res = (self->tensor.impl().get() == src_tensor.impl().get());
670 671 672 673
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

674 675 676
static PyObject* tensor_method_detach(TensorObject* self, PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
677
  PADDLE_ENFORCE_EQ(
678
      self->tensor.initialized(), true,
679
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
680
                                        self->tensor.name()));
681

682
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
683
  if (obj) {
684 685 686 687 688 689
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
690 691 692 693 694 695 696 697 698 699
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

700 701 702 703
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
704
  if (!self->tensor.defined()) {
705 706 707
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
708
  }
709 710 711
  if (self->tensor.is_dense_tensor()) {
    auto* tensor =
        static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
712 713 714
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
715
    RETURN_PY_NONE
716 717 718 719
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

720 721 722 723 724
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
725
    RETURN_PY_NONE
726 727 728 729 730 731
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
732
    RETURN_PY_NONE
733 734 735 736
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
737 738 739
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
740
  EAGER_TRY
J
Jiabin Yang 已提交
741 742 743 744 745 746 747
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
  PADDLE_ENFORCE_EQ(
748
      self->tensor.initialized(), true,
J
Jiabin Yang 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  ParseIndexingSlice(tensor, _index, &slice_axes, &slice_starts, &slice_ends,
                     &slice_strides, &decrease_axis, &none_axes, &infer_flags,
                     &list_select_idxs, &list_select_flag);

  auto out = slice_axes.empty() && !list_select_flag
                 ? self->tensor
                 : paddle::experimental::Tensor(
                       egr::Controller::Instance().GenerateUniqueName());

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
778 779 780 781 782 783
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
784
    if (op_type == "slice") {
785 786 787
      out = slice_final_state_dygraph_function(
          self->tensor, slice_axes_tmp, slice_starts, slice_ends,
          infer_flags_tmp, decrease_axis_tmp);
J
Jiabin Yang 已提交
788
    } else if (op_type == "strided_slice") {
789 790
      out = strided_slice_final_state_dygraph_function(
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

  if (!none_axes.empty()) {
    // Deal with cases when all axes are decreased.
    // After slice, the shape of out is [1], which should have been
    // [], but Paddle doesn't support scalar.
    // In order to ensure the correctness of the final shape of out,
    // one dimension of out needs to be decreased.
    // For example:
    // # x.shape: (2,3,4)
    // out = x[0, 1, 1, None] # out.shape : (1)
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      none_axes.pop_back();
    }
    if (!none_axes.empty()) {
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
          }
        }
        axis -= len;
      }

      paddle::experimental::Tensor new_out;
      framework::AttributeMap attrs = {{"axes", none_axes}};
      new_out = std::get<0>(unsqueeze2_dygraph_function(out, std::move(attrs)));
      return ToPyObject(new_out);
    }
  }

  // the index is a list
  if (list_select_flag) {
    auto select_index = paddle::experimental::Tensor(
        egr::Controller::Instance().GenerateUniqueName());
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
839
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
840 841 842 843 844
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
    paddle::framework::TensorFromVector(list_select_idxs, *dev_ctx,
                                        idx_tensor.get());
    framework::AttributeMap attrs = {{"dim", 0}};
845 846
    out = index_select_final_state_dygraph_function(self->tensor, select_index,
                                                    0);
J
Jiabin Yang 已提交
847 848 849
  }

  return ToPyObject(out);
850 851 852
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static PyObject* tensor__getitem_from_offset(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  PADDLE_ENFORCE_NOT_NULL(
      ptr, platform::errors::InvalidArgument("%s is not a DenseTensor.",
                                             self->tensor.name()));
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
      tensor.IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
    PADDLE_ENFORCE_EQ(numel, 1,
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
        offset, numel,
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
    PADDLE_ENFORCE_EQ(PyTuple_Size(args), dims.size(),
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
          index, dims[i],
          platform::errors::InvalidArgument(
              "index %d is out fo bounds for axis %d with size %d", index, i,
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    py_dims[0] = 1;                                                          \
    py_strides[0] = 1;                                                       \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
        api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype), 1,       \
        py_dims, py_strides, nullptr,                                        \
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
        static_cast<void*>(&b), sizeof(b));                                  \
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
    ParseIndexingSlice(self_tensor, index_ptr, &axes, &starts, &ends, &steps,
                       &decrease_axes, &none_axes, &infer_flags,
                       &list_select_idxs, &list_select_flag);

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1009 1010 1011 1012 1013
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    }

    paddle::experimental::Tensor value_tensor;

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
      paddle::experimental::Tensor value_tensor_tmp(
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
      if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::FLOAT64) {
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT32) {
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() ==
                 paddle::experimental::DataType::INT64) {
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
      } else if (self->tensor.dtype() == paddle::experimental::DataType::BOOL) {
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
            "float32, int32 or int64, "
            "please check the type of tensor."));
      }

1057
      if (!value_tensor_tmp.initialized()) {
W
wanghuancoder 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
            value, platform::Place(platform::CUDAPlace(0)), false);
#else
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
            value, platform::Place(platform::CPUPlace()), false);
#endif
      } else {
        SetTensorFromPyArray(
            static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
C
Chen Weihang 已提交
1070
            value, value_tensor_tmp.place(), false);
W
wanghuancoder 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
      }

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
          py::isinstance<py::bool_>(value_obj_tmp)) {
        if (self->tensor.dtype() == paddle::experimental::DataType::FLOAT32) {
          attrs["fp32_values"] =
              std::vector<float>{value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::FLOAT64) {
          attrs["fp64_values"] =
              std::vector<double>{value_obj_tmp.cast<double>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT32) {
          attrs["int32_values"] =
              std::vector<int32_t>{value_obj_tmp.cast<int32_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::INT64) {
          attrs["int64_values"] =
              std::vector<int64_t>{value_obj_tmp.cast<int64_t>()};
        } else if (self->tensor.dtype() ==
                   paddle::experimental::DataType::BOOL) {
          attrs["bool_values"] = std::vector<int>{value_obj_tmp.cast<bool>()};
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
              "float32, int32 or int64, "
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
            "numpy.ndarray, integer, float or bool, "
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }

    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
      // use inplace set_value_ operator
      self->tensor = set_value__dygraph_function(self->tensor, value_tensor, {},
                                                 {}, {}, attrs);
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1145
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1146 1147 1148 1149 1150 1151 1152 1153
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      SetTensorFromPyArray(self_tensor, self_numpy,
                           platform::Place(platform::CUDAPlace(0)), false);
#else
      SetTensorFromPyArray(self_tensor, self_numpy,
                           platform::Place(platform::CPUPlace()), false);
#endif
    } else {
C
Chen Weihang 已提交
1154
      SetTensorFromPyArray(self_tensor, self_numpy, self->tensor.place(),
W
wanghuancoder 已提交
1155 1156 1157
                           false);
    }
  }
1158 1159
  RETURN_PY_NONE

W
wanghuancoder 已提交
1160 1161 1162
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1163 1164 1165 1166 1167 1168
static PyObject* tensor_register_grad_hook(TensorObject* self, PyObject* args,
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
        rank_info.first, rank_info.second,
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_remove_grad_hook(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_register_reduce_hook(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor), true,
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1235 1236 1237 1238
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
      std::make_shared<PyTensorVoidHook>(hook_func));

1251 1252
  RETURN_PY_NONE

1253 1254 1255
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1256 1257
static PyObject* tensor__set_grad_type(TensorObject* self, PyObject* args,
                                       PyObject* kwargs) {
1258 1259 1260
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1261
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1262
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1263
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1264
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1265
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1266
  }
1267 1268
  RETURN_PY_NONE

1269 1270 1271
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1272 1273 1274 1275
static PyObject* tensor__clear(TensorObject* self, PyObject* args,
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1276 1277
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1278 1279 1280 1281 1282 1283 1284
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor__copy_gradient_from(TensorObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1285
  if (self->tensor.initialized()) {
J
Jiabin Yang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    PADDLE_ENFORCE_EQ(self->tensor.dtype(), src.dtype(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          self->tensor.name(), src.name()));
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          self->tensor.name(), src.name()));
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
    PADDLE_ENFORCE_EQ(src.initialized(), true,
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1305 1306
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1307 1308
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

static PyObject* tensor_method_set_vocab(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  using Vocab = std::unordered_map<std::wstring, int>;
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  using Strings = std::vector<std::string>;
  auto strings = CastPyArg2Strings(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      egr::IsVariableCompatTensor(self->tensor), true,
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
  using Vocab = std::unordered_map<std::wstring, int>;
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    paddle::experimental::Tensor tensor(std::make_shared<phi::DenseTensor>(
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
  paddle::experimental::Tensor tensor(
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static PyObject* tensor_method_is_dense(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1430 1431 1432
static PyObject* tensor_method_is_sparse(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
1433 1434 1435
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1436 1437 1438 1439 1440 1441 1442 1443
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_is_sparse_coo(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
1444 1445 1446
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1447 1448 1449 1450 1451 1452 1453
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_is_sparse_csr(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
1454 1455 1456
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1457 1458 1459 1460
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1475 1476 1477 1478 1479 1480 1481 1482 1483
static PyObject* tensor__inplace_version(TensorObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1484 1485 1486 1487 1488 1489 1490 1491 1492
static PyObject* tensor_method_element_size(TensorObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  uint32_t element_size = framework::DataTypeSize(self->tensor.dtype());

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1493 1494 1495 1496 1497
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1498
  RETURN_PY_NONE
1499 1500 1501
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1502 1503 1504 1505
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1506 1507 1508
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_rows(TensorObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1525 1526 1527 1528 1529 1530 1531
static PyObject* tensor_methon_element_size(TensorObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(paddle::experimental::SizeOf(self->tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1548 1549
  RETURN_PY_NONE

1550 1551 1552
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1553 1554 1555 1556
static PyObject* tensor_method__share_memory(TensorObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
C
Chen Weihang 已提交
1557
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()), true,
W
wanghuancoder 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
  memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
               platform::CPUPlace(), data_ptr, data_size);
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1581 1582
  RETURN_PY_NONE

W
wanghuancoder 已提交
1583 1584 1585 1586
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
static PyObject* tensor__offset(TensorObject* self, PyObject* args,
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(), true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static PyObject* tensor__grad_name(TensorObject* self, PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  PADDLE_ENFORCE_EQ(grad != nullptr, true,
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor__grad_value(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  PADDLE_ENFORCE_EQ(grad != nullptr, true,
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1624
    RETURN_PY_NONE
1625 1626 1627 1628 1629 1630 1631 1632
  }
  if (grad->is_dense_tensor()) {
    auto* grad_tensor =
        static_cast<paddle::framework::LoDTensor*>(grad->impl().get());
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1633
    RETURN_PY_NONE
1634 1635 1636 1637
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
static PyObject* tensor__unset_fake_empty(TensorObject* self, PyObject* args,
                                          PyObject* kwargs) {
  EAGER_TRY
  paddle::experimental::Tensor* grad =
      egr::EagerUtils::mutable_grad(self->tensor);
  PADDLE_ENFORCE_EQ(grad != nullptr, true,
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1658 1659 1660 1661 1662
#if defined(PADDLE_WITH_CUDA)
static PyObject* tensor_method__uva(TensorObject* self, PyObject* args,
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
W
Weilong Wu 已提交
1663 1664 1665 1666
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(), true,
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
C
Chen Weihang 已提交
1667
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()), true,
1668 1669 1670 1671 1672 1673 1674 1675
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
  auto* self_tensor =
      static_cast<paddle::framework::LoDTensor*>(self->tensor.impl().get());
  tensor_uva(self_tensor, device_id);

1676 1677
  RETURN_PY_NONE

1678 1679 1680
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1693

1694
PyMethodDef variable_methods[] = {
1695
    {"numpy", (PyCFunction)(void (*)(void))tensor_method_numpy,
1696 1697
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
1698
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
1699
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1700
    {"_is_dense_tensor_hold_allocation",
1701 1702
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
W
wanghuancoder 已提交
1703
     METH_VARARGS | METH_KEYWORDS, NULL},
1704
    {"_copy_to", (PyCFunction)(void (*)(void))tensor_method__copy_to,
1705
     METH_VARARGS | METH_KEYWORDS, NULL},
1706
    {"copy_", (PyCFunction)(void (*)(void))tensor_method_copy_,
1707
     METH_VARARGS | METH_KEYWORDS, NULL},
1708
    {"reconstruct_from_",
1709
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
1710
     METH_VARARGS | METH_KEYWORDS, NULL},
1711
    {"retain_grads", (PyCFunction)(void (*)(void))tensor_retain_grads,
1712
     METH_VARARGS | METH_KEYWORDS, NULL},
1713
    {"clear_gradient", (PyCFunction)(void (*)(void))tensor_clear_gradient,
1714
     METH_VARARGS | METH_KEYWORDS, NULL},
1715 1716
    {"is_dense", (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS, NULL},
1717
    {"_zero_grads", (PyCFunction)(void (*)(void))tensor__zero_grads,
1718
     METH_VARARGS | METH_KEYWORDS, NULL},
1719
    {"_share_buffer_to", (PyCFunction)(void (*)(void))tensor__share_buffer_to,
1720
     METH_VARARGS | METH_KEYWORDS, NULL},
1721
    {"_is_shared_buffer_with",
1722
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
1723
     METH_VARARGS | METH_KEYWORDS, NULL},
1724
    {"_share_underline_tensor_to",
1725
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
1726 1727
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_shared_underline_tensor_with",
1728
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
1729
     METH_VARARGS | METH_KEYWORDS, NULL},
1730
    {"detach", (PyCFunction)(void (*)(void))tensor_method_detach,
1731
     METH_VARARGS | METH_KEYWORDS, NULL},
1732
    {"get_tensor",
1733
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
1734
     METH_VARARGS | METH_KEYWORDS, NULL},
1735 1736 1737
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
     METH_VARARGS | METH_KEYWORDS, NULL},
J
Jiabin Yang 已提交
1738 1739
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
1740
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1741 1742 1743
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1744 1745 1746
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
1747 1748 1749 1750 1751 1752 1753 1754
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_remove_grad_hook", (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
     METH_VARARGS | METH_KEYWORDS, NULL},
J
Jiabin Yang 已提交
1755 1756 1757 1758 1759 1760
    {"_set_grad_type", (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_clear", (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
1761
     METH_VARARGS | METH_KEYWORDS, NULL},
1762 1763 1764 1765 1766 1767 1768 1769 1770
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"set_vocab", (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
1771
    /***the method of sparse tensor****/
1772
    {"indices", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
1773
     METH_VARARGS | METH_KEYWORDS, NULL},
1774
    {"values", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
1775
     METH_VARARGS | METH_KEYWORDS, NULL},
1776
    {"crows", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
1777
     METH_VARARGS | METH_KEYWORDS, NULL},
1778
    {"cols", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
1779 1780 1781 1782 1783 1784 1785
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"is_sparse", (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"is_sparse_coo", (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"is_sparse_csr", (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS, NULL},
1786 1787
    {"to_sparse_csr", (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS, NULL},
1788 1789
    {"element_size", (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS, NULL},
1790
    /***the method of sparse tensor****/
1791 1792
    {"_inplace_version", (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS, NULL},
1793 1794 1795
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
     METH_VARARGS | METH_KEYWORDS, NULL},
1796 1797 1798 1799 1800
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"rows", (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS, NULL},
1801 1802
    {"element_size", (PyCFunction)(void (*)(void))tensor_methon_element_size,
     METH_VARARGS | METH_KEYWORDS, NULL},
1803 1804 1805
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
1806 1807
    {"_share_memory", (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS, NULL},
1808 1809
    {"_offset", (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS, NULL},
1810 1811 1812 1813
    {"_grad_name", (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_grad_value", (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS, NULL},
1814 1815
    {"_unset_fake_empty", (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS, NULL},
1816 1817 1818 1819
#if defined(PADDLE_WITH_CUDA)
    {"_tensor_uva", (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS, NULL},
#endif
1820 1821
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_string_tensor_hold_allocation",
1831 1832
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
J
Jack Zhou 已提交
1833 1834 1835 1836
     METH_VARARGS | METH_KEYWORDS, NULL},
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

1837 1838
}  // namespace pybind
}  // namespace paddle